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Abstract 
 
Server-class computers cannot consume power without 
bound, since increased energy consumption translates 
into increased heat dissipation, greater cooling 
requirements, reduced computational density, and 
higher operating costs.  For a typical data center, storage 
alone accounts for 27% of the energy consumption, 
making storage an important target for energy reduction.  
Unfortunately, conventional server-class RAIDs cannot 
easily reduce power because loads are balanced such 
that they require the use of all the disks in the array for 
even light loads. 
 
This paper introduces the gear-shifting Power-Aware 
RAID (PARAID), which reduces energy in server-class 
computing while retaining performance and reliability. 
The design of PARAID uses a skewed striping pattern 
to adapt to the system load by varying the number of 
powered disks.  By powering off disks during periods of 
light load, PARAID can significantly reduce power 
consumption, but by matching the number of powered 
disks to the system load, PARAID can meet the 
performance demands.  Based on our 4-gear PARAID 
prototype, PARAID consumes 19% less power than a 
conventional RAID-5 device, while achieving the same 
performance. 
 
1 Introduction 
 
The disk remains a significant source of power usage.  
In web servers, disks typically accounts for 24% of the 
power usage; in proxy servers, 77% [4, 13].  Storage 
devices can account for as much as 27% of the 
electricity cost in a typical data center [29].  The energy 
spent to operate servers in a data center has a cascading 
effect on other operating costs.  Greater energy 
consumption leads to more heat dissipation, which in 
turn leads to greater cooling requirements [18].  The 
combined effect also limits the density of computer 
racks.  The lower density of computers leads to more 
space requirements, thus higher operating costs.   
 
Approaches to reducing the energy consumption in 
disks have been explored, but most are achieved by 
degrading performance significantly.  Popular 
approaches involve trading off performance directly, 
such as reducing the rotational speed of the disk [3, 4, 

13, 22].  Not until recently have new approaches started 
to emerge to achieve both goals [6, 19, 31]. 
 
Data centers that use large amounts of energy tend to 
rely on RAID to store much of their data, so improving 
the energy efficiency of RAID devices is promising to 
reduce the energy use of such installations.  Achieving 
power savings on commodity server-class disks is 
challenging, because the performance and RAID 
reliability must be retained in order for a solution to be 
an acceptable alternative.  Conventional RAID balances 
the load across all disks in the array for maximized disk 
parallelism and performance [20].  To reduce power, a 
server cannot simply rely on caching and powering off 
disks during idle times because such opportunities are 
not as frequent on servers.  Also, the load balancing 
inherent in RAIDs means all disks are kept spinning 
even when the server load is light.  To be able to reduce 
power consumption, we need to create opportunities to 
switch the power state of individual disks.  However, 
server-class disks are not designed for frequent power 
cycles, which reduce life expectancy significantly.   
 
We have designed, implemented, and measured the 
gear-shifting Power-Aware RAID (PARAID), which 
balances power against the performance and reliability 
requirements of server-class RAID devices.  To our 
knowledge, PARAID is the first energy-efficient RAID 
to be prototyped and measured.   PARAID introduces a 
skewed striping pattern, which allows RAID devices to 
use just enough disks to meet the system load.  
PARAID can vary the number of power-on disks by 
gear-shifting sets of disks, giving PARAID the 
opportunity to reduce power consumption.  Compared 
to a conventional RAID, PARAID can reduce the power 
consumption by an average of 19%, while maintaining 
comparable performance and reliability. 
 
In addition to the power savings obtained by PARAID, 
the process of creating a real energy measurement 
framework produced some useful insights into the 
general problem of measuring energy consumption and 
savings.  These are also discussed in this paper. 
 
2 Observations 
 
Over-provisioned resources under RAID: 
Conventional RAID is designed to maximize peak 
performance.  The balanced load allows a RAID device 



 2 

to maximize disk parallelism and performance.  This 
uniformity makes data management simple and allows 
all disks to be accessed in the same way.  Its built-in 
load balancing also ensures that no disk becomes a 
bottleneck.   
 
