2019 HKDSE Physics \& Combined Science (Physics)

Report on Assessment

Y.T.SZETO

Manager (Physics), HKEAA

23 Sep \& 24 Oct 2019

Marking \& Grading

On-Screen Marking (OSM) panels	
Physics	CS(Phy)
1B-1: Q.1, 3, 5, $6(34 \mathrm{M})$	1B-1: Q.1, $2,3,4(34 \mathrm{M})$
1B-2: Q.7, 8, $9(25 \mathrm{M})$	
1B-3: Q.2, 4, $10(25 \mathrm{M})$	1B-2: Q.5, $6,7(22 \mathrm{M})$
2A: Astronomy (20\%)	---
2B: Atomic World (66\%)	
2C: Energy (84\%)	
2D: Medical Physics (30\%)	---

SBA marks stat. moderated (outlying cases $\sim 10 \%$ schools reviewed by Supervisors)

Overview		
Paper	Physics	CS(Phy)
$\mathbf{1 A}$ (MC)	Mean: 19.2 out of 33 $($ i.e. $58 \%)$ $\left(2018: 18.0\right.$ out of $\left.32^{*}\right)$	Mean: 9.8 out of 22 (i.e. $47 \%)$ $\left(2018: 9.8\right.$ out of $\left.21^{*}\right)$
$\mathbf{1 B}$	$\sim>50 \%$ $(2018:<50 \%)$	$35 \% \sim 40 \%$ $(2018: \sim>30 \%)$
$\mathbf{2}$	$\sim>50 \%$ $(2018: \sim<50 \%)$	N.A.
SBA	$\sim>70 \%(\sim 2017)$	$\sim<70 \%(\sim 2017)$

* one item deleted

Marking \& Grading

Expert Panel (Examiners, $4 \sim 5$ persons) determine level
boundaries/cut scores based on Level descriptors /
Group Ability Indicator (GAI) / Viewing candidat
boundaries/cut scores based on Level descriptors /
Group Ability Indicator (GAI) / Viewing candidate samples.
CS(Phy) graded by Common items / Viewing candidate samples.
Endorsement by Senior Management/Public Exam Board

Note: GAI is generated from Physics candidates' actual percentage awards in 4 core subjects CEML.

Paper 1A

Physics (33 MC)

$\mathbf{7 0 \%}$	$\mathbf{5 0 \%} \mathbf{7 0} \mathbf{7 0 \%}$	$\mathbf{< 5 0 \%}$	
4	21	8	
Easy	Difficult		

CS (Phy) (22 MC)

$\mathbf{7 0 \%}$	$\mathbf{5 0 \% - 7 0 \%}$	$\mathbf{5 0 0 \%}$
0	$\mathbf{7}$	$\mathbf{1 5}$

Topic (No. of Qu.)	Average \% correct	No. of Qu. < 50\% correct
Heat \& Gases (2)	48%	1
Force \& Motion (8)	38%	7
Wave Motion (8)	45%	4
 Magnetism (4)	45%	3

In the above figure, a horizontal force $\cdot F$ is applied to a block of mass m 'so as to keep it at rest on a smooth incline making an angle θ with the horizontal. Find the magnitude of F.

Half of the candidates managed to obtain the correct answer using resolution of forces.
11.

On a smooth horizontal surface, sphere X of mass m travels with speed $4 \mathrm{~m} \cdot \mathrm{~s}^{-1} \ldots$ It collides head-on with another sphere Y of mass $2 m$, which is at rest initially. Which of the following can be the speed of Y just after collision?
(1) $1 \mathrm{~m} \mathrm{~s}^{-1}$
s^{-1}
(2) $2 \mathrm{~m} \mathrm{~s}^{-1}$
(3) $3 \mathrm{~m} \mathrm{~s}^{-1}$

Just over one-quarter of the candidates were able to obtain the correct answer.
12. Two blocks of respective masses 2 kg and 5 kg are connected by a light inextensible string which passes over a smooth fixed light pulley as shown. . The system is released from rest when the $5-\mathrm{kg}$ block is 3 m above the ground. What is the speed of the $5-\mathrm{kg}$ block just when reaching the ground ? Neglect air resistance. $\cdot\left(g=.9 .81 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$

Over 30% of the candidates just considered the 5 kg block as a free falling object and arrived at the incorrect option D.

In the above figure, point charge Y is placed in the middle of two identical positive point charges X. and ${ }^{\circ} Z$, with Z being fixed. Both X and ${ }^{\circ} Y$ are in equilibrium and at rest initially. \cdot What would happen to X if Y is slightly pushed towards Z ?

Not many candidates fully understood Coulomb's law and managed to obtain the correct answer.
14. \rightarrow The figure shows the displacement-distance graph at a certain instant of a longitudinal wave which The figure shows the displacement-distance graph at a certain inst
travels to the right. Displacement to the right is taken to be positive.

At the instant shown, which of the following statements is/are correct?
(1) $\rightarrow P$ is a centre of compression.
(2) \rightarrow A particle with its equilibrium position at Q is at rest.
(3) A particle with its equilibrium position at R is moving downwards.

Nearly half of the candidates wrongly thought that the particle at R would move downwards for a longitudinal wave.

The figure shows the structure of a motor. The coil $P Q R S$ and the two electromagnets are connected to a battery so that the coil rotates continuously. If a sinusoidal a.c. source of frequency 50 Hz is used instead of a battery, the coil will

Less than half of the candidates realised that the direction of the torque always remains the same in this set-up when a sinusoidal a.c. source is used.
30. \rightarrow The power consumption of the heating element of an electric heater connected to an a.c. mains can be increased by
(1) \rightarrow increasing the electrical resistance of the heating element.
(2) \rightarrow increasing the frequency of the a.c. voltage.
(3) \rightarrow increasing the r.m.s. value of the a.c. voltage.

A.		(1). only ${ }^{\text {+ }}$	\rightarrow favourable distraetor			\rightarrow	\rightarrow	\rightarrow	\rightarrow	(26\%)
* B.	\rightarrow	(3) only	\rightarrow	(45\%)						
C.	\rightarrow	(1) and (2)	only \rightarrow	(13\%)						
D.	-	(2) and (3)	only \rightarrow	\rightarrow	\rightarrow	\rightarrow	-	\rightarrow	\rightarrow	(16\%)

About 40% of the candidates wrongly thought that the power consumption would increase when the heating
element's resistance is larger and therefore chose options A and C.

Points to note

~70\% of Paper 1 from core part.

- Method marks 'M' awarded to correct formula / substitution / deduction
- In general, numerical ans. with 3 sig. fig. Answer marks ' A ' awarded to correct numerical answer with correct unit within tolerance range.
- Accept using $\mathrm{g}=9.81$ or $10 \mathrm{~m} \mathrm{~s}^{-2}$.

Observations

Candidates were competent in calculations but misconceptions were revealed in various questions which require qualitative responses or diagram drawing.
Some fundamental physical concepts like refraction of waves and electromagnetic induction are not fully understood.
Weak or careless in converting units or scientific notations.
Weaker candidates ~25\%.

Points to note

Equating Electives (Total = 80 each) using Paper 1
Before equating: Mean 27 to 44 / SD 18 to 21
After equating: Mean 39 to 45 / SD 17 to 19
2A Astronomy: $\uparrow \uparrow$
2B Atomic World: \uparrow
2C Energy: ~ unchanged
2D Medical Physics: ~ unchanged

- Samples of performance of candidates (Levels 1 to 5) available in late October (HKEAA website).
- SBA Conference on 9 Nov 2019
- SBA Online Submission in Jan 2020
- 2020 DSE Phy Exam on 16 Apr 2020 Markers' Mtg: Paper 1B 25/4 (tentative) Paper 2 24/4

HKASME PHYSICS SEMINAR

23-9-2019 \& 24-10-2019

THANK YOU

1. (a) An insulated container of negligible heat capacity contains 1.5 kg of tea at a temperature of $60^{\circ} \mathrm{C}$.
(i) What mass of ice at $0^{\circ} \mathrm{C}$ should be added to the tea so that the final temperature of the mixture is lowered to $10^{\circ} \mathrm{C}$? Assume that the specific heat capacity of tea is the same as that of water.
(3 marks)

Given: specific latent heat of fusion of ice $=3.34 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$ specific heat capacity of water $=4200 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

Suggested solution
$(1.5)(4200)(60-10)=m\left(3.34 \times 10^{5}\right)+m(4200)(10-0)$

$$
m=0.837766 \mathrm{~kg} \approx 0.838 \mathrm{~kg}
$$

(Accept: $m=0.83 \sim 0.84 \mathrm{~kg}$)
Let n be the mass of re needed,

$$
315000=376000 n
$$

$\therefore \quad Q 88 \mathrm{~g}$. 0.838 kg of re is needed.
(ii) If the heat capacity of the container is not negligible, explain whether more ice, less ice or the same amount of ice is needed to obtain the final temperature of $10^{\circ} \mathrm{C}$.
to cool the container as it will release heat/thermal energy as well.
(2 M)

$$
n=0.838
$$

More ice is needed

(i) Referring to the heat transfer processes, explain ONE feature of this bag that helps keep the ice cream at a low temperature.
(1 mark)
Suggested solution

Foam is a poor conductor of heat as it minimize heat transfer from surrounding to ice cream inside the bag

The zipper prevents convection between the hot air outside and the cold air inside the bag

The shiny inner surface reduces emission of radiation from hot bag to cold ice cream inside the bag
(b) Some ice cream at $-10^{\circ} \mathrm{C}$ is put into a 'thermal bag', of which the inner layer is made of polyethylene foam coated with aluminium foil. The bag is also equipped with a zipper at the top.

The thermal bag is then brought outdoors on a hot sunny day.

The thermal bag avoid radiation f form the sun as its inner layer has coated with aluminize foil.

