Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	2	4	3	/	0	2	Signature	

6243/02 **Edexcel GCE Chemistry Advanced Subsidiary**

Unit Test 3B
Wednesday 6 June 2007 – Morning
Time: 1 hour

Materials required for examination	Items included with question papers
Nil	Nil

Candidates may use a calculator.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and

Answer ALL the questions in the spaces provided in this question paper.

Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 50. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. All blank pages are

A Periodic Table is printed on the back cover of this booklet.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. You will be assessed on your Quality of Written Communication in this paper.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

N26023A W850/R6243/57570 7/7/7/3/21,200

Team Leader's use only

Examiner's use only

	Question Number	Leave Blank
	1	
	2	
	3	
	4	
	5 6	
	6	
,		
,		
	Total	

Turn over

Answer ALL the questions. Write your answers in the spaces provided.

1. (a) Salt A contains one cation and one anion.

Identify A, B and C.

When a sample of A is heated with aqueous sodium hydroxide a gas, B, is given off that turns damp red litmus paper blue.

When dilute hydrochloric acid followed by aqueous barium chloride is added to a solution of A, a white precipitate, C, is formed.

A	
В	
C	
	(3

(b) Salt **D** contains one cation and one anion.

When a flame test is carried out on **D**, a lilac colour is observed in the flame.

When concentrated sulphuric acid is added to **D**, brown fumes of an element, **E**, are given off together with a colourless gas, **F**.

F turns acidified potassium dichromate(VI) green.

Identify D, E, and F.

D	
v	

E

F			
_	 	 	

Q1

(3)

(Total 6 marks)

	•
Leave	
hlank	

2.	A mixture contains 100 g of calcium carbonate, CaCO ₃ , and 10 g of sodium carbonate,
	Na ₂ CO ₃ , as an impurity.

Compound	Solubility at 20 °C
Calcium carbonate	Insoluble in water
Sodium carbonate	21 g in 100 cm ³ water

re	move the sodium carbonate from the	he mixture.	
•••			
•••			
(b) Gi	ive a test and its expected result t	to show that all the sodium carbo	(4) nate has been
	ive a test and its expected result temoved.	to show that all the sodium carbo	
		to show that all the sodium carbo	
		so show that all the sodium carbo	
		to show that all the sodium carbo	nate has been
			nate has been
			nate has been
			nate has been

3. A halogenoalkane, \mathbf{Y} , has the molecular formula C_4H_9X , where X represents a halogen atom.

When ${\bf Y}$ is heated with excess aqueous sodium hydroxide, it is converted into ${\bf Z},$ $C_4H_{10}O.$

Complete the tables below.

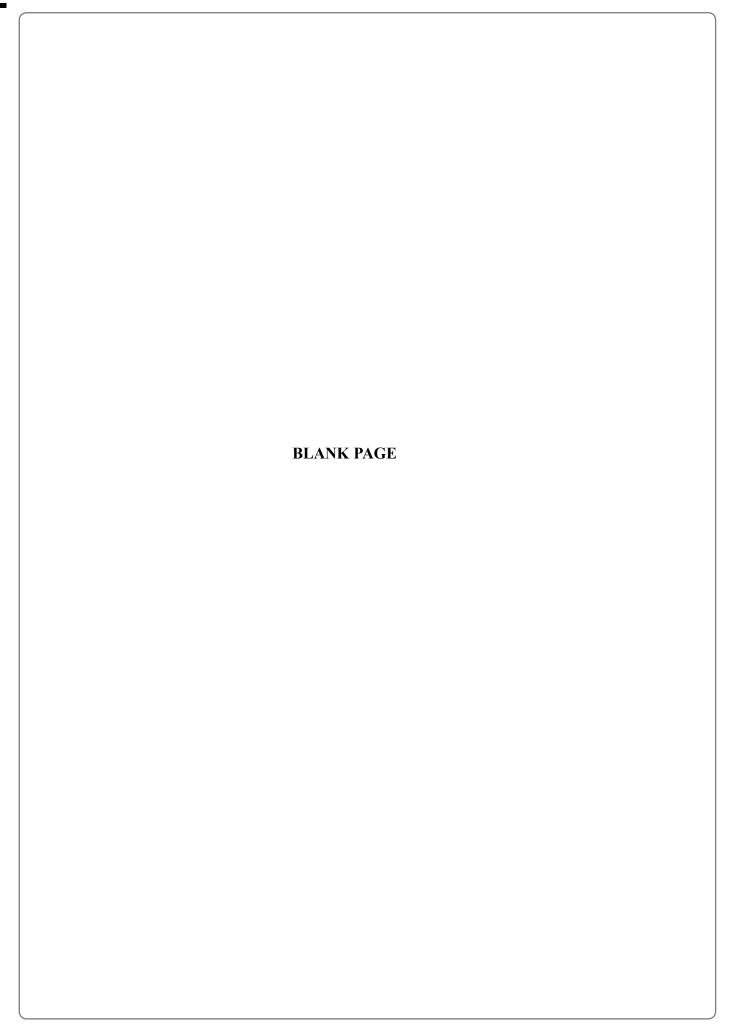
(a)