However, this uniform striping design is not favorable 
in the context of energy savings. Load balancing created 
by a uniform striping pattern provides significantly 
fewer opportunities to power off disks because all disks 
in the array need to be powered to serve a file.  
Therefore, even if a RAID receives relatively light 
loads, all disks have to remain powered, even though 
fewer disks could adequately handle the load.   
 
Cyclic fluctuating load: Many system loads display 
daily cyclic fluctuations [5].  For example, on a typical 
day, academic web traffic displays activity as a bell 
curve with a crest in the afternoon, reflecting students’ 
schedules.  Figure 1 shows the trace data used in the 
evaluation of PARAID.  The activity shows an example 
of daily cyclic fluctuating load.  Depending on the types 
of traffic, different systems may exhibit different cyclic 
patterns, with varying ranges of light to heavy loads 
over the course of a day [14]. 
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Figure 1: FSU web server activity for 50 hours over 
September 19 through September 21, 2004. 
 
Therefore, we can exploit these patterns by varying the 
number of powered disks, while still meeting 
performance needs and minimizing the number of 
power switches.  A few strategically placed power 
cycles can achieve significant power savings.  Also, 
fewer power cycles mean that the life expectancy of 
disks will not be affected significantly. 
 
Unused storage space:  Increasingly, storage capacity 
is outgrowing demand, and not all the storage space is 
used.  Jim Gray recently reported that disks at Microsoft 
are only 30% full on average [9].  Researchers are 
increasingly looking for creative ways to consume the 
unused storage.  For example, research at Princeton 
explores trading off capacity for performance [28].  The 

Elephant file system explores the possibility of storing 
every version of file updates [25]. 
 
Also, many companies purchase storage with 
performance as the top criterion.  Therefore, they may 
need many disks for parallelism to aggregate bandwidth, 
while the associated space is left largely unused.  
Additionally, administrators tend to purchase more 
space in advance to avoid frequent upgrades.  Unused 
storage can then be used opportunistically for data block 
replication to help reduce power consumption. 
 
Performance versus energy optimizations:  
Performance benefits are important only when a system 
is under heavy load, and may not result in an immediate 
monetary return to an organization.  On the other hand, 
energy savings are available at once.   For example, the 
electricity costs saved could be invested in additional 
computing capabilities.  Also, unlike performance, 
which is essentially purchased in chunks as new 
machines are acquired, monetary savings can be 
invested immediately and compounded over the lifetime 
of the computers.  Therefore, if a server usually operates 
below its peak load, optimizing energy efficiency offers 
attractive benefits.   
 
3 Power-Aware RAID 
 
The design of PARAID trades capacity for energy 
savings via a skewed striping pattern.  Since servers are 
purchased for their peak performance, PARAID is 
designed to match that performance under the peak 
load.  Under light loads, PARAID provisions disk 
parallelism as needed.  Finally, PARAID exploits cyclic 
daily workload behavior to power-switch disks in a 
sparing and effective manner, to minimize the effect on 
the life expectancy of disks. 
 
3.1 Skewed Striping for Energy Savings 
 
PARAID exploits unused storage to replicate and stripe 
data blocks in a skewed fashion, so that disks can be 
organized into and behave like hierarchical overlapping 
sets of RAIDs.  Each set contains a different number of 
disks, and is capable of serving all requests via either its 
data blocks or replicated blocks.  Each set is analogous 
to a gear in automobiles, since different numbers of 
disks offer different levels of parallelism and aggregate 
disk bandwidth.   
 
The replicated blocks are soft states, in the sense that 
they can be reproduced.  Thus, as the need for storage 
capacity arises, replicated blocks can be reclaimed by 
reducing the number of gears.  Unlike memory caches, 
PARAID soft states can persist across reboots. 
 
Figure 1 shows an example of replicated data blocks 
persisting in soft states in the unused disk regions.  By 
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organizing disks into gears, PARAID can operate in 
different modes.  When operating in gear 1, with disks 1 
and 2 powered, disks 3 and 4 can be powered off.  As 
the load increases, PARAID upshifts into the second 
gear by powering up the third disk.   