袋的頂部配偖了拉鏈，可减少熱通过對流的方式进入，使雪糕保棈低温。
袋的頂部拉鏈䧄止阳光快輻射约形式照斯在曾溔上。

唯注聚乙烯是不良的熱導體可以以令外面的熱和能量莫住以傅幾至帒内 1

The polyethylene fair can reduce lot gain by the has thrums h cindurtion as pilyethlesen foam is a pere hort combustor． 1

Use double layers of the bag which made grow peat insulator material． By

Cooler machous can be x inserted to．

the＂ban con be sacrum，sothat heat count \＃ter tracy by conduction an α convection
transfer 0
（ii）Suggest ONE modification to this bag that would enhance its ability to keep things stored inside at a low temperature．
（1 mark）

Suggested solution

Thickening the bag
or（Radiation）Make the outer surface（of the bag）shiny．
（any reasonable answers）

把倉的顔色改為白色，减少吸熱。

在袋㐫放一些毛中，棉花像包裏所諸物件，令囱图的温度金以影响所諎物件，同時亦堿少因对三流而出瑅的能量流失。 0

特抵链改用保鮮袋上的顾带。
\cdots－密封
防止室气讪屚。
3. Read the following passage about life nets and answer the questions that follow.

A life net is a rescue equipment formerly used by firefighters. It gives people on the upper floors of a burning building an opportunity to jump to safety, usually to ground level. It became obsolete due to advances in firefighting technology.

(a) A person falls from a height of 12 m above a life net with negligible initial speed

Neglect air resistance and the size of the person. $\left(g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$
(i) Estimate
(1) the vertical speed v and
(2) the time of fall t of the person just before hitting the life net.

The practical height limit for successful use of life nets is about six storeys, although a few people once have survived jumps from an eight-storey building into a life net with various degree of injuries. The diagrams below explain its working principle.

When a person hits the net, it deforms and puts the person to a stop in a longer time as compared to hitting the solid ground.

Suggested solution

$$
\begin{aligned}
& 3 \text { (a) (i) } \begin{array}{l}
\frac{1}{2} m v^{2}=m g h \\
v^{2}=2(9.81)(12) \\
v=15.344054 \mathrm{~m} \mathrm{~s}^{-1} \approx 15.3 \mathrm{~m} \mathrm{~s}^{-1} \\
\left(v=15.491933 \mathrm{~m} \mathrm{~s}^{-1} \approx 15.5 \mathrm{~m} \mathrm{~s}^{-1} \text { for } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right) \\
\text { (2) } s=\frac{1}{2} g t^{2} \\
12=\frac{1}{2}(9.81) t^{2} \\
t=1.564124 \mathrm{~s} \approx 1.56 \mathrm{~s} \\
\left(t=1.5491933 \mathrm{~s} \approx 1.55 \mathrm{~s} \text { for } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)
\end{array}
\end{aligned}
$$

Suggested solution
3 (a) (i) (1) $\frac{1}{2} m v^{2}=m g h$
$v^{2}=2(9.81)(12)$
$v=15.344054 \mathrm{~m} \mathrm{~s}^{-1} \approx 15.3 \mathrm{~m} \mathrm{~s}^{-1}$

\[\)| $\left(v=15.491933 \mathrm{~m} \mathrm{~s}^{-1} \approx 15.5 \mathrm{~m} \mathrm{~s}^{-1} \text { for } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$ | |
| ---: | :--- |
| (2) | $=\frac{1}{2} g t^{2}$ |
| 12 | $=\frac{1}{2}(9.81) t^{2}$ |
| t | $=1.564124 \mathrm{~s} \approx 1.56 \mathrm{~s}$ |
| $(t$ | $\left.=1.5491933 \mathrm{~s} \approx 1.55 \mathrm{~s} \text { for } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$ |

\]

\qquad
\qquad

$$
v=15.3 \mathrm{~ms}^{-1} 2 \quad t=1.435 x=1
$$

d) $v=9.81 \mathrm{~ms}^{-1} \times 0$
(2) $t=\frac{T 2}{0.10}=1.22 \mathrm{~s} 0$
(1) $v^{2}-u^{2}=2 a b$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) If this falling person of mass 70 kg is stopped in 0.3 s by the life net, estimate the average force acting on the person by the net within this time interval.
(3 marks)

Suggested solution

$$
F-m g=m a
$$

$$
\begin{aligned}
F & =\frac{70 \times(15.3-0)}{0.3}+70 \times 9.81 \\
& =4266.9793 \mathrm{~N} \approx 4270 \mathrm{~N}
\end{aligned}
$$

$\left(F=4314.7845 \mathrm{~N} \approx 4310 \mathrm{~N}\right.$ for $\left.g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$

$$
\begin{aligned}
& F=m\left(\frac{1 v-4}{t}\right) \\
& R-70 \times 9.81=70\left(\frac{15.3}{0.3}\right)_{3} \\
& \quad A=42507 \mathrm{~N} \\
& \begin{array}{l}
F=\frac{m v-m u}{t} \\
F=\frac{70(15,3-0)}{1}
\end{array} \\
& \text { F } \mathrm{F} 358 \mathrm{~N}
\end{aligned}
$$

(iii) What form of energy is stored by the life net during the deceleration of the falling person?
(1 mark)

Suggested solution

Elastic potential energy
（b）（i）Give a reason why there exists a height limit of using life nets．
（1 mark）

Suggested solution
（Greater than height limit，final velocity is too great，hence the force for deceleration is too large．）

The life net may be torn．
or The falling person may be injured
or The firemen are not able to hold the life net tight．
＊（ii）The falling person might hit the rim of the net，thus the person or the firemen holding the rim would be injured．Explain why it is not easy for a person jumping from a height to reach the life net＇s central part．
（2 marks）

Suggested solution

There exists a horizontal velocity when a person jumps and the horizontal displacement is very difficult to estimate as it depends on the time of fall，which is usually long．

Since if the height is to．high， the vertical speed of person hitting the net will be rs．high， subleasing the average force acted on net and the nut wiry breath wide may manse person die． 1

当高度超过斗层楼时，下里者的冲力会远大于枚生网的
秉乘能力。
Different height has different potential energy and the fore that life nets can withstand is deferent：$x 0$
 he needs．Ute doesn＇t learn the tiv e if flak．He canned predict the ter If flint be fare he jump，In en ark，he can oo linger adjure． his horizontal speed．te nay suer eelule or under ietple the hroinalel velorily be needs．

Actually the falling person would have narizartal velocity when falling．Thus the norizatal range of the person when falling is dittiult to estimate V It is ditticn14 for firemen to put the net such that the 2 ．．．．．． falling person exactly reaches the central
\qquad pant

Alothengh it has no vertical velocity． act on but it has a shall instal． horizon ta velocity．Therefor it will hae horizontal Δ displacement．It is hard to jump to central part 2

防员乘参大量的冲力，从而导致拿伤。

5．A ripple tank has a shallow region P and a deep region Q ．Straight water wave of frequency 10 Hz is travelling in the shallow region as shown in Figure 5.1 when viewed from above．

 \qquad

（a）The separation between seven crests in the shallow region is found to be 6 cm as shown．
（i）Find the wavelength of the wave in the shallow region．

Suggested solution
wavelength $\lambda=\frac{0.06}{7-1}$

$$
=0.01 \mathrm{~m}(=1 \mathrm{~cm})
$$

$\bar{\lambda}=\frac{6}{6}=l^{6}=0.01 m_{1} 1$

```
波長=6m\div1 x
```


$\lambda=6 \frac{1}{1}+100$
$=8,57 \times 10^{-3} \mathrm{~m} \times 0$
$\pi=10 \times(0.06)=0.67 \times 0$

```
\(v=f \lambda\)
\(V=10 \times 0.01=0.1 \mathrm{~ms}^{-1} /{ }^{V} 1\)
```

(i) Find the wavelength of the wave in the shallow region.
\qquad 0
\qquad
\qquad
(ii) What is the wave speed in the shallow region?

+ $v=+x$

$$
V=10(6) \quad V
$$

(ii) What is the wave speed in the shallow region? (1 mark)

Suggested solution

```
speed v=f }\lambda=10\times0.0
    =0.1 m s-1 (= 10 cm s
```

(a) The water wave then propagates into the deep region where the wavelength of the wave is double that in the shallow region.
(i) State the frequency of the water wave in the deep region.
(1 mark)

Suggested solution

frequency $=10 \mathrm{~Hz}$

```
\(10 \mathrm{~Hz} \sqrt{ }\)
\(20=f(2 \times 2) \quad f=5 \mathrm{~Hz} \times 0\)
```

remair undlunge folta $\sqrt{ } 1$
remain unchanged. $x 0$
(ii) On Figure 5.1, sketch the wave pattern in the deep region.
(2 marks)

(iii) Name the phenomenon occurred across the boundary and explain its cause.

Suggested solution

Refraction

It is due to the change in wavelengths / wave speeds in different media/depth

 Shallower regor utter unentty leper region.

Refraction water wave travels fran shallow region to deep region. water wave travels in ditterent medium and have ditterent speed in ditterent medium. Refraction occurs. 2
Refraction $\sqrt{ }$ When waves enter the deep region.
the wavelength increases that they bend towards
the normal.

Refraction because the refractive index is difference in shallow and seep
6. In Figure 6.1, $A B$ represents the virtual image of an object formed by lens L. The magnification of the image is 0.4 . The horizontal scale is 1 cm to 5 cm

（a）What kind of lens is used ？Explain．（2 marks）

Suggested solution
L is diverging／concave．
Only diverging／concave lens forms diminished，virtual image．

Concave lens．The mage formed is rivtuall $\sqrt{ }$ and diminished $\sqrt{ }$ ？
※透鐿，因为只有凹透鐿能联生虚像，缩小，

conavere ${ }^{1}$ because the magnification of
image is $0.0($ less tran 1$)$ ．
52
（b）Indicate on Figure 6.1 the position and height of the object．（2 marks）
（c）By drawing a suitable light ray，locate and mark the position of the focus，F ，of the lens．Find the focal length of the lens．
（3 marks）
Focal length $=$ \qquad
（d）Draw a light ray emerging from the object to illustrate how the observer in the figure can see the tip A of the image．
（2 marks）

Correct ray to locate F and focus F correctly marked.
16.5 cm (Accept $15.5 \mathrm{~cm}-17.5 \mathrm{~cm}$)

Figure 6.1

[
\square		+i						1										\%	
																1 cm	优書	5 cm	
		,					-												
						+	-												
		-	A.			,	4												
							0												
		40	-				1 t												
		+																	
						4													
								1											
					\square														
					-		1,												
		+	\bigcirc		\square		-				-							+	
						B				L									
		0							,										
		+	+1			+	1												
			-																
										-									
		+	+																
					,	\square	-		-	,	-							-	
			+				-												
			-																
																		+	
																		, $\quad 1$	

2019 HKDSE - Physics

1B-2

QUESTIONS 7, 8 \& 9
(b) Terminal voltage V delivered increases with increasing (loading) \mid 1A \quad Accept resistance R (or graphical representation)
$V=\xi \frac{R}{R+r}$ OR $V=\xi-\frac{\xi}{R+r} r$ OR

	Solution		Marks	Remarks
	8. (a)		1 A 	

(c) Electrical energy used per day
$=0.500 \mathrm{~kW} \times 8 \mathrm{~h}+2 \mathrm{~kW} \times 0.5 \mathrm{~h}+3 \mathrm{~kW} \times 2 \mathrm{~h}$ $=11 \mathrm{~kW} \mathrm{~h}$
Cost $=\$ 0.9 / \mathrm{kW} \mathrm{h} \times 11 \mathrm{~kW} \mathrm{~h}$
$=\$ 9.9$

(b) (i) - If one of the lighting sets/circuits fails, the other in parallel) can still operate, i.e. both work independently.
Both can work at the rated power
Any reasonable answer
(ii)
$P=I V$
$(300+450)=I(220)$
$I=3.409091 \mathrm{~A} \approx 3.41 \mathrm{~A}$
Thus 5 A fuse should be used.