Test	Observation	Inference
To the solution remaining after heating Y with excess aqueous sodium hydroxide, add	White precipitate	The atom X is

(2)

(b)

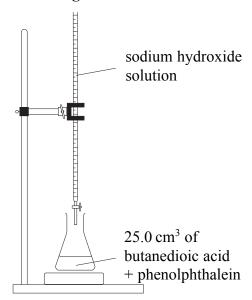
))			
,	Test	Observation	Inference
	Add phosphorus	fumes	The gas evolved is
	pentachloride to pure Z .	were seen at the mouth of	The gas everyears
	Test the gas evolved with	the test tube.	
	damp blue litmus paper.	The litmus paper turned	Z is an alcohol.
	damp orde nimus paper.	red.	


(2)

(c)

Test	Observation	Inferences
Warm Z with acidified		Z is not oxidised.
aqueous potassium		Z is a
dichromate(VI).		alcohol.

(2)


(d) Based on the observations and inferences in (a) to (c), draw the structural of \mathbf{Y} .	formula	Leave blank
	(1)	Q3
(Total 7	marks)	

4. A titration is carried out by adding sodium hydroxide solution from a burette to 25.0 cm³ of aqueous 0.0500 mol dm⁻³ butanedioic acid, (CH₂COOH)₂, to which a few drops of phenolphthalein have been added.

$$(CH_2COOH)_2(aq) + 2NaOH(aq) \longrightarrow (CH_2COONa)_2(aq) + 2H_2O(l)$$

(a) A preliminary ('rough') titration shows that between 23.0 cm³ and 24.0 cm³ of sodium hydroxide is required to react with the butanedioic acid solution.

Describe the procedure you would follow, using the apparatus shown in Diagram I , for a second, accurate titration. Include in your description the colour change at the end point.
(4)

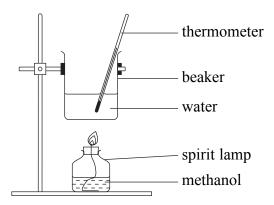
Leave blank

(b) The burette readings recorded by a student carrying out the titrations are shown in the table below.

Titration numbers	1	2	3
Burette reading (final)/cm ³	23.90	23.60	23.65
Burette reading (initial)/cm ³	0.00	0.00	0.15
Titre/cm ³	23.90	23.60	23.50
Used in mean (✓)			

(i) On **Diagram II** below, show the level of the sodium hydroxide solution when the final burette reading is recorded in **titration 3**.

Diagram II


(1)

		Leave blank
(11)	Calculate the mean (or average) titre.	
	Show which titres you have used in your calculation by putting a tick (\checkmark) in the appropriate boxes in the table on page 8.	
	(2)	
(c) (i)	Calculate the amount (moles) of butanedioic acid, $(CH_2COOH)_2$, in 25.0 cm ³ of the 0.0500 mol dm ⁻³ solution.	
(ii)	Calculate the amount (moles) of sodium hydroxide, NaOH, in the mean titre.	
(II)	Calculate the amount (moles) of souldin hydroxide, NaO11, in the mean title.	
	(1)	
(iii)	Calculate the concentration of the sodium hydroxide solution in mol dm ⁻³ . Give your answer to three significant figures.	
	(1)	Q4
	(Total 10 marks)	

Leave blank

5. The apparatus used and the recordings made by a student, carrying out an experiment to determine the enthalpy of combustion of methanol, are shown below.

