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Abstract

Clothing recognition is an extremely challenging prob-
lem due to wide variation in clothing item appearance,
layering, and style. In this paper, we tackle the clothing
parsing problem using a retrieval based approach. For a
query image, we find similar styles from a large database of
tagged fashion images and use these examples to parse the
query. Our approach combines parsing from: pre-trained
global clothing models, local clothing models learned on
the fly from retrieved examples, and transferred parse masks
(paper doll item transfer) from retrieved examples. Exper-
imental evaluation shows that our approach significantly
outperforms state of the art in parsing accuracy.

1. Introduction
Clothing choices vary widely across the global popu-

lation. For example, one person’s style may lean toward

preppy while another’s trends toward goth. However, there

are commonalities. For instance, walking through a col-

lege campus you might notice student after student consis-

tently wearing combinations of jeans, t-shirts, sweatshirts,

and sneakers. Or, you might observe those who have just

stumbled out of bed and are wandering to class looking di-

sheveled in their pajamas. Even hipsters who purport to be

independent in their thinking and dress, tend to wear similar

outfits consisting of variations on tight-fitting jeans, button

down shirts, and thick plastic glasses. In some cases, style

choices can be a strong cue for visual recognition.

In addition to style variation, individual clothing items

also display many different appearance characteristics. As

a concrete example, shirts have an incredibly wide range of

appearances based on cut, color, material, and pattern. This

can make identifying part of an outfit as a shirt very chal-

lenging. Luckily, for any particular choice of these param-

eters, e.g., blue and white checked button down, there are

many shirts with similar appearance. It is this visual simi-

larity and the existence of some consistency in style choices

discussed above that we exploit in our system.

In this paper, we take a data driven approach to cloth-

ing parsing. We first collect a large, complex, real world

collection of outfit pictures from a social network focused

on fashion, chictopia.com. Using a very small set of

hand parsed images in combination with the text tags asso-

ciated with each image in the collection, we can parse our

large database accurately. Now, given a query image with-

out any associated text, we can predict an accurate parse by

retrieving similar outfits from our parsed collection, build-

ing local models from retrieved clothing items, and trans-

ferring inferred clothing items from the retrieved samples

to the query image. Final iterative smoothing produces our

end result. In each of these steps we take advantage of the

relationship between clothing and body pose to constrain

prediction and produce a more accurate parse. We call this

paper doll parsing because it essentially transfers predic-

tions from retrieved samples to the query, like laying paper

cutouts of clothing items onto a paper doll. Consistencies

in dressing make this retrieval based effort possible.

In particular, we propose a retrieval based approach to

clothing parsing that combines:

• Pre-trained global models of clothing items.

• Local models of clothing items learned on the fly from

retrieved examples.

• Parse mask predictions transferred from retrieved ex-

amples to the query image.

• Iterative label smoothing.

Clothing recognition is a challenging and societally im-

portant problem – global sales for clothing total over a

hundred billion dollars, much of which is conducted on-

line. This is reflected in the growing interest in clothing

related recognition papers [11, 10, 25, 16, 26, 7, 2, 4], per-

haps boosted by recent advances in pose estimation [27, 3].

Many of these papers have focused on specific aspects of

clothing recognition such as predicting attributes of cloth-

ing [7, 2, 4], outfit recommendation [15], or identifying as-

pects of socio-identity through clothing [18, 20].

We attack the problem of clothing parsing, assigning a

semantic label to each pixel in the image where labels can
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be selected from background, skin, hair, or from a large set

of clothing items (e.g. boots, tights, sweater). Effective so-

lutions to clothing parsing could enable useful end-user ap-

plications such as pose independent clothing retrieval [26]

or street to shop applications [16]. This problem is closely

related to the general image parsing problem which has

been approached successfully using related non-parametric

methods [21, 14, 22]. However, we view the clothing pars-

ing problem as suitable for specialized exploration because

it deals with people, a category that has obvious signifi-

cance. The clothing parsing problem is also special in that

one can take advantage of body pose estimates during pars-

ing, and we do so in all parts of our method.