(b) (i) The change of (magnetic) flux linkage is double that in 1 M e.c.f. from (a)(ii) (a)(ii), i.e. 0.06 Wb .
(ii) Direction of current : $P Q R S$
(c) (i)
(ii) Move/swing to the right initially/momentarily/briefly

Candidates' response - 7(a) Well answered Circuit diagram

Candidates' response - 7(a)
 Procedure

With refei-ence to the hiagram, you san see that the voltmeter is competed orros the latteries It is used to measure the terminal voltage V deliwered ly it, And when the witch is messed, there is electroms flowing ulong the comecting wirls, and ly varing the resistance by the
variable resistor (with several known resistamce values.
R to be selected. Wy ofm' law, $R=\frac{V}{I}$
When $R \uparrow$ I \uparrow

Candidates' response - 7(a)

Procedure
a) counew the voltmeter to the positile terminal of the battery. Make suce the vesistonce
value of the variable esistor is adjusted to
the lergest to prevent the overbad of the circnit
before ttateclosing the switch.
A reduce; the variable vesistor to suitable esistance.... $<O A$
the voltage of the voltmater censing incheare while
the R decresse
Fhter Calculate the experinert lesult.

Candidates' response - 7(a)

Procedure + precaution

Fist connect the circuit as shown, then adjust the resistance of the resistor to a fixed known value, then dose the spitch and record. down the voltage shown by the voltmeter. Reppect the procedure for at least 3 times with different fixed known resistance of resitor. Then plot ar graph of V against.R using the data produced, a curve will be produced, showing the relationship between terminal voltage V and resitanceR. Do not close the circuit for too long, or else heating.... effect may occur and may leod to inaccurate vottage reeding.

Candidates' response-7(a)

Precautions

$$
\begin{gathered}
\text { Precaution: open the suntch before changing the } \\
\text { value of } R
\end{gathered}
$$

$$
1 \mathrm{~A}
$$

7n, Preaution: The resistance of the voltenter should be very \& larger compored to the maximum resistance of the .

Candidates＇response－7（b）

Candidates＇response－8（b）（i）

Buch banck twes not wfoct ewh other so the hroken of une hanch will not affect the \square sther．
Such that inhen one lighting sets faled to function due to short． circuit）the other can still werk nermally． \qquad
\square

确保 L_{1} 和 L_{2} 的電壓都是 $220 \mathrm{~V}{ }^{1 A}$

Candidates＇response－8（a）Well answered

Candidates＇response $-8(\mathrm{~b})(\mathrm{ii})$

800\&8 $48-5 \cdots 09$
Vebigouatar =0.5\times8\times0-5 =175-6
Vebigouatar =0.5\times8\times0-5 =175-6
electr wettle }=2\times0.5\times0.9=10.
electr wettle }=2\times0.5\times0.9=10.
$=\$ 5.0025$
$=\$ 5.00$

Candidates' response - 9(a)(i)

$$
\begin{aligned}
& \text { As the strength of maghetir fiels is changing, } \\
& \text { according to faradang law, these is an indued emf } \\
& \text { of the coil. } \\
& \text { As the coil forms a close and coupleted cirent, } \\
& \text { an intwed cuneut is formed. }
\end{aligned}
$$

According to lenz' law, a current is indured to oppose the change in magnetic flux, as the the mognetic field decreases constantly, a cumeat is indured in the coil to oppose the decrease \square in magnetic flux
 current.

```
OA
```


Candidates' response - 9 (b)(i)\&(ii)
Not answered as well as would have been expected
The thange in tstal maynetic flux linkage $=0.03 \times 2$

\qquad
$=0.06(T)$
The value of total mognetic
flux linkage will beome (changel double
\& it's. a vector \quad charge intotal menpetic flux linkage:
since the coil tr pardel to the magetrichell
no rivent in

Candidates＇response－9（c）（i）Poorly answered

https：／／www．mechanicsandmachines．com／？p＝489
https：／／phys．libretexts．org／Bookshelves／University＿Physics／Book\％3A＿University＿Physics＿（OpenStax）

2019 DSE PHYSICS Paper 1B

Candidates＇response－9（c）（ii）

The aluminium plate mill more to the rignt a litthe buck to ifs uriginal position．
\qquad
\qquad It will turn docknise \square
鋁片會弾向前った後返回厚虔 OA
跟着磁場移動 1 A

QUESTION 2（a）

＊2．A weather balloon of volume $0.52 \mathrm{~m}^{3}$ is filled with helium gas of temperature $15^{\circ} \mathrm{C}$ and pressure 100 kPa at ground level．

（a）Find the amount of helium gas（in mol ）in the balloon．

Suggested Marking Scheme	Performance／Common Errors
$p V=n R T$ $[1 \mathrm{M}]$ $\left(100 \times 10^{3}\right)(0.52)=n(8.31)(273+15)$ $n=21.727504(\mathrm{~mol}) \approx 21.7(\mathrm{~mol})$ $[1 \mathrm{~A}]$	Some candidates forgot to convert the temperature given in Celsius to Kelvin scale．
	Some candidates mixed up the number of molecules with the number of moles．

QUESTION 2(a) (SAMPLES)

(a) Find the amount of helium gas (in mol) in the balloon.

Let n be the amount of gas (in mole)	
100.0.52 $=n \cdot 8.31 \cdot(15+273)$	1M
$n=0.0217 \mathrm{~mol} \mathrm{~K}$	OA
By $p V=n R T$	
$100 \times 10^{3} \times 0.52=n \times 8.31$ (15)	1M
$n=417 \mathrm{~mol}$ 人	OA

Accept wrong order of magnitude of p for ' M ' mark

Accept $T=15(\because$ no ' A ' mark in other parts using the value of n calculated)

$$
\begin{aligned}
& p V=n R T \\
& (100)(0.52)=n(8.31)(15+273) \mathrm{X} \\
& n=0.0217 \\
& \text { Amount of gas }=0.0217 \div 6.02 \times 10^{23}
\end{aligned}
$$

$=3.60 \times 10^{-26} \mathrm{~mol} \mathrm{X}$

$$
\begin{array}{rlr|}
p V & =n R T \\
n & =\frac{R T}{p V}=\frac{8.31(273+15)}{100 \times 1000 \times 0.52} \\
& =0.0460 \mathrm{~mol}
\end{array}
$$

QUESTION 2(b)(i)

(i) A student believes that as the air temperature decreases in the first 10 km , the volume of the balloon decreases. Referring to the graphs above, explain qualitatively why this belief is not correct. (2 marks)

Suggested Marking Scheme	Performance/Common Errors
Since $p V=n R T \Rightarrow V=\frac{n R T}{p} /$ volume V of the balloon depends on both T and p, the (fractional) decrease in pressure p (with height) is greater / faster than the (fractional) decrease in temperature T.	Many candidates knew that the decrease in pressure would in effect increase the volume of the balloon. A few candidates were able to compare the change in pressure with the change in temperature while some wrongly thought that the volume remained unchanged.

QUESTION 2(b)

(b) The following graphs show the variation of air temperature T and atmospheric pressure p with height x above ground level.

The weather balloon is released and rises to the upper atmosphere. Assume that the temperature and pressure of the helium gas in the balloon are the same as those of the air outside at any height x.

QUESTION 2(b)(i) (SAMPLES)

(i) A student believes that as the air temperature decreases in the first 10 km , the volume of the balloon decreases. Referring to the graphs above, explain qualitatively why this belief is not correct. (2 marks)

As the temperature decreases atmospheric pressure decreases more significantly according to the graph 1 A therefore its volume increases 1 A Because the T and p is decrease that $\frac{p V}{T}=$ constant when p and T decrease the V should be increase as $V \propto \frac{1}{\frac{p}{T}}$ 1 A

Accept T decreases, P decreases Accept decreases more significantly

Accept T and P decrease

No mark for Vincreases

False. As by $p V=n R T$, as the balloon rises above the ground level, its pressure in the surroundings decreases, thus its volume increases smce the temperature in the
$\boldsymbol{n}=$ no. of molecules x

OA

No mark for P decreases only

No mark for V increases

QUESTION 2(b)(i) (SAMPLES)

(i) A student believes that as the air temperature decreases in the first 10 km , the volume of the balloon decreases. Referring to the graphs above, explain qualitatively why this belief is not correct. (2 marks)

$$
\begin{aligned}
\text { By } \left.\begin{array}{rl}
\frac{p_{0} V_{0}}{T_{0}} & =\frac{p V}{T} \\
V & =\frac{100 V_{0}}{288} \times \frac{220}{25} \\
& =3.06 V_{0}
\end{array}\right) .
\end{aligned}
$$

which shows the new volume is much larger than 1 A
the original as the pressure decreased.
OA

QUESTION 2(b)(ii) (1)(SAMPLES)

(ii) In fact the weather balloon keeps on expanding when it rises. The air temperature becomes steady at 216 K from a height of 12 km onwards. When the balloon rises further beyond 12 km and its volume reaches $8 \mathrm{~m}^{3}$,
(1) estimate the gas pressure in the balloon;
(2 marks)