 
Figure 2: Skewed striping of replicated blocks in soft 
state, creating three gears over a four-disk RAID. 
 
By adjusting the number of gears and the number of 
disks in each gear, PARAID provisions disk parallelism 
and bandwidth so as to follow the fluctuating 
performance demand curve closely through the day.  By 
creating opportunities to turn off disk drives, PARAID 
conserves power.   
 
While more gears can match the performance demand 
curve more closely, the number of gears is constrained 
by the unused storage available and the need for update 
propagation when switching gears.  To minimize 
overhead, the gear configuration also needs to consider 
the number of gears and gear switches. 
 
3.2 Preserving Peak Performance 
 
PARAID matches the peak performance of conventional 
RAIDs by preserving the original disk layouts when 
operating at the highest gear.  This constraint also 
allows PARAID to introduce minimal disturbances to 
the data path when the highest gear is in use.   
 
In low gears, since PARAID offers less parallelism, the 
total bandwidth offered is less than that of a 
conventional RAID.  Fortunately, the number of 
requests affected by this performance degradation is 
significantly less compared to peak hours.  Also, as 
bandwidth demand increases, PARAID will up-shift the 
gear to increase disk parallelism. 
 
However, PARAID also has the ability to improve 
performance in low-gear settings for two reasons.  (1) 
Latency suffers as the number of disks increases in a 
RAID, since the probability that one of the disks will 
wait for a full rotation increases.  Therefore, by 
decreasing the number of disks being used in parallel, 
PARAID can shave off a fraction of average rotational 
latency, which is fairly significant for small file 

accesses.  (2) By reducing the number of active disks 
during light traffic periods, the average disk queue 
length increases, resulting in more opportunities to 
reduce seek time; again, this effect is more pronounced 
for small accesses  Therefore, the performance of 
PARAID at lower gears largely depends on the average 
request size. 
 
3.3 Retaining Reliability 
 
To retain the reliability offered by conventional RAID, 
PARAID must be able to tolerate disk failures.  To 
accomplish this goal, PARAID needs to supply the data 
redundancy provided by conventional RAIDs and 
address the reduced life expectancy of server-class disks 
due to power cycles. 
 
PARAID is designed to be a device layer sitting 
between an arbitrary RAID device and its physical 
devices.  Therefore, PARAID inherits the level of data 
redundancy, striping granularity, and disk layout for the 
highest gear provided by that RAID.  PARAID only 
performs soft-state replication of blocks from the 
conventional RAID device.  For example, a PARAID 
device composed with a RAID level-5 device would 
still be able to rebuild a lost disk in the event of disk 
failure.  Section 4.4 has more details on failure 
recovery. 
 
Because it relies on power-cycling disks to save energy, 
PARAID must also address a new reliability concern.  
Power-cycling reduces the MTTF of a disk, which is 
designed for an expected number of cycles during its 
lifetime.  For example, the disks used in this work have 
a 20,000-power-cycle rating [8]. Every time a disk is 
power-cycled, it comes closer to eventual failure.  
 
PARAID manages the power cycling of the disks by 
inducing a bimodal distribution of busy and idle disks.  
The busier disks stay powered on, and the more idle 
disks often stay off, leaving a set of middle-range disks 
that are power-cycled more frequently.  PARAID can 
then prolong the MTTF of a PARAID device as a whole 
by rotating the gear-membership role of the disks and 
balancing their current number of power cycles. 
 
In addition, PARAID sets rate limits on the power 
cycles for disks.  By rationing power cycles, PARAID 
can operate with an eye to targeted life expectancy.  For 
example, if the disks have a five-year life expectancy 
due to the system upgrade policy, and the disks are 
expected to tolerate 20,000 cycles, then each disk in the 
array cannot be power cycled more than 10 times a day.  
Once any of the disks has reached the rationed numbers 
of power cycles for a given period, PARAID can 
operate at the highest gear without energy savings.  The 
power-saving mode resumes at the next rationing 
period.  