Previous state of the art on clothing parsing [26] per-

formed quite well on the constrained parsing problem,

where test images are parsed given user provided tags indi-

cating depicted clothing items. However, they were less ef-

fective at unconstrained clothing parsing, where test images

are parsed in the absense of any textual information. We

provide an approach to unconstrained clothing parsing that

performs much better than previous state of the art, boost-

ing overall image labeling performance from 77% to 84%
and performance of labeling foreground pixels (those actu-

ally on the body) from 23% to 40%, an increase of 74% of

the previous accuracy.

2. Dataset

This paper uses the Fashionista dataset provided in [26]

and an expansion called the Paper Doll dataset which we

collected for this paper. The Fashionista dataset provides

685 fully parsed images that we use for supervised training

and performance evaluation, 456 for training and 229 for

testing. The training samples are used for learning feature

transforms, building global clothing models, and adjusting

parameters. The testing samples are reserved for evaluation.

The Paper Doll dataset is a large collection of tagged

fashion pictures. We collected over 1 million pictures from

chictopia.com with associated metadata tags denoting

characteristics such as color, clothing item, or occasion.

Since the Fashionista dataset also uses Chictopia, we au-

tomatically exclude any duplicate pictures from the Paper

Doll dataset. From the remaining, we select pictures tagged

with at least one clothing item and run a full-body pose de-

tector [27], keeping those that have a person detection. This

results in 339,797 pictures weakly annotated with cloth-

ing items and estimated pose. Though the annotations are

not always complete – users often do not label all depicted

items, especially small items or accessories – it is rare to

find images where an annotated tag is not present. We use

the Paper Doll dataset for style retrieval.

3. Approach overview
For a query image, our approach consists of two steps:

1. Retrieve similar images from the parsed database.

2. Use retrieved images and tags to parse the query.

Figure 1 depicts the overall parsing pipeline.

3.1. Low-level features

We first run a pose estimator [27] and normalize the

full-body bounding box to fixed size. The pose estimator

is trained using the Fashionista training split and negative

samples from the INRIA dataset. During parsing, we com-

pute the parse in this fixed frame size then warp it back to

the original image, assuming regions outside the bounding

box are background.

Our methods draw from a number of dense feature types

(each parsing method uses some subset):

RGB RGB color of the pixel.

Lab L*a*b* color of the pixel.

MR8 Maximum Response Filters [23].

Gradients Image gradients at the pixel.

HOG HOG descriptor at the pixel.

Boundary Distance Negative log-distance from the

boundary of an image.

Pose Distance Negative log-distance from 14 body joints

and any body limbs.

Whenever we use a statistical model built upon these fea-

tures, we first normalize features by subtracting their mean
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and dividing by 3 standard deviations for each dimension.

Also, when we use logistic regression [8], we use these nor-

malized features and their squares, along with a constant

bias. So, for an N -dimensional feature vector, we always

learn 2N + 1 parameters.

4. Style retrieval
Our goal for retrieving similar pictures is two-fold: a) to

predict depicted clothing items, and b) to obtain information

helpful for parsing clothing items.

4.1. Style descriptor

We design a descriptor for style retrieval that is useful

for finding styles with similar appearance. For an image, we

obtain a set of 24 key points interpolated from the 27 pose

estimated body joints. These key points are used to extract

part-specific spatial descriptors - a mean-std pooling of nor-

malized dense features in 4-by-4 cells in a 32-by-32 patch

around the key point. That is, for each cell in the patch,

we compute mean and standard deviation of the normalized

features (Figure 2 illustrates). The features included in this

descriptor are RGB, Lab, MR8, HOG, Boundary Distance,

and Skin-hair Detection.

Skin-hair Detection is computed using logistic regres-

sion for skin, hair, background, and clothing at each pixel.

For its input, we use RGB, Lab, MR8, HOG, Boundary Dis-

tance, and Pose Distance. Note that we do not include Pose

Distance as a feature in the style descriptor, but instead use

Skin-hair detection to indirectly include pose-dependent in-

formation in the representation since the purpose of the style

descriptor is to find similar styles independent of pose.

For each key point, we compute the above spatial de-

scriptors and concatenate to describe the overall style, re-

sulting in a 39,168 dimensional vector for an image. For

efficiency of retrieval, we use PCA for dimensionality re-

duction to a 441 dimensional representation. We use the

Fashionista training split to build the Skin-hair detector and

also to train the PCA model.