$p(8)$	$=n R(216)$	
$8 p$	$=0.0217) R(216)$	
p	$=4.868829$	
	$=4.87 \mathrm{kPa} \mathbf{~}$	1 M

Correct method,
 n from part (a) -- e.c.f. \checkmark
 Answer from wrong $n \quad x$

$p_{1} V_{1}=p_{2} V_{2}$	
$0.52 \times 100000=p_{2} \times 8 \mathrm{~K}$	OM
$p_{2}=6500 \mathrm{~Pa} \times$	OA

Assume constant $T \quad x$

QUESTION 2(b)(ii)(1)

(ii) In fact the weather balloon keeps on expanding when it rises. The air temperature becomes steady at 216 K from a height of 12 km onwards. When the balloon rises further beyond 12 km and its volume reaches $8 \mathrm{~m}^{3}$,
(1) estimate the gas pressure in the balloon;
(2 marks)

Suggested Marking Scheme	Performance/Common Errors
$\frac{p V}{T}=$ constant	Well answered.
$\frac{(100)(0.52)}{(273+15)}=\frac{p(8)}{216}$	Some candidates considered the temperature to be constant and wrongly used Boyle's law to estimate the pressure.
$p=4.875 \mathrm{kPa}$ or 4875 Pa	$[1 \mathrm{~A}]$

QUESTION 2(b)(ii)(2)

(2) hence find the corresponding height reached by the balloon. The variation of atmospheric pressure p with height x (in km) is given by

$$
p=p_{0} \mathrm{e}^{-k x}
$$

where p_{0} is the atmospheric pressure at ground level and $k=0.138 \mathrm{~km}^{-1}$
(2 marks)

| Suggested Marking Scheme | Performance/Common Errors |
| :---: | :--- |$|$| $p=p_{0} \mathrm{e}^{-k x}$
 4.875 $=100 e^{-0.138 x}$
 $x=21.89166726(\mathrm{~km}) \approx 21.9(\mathrm{~km})$ $[1 \mathrm{~A}]$ | A few made mistakes when converting
 units or wrongly took the base e of the
 exponential function as the electronic
 charge. |
| :--- | :--- |

QUESTION 2(b)(ii) (2)(SAMPLES)

QUESTION 4(a)(i)

(2) hence find the corresponding height reached by the balloon. The variation of atmospheric pressure p with height x (in km) is given by

$$
p=p_{0} \mathrm{e}^{-k x}
$$

where p_{0} is the atmospheric pressure at ground level and $k=0.138 \mathrm{~km}^{-1}$.

*4. (a)

Figure 4.1

A pendulum bob of mass 30 g is tied to a fixed point O by a 1 m long inextensible light string. It is swirled to describe a horizontal circle uniformly at an angular velocity of $5.0 \mathrm{rad} \mathrm{s}^{-1}$ as shown in Figure 4.1. Neglect air resistance. $\left(g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$
(i) What is the bob's rotation rate (in revolutions per second)?
(1 mark)

Suggested Marking Scheme	Performance/Common Errors
Rotation rate $=\frac{\omega}{2 \pi}=\frac{5.0}{2 \pi}$ $=0.795775\left(\mathrm{rev} \mathrm{s}^{-1}\right) \approx 0.80\left(\mathrm{rev} \mathrm{s}^{-1}\right)$	Many candidates had difficulties in relating the angular velocity with the rotation rate.

QUESTION 4(a)(ii)

(ii) Indicate on Figure 4.1 the centripetal force F_{C} required for the motion of the bob. Find F_{C}. (3 marks)

Suggested Marking Scheme	Performance/Common Errors
F_{C} correctly indicated. [1A] $\begin{align*} F_{\mathrm{C}} & =m r \omega^{2} \\ & =(0.03)\left(1 \times \cos 23.1^{\circ}\right)(5.0)^{2} \tag{1M}\\ & =0.689866 \mathrm{~N} \approx 0.690 \mathrm{~N} \tag{1A}\\ \left(F_{\mathrm{C}}\right. & \left.=0.7033402 \mathrm{~N} \approx 0.703 \mathrm{~N} \text { for } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right) \end{align*}$	Most of the candidates were able to find the centripetal force. A few candidates did not indicate Fc in the figure or mistook the length of the string to be the radius.
	14

QUESTION 4(a)(ii) (SAMPLES)

(ii) Indicate on Figure 4.1 the centripetal force F_{C} required for the motion of the bob. Find F_{C}. (3 marks)

QUESTION 4(a)(iii)

(iii) Explain whether the magnitude of the tension in the string is greater than, equal to or smaller than the centripetal force F_{C} found in (a)(ii).
(2 marks)

Suggested Marking Scheme	Performance/Common Errors
Horizontal component of tension provides the centripetal[1M] force, thus tension is larger than the centripetal force. [1A] OR $T \cos \theta=F_{\mathrm{C}} \Rightarrow T>F_{\mathrm{C}}$	A majority of the candidates tackled this part by finding out the value of the tension. Weaker candidates believed that the tension was the resultant of the bob's weight and the centripetal force.

QUESTION 4(a)(ii) (SAMPLES)
(ii) Indicate on Figure 4.1 the centripetal force F_{C} required for the motion of the bob. Find F_{C}. (3 marks)

$F_{\mathrm{c}}=m a=m \frac{v^{2}}{r}$	$=(0.03) \frac{5^{2} \mathrm{X}}{\cos 23.1^{\circ}}$	
	$=0.815 \mathrm{~N} \mathrm{X}$	0 M

F	$=m r \omega^{2}$		
	$=(30 \div 1000)(1)(5)^{2}$		OM
	$=0.75 \mathrm{~N}$		0 OA

F_{c}	$=m \omega^{2} r$		
	$=(0.3)\left(1 \cos 23.1^{\circ}\right)(5 \times 2 \pi)^{2}$		OM
	$=272.35 \mathrm{~N} \mathrm{X}$		0 A

QUESTION 4(a)(iii) (SAMPLES)

(iii) Explain whether the magnitude of the tension in the string is greater than, equal to or smaller than the centripetal force F_{C} found in (a)(ii).

greater than since the tension provides F_{c} and overcome the weight of the pendulum bob.	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	2 components of $T \checkmark$
$\begin{aligned} & T \cos 66.9^{\circ}=m g \\ & T=0.076 \mathrm{~N}<F_{\mathrm{c}}=0.69 \mathrm{~N} \\ & \therefore \text { smaller than } F_{\mathrm{c}} \quad \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & \mathrm{OA} \end{aligned}$	Accept any correct method to find T
Tension is greater. ${ }^{\prime}$ is the resultant of F_{c} and the weight of the bob	$\begin{aligned} & O M \\ & O A \end{aligned}$	Correct answer with wrong explanation x
Magnitude of tension in the is greater than the centripetal force F_{c} 人 \because The length of the string is larger than the distance between the bob and the centre of the circular path. \mathcal{C}	$\begin{aligned} & O M \\ & O A \end{aligned}$	Correct answer with wrong explanation \times
$T=W=0.2943 \mathrm{~N} \mathrm{X}$ By $T=W=m g$, the tension of the string is equal to the weight of the object. The tension is smaller than centripetal force.	$\begin{aligned} & \text { OM } \\ & \text { OA } \end{aligned}$	18

QUESTION 4(b)(i)

(b) The moon is orbiting around the Earth uniformly in a circular path under the influence of the Earth's gravitational attraction.
(i) Explain why the speed of the moon remains unchanged although it is acted upon by gravitational force.
(2 marks)

Suggested Marking Scheme	Performance/Common Errors
$\begin{array}{l}\text { The gravitational force is perpendicular to the moon's } \\ \text { motion/velocity, } \\ \text { thus no work is done on the moon by this force (k.e. } \\ \text { unchanged) }\end{array}$	$\begin{array}{l}\text { Some candidates failed to point out } \\ \text { that no work is done by the }\end{array}$
gravitational force acting on the	
Moon while weaker ones failed to	
realise that the centripetal force is	
actually the gravitational pull and	
stated that the net force acting on the	
Moon is zero.	

QUESTION 4(b)(ii)

(ii) A student claimed that as the moon is much less massive than the Earth, it exerts negligible force on the Earth. Comment on the student's claim.

Suggested Marking Scheme	Performance/Common Errors
(The claim is incorrect) as, by Newton's third law of [1A] motion, gravitational force of the same magnitude (but in opposite direction) is acting on the Earth by the moon. [1A]	Most of the candidates were able to mention an action-and-reaction pair or use Newton's Law of Gravitation to explain.

QUESTION 10(a)(i)

10. (a) The equation below represents nuclear fission of uranium-235 (U-235)

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+x_{0}^{1} \mathrm{n}+200 \mathrm{MeV}
$$

(i) What is the value of x ?
(1 mark)

Suggested Solution	Common Errors	
$x=3$	$[1 \mathrm{~A}]$	Well answered

QUESTION 10(a)(i) (SAMPLES)

$x=235+1-141-92=3$	1A	
$235+1-141-92-1=3 \boldsymbol{X}$	OA	Answer from wrong equation \times
$235-141-92=2 \quad x$	OA	
3 V	1A	

QUESTION 10(a)(ii) (SAMPLES)

(ii) State a necessary condition for chain reaction of fission to occur

Neutrons are emitted $\sqrt{ }$ 1A	Neutrons \Rightarrow more than 1 neutron \checkmark
There is neutron generated after each nuclear fission of particle.	
There are abundant uranium-235 \downarrow 1A	Assume > critical mass after each fission
The neutron is slow. X OA	
A fast moving neutron has a collision with the uranium.	
The reaction chamber must be in very high temperature and uranium- 235 nucleus must capture the neutron.	
Very high pressure \boldsymbol{X} OA	

QUESTION 10(a)(ii)
(ii) State a necessary condition for chain reaction of fission to occur.
(1 mark)

Suggested Marking Scheme	Performance/Common Errors		
More neutrons are produced in each fission for triggering further fissions, i.e. $x>1$.	Not many candidates gave the crucial condition that the number of neutrons produced in fission must be greater than 'one' for a chain reaction to be sustained.		
Weaker candidates may have thought			
that slow neutrons had to be the			
products of the fission reaction.		,	
:---			

QUESTION 10(b)(i)