RAID 
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4 PARAID Components 
 
PARAID has four major components—block handler, 
monitor, reliability manager, and disk manager (Figure 
2)—responsible for handling block I/O and replication, 
gear shifting, update propagation, and reliability.   

 
Figure 3: Logical association of PARAID system 
components. 
 
4.1 Handling Block I/O 
 
PARAID is a new device layer sitting between the 
conventional software RAID multi-device driver and the 
disk device driver.  PARAID transparently remaps and 
forwards RAID requests.   
 
If a disk request is sent to a powered disk, the disk 
simply replies to the request. If a block read request is 
sent to a powered-off disk, then the PARAID layer will 
remap the request to read from a replicated block stored 
on a powered disk.  If a block write request is sent to a 
powered-off disk, then PARAID will write to a 
replicated block stored on a powered disk.   
 
In the current design, PARAID delegates RAID regions 
for the purpose of storing replicated data for individual 
gears.  If gear 1 has 3 drives, and gear 2 has 5 drives,  
the content of drives 4 and 5 are replicated and striped 
across the dedicated region on the first three drives in a 
round-robin fashion, so that drives 4 and 5 can be 
powered off when shifting down to gear 1.    
 
Delegated RAID regions prompt the question of 
whether this disk layout will degrade performance due 
to longer seek distances.  Our performance results show 
the contrary, since fewer drives used in parallel actually 
have longer disk queues that amortize the cost of 
individual disk seeks. 
 
4.2 Update Propagation 
 
When disks are powered off, no requests are sent to 
them.  As soon as a powered-off disk misses a write 
request, it no longer contains the most up-to-date data 

for all data blocks, so it needs to synchronize the stale 
data either at the time when it is powered on or right 
before the stale information is accessed.  Full 
synchronization requires that all stale data be updated 
with current data.  Depending on the total size of the 
stale data, this process could take a long time.  The on-
demand approach only updates stale data when it is 
accessed.  The on-demand approach allows the gear 
shift to take place much more quickly, but the full 
synchronization approach provides better data 
consistency. 
 
To be able to synchronize a disk, outstanding write 
requests to powered-off disks are captured by the disk 
manager.  In the case of full synchronization, when a 
powered-off disk is switched to a powered-on state, the 
disk manager reissues a list of outstanding write 
requests to the disk that is to be synchronized.  
Sometimes this process involves rereading the data from 
a replicated copy already stored on a powered disk 
before reissuing the write. 
 
In the case of on-demand synchronization, the PARAID 
block I/O handler uses a dirty-block list.  If a dirty block 
being accessed is not cached, PARAID will retrieve the 
block from the original gear and return it to the 
requestor.  PARAID will then write that block to the 
target gear disks, effectively piggybacking the 
synchronization step at access time, and sometimes 
avoiding the rereading step.   
 
One implication is that the disk manager needs to track 
the stale block locations for synchronization.  This list 
of dirty blocks is stored in memory for fast access 
during on-demand synchronization as well as on disk in 
case of system failure.   
 
Another implication is that when downshifting, the on-
demand approach is not applicable, since PARAID 
needs to finish the propagation before powering off 
drives.   
 
A failed disk can stop the gear-shifting process.  Disks 
can also fail in the middle of synchronization.  
However, the list of outstanding writes is maintained 
throughout the disk failure and recovery process.  Once 
the failed disk recovers, the synchronization can 
continue from where it left off.   
 
Whether to use on-demand or full synchronization for 
upshifting is configurable.  On-demand synchronization 
will allow PARAID to be more responsive to sudden 
bursts of requests.  This also means tracking additional 
writes while the disks are not synchronized.  The full-
synchronization approach may be preferable if there are 
few gear shifts and the workload is dominated by reads, 
effectively keeping the number of blocks to be 
synchronized small.  The full synchronization method is 
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also available for manual maintenance of the PARAID 
device.  For example, an administrator would need to 
have a consistent system state before pulling out a hard 
disk. 
 