4.2. Retrieval

We use L2-distance over the style descriptors to find the

K nearest neighbors (KNN) in the Paper Doll dataset. For

efficiency, we build a KD-tree [24] to index samples. In this

paper, we fix K = 25 for all the experiments. Figure 4

shows two examples of nearest neighbor retrievals.

4.3. Tag prediction

The retrieved samples are first used to predict clothing

items potentially present in a query image. The purpose of

tag prediction is to obtain a set of tags that might be relevant

to the query, while eliminating definitely irrelevant items for

consideration. Later stages can remove spuriously predicted

tags, but tags removed at this stage can never be predicted.

Therefore, we wish to obtain the best possible predictive

performance in the high recall regime.

Tag prediction is based on a simple voting approach

from KNN. Each tag in the retrieved samples provides a

vote weighted by the inverse of its distance from the query,

which forms a confidence for presence of that item. We

threshold this confidence to predict the presence of an item.

We experimentally selected this simple KNN prediction

instead of other models, because it turns out KNN works

well for the high-recall prediction task. Figure 3 shows

performance of linear vs KNN at 10 and 25. While linear

classification (clothing item classifiers trained on subsets of

body parts, e.g. pants on lower body keypoints), works well

in the low-recall high precision regime, KNN outperforms

in the high-recall range. KNN at 25 also outperforms 10.

Since the goal here is only to eliminate obviously irrel-

evant items while keeping most potentially relevant items,

we tune the threshold to give 0.5 recall in the Fashionista

training split. Due to the skewed item distribution in the

Fashionista dataset, we use the same threshold for all items

to avoid over-fitting the predictive model. In the parsing

stage, we always include background, skin, and hair in ad-

dition to the predicted clothing tags.

5. Clothing parsing
Following tag prediction, we start to parse the image in

a per-pixel fashion. Parsing has two major phases:

1. Compute pixel-level confidence from three methods:

global parse, nearest neighbor parse, and transferred

parse.

2. Apply iterative label smoothing to get a final parse.

Figure 5 illustrates outputs from each parsing stage.

5.1. Pixel confidence

Let us denote yi as the clothing item label at pixel i. The

first step in parsing is to compute a confidence score of as-

signing clothing item l to yi. We model this scoring function

S as the mixture of three confidence functions.

S(yi|xi, D) ≡ Sglobal(yi|xi, D)λ1 ·
Snearest(yi|xi, D)λ2 ·
Stransfer(yi|xi, D)λ3 , (1)

where xi denotes pixel features, Λ ≡ [λ1, λ2, λ3] are mix-

ing parameters, and D is a set of nearest neighbor samples.

5.1.1 Global parse

The first term in our model is a global clothing likelihood,

trained for each clothing item on the hand parsed Fashion-

ista training split. This is modeled as a logistic regression
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accessories boots
dress jacket sweater

bag cardigan heels
shorts top

boots skirt belt pumps skirt
t-shirt

flats necklace shirt
skirt

belt shirt shoes
skirt tights

skirt top

blazer shoes shorts
top

skirt belt blazer boots
shorts t-shirt

belt dress heels
jacket shoes shorts

bracelet jacket
pants shoes top

bag blazer boots
shorts top

accessories blazer
shoes shorts top

Figure 4: Retrieval examples. The leftmost column shows query images with ground truth item annotation. The rest are

retrieved images with associated tags in the top 25. Notice retrieved samples sometimes have missing item tags.

Pose estimation 1. Global parse 2. NN parse 3. Transferred parse Combined (1+2+3) Smoothed result

null

skin

hair

belt

heels

necklace

shirt

shoes

skirt

top

Figure 5: Parsing outputs at each step. Labels are MAP assignments of the scoring functions.

that computes the likelihood of a label assignment to each

pixel for a given set of possible clothing items:

Sglobal(yi|xi, D) ≡ P (yi = l|xi, θ
g
l ) · 1[l ∈ τ(D)], (2)

where P is logistic regression given feature xi and model

parameter θgl , 1[·] is an indicator function, and τ(D) is a

set of predicted tags from nearest neighbor retrieval. We

use RGB, Lab, MR8, HOG, and Pose Distances as features.