Scientists found evidence in Oklo, Africa that natural nuclear fission occurred two billion $\left(2 \times 10^{9}\right)$ years ago. The uranium mineral ore mined from Oklo at present is found to have 0.6% concentration by mass of U-235 (see the table below), which is much lower than usual
(b) The table gives the information of U-235 and U-238 in a sample of uranium mineral ore found in Oklo. Given: half-life of $\mathrm{U}-235=7.04 \times 10^{8}$ years

	$\mathbf{2} \times \mathbf{1 0}^{9}$ years ago	at present
$\mathbf{U}-\mathbf{2 3 5}$	$m_{0} \mathrm{~kg}$	0.060 kg (i.e. 0.6% concentration by mass)
$\mathbf{U}-\mathbf{2 3 8}$	13.556 kg	9.940 kg (i.e. 99.4% concentration by mass)

*(i) Estimate the amount m_{0} (in kg) of U-235 in the sample 2×10^{9} years ago.
(2 marks)

Suggested Marking Scheme	Performance/Common Errors
$m=m_{0} \mathrm{e}^{-k t}$ $k=\frac{\ln 2}{t_{1}}=9.846 \times 10^{-10} \mathrm{yr}^{-1}$ Most of the candidates managed to find the amount of U-235 in the sample. $\quad-\ln 2 \times\left[\frac{2 \times 10^{9}}{7.04 \times 10^{8}}\right]$ $0.06=m_{0} e^{2}$ $m_{0}=0.429882832(\mathrm{~kg}) \approx 0.430(\mathrm{~kg})$ $[1 \mathrm{~A}]$	

QUESTION 10(b)(i) (SAMPLES)
*(i) Estimate the amount m_{0} (in kg) of U-235 in the sample 2×10^{9} years ago.

The amount	$=\frac{0.06}{\left(\frac{2 \times 10^{9}}{}\right)}$ 年	
	$=0.0430 \mathrm{~kg} \mathrm{X}$	1 M

Half life that U-235 has experienced

$$
=\frac{2 \times 10^{9}}{7.04 \times 10^{8}} \approx 2.809 \approx 3 \text { half lives }
$$

$$
m_{0}=0.06 \times 2^{3} \leq 0.48 \mathrm{~kg}
$$

$$
1 \mathrm{M}
$$

1A

$$
\begin{aligned}
\frac{0.06}{m_{o}} \times 100 \% & =0.6 \% \mathrm{X} \\
\frac{0.06}{m_{o}} & =6 \times 10^{-3} \\
m_{0} & =10 \mathrm{~kg} \mathrm{X}
\end{aligned}
$$

Present mass and concentration of U 235 was used -- total mass at present was calculated

Present concentrations of U-238 \& U235 were used to find the total mass \& m_{0} respectively

QUESTION 10(b)(ii)

(ii) Hence determine whether natural nuclear fission of U-235 was possible 2×10^{9} years ago. For fission of U-235 to happen, its concentration by mass in the uranium mineral ore has to be at least 3%.

Suggested Marking Scheme	Performance/Common Errors		
$\frac{0.430}{13.556+0.430}=0.03073691 \approx 3.1 \%>3 \%$			
Thus natural nuclear fission was possible.			
$[1 \mathrm{M} / \mathrm{IA}]$		\quad	Many candidates could not obtain the correct
:---			
value of the concentration by mass.			

QUESTION 10(c)

There must be underground water in the vicinity of this uranium-rich mineral deposit for natural nuclear fission to be possible. Since water can slow down the fast neutrons from fission, these neutrons can easily be captured by U-235
(c) In fact the chain reaction stopped even before the concentration by mass of U-235 dropped to 3%. Explain why this occurred
(2 marks)

Suggested Marking Scheme	Performance/Common Errors	
Underground water might run dry. OR Energy released by fission drys up the underground water.	Poorly answered. Therefore, fission might stop without slow neutrons. Very few candidates were able to 1 A$]$	relate the energy of fission with the dry up of underground water, which led to a ceasing of the supply of slow neutrons. Wrong answers included:
The neutrons were not energetic		
enough or the concentration of the fuel		
was not high enough.		

QUESTION 10(c) (SAMPLES)

(c) In fact the chain reaction stopped even before the concentration by mass of U-235 dropped to 3%. Explain why this occurred

The water is evaporated due to the intense heat Given out. No water was there to slow down the fast electrons. \mathbf{X}

There is no or little underground water in the area. $O A$ No slow neutrons to start the chain reaction. \downarrow 1A nuclear fission can undergo. Since no neutron OA releases, chain reaction stops.

The speed of neutrons may not be fast enough X and hence do not have sufficient energy for the OA chain reaction to occur. \qquad人 OA

Although the neutrons moved slowly, the U-235 is not concentrated enougirand hard for neutrons to hit it and have a chain reaction.

Accept evaporated / decreases

No water/Little water \times ,

Thank You!

Q. 1 Multiple-choice questions

	A	B	C	D
1.1	37.2	16.9	15.2	$\mathbf{2 9 . 3}$
1.2	11.3	$\mathbf{7 1 . 5}$	*	10.0
1.3	31.2	$\mathbf{4 7 . 2} *$	14.1	5.2
1.4	53.3^{*}	12.2	22.9	9.7
1.5	11.3	16.2	17.7	52.6^{*}
1.6	$51 . \mathbf{2}^{*}$	8.9	10.3	27.5
1.7	16.4	11.4	$\mathbf{2 1 . 2}$	48.3
1.8	12.8	14.8	$\mathbf{3 9 . 3}$	$\sqrt{*}$

* : key ; Red colour : most favourable distractor

MCQ 1.1

1.1 The size of atomic nucleus is of the order of $10^{-14} \mathrm{~m}$. The size of cluster of galaxies is of the order of $10^{6} \mathrm{pc}$, The volume ratio of an atomic nucleus to a cluster of galaxies is about

A.	10^{-37}	favourable distractor	37.16\%	A	B	C	D
B.	$\begin{aligned} & 10^{-60} \\ & 10^{-74} \end{aligned}$			O	\bigcirc	\bigcirc	\bigcirc
* D.	10^{-111}		29.31\%				

$$
\begin{aligned}
& R_{a} \approx 10^{-14} \mathrm{~m} \\
& R_{G} \approx 10^{6} \mathrm{pc} \approx 10^{6} \times 3.09 \times 10^{16} \approx 3.09 \times 10^{22} \mathrm{~m} \\
& \frac{V_{a}}{V_{G}} \approx \frac{\left(R_{a}\right)^{3}}{\left(R_{G}\right)^{3}} \approx \frac{\left(10^{-14}\right)^{3}}{\left(3.09 \times 10^{22}\right)^{3}}
\end{aligned}
$$

MCQ 1.7

1.7 The figure below shows the radiation curves from different stars.

P and Q denote the lower and upper wavelength limits of the visible spectrum respectively. T_{1} and T_{2} are temperatures of the respective radiation curves with one of them belonging to the Sun. Which of the following is correct ?

MCQ 1.3

1.3 Rigel is a star 260 pc from the Sun. What is the shift in angle on photographs of Rigel taken six months apart?

A.	$0.0038^{\prime \prime}$	avourable distractor	$\begin{aligned} & 31.20 \% \\ & 47.16 \% \end{aligned}$	A	B	C
$* B$.	$0.0077^{\prime \prime}$					\bigcirc
C.	$130^{\prime \prime}$					
D.	$260^{\prime \prime}$					
$d=260 \mathrm{pc}$						
$p=\frac{1}{260}=3.846 \times 10^{-3}$ arcseconds $\left(^{\prime \prime}\right)$						
Angle shift $=2 p=0.0077^{\prime \prime}$						

MCQ 1.8

1.8 What can we infer about the location of dark matter from the rotation curve of galaxies in the figure below ?

distance from the galactic centre
A. Dark matter is mainly distributed near the galactic centre.
B. Dark matter is distributed uniformly throughout the galaxy
$\begin{array}{lll}\text { * C. Dark matter is distributed more at a large distance from the galactic centre. } & 39.30 \%\end{array}$ D. The rotation curve suggests dark matter exists but does not give us information about its distribution.

Q. 1 Structured question

Figure 1.1 shows a space station S revolving in a circular orbit at a height of 400 km above the Earth's surface.

Figure 1.1

Rotation curve of a typical spiral galaxy: predicted (A) and observed (B).
Dark matter can explain the 'flat' appearance of the velocity curve out to a large radius.

A spacecraft is launched with speed $8.02 \mathrm{~km} \mathrm{~s}^{-1}$ from A at the Earth's surface to meet the station S through an elliptical orbit with $A B$ as the major axis. The spacecraft's rocket engine is shut when it coasts from A to B along the elliptical orbit. Assume that the two orbits are in the same plane.
Given: $G M=4 \times 10^{5} \mathrm{~km}^{3} \mathrm{~s}^{-2}$, where G is the universal gravitational constant and M is the mass of the Earth. Radius of the Earth $=6400 \mathrm{~km}$
(a) (i) Using conservation of total mechanical energy, or otherwise, find the speed v_{B} of the spacecraft when it reaches B. Neglect the effects of the atmosphere.
(2 marks)

$$
\begin{aligned}
\frac{1}{2} m\left(v_{B}{ }^{2}-v_{A}^{2}\right) & =G M m\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right) \\
\frac{1}{2} m\left(v_{B}{ }^{2}-8.02^{2}\right) & =G M m\left(\frac{1}{6400+400}-\frac{1}{6400}\right) \\
v_{B} & =7.55 \mathrm{~km} \mathrm{~s}^{-1} 1 M \quad \text { correct sub. for } v_{A}, r_{A} \text { and } r_{B}
\end{aligned}
$$

Most candidates knew how to find the speed of the spacecraft at B using conservation of total mechanical energy though a few made mistakes
in units conversion.