Diagram

Results

Molar mass (methanol) = $32 g \text{ mol}^{-1}$ Volume of water in beaker = 50 cm^3 Mass of water in beaker = 50 g

Weighings

Spirit lamp + methanol before combustion = 163.78 gSpirit lamp + methanol after combustion = 163.44 g

Temperatures

Water before heating = 22.0 $^{\circ}C$ Water after heating = 43.5 $^{\circ}C$

Specific heat capacity of water = 4.18 J g^{-1} °C⁻¹

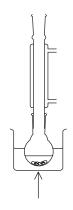
Observations

- When the spirit lamp was being weighed its mass was continually falling.
- A black substance formed on the bottom of the beaker as the methanol burned

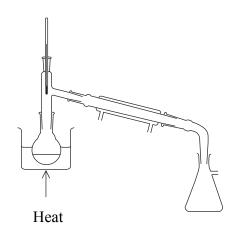
(a) (i)	Calculate the amount (moles) of methanol, CH ₃ OH, burned.
	(2)
(ii)	Calculate the heat gained by the water. Give your answer in kJ.
	(2)
(iii)	Use your values from (i) and (ii) to calculate the enthalpy of combustion of methanol in kJ mol ⁻¹ . Include a sign with your answer.
	$\Delta H = \dots kJ \text{ mol}^{-1}$ (2)
	The thermoneter and in the committee of the form
b) (i)	The thermometer used in the experiment can be read to an accuracy of ± 0.5 °C. Calculate the percentage error in the temperature change.
b) (i)	
(ii)	Calculate the percentage error in the temperature change.

(c) (i)	Give a reason why the mass of the spirit lamp fell as it was being weighed.	Leave blank
(ii)	Suggest the identity of the black substance that forms on the beaker. State the effect on the value of the enthalpy of combustion obtained.	
	(2)	Q5
	(Total 11 marks)	

6. In an experiment to prepare iodoethane, solid moist red phosphorus is placed into a flask to which ethanol is added. The flask is then arranged as shown in **Apparatus I**.


20.0 g of powdered iodine is then added to the flask in small portions. Before each addition the condenser is removed, the iodine is added and the condenser is immediately replaced. At least two minutes must be allowed between additions of iodine.

When all the iodine has been added, the flask is allowed to stand for about 10 minutes and is then heated for an hour in **Apparatus I**.


$$2P + 3I_2 \longrightarrow 2PI_3$$

 $3CH_3CH_2OH + PI_3 \longrightarrow 3CH_3CH_2I + H_3PO_3$

The iodoethane is then removed from the reaction mixture, purified and dried. A final purification is then carried out using **Apparatus II**. Iodoethane is collected over a narrow temperature range.

Apparatus I

Apparatus II

Data

Heat

Ethanol: colourless liquid, flammable, boiling temperature 78 °C Iodoethane: colourless liquid, flammable, boiling temperature 72 °C

(a) (i) Give the name of the practical technique carried out in each apparatus shown above.

Apparatus I

Apparatus II

(ii) Explain why it is important that a stopper should **not** be placed in the top of the condenser in **Apparatus I**.

(1)

Suggest a reason why the iodine is added in small portions and over a period of time.	(i)
(1)	
Apparatus II, rather than heating the flasks directly with a Bunsen flame.	(ii)
(1)	
ii) Why is the reaction mixture in Apparatus I heated for such a long time after al the iodine has been added?	(iii)
(1	
v) Suggest the readings on the thermometer in Apparatus II between which iodoethane should be collected.	(iv)
From°C (1	

Leave blank

	Leave
(c) (i) Calculate the amount (moles) of iodine molecules, I ₂ , in 20.0 g of iodine.	blank
(ii) Calculate the maximum mass of iodoethane that would be formed from 20.0 g of	
iodine. [molar mass iodoethane = 156 g mol ⁻¹]	
(2)	
(iii) In such a preparation, the yield of iodoethane was 16.7 g. Calculate the percentage yield.	
(1)	Q6
(Total 11 marks)	
TOTAL FOR PAPER: 50 MARKS	
END	