Any unpredicted items receive zero probability.

The model parameter θgl is trained on the Fashionista

training split. For training each θgl , we select negative pixel

samples only from those images having at least one posi-

tive pixel. That is, the model gives localization probability

given that a label l is present in the picture. This could

potentially increase confusion between similar item types,

such as blazer and jacket since they usually do not appear

together, in favor of better localization accuracy. We chose

to rely on the tag prediction τ to resolve such confusion.

Because of the tremendous number of pixels in the

dataset, we subsample pixels to train each of the logistic

regression models. During subsampling, we try to sample

pixels so that the resulting label distribution is close to uni-

form in each image, preventing learned models from only

predicting large items.

5.1.2 Nearest neighbor parse

The second term in our model is also a logistic regression,

but trained only on the retrieved nearest neighbor (NN) im-

ages. Here we learn a local appearance model for each

clothing item based on examples that are similar to the

query, e.g. blazers that look similar to the query blazer be-

cause they were retrieved via style similarity. These local

models are much better models for the query image than

those trained globally (because blazers in general can take

on a huge range of appearances).
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Figure 6: Transferred parse. Likelihoods in nearest neigh-

bors are transferred to the input via dense matching.

Snearest(yi|xi, D) ≡ P (yi = l|xi, θ
n
l ) · 1[l ∈ τ(D)]. (3)

The model parameter θnl is locally learned from the

retrieved samples D, using RGB, Lab, Gradient, MR8,

Boundary Distance, and Pose Distance.

In this step, predicted pixel-level annotations from the

retrieved samples are used (computed during pre-processing

detailed in Section 5.3) to learn local appearance models.

NN models are trained using any pixel (with subsampling)

in the retrieved samples in a one-vs-all fashion.

5.1.3 Transferred parse

The third term in our model is obtained by transferring the

parse mask likelihoods estimated by the global parse Sglobal

from the retrieved images to the query image (Figure 6 visu-

alizes an example). This approach is similar in spirit to ap-

proaches for general segmentation that transfer likelihoods

using over segmentation and matching [1, 13, 17], but here

because we are performing segmentation on people we can

take advantage of pose estimates during transfer.

In our approach, we find dense correspondence based on

super-pixels instead of pixels (e.g., [21]) to overcome the

difficulty in naively transferring deformable, often occluded

clothing items pixel-wise. Our approach first computes an

over-segmentation of both query and retrieved images us-

ing a fast and simple segmentation algorithm [9], then finds

corresponding pairs of super-pixels between the query and

each retrieved image based on pose and appearance:

1. For each super-pixel in the query, find the 5 nearest

super-pixels in each retrieved image using L2 Pose

Distance.

2. Compute a concatenation of bag-of-words from RGB,

Lab, MR8, and Gradient for each of those super-pixels.

3. Pick the closest super-pixel from each retrieved image

using L2 distance on the bag-of-words feature.

Let us denote the super-pixel of pixel i with si, the se-

lected corresponding super-pixel from image r with si,r,

and the bag-of-words features of super-pixel s with h(s).
Then, our transferred parse is computed as:

Stransfer(yi|xi, D) ≡ 1

Z

∑
r∈D

M(yi, si,r)

1 + ‖h(si)− h(si,r)‖ , (4)

where we define:

M(yi, si,r) ≡ 1

|si,r|
∑

j∈si,r
P (yi = l|xi, θ

g
l ) · 1[l ∈ τ(r)], (5)

which is a mean of the global parse over the super-pixel in

a retrieved image. Here we denote a set of tags of image r
with τ(r), and normalization constant Z.

5.1.4 Combined confidence

After computing our three confidence scores, we combine

them with parameter Λ to get the final pixel confidence S
as described in Equation 1. We choose the best mixing pa-

rameter such that MAP assignment of pixel labels gives the

best foreground accuracy in the Fashionista training split

by solving the following optimization (on foreground pix-

els F ):

max
Λ

∑
i∈F

1

[
ỹi = argmax

yi

SΛ(yi|xi)

]
, (6)

where ỹi is the ground truth annotation of the pixel i. The

nearest neighbors D in S are dropped in the notation for

simplicity. We use a simplex search algorithm to solve for

the optimum parameter starting from uniform values. In our

experiment, we obtained (0.41, 0.18, 0.39).
We exclude background pixels from this optimization

because of the skew in the label distribution – background

pixels in Fashionista dataset represent 77% of total pixels,

which tends to direct the optimizer to find meaningless local

optima; i.e., predicting everything as background.