Q. 1 Structured question

(ii) Show that the spacecraft takes about 2663 s to travel from A to B.

$$
\begin{aligned}
& T^{2}=\frac{4 \pi^{2} a^{3}}{G M} \\
& T=2 \pi \sqrt{\frac{a^{3}}{G M}} \quad \text { where }=\frac{r_{A}+r_{B}}{2} \quad 1 \mathrm{M}: \text { Correct expression for } \\
& a=\frac{r_{A}+r_{B}}{2}=\frac{(6400)+(400+6400)}{2} \quad 1 \mathrm{M}: \text { Copler's 3rd law } \\
& \\
& =6600 \mathrm{~km} \\
& T_{A B}=\frac{T}{2}=\frac{1}{2}\left\{2 \pi \sqrt{\frac{6600^{3}}{4 \times 10^{5}}}\right\}=2663.3962 \mathrm{~s} \approx 2663 \mathrm{~s}
\end{aligned}
$$

Some candidates failed to answer (a) (iii) correctly as they did not know that the semi-major axis of the elliptical orbit should be employed in the calculation \qquad

$\sqrt{2} 7.79 \mathrm{~km} \mathrm{~s}^{-1} \quad x$

Q. 1 Structured question

(iii) Explain why an astronaut in the orbiting spacecraft would experience 'weightlessness'.

Any one:

- The gravitational force acting on the astronaut is (all) used for accelerating the astronaut.
- The astronaut and the spacecraft are under the same acceleration due to gravity
- The gravitational force (weight) acting on the astronaut is used for centripetal force

NOT accept:

- They have the same acceleration
- The acceleration of gravity is used for centripetal force

Not many were able to explain the 'weightlessness' phenomenon in (a)(iii). A few had a misconception that both the astronaut and the spacecraft moving at the same acceleration would necessarily result in weightlessness.

aiTi) Beccuse the abebrather due to granty all wed as the centiperal firce for the oibl motes. x
(iii) There is common auslention

Q. 1 Structured question

(b) The space station S travels at a constant speed of $7.67 \mathrm{~km} \mathrm{~s}^{-1}$ in the circular orbit with a period of 5570 s .
(i) If the spacecraft is to meet the station S exactly when it reaches B, use the result in (a)(ii) to show that their angular separation θ (shown in Figure 1.1) when the spacecraft has just launched at A should be slighty less than 8°.
(2 marks)

$$
\theta=\frac{\frac{5570}{2}-2663}{5570} \times 360^{\circ}=7.8850987^{\circ} \approx 7.89^{\circ} \quad 1 \mathrm{M} ; 1 \mathrm{~A}
$$

Quite a number of the candidates managed to find the angular separation θ required in (b)(i) using various methods.

Q. 1 Structured question

(iii) Suggest one simple way for the spacecraft at B to travel with the same speed as station S.
(1 mark)

The spacecraft has to fire its rocket briefly at B so as to boost up its speed to the required speed.
(i.e. from $7.55 \mathrm{~km} \mathrm{~s}^{-1}$ to $7.67 \mathrm{~km} \mathrm{~s}^{-1}$)

NOT accept: - change the speed
start the engine

Poorly answered. It seemed that most candidates did not know that the initial launching speed of the spacecraft at the Earth's surface would eventually determine the shape of its trajectory

Q. 1 Structured question

(ii) In order to make the spacecraft's speed v_{B} found in (a)(i) exactly the same as that of the station S when they meet at B, a student suggests to slightly adjust the launching speed of the spacecraft at A. Comment on the feasibility of the suggestion.

If the launching speed at A is slightly higher (or lower),
the length of the elliptical orbit's major axis will be
longer (or shorter).
Thus the two orbits will no longer touch at B.

Accept:
The shape of the spacecraft's orbit will be changed. Thus two orbits cannot meet at B.

(iii) adjust the speed of the sacecratt at B.
inswers witten in the margins will not be marked.

$$
x
$$

Q. 3 Multiple-choice questions

	A	B	C	D
3.1	8.4	63.7*	19.6	8.2
3.2	2.0	77.5*	6.3	14.2
3.3	31.0*	7.3	49.3	12.4
3.4	6.4	17.9	16.8	58.8*
3.5	22.4	37.9	13.0	26.6*
3.6	72.5*	7.5	3.2	16.8
3.7	12.4	4.4	81.3*	1.8
3.8	10.9	18.8	52.0*	18.2

*: key ; Red colour : most favourable distractor

MCQ 3.5

3.3 Which of the following descriptions about a hybrid car is/are correct ?
(1) The motor and the combustion engine of a hybrid car can be turned on at the same time to drive the car.
(2) A hybrid car is said to be environmental friendly as it does not emit pollutants directly.
(3) If the battery of a hybrid car cannot be charged via a wall socket, it can only be charged through the regenerative braking system during deceleration.

* A.	(1) only		30.94\%
B.	(2) only		
C.	(1) and (3) only	favourable distractor	49.33\%
D.	(2) and (3) only		

A	B	C	D
\bigcirc	\bigcirc	\bigcirc	\bigcirc

Candidates do not know that a hybrid car can recharge its batteries through the regenerative braking system or while driving on engine power.

A wall is composed of layers X and Y of U -values U_{1} and U_{2} respectively. Both layers have the same thickness and dimensions, and there is no air gap between them. Which expression gives the U -value of the wall?

Candidates do not understand the definition of U-value.

Q． 3 Structured question
（a）The total power of the Sun is about $3.86 \times 10^{26} \mathrm{~W}$ ，which radiates evenly in all directions．The Earth is at a mean distance of $1.50 \times 10^{11} \mathrm{~m}$ from the Sun．
（i）Estimate the solar radiation power per unit area that can be obtained at the same distance of the Earth from the Sun．

$$
\begin{aligned}
& P_{0}=\frac{P_{\mathrm{S}}}{4 \pi R_{0}^{2}}=\frac{3.86 \times 10^{26} \mathrm{~W}}{4 \pi\left(1.50 \times 10^{11}\right)^{2} \mathrm{~m}^{2}} \text { Accept: } 1360-1370 \mathrm{~W} \mathrm{~m}^{-2} \\
&=1.365195734 \times 10^{3} \mathrm{~W} \mathrm{~m}^{-2} \approx 1365 \mathrm{~W} \mathrm{~m}^{-2} \\
& 1 \mathrm{~A}
\end{aligned}
$$

Part（a）（i）was in general well answered．Some candidates failed to realise that the power of the Sun distributes evenly on a spherical surface according to the inverse square law．

Q． 3 Structured question
（ii）State a reason why the maximum solar radiation power per unit area received on the Earth＇s surface normal to the Sun is only around 70% of that found in（a）（i）．

Loss due to absorption by the atmosphere．

Accept：
absorption／reflection／scattering
by ozone layer

In（a）（ii），quite a number of the candidates were unable to account for the energy loss of the solar radiation power through the atmosphere．

Required power per unit area

$$
\begin{aligned}
& =\frac{3.86 \times 10^{26}}{\pi\left(1.50 \times 10^{11}\right)^{2}} x \\
& =5460 \mathrm{Wm}^{-2} \times(\text { to } 3 \mathrm{sig} \cdot f i g .) \\
& 3.86 \times 10^{26} \div 1.50 \times 10^{11} x \\
& \approx 2.57 \times 10^{15} \mathrm{~J} \times \mathrm{p}^{\text {pe mic men }}+ \\
& 3.86 \times 10^{26} \div\left[4 \pi\left(1.5 \times 10^{11}\right)^{2}\right] \checkmark \\
& =3.86 \times 10^{26}=9 \times 10^{22} \pi \\
& =1365 \mathrm{~W}
\end{aligned}
$$

$$
\text { 最每弾位面程功率為 } 1365 \mathrm{w}
$$

Because same solar radiation，is blocked when passing through the Earth＇s atmosphere＇

因着部份太阳签身很大气屋阻澥。
Some of the energy is absorbed by the dustxparticles in the space and some is absorbed the＇atmosphere．

Since some of the solar light is reflected away from the Earth by the atmosphere， and cannot reach the solar power panels．
Q. 3 Structured question
(b) In the domestic energy storage system shown in the simplified schematic diagram below, energy from the Sun reaching a solar panel can be stored in a battery.

Figure 3.1

The solar panel of area $1.65 \mathrm{~m}^{2}$ is connected to the battery via a charger controller (not shown in Figure 3.1). The solar panel delivers 300 W when it is normal to the Sun on a sunny day. Given: solar radiation power per unit area received on the Earth's surface $=\underline{1000 \mathrm{~W} \mathrm{~m}^{-2}}$
Q. 3 Structured question
(i) Describe the energy conversions during charging in this domestic energy storage system.

NOT accept:
light and heat energy \rightarrow electrical energy light \rightarrow electricity

Not many managed to describe the energy conversions in (b) (i) correctly. Some wrongly thought that it was electrical energy instead of chemical energy being stored in the battery while a few believed that heat or heat and light energy were being converted by the solar panel.
Q. 3 Structured question
(ii) Find the efficiency of the solar panel.

$$
\begin{aligned}
\eta & =\frac{\text { power output }}{\text { solar power input }} \times 100 \% \\
& =\frac{300}{1000 \times 1.65} \times 100 \% \\
& =18.1818 \% \approx 18.2 \%
\end{aligned}
$$

Most managed to find the efficiency of the solar panel in (b) (ii).

Q. 3 Structured question

$\begin{aligned} & 1000 \times 1.65 \times \text { effivieng }=300 \mathrm{~V} \\ & \text { efficieng } \approx 18.2 \%(\cos 63 \text { 3s. } 6)\end{aligned}$
ii) $\frac{300 \mathrm{w}}{1000 \mathrm{w}}$

$=30 \%$.

(iii) The capacity of the storage battery is ' 100 Ah 12 V '. How long would it take for the solar panel to fully charge the battery, which is completely discharged initially, if 20% energy loss occurs during charging? State one assumption in your calculation.

t	$=\frac{\text { totalenergystored }}{\text { powerinput }} \quad 1 \mathrm{M}$ for $\frac{100 \mathrm{Ah} \times 12 \mathrm{~V}}{300 \mathrm{~W}} \mathrm{I}_{1}$
	$=\frac{100 \mathrm{Ah} \times 12 \mathrm{~V}}{300 \mathrm{~W} \times 0.8}$
	$=5$ hours

The sun rays are (always) normal to the panel Or Clear sky / not cloudy.

Candidates' performance in (b) (iii) was fair. Some candidates did not realise that the capacity ' 100 Ah 12 V' of the battery actually gives the maximum energy 1.2 kW which can be stored. Many failed to get the correct answer as they wrongly multiplied this energy by the time of charging or made mistakes in the charging efficiency.