1 H H H H H H H H H	1	1		-	7					5	Group					8	4	v	9	7	0	
House Hous	Handra H	Hydrogen	Period		г															_		
Libra Bac Bac Libra Bac Libra Bac Libra Libr	Limina Bay Limina Bay Limina Limina Limina Limina Limina Roberian	Lithium Beylium Lithium Lith	-	Hydrogen						Molar n Sy	Key nass g mol- mbol	ſ									$\mathop{He}_{\text{Helium}}^{4}$	
Litima	Links	Litikian Be		7	0	_				- <u>Z</u>	lame				_	=	12	41	91	61	20	
Name	Na Mg Mg Mg Mg Mg Mg Mg M	Name Magnetistum Magneti	7	Lithium	Beryllium					Atomi	c number					Boron	Carbon	$N_{ m itrogen}$	Oxygen	Fluorine	Neon	
Na Mg 3 3 3 4	National Magnetisms All Magnetisms	Name Southmen Studies Assistant Sandium Structum Assistant Sandium Structum Assistant Sandium Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Structum Struct		3 23	24											5 27	28	31	32	35.5	10	
1. 1. 1. 1. 1. 1. 1. 1.	1	1	m	Na												Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon	
K Ca Scandium Time interior Vol. Corput Co. Nicked Copper Zinc Galliam Genandum Arsenic Generation Assenciant Arsenic Generation Selection Broning Brownium 85 88 89 91 23 24 25 26 27 28 27 38 34 34 35 Rb Sr 89 91 93 96 99 10 108 112 113 119 122 128 136 Rb Sr 89 91 93 96 99 10 108 112 113 119 122 128 129 36 129 120 121 111 111 114 186 190 105 195 196 AQ II 186 190 192 195 196 AD	Fig. Ca	K Ca Scandium Titanium Von Crant Cr Ni condition Co. Apt (cront) Ni col Co. Apt (cront) Co. Apt (cront) Ni col Co. Apt (cront) Co. Apt (cront) Ni col Co. Apt (cront)		11	12	45	48	51	52	55	95	- 65	65	63.5	65.4	13	14	15	91	17	18	
19 20 21 22 23 24 25 25 25 26 25 25 25 25	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 34 35 35 38 38 38 38 31 31 31 31	19 20 21 22 23 24 25 25 26 27 28 29 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 32	4	K			Titanium	Vanadium		Mn	F o	Cobat	Zickel		Zn	Gallium	Germanium	AS	Selenium		$ ilde{\mathrm{Krypton}}$	
Rb bit standing Strontium	Rebidium Strontium Virtium Zircontium Molydenam Technetium Ruhenium Ruhe	Robins Strong S		19	$\overline{}$		22	23		25	26	27	28		30	31	32	33	34		36	
Rubidium Strontium Yutrium Nichbiam Nichbiam Rubedium Rubidium Silvatium Silvatium Silvatium Tin Antimony Tellunium Iodine Tin Antimony Tillunium Silvatium Antimony Tillunium Rubinium Silvatium Antimony Tillunium Tillunium Antimony Tillunium Antimony Antimony Antimony Antimony Antimony Antimony Antimony Silvatium Antimony	Rubidium Sircontium Nichbium Inchinem Nichbium Inchinem Rubidium Inchinem Silver Cademium Trin Antimony Tellunium Inchinem Rubidium Inchinem Silver Cademium Inchinem Trin Antimony Tellunium Inchinem Rubidium Inc	Rubidium Strontium of Stroontium Yirtium Title of the strong of the	w	2 2		<u> </u>	Zr		Mo M	္ရည	Ru	<u></u>	₽q		Zq Cq		Sn	Sb	e 2		Xe	
CS Ba La Hf Ta 184 186 190 192 195 197 201 204 207 209 210	131 137 139 178 181 184 186 190 192 195 197 201 204 207 209 210	131 137 139 178 181 184 186 190 192 195 197 201 204 207 209 209 205		Rubidium 37			Zirconium 40		Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46		Cadmium 48		Tin	Antimony	Tellurium 52		Xenon 54	