5.2. Iterative label smoothing

The combined confidence gives a rough estimate of item

localization. However, it does not respect boundaries of ac-

tual clothing items since it is computed per-pixel. There-

fore, we introduce an iterative smoothing stage that con-

siders all pixels together to provide a smooth parse of an

image. Following the approach of [19], we formulate this

smoothing problem by considering the joint labeling of pix-

els Y ≡ {yi} and item appearance models Θ ≡ {θsl },
where θsl is a model for a label l. The goal is to find the op-

timal joint assignment Y ∗ and item models Θ∗ for a given

image.

We start this problem by initializing the current predicted

parsing Ŷ0 with the MAP assignment under the combined
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confidence S. Then, we treat Ŷ0 as training data to build

initial image-specific item models Θ̂0 (logistic regressions).

For these models, we only use RGB, Lab, and Boundary

Distance since otherwise models easily over-fit. Also, we

use a higher regularization parameter for training instead

of finding the best cross-validation parameter, assuming the

initial training labels Ŷ0 are noisy.

After obtaining Ŷ0 and Θ̂0, we solve for the optimal as-

signment Ŷt at the current step t with the following opti-

mization:

Ŷt ∈ argmax
Y

∏
i

Φ(yi|xi, S, Θ̂t)
∏
i,j∈V

Ψ(yi, yj |xi,xj), (7)

where we define:

Φ(yi|xi, S, Θ̂t) ≡ S(yi|xi)
λ · P (yi|xi, θ

s
l )

1−λ, (8)

Ψ(yi, yj |xi,xj) ≡ exp{γe−β‖xi−xj‖2 · 1 [yi �= yj ]}. (9)

Here, V is a set of neighboring pixel pairs, λ, β, γ are

the parameters of the model, which we experimentally de-

termined in this paper. We use the graph-cut algorithm

[6, 5, 12] to find the optimal solution.

With the updated estimate of the labels Ŷt, we train the

logistic regressions Θ̂t and repeat until the algorithm con-

verges. Note that this iterative approach is not guaranteed

to converge. We terminate the iteration when 10 iterations

pass, when the number of changes in label assignment is

less than 100, or the ratio of the change is smaller than 5%.

5.3. Offline processing

Our retrieval techniques require the large Paper Doll

Dataset to be pre-processed (parsed), for building nearest

neighbor models on the fly from retrieved samples and for

transferring parse masks. Therefore, we estimate a clothing

parse for each sample in the 339K image dataset, making

use of pose estimates and the tags associated with the im-

age by the photo owner. This parse makes use of the global

clothing models (constrained to the tags associated with the

image by the photo owner) and iterative smoothing parts of

our approach.

Although these training images are tagged, there are of-

ten clothing items missing in the annotation. This will lead

iterative smoothing to mark foreground regions as back-
ground. To prevent this, we add an unknown item label

with uniform probability and initialize Ŷ0 together with the

global clothing model at all samples. This effectively pre-

vents the final estimated labeling Ŷ to mark missing items

with incorrect labels.

Offline processing of the Paper Doll Dataset took a few

of days with our Matlab implementation in a distributed en-

vironment. For an unseen query image, our full parsing

pipeline takes 20 to 40 seconds, including pose estimation.

The major computational bottlenecks are in pose estimation

and iterative smoothing.

6. Experimental results
We evaluate parsing performance on the 229 testing sam-

ples from the Fashionista dataset. The task is to predict a

label for every pixel where labels represent a set of 56 dif-

ferent categories – a very large and challenging variety of

clothing items.

Performance is measured in terms of standard metrics:

accuracy, average precision, average recall, and average F-

1 over pixels. In addition, we also include foreground ac-

curacy (See eqn 6) as a measure of how accurately each

method is at parsing foreground regions (those pixels on

the body, not on the background). Note that the aver-

age measures are over non-empty labels after calculating

pixel-based performance for each since some labels are not

present in the test set. Since there are some empty predic-

tions, F-1 does not necessarily match the geometric mean

of average precision and recall.