Paper 2

Section B: Atomic World

HKDSE 2019

Multiple Choice

Qn.	1	2	3	4	5	6	7	8
A	13.5%	9.3%	$\underline{64.9 \%}$	1.9%	$\underline{51.8 \%}$	14.9%	11.6%	$\underline{70.0 \%}$
B	21.3%	35.3%	17.8%	$\underline{55.5 \%}$	10.5%	3.3%	$\underline{37.9 \%}$	5.8%
C	$\underline{22.8 \%}$	29.6%	13.2%	7.7%	7.7%	27.6%	22.5%	8.6%
D	42.4%	$\underline{25.4 \%}$	3.6%	34.7%	29.7%	$\underline{53.7 \%}$	27.5%	15.3%

KEY: underlined

Qn. 2.2
2.2 The set-1p below is for investigatingthe maximum kinetic energy of photoelectrons in photeolectric effect.

Answer : D (25.4\%)
Best distracter: B (35.3\%), C (29.6\%)
Not many candidates realise that V is a retarding voltage. Therefore the graph is the negative part of the graph in the textbook, not the positive part (so they choose B). Some negative part of the graph in the textbook, not the positive part (so they choose B).
even mix the graph of stopping potential v.s. frequency with this (so they choose C).

Qn. 2.1

2.1 There are dark lines in the Sun's spectrum becauselights at certain wavelengths emitted by the Sun are
A. completely absorbed by the Sun's atmosphere.

Answer: C (22.8\%)
Best distracter: D (42.2\%)
Most candidates think that the absorption spectrum is caused by the Earth's atmosphere. Not many candidates know that the Sun also has an atmosphere and the spectrum provides information about the atmosphere of the Sun.

Qn. 2.5
2.5 The energy diagram for an atom is shown below.

The electron transitions shown give rise to emission lines of wavelengths $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} respectively
Which of the following is/are correct ?
(1) $\frac{1}{\lambda_{3}}<\frac{1}{\lambda_{4}}$
(2) $\lambda_{1}<\lambda_{2}$
(3) $\lambda_{1}+\lambda_{3}=\lambda_{2}$

favourable distractor
Answer : A (51.8\%)
Best distracter: D (29.7\%)
It seems that some candidates mistakenly mix up frequency and wavelength. The effect of energy change is reversed. The best distracter is the negation of the answer.

Qn. 2.7

Q. 2 Structural question

2.7 Two point sources of red light at a distance of 160 m from an observercan just be resolved by the naked eyes. If they are replaced by point sources ofviolet light, how should the observer move from the original position such that the two sources can just be resolved?

A. move about 280 m further away from the sources
B. move about 120 m further away from the sources
C.
:---
C. move about 120 m towards the sources

C. move about 120 m towards the sources
D. move about 70 m towards the sources

Answer : B (37.9\%)
Best distracters: C (22.5\%), D (27.5\%)
This problem uses the Rayleigh criterion. Some candidates cannot catch this idea and got stuck with the thinking that the second situation (violet light) should have lower resolution so that the observer should move towards the source. Therefor half of the candidates choose C and D.

Q. 2 Structural question

(ii) Since the charge and mass of an atom in Thomson's atomic model are evenly distributed, the alpha particles should not be deflected (by large angles).

Poorly answered. More than half of the candidates held the belief that the majority of the alpha particles would be rebounded backward if the Thomson's atomic model were true.

Q. 2 Structural question

(a) In Thomson's 'plum-pudding' model of atoms,an atom consists of a lump of positive material embedded with negatively-charged electrons distributed throughout.
(i) In order to test this atomic model, an experiment was performed such that a beam of α particles was shot at a gold foil and the deflections of the α particles were measured.State the result(s) of this scattering experiment.
(ii) Thomson's atomicmodelcannot account for the resultsof the scatteringexperiment in (a)(i). Why ?
(a) (i) Most alpha particles passed (straight) through the foil, $\quad 1 \mathrm{~A}$ some were only slightly deflected.

Asmall number of alpha particles were scattered at large $\quad 1$. angles and a few even rebounded backward.

It seemed that most candidates knew the results of Rutherford's scattering experiment, however, some failed to provide a concise description regarding the degree of deflection and the amount of alpha particles being deflected.
(b) The diagram below represents some energy levels of a hydrogen atom. The ground state energy E_{0} of hydrogen atom is -13.6 eV

Figure 2.1

Diagram NOT

 drawn to scale
Q. 2 Structural Question

Q. 2 Structural Question

(i) All energy levels of a hydrogen atom take negative valuesexcept E_{∞}. State the physical significance of energy levels having 'negative values' and the implication of an electron being at E_{∞}.
(b) (i) The electron is bounded by the nucleus, electron from the atom/ionize the atom.

An electron at $E_{\omega \text { is }}$ not bounded by the attractive force
from the nucleus, i.e. free.

Candidates' performance in (b)(ii) was satisfactory. Most knew how to find the energy difference ΔE corresponding to the electron transition though a few failed to obtain the correct wavelength λ. Some candidates had difficulties of $+/-$ sign and the correct use of $e=1.6 \times 10^{-19} \mathrm{C}$. energy change. Some tried to relate it with the force of attraction between electrons and the nucleus. Some said that E is negative as E is lower than E_{∞}, which is 0 .
Most candidates can give the meaning of an electron being at E_{∞}

Q. 2 Structural Question

(iii) Find the minimum energy required to ionize a hydrogen atom from its ${ }^{\text {rd }}$ excited state (not shown).
(iii) $\begin{aligned} E_{3} & =-\frac{13.6}{4^{2}}-0.85 \mathrm{eV} \\ \text { Energy required } & =0-(-0.85) \\ & =0.85 \mathrm{eV} \text { or } 1.36 \times 10^{-19} \mathrm{~J}\end{aligned} \quad 1 \mathrm{M}$

$$
=0.85 \mathrm{CV} \text { or } 1.36 \times 10^{-19} \mathrm{~J}
$$

$$
\begin{aligned}
& \Delta E=E_{7}-E_{1} \\
& =-13.6\left(\frac{1}{8^{2}}-\frac{1}{2^{2}}\right) \quad \mathrm{IM} \\
& =3.1875 \mathrm{cV} \approx 3.1875 \times\left(1.60 \times 10^{-19}\right) \mathrm{I} \\
& \lambda=\frac{h c}{\Delta E}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{3.1875 \times\left(1.60 \times 10^{-19}\right)} \quad \text { IN } \\
& =3.9 \times 10^{-7} \mathrm{~m} \approx 390 \mathrm{~nm} \quad 1 \mathrm{~A}
\end{aligned}
$$

HKDSE 2019
Physics Paper 2
Section D: Medical Physics

Qn. 4.1

1. John suffers from long-sightedness. After wearing suitable corrective spectacles, how would his nearpoint distance and far-point distance be affected?

		near-point distance	far-point distance
A	6%	increased	increased
B	29%	increased	unchanged
C *	20%	decreased	decreased
D	45%	decreased	unchanged

Multiple Choice Questions

Qn	1	2	3	4	5	6	7	8
A	6%	7%	$\underline{40 \%}$	22%	$\underline{60 \%}$	11%	10%	13%
B	29%	$\underline{43 \%}$	24%	7%	13%	14%	13%	$\underline{63 \%}$
C	$\underline{20 \%}$	25%	26%	15%	15%	$\underline{54 \%}$	15%	15%
D	45%	25%	10%	$\underline{56 \%}$	12%	21%	$\underline{62 \%}$	9%

Qn 4.1 Answer

correction of long sight using a convex lens

Qn. 4.2

2. An object is placed 20 cm in front of a concave lens. The magnification of the image is 0.5 . Find the power of the lens?

		Power of lens
A	7%	+20 D
B*	43%	$-5 D$
C	25%	-10 D
D	25%	-20 D

[^0]3. The maximum sensitivity of human ear to sound of frequency 3 kHz is about 0.5 dB , which is the minimum change in sound intensity level that can be detected by the ear. This corresponds to a change of sound intensity of approximately

		Change in sound Intensity
A^{*}	40%	12%.
B	24%	6%.
C	26%	3%
D	10%	1%

Qn. 4.2 Answer

- A dioptre is a unit of measurement of the optical power of a lens or curved mirror, which is equal to the reciprocal of the focal length measured in metres (1 dioptre $=1 \mathrm{~m}^{-1}$). It is thus a unit of reciprocal length.

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{v}+\frac{1}{u} \\
& \frac{1}{f}=\frac{1}{-10 \mathrm{~cm}}+\frac{1}{20 \mathrm{~cm}}
\end{aligned}
$$

$$
\frac{1}{f}=\frac{-2+1}{20 \mathrm{~cm}}=\frac{-1}{20 \mathrm{~cm}}=\frac{-1}{0.2 \mathrm{~m}}=-5 \mathrm{D}
$$

Qn. 4.3 Answer

$$
\begin{aligned}
& L_{i}=10 \log \frac{I_{1}}{I_{0}} d B \\
& 0.5 d B=10 \log \frac{I_{1}}{I_{0}} d B \\
& I_{1}=10^{0.05} I_{o}=1.122 I_{o} \\
& \frac{I_{1}-I_{0}}{I_{o}}=0.122=12 \%
\end{aligned}
$$

where:
L_{1} - sound intensity level,
I - sound intensity [W/m²],
I_{0} - reference sound intensity $10^{-12}\left[\mathrm{~W} / \mathrm{m}^{2}\right]$.

Qn. 4.4

4. Which of the following is/are non-invasive medical imaging method(s)?
(1) endoscopy
(2) computed tomography (CT) scan
(3) radioactive tracers

		Non-invasive methods
A	22%	(1) only
B	7%	(3) only
C	15%	(1) and (2) only
D*	56%	(2) and (3) only

favourable distractor

Qn. 4.6 Answer

The areas where the radionuclide collects in greater amounts are called 'hot spots.' The areas that do not absorb the radionuclide and appear less bright on the scan image are referred to as 'cold spots.

Qn. 4.6

6. Which statement about a 'hot spot' and a 'cold spot' in a radionuclide image is correct?

		Correct statement
A	11%	A cold spot indicates the degree of abnormality of a particular organ but a hot spot does not.
B	14%	Both indicate the concentration of artificial contrast medium in a particular organ.
C*	54%	Both indicate the concentration of the radioactive tracer in a particular organ.
D	21%	Both indicate the degree of reflection of the radiation by the abnormal part of an organ.

