Monday 14 January 2013 - Morning
 Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Pink)

Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation or integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
The marks for the parts of questions are shown in round brackets, e.g. (2).
There are 9 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. Find the first 3 terms, in ascending powers of x, in the binomial expansion of

$$
(2-5 x)^{6}
$$

Give each term in its simplest form.
2.

$$
\mathrm{f}(x)=a x^{3}+b x^{2}-4 x-3 \text {, where } a \text { and } b \text { are constants. }
$$

Given that $(x-1)$ is a factor of $\mathrm{f}(x)$,
(a) show that $a+b=7$.

Given also that, when $\mathrm{f}(x)$ is divided by $(x+2)$, the remainder is 9 ,
(b) find the value of a and the value of b, showing each step in your working.
3. A company predicts a yearly profit of $£ 120000$ in the year 2013. The company predicts that the yearly profit will rise each year by 5%. The predicted yearly profit forms a geometric sequence with common ratio 1.05 .
(a) Show that the predicted profit in the year 2016 is $£ 138915$.
(b) Find the first year in which the yearly predicted profit exceeds $£ 200000$.
(c) Find the total predicted profit for the years 2013 to 2023 inclusive, giving your answer to the nearest pound.
4. Solve, for $0 \leq x<180^{\circ}$,

$$
\cos \left(3 x-10^{\circ}\right)=-0.4
$$

giving your answers to 1 decimal place. You should show each step in your working.
5. The circle C has equation

$$
x^{2}+y^{2}-20 x-24 y+195=0
$$

The centre of C is at the point M.
(a) Find
(i) the coordinates of the point M,
(ii) the radius of the circle C.
N is the point with coordinates $(25,32)$.
(b) Find the length of the line $M N$.

The tangent to C at a point P on the circle passes through point N.
(c) Find the length of the line $N P$.
6. Given that $2 \log _{2}(x+15)-\log _{2} x=6$,
(a) show that $x^{2}-34 x+225=0$.
(b) Hence, or otherwise, solve the equation $2 \log _{2}(x+15)-\log _{2} x=6$.
7.

Figure 2

The triangle $X Y Z$ in Figure 1 has $X Y=6 \mathrm{~cm}, Y Z=9 \mathrm{~cm}, Z X=4 \mathrm{~cm}$ and angle $Z X Y=\alpha$. The point W lies on the line $X Y$.

The circular arc $Z W$, in Figure 1 is a major arc of the circle with centre X and radius 4 cm .
(a) Show that, to 3 significant figures, $\alpha=2.22$ radians.
(b) Find the area, in cm^{2}, of the major sector $X Z W X$.

The region enclosed by the major arc $Z W$ of the circle and the lines $W Y$ and $Y Z$ is shown shaded in Figure 1.

Calculate
(c) the area of this shaded region,
(d) the perimeter $Z W Y Z$ of this shaded region.
8. The curve C has equation $y=6-3 x-\frac{4}{x^{3}}, x \neq 0$.
(a) Use calculus to show that the curve has a turning point P when $x=\sqrt{ }$.
(4)
(b) Find the x-coordinate of the other turning point Q on the curve.
(c) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(d) Hence or otherwise, state with justification, the nature of each of these turning points P and Q.
9.

Figure 2
The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$
y=27-2 x-9 \sqrt{ } x-\frac{16}{x^{2}}, \quad x>0 .
$$

The curve crosses the x-axis at the points $(1,0)$ and $(4,0)$.
(a) Copy and complete the table below, by giving your values of y to 3 decimal places.

x	1	1.5	2	2.5	3	3.5	4
y	0	5.866		5.210		1.856	0

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of R, giving your answer to 2 decimal places.
(c) Use integration to find the exact value for the area of R.

Question Number	Scheme	Marks
1.	$\left.\begin{array}{l\|l}(2-5 x)^{6} \\ \left(2^{6}=\right) 64 & \left.\begin{array}{l}\left.\text { Award this when first seen (not } 64 x^{0}\right) \\ \text { Attempt binomial expansion with correct } \\ \text { structure for at least one of these terms. } \\ \text { E.g. a term of the form: } \\ 6 \\ p\end{array}\right) \times(2)^{6-p}(-5 x)^{p} \text { with } p=1 \text { or } p=2\end{array}\right\}$$\left(6 \times(2)^{5}(-5 x)+\frac{6 \times 5}{2}(2)^{4}(-5 x)^{2}\right.$consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients $-960 x$ $(+) 6000 x^{2}$$\quad$e.g. ${ }^{6} C_{1}$ or $\binom{6}{1}$ or even $\left(\frac{6}{1}\right)$	B1 M1 A1 (first) A1 (Second)
2. (a)	$\begin{aligned} & \mathrm{f}(1)=a+b-4-3=0 \\ & \text { or } a+b-7=0 \\ & a+b=7 * \end{aligned}$ Attempt $\mathrm{f}(\pm 1)$ Must be $\mathrm{f}(1)$ and $=\mathbf{0}$ needs to be seen	M1 A1 (2)
(b)	$\mathrm{f}(-2)=a(-2)^{3}+b(-2)^{2}-4(-2)-3=9 \quad \text { Attempt } \mathrm{f}(\pm 2) \text { and uses } \mathrm{f}(\pm 2)=9$ $\begin{aligned} & -8 a+4 b+8-3=9 \\ & (-8 a+4 b=4) \end{aligned}$ Correct equation with exponents of (-2) removed Solves the given equation from part (a) and their equation in a and b from part (b) as far as $a=\ldots$ or $b=\ldots$ $a=2$ and $b=5$	M1 A1 M1 A1

Question Number	Scheme		Marks
7. (a)	$\begin{gathered} 9^{2}=4^{2}+6^{2}-2 \times 4 \times 6 \cos \alpha \Rightarrow \cos \alpha=\ldots . . \\ \cos \alpha=\frac{4^{2}+6^{2}-9^{2}}{2 \times 4 \times 6}\left(=-\frac{29}{48}=-0.604 . .\right) \\ \alpha=2.22 \quad * \\ (\mathrm{NB} \alpha=2.219516005) \end{gathered}$	Correct use of cosine rule leading to a value for $\cos \alpha$	M1
		Cso (2.22 must be seen here)	A1
(b)	$2 \pi-2.22(=4.06366 \ldots . .$.	$2 \pi-2.22$ or awrt 4.06	B1
	$\frac{1}{2} \times 4^{2} \times 4.06 "$	Correct method for major sector area.	M1
	32.5	Awrt 32.5	A1
(c)	Area of triangle $=$ $\frac{1}{2} \times 4 \times 6 \times \sin 2.22(=9.56)$	Correct expression for the area of triangle $X Y Z$	B1
	$\begin{aligned} & \text { So area required }=" 9.56 "+" 32.5 " \\ & =42.1 \mathrm{~cm}^{2} \text { or } 42.0 \mathrm{~cm}^{2} \end{aligned}$	Their triangle $X Y Z+$ (part (b) answer or correct attempt at major sector) Awrt 42.1 or 42.0 (Or just 42)	M1
			A1
(d)	$\begin{gathered} \text { Arc length }=4 \times 4.06(=16.24) \\ \text { Or } 8 \pi-4 \times 2.22 \\ \text { Perimeter }=Z Y+W Y+\text { Arc Length } \\ \text { Perimeter }=27.2 \text { or } 27.3 \end{gathered}$	M1: $4 \times$ their $(2 \pi-2.22)$ Or circumference - minor arc A1: Correct ft expression $9+2+$ Any Arc Awrt 27.2 or awrt 27.3	M1A1ft
			M1
			A1
			(4)
			[12]