4.3 Asymmetric Gear-Shifting Policies 
 
The disk manager performs shifts between gears.  The 
PARAID monitor decides when a shift is needed, and 
the disk manager then performs the actual power cycles.   
 
Switching to a higher gear is aggressive, so that the 
PARAID device can respond quickly to a sharp increase 
in workload.  Downshifting gears needs to be done 
conservatively, so that wild swings in system activity 
will not (1) mislead the PARAID device into a gear that 
cannot handle the requests, or (2) cause rapid 
oscillations between gears. 
 
To decide when PARAID should upshift, the monitor 
needs to know whether the current gear has reached a 
predetermined utilization threshold, in number of 
requests per time interval.  The threshold is 
configurable, and is set to 80% for the Web servers in 
our experiments.  The intent is that within the time it 
takes to spin up the disk and propagate updates, the 
utilization threshold would not reach 100%.  The use of 
an online algorithm to automatically set thresholds will 
be future work,  
 
To track the system load, the monitor keeps a moving 
average of utilization for each disk.  The purpose of 
averaging is to filter out short bursts of requests that are 
frequently seen in real-world workloads.  Interestingly, 
we were unable to check the disk busy status directly, 
since this probe would spin up a powered-down disk.  
Instead, once a second, each disk is checked to see if 
any access has occurred.  If so, the disk is marked as 
active for that second.  If any disk in an active gear has 
reached the utilization threshold, then the monitor will 
make a request to the disk manager to up-shift.   
 
To decide when to downshift, the PARAID monitor 
needs to know the utilization trends as well as the 
average disk utilization.  The intent is to avoid frequent 
gear switches due to wild workload fluctuations.   A 
downward trend is detected with multiple threshold 
averages over different time windows.  Monotonically 
decreasing averages indicate dropping utilization.  
Having identified this trend, the PARAID monitor then 
makes sure that the next lower gear with fewer disks can 
handle the current workload.  If both conditions are met, 
a downshift is performed (Figure 4). 

 
Figure 4: The downward trend in workload activity 
triggers a downshift in gears.  Monitoring trends 
avoids downshifting during volatile workloads. 
 
The effectiveness of an energy-saving gear 
configuration depends on the shape of the workload 
curve and the peak-to-trough ratio across the course of a 
day.  Suboptimal gear configurations typically reveal 
themselves through lack of use.   
 
The gear-shift triggering condition can significantly 
affect the performance, energy-savings, and reliability 
of PARAID.  If the condition is too sensitive to traffic 
bursts, PARAID will be likely to operate at the highest 
gear at all times, resulting in little energy savings.  Also, 
with too many power cycles, the life expectancy of 
PARAID suffers. 
 
4.4 Reliability 
 
The reliability manager rations power cycles and 
exchanges the roles of gear memberships to prolong the 
life expectancy of the entire PARAID, as mentioned in 
Section 3.3.  The reliability manager is also responsible 
for recovering a PARAID device upon disk failure.   
 
Although PARAID can inherit the reliability properties 
of RAID levels, the data and parity blocks of N disks 
cannot be striped across on N – 1 disks to achieve the 
same level of redundancy.  If we simply assigned the 
Nth block to one of the still-powered disks, it would be 
possible for a single drive to lose both a data block and 
parity block from the same stripe, while the block stored 
on the powered-off disk might be out of date. 
 
In the current design, when operating in lower gears, the 
underlying RAID data blocks are no longer updated in-
place.  Updates are written to alternative locations on 
disks and propagated back to the original layout when 
shifting to the highest gear.  With this model, the data 
loss due to a crashed drive is bounded by the frequency 
of using the highest gear.  PARAID can also force 
updates to propagate once a day.  Therefore, in the case 
of a single drive failure, PARAID can experience a one-
day loss of updates. 
 

Downshift

Gear
Utilization
Threshold

Time
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Trend line 
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This problem can be prevented with additional gear-
centric parities.  Basically, blocks from disk N can be 
replicated and striped to N – 2 disks, with an additional 
parity block computed for these N – 2 blocks, which is 
stored on disk N – 1.  This design avoids rereading 
blocks not involved in the actual replication.  We plan 
to implement such an approach in a future system. 
 