Q. 4 (a) Structural question

(a)An endoscope is made of a bundle of optical fibres with each optical fibre having a glass core surrounded with a cladding as shown in Figure 4.1. The endoscope can be inserted through natural openings of a patient in order to view internal organs. The refractive index of the glass core and that of the surrounding cladding are 1.5 and 1.45 respectively.

Figure 4.1

Q. 4 (a) Structural question

(i) Find the critical angle c for the core-cladding boundary.
(1 mark)
(ii) Explain why a light ray entering the glass core at an angle α as shown can be guided through the core without leakage only if α is less than a certain angle $\alpha_{\text {max }}$.

(2 marks)

(iii)A patient suffers from stomach ulcer (i.e. a wound on the stomach lining). State ONE advantage and ONE disadvantage of examining the stomach using endoscopy over radiographic imaging using X -rays.
(2 marks)

Q. 4 (b) Structural question

(b) The table shows information relating to the transmission of sound through different types of body tissues.

Tissue	Speed of sound $/ \mathrm{m} \mathrm{s}^{-1}$	Acoustic impedance $/ \mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Bone	3780	7.15×10^{6}
Muscle	1590	1.65×10^{6}
Fat	1450	1.37×10^{6}

(i) Estimate the density of bone.
(1 mark)
(ii) When ultrasound is incident to a 'muscle-bone' boundary, find the ratio of the intensity of ultrasound reflected from the boundary to that incident to the boundary.
(2 marks)
(iii) Explain why in an ultrasound scan a 'muscle-bone' boundary is easier to be distinguished compared to a 'muscle-fat' boundary. (2 marks)

Q. 4 (a) Marking Scheme

	Solution	Marks
(a) (i)	$\begin{aligned} \sin c & =\frac{1.45}{1.5} \\ c & =75.2^{\circ} \end{aligned}$	1A
(a) (ii)	For α larger than $\alpha_{\text {max }}$, subsequently the light ray incident angle at the core-cladding boundary would be less than c, thus total internal reflection fails to occur. Note: There are two boundaries involved: air-core and corecladding. Candidates need to state explicitly which boundary that total internal reflection occurs	$1 \mathrm{~A}$ 1A
OR	For α less than $\alpha_{\text {max }}$, subsequently the light ray incident angle at the core-cladding boundary would be greater than c, thus total internal reflection occurs.	1A 1A
OR	Correct description, but without mentioning corecladding boundary	1A

Optical fibres

Q. 4 (a) Marking Scheme

	Solution	Marks
(a) (iii)	When comparing to X-rays radiographic imaging:	
	Advantage: Any ONE - direct view of the stomach lining / inside / wall (situation/condition/function of inner structure of stomach) - perform biopsy (getting a tissue) /surgery during examination if necessary - without exposure to ionizing radiation by X-rays	1A
AND	Disadvantage: Any ONE - requires fasting (for a few hours) prior to examination. - endoscopy is an invasive procedure / having a risk of causing patient internal bleeding /discomfort / unwell - anesthetic may be needed	1A

Q. 4 (b) Marking Scheme

	Solution	Marks
(b) (iii)	- The difference in acoustic impedances of a musclebone boundary is greater than that of a muscle-fat boundary (or vice versa), - therefore giving a larger intensity reflection coefficient α_{b} (39\%) / larger intensity reflection ratio (or vice versa), so more clear / easier to be distinguished. Note: coefficient, ratio, percentage, proportion	$1 \mathrm{~A}$ 1A
OR	$\alpha_{\text {(muscle-fat) }}=0.00859=0.86 \%$ as a supporting statement that $\alpha_{\text {(muscle-fat) }}$ is less than $\alpha_{\text {(muscle-bone) }}$	1A

Q. 4 (b) Marking Scheme

	Solution	Marks
(b) (i)	$Z_{\mathrm{B}}=\rho \mathrm{C}$ $7.15 \times 10^{6}=\rho(3780)$ $\rho=1890 \mathrm{~kg} \mathrm{~m}^{-3} \sim 1900 \mathrm{~kg} \mathrm{~m}^{-3}$	$1 \mathrm{M} / 1 \mathrm{~A}$
(b) (ii)	$\alpha_{\mathrm{b}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}}=\frac{(7.15-1.65)^{2}}{(7.15+1.65)^{2}}$	
	$\alpha_{\mathrm{b}}=\frac{I}{I_{0}}=0.390625 \approx 0.391=39.1 \%$	$\alpha_{\mathrm{b}}=0.39 \sim 0.391$
OR	$\alpha_{\mathrm{b}}=\left(\frac{5.5}{8.8}\right)^{2}=\frac{25}{64}$	1 A

4a(ii) Sample answers

1. If α is less than a certain max angle, light ray in the glass core can be guided through the core without leakage.
2. 'internal reflection', 'total reflection'.
3. Total internal reflection occurs if α is less than $\alpha_{\max }$.
4. It is because an angle larger than $\alpha_{\max }$ will lead to angle of incidence of core-cladding boundary larger than the critical angle of boundary. The light ray is leaked out of the endoscope and cannot be guided.
5. $\alpha<\alpha_{\text {max }}$, then angle of incidence at core cladding boundary will be less than critical angle, so total internal reflection occurs so, light will not leak out.

4a（ii）Sample answers

6．When α increases，corresponding angle at core－ cladding boundary will decrease，when smaller than critical angle，no total internal reflection．
7．因為 α 小於臨界角 $\alpha_{\text {max }}$ 才能進行全內反射。
8．α 必需少於 $\alpha_{\text {max }}$ ，因為 $\alpha_{\text {max }}$ 是使玻璃纖芯射向包覆層時入射角為 75.2° ，剛好為臨界角。而 α 少於 $\alpha_{\text {max }}$ 時，空氣玻璃纖芯界面的折射角便小於 $14.8^{\circ}, ~ c$ 便大於 75.2°
，導致全内反射發生，不會漏光。

4a（iii）Sample answers

8．Endoscopy can give 3D image but X－rays can only give 2D image．
9．The patient may feel inconvenient as the endoscopy need to go inside into the body．
10．Advantage ：‘could prevent harm by radiation’．
11．Endoscopy has a narrow field of view．
12．Disadvantages：容易觸碰胃黏膜的損傷位置／碰到傷 \square的損傷位置。

4a（iii）Sample answers

1．Endoscopy is more expensive than using X ray．
2．有較大機會對傷口造成感染。
3．Endoscopy can view the function of the inner structure．
4．Endoscopy has no＂ionizing power＂．
5．Endoscopy is non－ionization／non－radioactive．
6．Advantage is endoscopy wouldn＇t cause cancer，but X－ray can cause cancer as it ionizes cells．
7．Disadvantage：It can see the overview of the outside structure／surface of the stomach．

4b（ii）Sample answers

$$
\begin{aligned}
& a=\frac{I_{r}}{I_{0}}=\frac{\left(Z_{2}-z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}} \\
& a_{1}=\frac{\left(7.15 \times 10^{6}-1.65 \times 10^{6}\right)^{2}}{\left(7.16 \times 10^{6}+1.65 \times 10^{6}\right)^{2}}=0.625 \\
& a_{2}=\frac{\left(1.65 \times 10^{6}-1.37 \times 10^{6}\right)^{2}}{\left(1.65 \times 10^{6}+1.37 \times 10^{6}\right)^{2}}=0.09527 \\
& \frac{a_{1}}{a_{2}}=\frac{0.625}{6.0927}
\end{aligned}
$$

4b（ii）Sample answers

4b（iii）Sample answers

1．Amplitude of reflected ultrasound is larger．
2．Difference in acoustic impedance is larger，．．．so the reflective index will be higher．
3．As bone has a higher acoustic impedance than that of fat，．．．muscle－bone boundary reflection．．．
4．It is because the difference of Z between muscle and bone is larger than the difference of Z between muscle and fat．The ratio of reflecting ultrasound to incident ultrasound is larger in muscle－bone boundary．
5．Higher intensity of ultrasound is reflected from muscle－bone．

4b（iii）Sample answers

6．Because muscle and fat has similar acoustic impedance．．．$\alpha_{\text {（muscle－fat）}}=0.00859=0.86 \%$ ，which is much smaller that of α（muscle－bone）boundary． Hence muscle－bone boundary is more easier to be detected．
7．因為肌肉和脂肪同屬軟組織容易吸收聲波，超聲波掃描後，圖像的形態相近。但骨較容易反射超聲波，掃描後的圖形上，肌肉是較少反射物，而骨是較多的，因而產生強烈的差別，較易區別。
8．因骨明顯較為硬，其聲音速度為 $3780 \mathrm{~m} \mathrm{~s}^{-1}$ ，明顯與肌肉的 $1590 \mathrm{~m} \mathrm{~s}^{-1}$ 及脂肪的 $1450 \mathrm{~m} \mathrm{~s}^{-1}$ 相距夠大會容易分別。

Qn. 4.5

5. Which statement about radiographic imaging and computed tomography (CT) scan is correct?

		Correct statement
A*	60%	Both make use of the different degree of attenuation of the radiation beam through various body tissues.
B	13%	The X-rays used in radiographic imaging are ionizing radiations while CT scans employ non-ionizing radiations.
C	15%	CT scans produce images of relatively higher resolution because gamma radiation is used.
D	12%	CT scans cannot be used for organs with cavity.

29

$$
\text { Qn. } 4.8
$$

8. A gamma source Y is used externally for treatment of cancer. At a certain point from source Y the equivalent dose rate is $24 \mu \mathrm{~Sv}$ per hour. It is found that 242 mm of concrete shielding is needed to reduce the equivalent dose rate to $1.5 \mu \mathrm{~Sv}$ per hour at the same point. The half-value thickness of concrete for gamma radiation is

		Half-value thickness
A	13%	48.4 mm.
B	63%	60.5 mm.
C	15%	80.6 mm.
D	9%	121.0 mm.

Qn. 4.7

7. The effective half-life of a certain radioactive tracer X is 6.9 hours. If the biological half-life of X is 2 days, find its physical half-life.

		Half-life
A	10%	2.8 hours
B	13%	6.0 hours
C	15%	7.3 hours
D*	62%	8.1 hours

[^0]: favourable distractor