CS Ba La Hf Tantalum Rhenium Gamium Indition Platitium Flatitium Att Platitium Flatitium Platitium Flatitium Caesium Barium Land Haffulum Rhenium Gamium Indition Platitium	CS Ba Lanthanum Hf Ta W Re OS Ir Pt Au Hg Ti Pb Bismuth Polonium Polonium Astatine 255 56 57 73 76 76 Mercury Thallium Lead Bismuth Polonium Polonium Astatine Francium Act A. A. 80 163 160 Mercury Thallium Lead Bismuth Bismuth Polonium Polonium Astatine 83 83 83 83 83 83 83 84 85 84 85 167 169 175 171 175 171 175 171<	CS Ba La Hf Ta W Re OS Ir Pt Au Hg TI Pb Bisnuth 55 56 57 56 57 79 Mercury Thallium Lead Bisnuth 223 226 227 73 78 75 79 80 81 Bisnuth Farocium Radium Actinium Actinium Actinium Radium Actinium Actinium Bisnuth 159 163 TI Pi Farocium Radium Actinium Actinium <t< td=""><td></td><td>133</td><td>137</td><td>139</td><td>178</td><td>181</td><td>184</td><td></td><td>061</td><td>1</td><td>195</td><td></td><td>201</td><td></td><td>207</td><td>209</td><td>210</td><td>1</td><td>222</td><td></td></t<>		133	137	139	178	181	184		061	1	195		201		207	209	210	1	222	
Caestium Barium Lantlanum Tantlanum Tantlanum Tantlanum Tantlanum Tantlanum Tantlanum Astaline	Caesum Barium Lantialum Trantalum Palaine Brantalum Polonium Astaine Result Res	Caestium Baritum Landflatum Tantialum Tantialum Tantialum Tantialum Tantialum Tantialum Tantialum Caestium Accessium Accessium Accessium Accessium Accessium Accessium Accessium Accessium Radium Accessium Acce	9	Cs		La		Ta	*	Re	SO		7		Hg		Pb	Bi	Po		Rn	
Francium Radium Actinium 87 88 89 Ce Prim Prascodymium Recolum Promethium Samarium Europium Gerlium Promethium 85 64 65 65 66 67 68 69 70 70	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Francium Radium Actinium Radium Rad		Caesium 55		Lanthanum 57	- 1	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	fridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86	
Francism Radium $\frac{84}{87}$ $\frac{88}{89}$ $\frac{140}{87}$ $\frac{141}{144}$ $\frac{144}{144}$ $\frac{147}{144}$ $\frac{150}{150}$ $\frac{152}{150}$ $\frac{157}{150}$ $\frac{159}{150}$ $\frac{163}{163}$ $\frac{165}{167}$ $\frac{169}{173}$ $\frac{173}{173}$ $\frac{159}{173}$ $\frac{169}{173}$ $\frac{173}{173}$ 1	Francium Radium Actinium 87 88 89 140 141 144 (147) 150 152 157 159 163 165 167 169 Cerium Praseodymium/ Neodymium/ Neodymium Promethium Samarium Europium Gadolinium Februm Bysprosium Holmium Echium Thulium 58 59 60 61 62 63 64 65 66 67 69 232 (231) 238 (237) (242) (243) (247) (247) (247) (247) (251) (253) (253) (256)	Francium Radium	7			227 AC																
140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140		Francium		Actinium																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	141 144 (147) 150 152 157 159 163 165 167 169 169 163 167 169 169 163 167 169 169 163 167 169 163 167 169 163 167 169 163 167 169 163 167 169 163 16	141 144 (147) 150 152 157 159 163 165 167 169 169 163 165 167 169 16		87	_	68																
11	1	Praecopmium Promethium Pr					140	141 D	44. L	(147) D 33	150		157	85 E	163		167	69 E	173 272	271		
0/ 60 80 /0 00 00 60 50 70 10 00 60	(231) 238 (237) (242) (243) (247) (245) (251) (254) (253) (256)	231 238 (237) (242) (243) (247) (247) (247) (247) (248) (247) (247) (248) (247) (248)					Cerium	T 1 Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	erbiur	Dysprosium	Holmium	Erbium	I III Thulium	I U Ytterbium	Lutetium		
	(231) 238 (237) (242) (243) (247) (245) (251) (254) (253) (256)	(231) 238 (237) (242) (243) (247) (245) (251) (254) (253) (256) (259) (2					38	66	00	10	70	60	45	8	8	/0	80	69	0/	1/		