Table 1 summarizes predictive performance of our pars-

ing method, including a breakdown of how well the in-

termediate parsing steps perform. For comparison, we in-

clude the performance of previous state of the art on cloth-

ing parsing [26]. Our approach outperforms the previous

method in overall accuracy (84.68% vs 77.45%). It also

provides a huge boost in foreground accuracy. The previ-

ous approach provides 23.11% foreground accuracy, while

we obtain 40.20%. We also obtain much higher preci-

sion (10.53% vs 33.34%) without much decrease in recall

(17.2% vs 15.35%).

Figure 7 shows examples from our parsing method, with

ground truth annotation and the method of [26]. We observe

that our method produces a parse that respects the actual

item boundary, even if some items are incorrectly labeled;

e.g., predicting pants as jeans, or jacket as blazer. However,

often these confusions are due to high similarity in appear-

ance between items and sometimes due to non-exclusivity

in item types, i.e., jeans are a type of pants.

Figure 8 plots F-1 scores for non-empty items (items

predicted on the test set) comparing the method of [26]

with our method. Our model outperforms the prior work

on many items, especially major foreground items such as

dress, jeans, coat, shorts, or skirt. This results in a signif-

icant boost in foreground accuracy and perceptually better

parsing results.

Though our method is successful at foreground predic-

tion overall, there are a few drawbacks to our approach.

By design, our style descriptor is aimed at representing

whole outfit style rather than specific details of the outfit.

Consequently, small items like accessories tend to be less

weighted during retrieval and are therefore poorly predicted

during parsing. However, prediction of small items is inher-

ently extremely challenging because they provide limited

appearance information.

Another issue for future work is the prevention of con-
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Method Accuracy F.g. accuracy Avg. precision Avg. recall Avg. F-1
CRF [26] 77.45 23.11 10.53 17.20 10.35

1. Global parse 79.63 35.88 18.59 15.18 12.98

2. NN parse 80.73 38.18 21.45 14.73 12.84

3. Transferred parse 83.06 33.20 31.47 12.24 11.85

4. Combined (1+2+3) 83.01 39.55 25.84 15.53 14.22

5. Our final parse 84.68 40.20 33.34 15.35 14.87

Table 1: Parsing performance for final and intermediate results (MAP assignments at each step).

Input Truth CRF [26] Our method Input Truth CRF [26] Our method

background blazer cape flats jacket pants scarf socks t-shirt watch

skin blouse cardigan glasses jeans pumps shirt stockings tie wedges

hair bodysuit clogs gloves jumper purse shoes suit tights

accessories boots coat hat leggings ring shorts sunglasses top

bag bra dress heels loafers romper skirt sweater vest

belt bracelet earrings intimate necklace sandals sneakers sweatshirt wallet

Figure 7: Parsing examples. Our method sometimes confuses similar items, but gives overall perceptually better results.

flicting items from being predicted for the same image, such

as dress and skirt, or boots and shoes which tend not to be

worn together. Our iterative smoothing is effectively reduc-

ing such confusion, but the parsing result sometimes con-

tains one item split into two conflicting items. One way to

resolve this would be to enforce constraints on the overall

combination of predicted items, but this leads to a difficult

optimization problem and we leave it as future work.

Lastly, we find it difficult to predict items with skin-like

color or coarsely textured items (similar to issues reported

in [26]). Because of the variation in lighting condition in

pictures, it is very hard to distinguish between actual skin

and clothing items that look like skin, e.g. slim khaki pants.

Also, it is very challenging to differentiate for example be-

tween bold stripes and a belt using low-level image features.

These cases will require higher-level knowledge about out-

fits to correctly parse.

7. Conclusion
We describe a clothing parsing method based on near-

est neighbor style retrieval. Our system combines: global

parse models, nearest neighbor parse models, and trans-

ferred parse predictions. Experimental evaluation shows

successful results, demonstrating a significant boost of over-
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Figure 8: F-1 score of non-empty items. We observe significant performance gains, especially for large items.

all accuracy and especially foreground parsing accuracy

over previous work. It is our future work to resolve the con-

fusion between very similar items and to incorporate higher

level knowledge about outfits.
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