5 Implementation 
 
The PARAID prototype was built on Linux 2.6.5.  
Linux was chosen for its open source and because it 
contains a software RAID module.  The block I/O 
handler, monitor, disk manager, and reliability manager 
are built as kernel modules.  A PARAID User 
Administration Tool runs in user space to help manage 
the PARAID devices.  For the reliability manager, we 
have not implemented drive rotation and gear-centric 
parities. However, our gear-shifting policies and the 
characteristics of daily work cycles have limited the 
number of disk power cycles quite well.  Since the 
content stored on the lowest gear is the most vulnerable, 
we keep those drives always powered.  Additionally, 
PARAID currently relies on the underlying RAID levels 
to provide data recovery, so we can recover the 
information from the last time we shifted to the highest 
gear. 
 
The Linux software RAID is implemented as the md 
(multiple device) device driver module, which builds 
RAIDs from multiple disks.  For the PARAID block 
handler implementation, we changed the md device 
driver to make it PARAID-aware.  The data path of the 
md device driver is intercepted by the PARAID device 
layer, so that requests from conventional RAID are 
redirected to the block queues of PARAID, which 
remaps and forwards requests to individual disk queues. 
 
During initialization, the PARAID-aware md module 
starts a daemon that provides the heartbeat to the 
PARAID device and calls the monitor at regular 
intervals, so that it can decide when to gear-shift.  The 
disk manager controls the power status of disks through 
the disk device I/O control interface. 
 
To synchronize the content of a powered-off disk before 
bringing it back into operation, the disk manager keeps 
a per-disk red-black tree of references to outstanding 
blocks that need to be updated.  This record is updated 
whenever a write request is made to a clean block on a 
powered-off disk, and the upkeep of this data structure 
is not CPU-intensive.   For the current implementation, 
the disk manager performs a full synchronization after 
bringing back powered-off disks, by iterating through 
the tree for each disk and reissuing all outstanding 
writes.  For each block that needs to be synchronized, 
the disk manager will first read in the data block from 
disks in the original gear, and then write the block to the 

disks being brought back online.  Once the 
synchronization is complete, the gear-shifting manager 
switches to the new gear by enabling it to serve requests 
with the newly powered disks. 
 
Note that during synchronization, PARAID still serves 
requests from the old gear until the target gear has been 
fully synchronized.  During synchronization, new writes 
are temporarily written to both old and new gears.  The 
old gear still serves all subsequent reads to the newly 
written data, while the new gear will skip propagation of 
the original overwritten dirty block.  This conservative 
switching assures that no block dependency is violated 
through the ordering of updates.  In the future, we will 
also explore the use of back pointers [1] to allow the 
new gear to be used while propagating the updates.   
 
For the PARAID monitor, we currently use 10-, 60-, 
and 300-second time windows to compute moving 
averages of disk utilization.  The choice of these time 
windows is somewhat arbitrary, but they work well for 
Web server workloads and can tolerate traffic bursts and 
dampen the rate of power cycles.  Further investigation 
of the gear-shifting triggering conditions will be the 
subject of future work. 
 
The mkraid tool, commonly used by Linux to 
configure RAIDs, had to be changed, so that it could 
handle making PARAID devices and insert entries to 
/etc/raidtab.  Additional raidtab parameters 
had to be defined to be able to specify the gears. 
 
Source File Line Count 
paraid.c/.h 1057 
paraid-dm.c/.h 1047 
paraid-mon.c/.h 610 
md.c/md_u.h/md_p.h/md_k.h 409 
bio.h/ll_rw_blk.c 12 
Raidtools 
(mkraid.c,parser.c,pdadm.c) 

358 

Table 1: Line count for PARAID source files, Linux 
modifications, and Raidtools modifications 
 
Table 1 lists the line counts for the PARAID source files 
as well as additions and modifications to the Linux and 
Raidtools source code.  The PARAID logic is 
contained for the most part in the Linux Software RAID 
implementation.  The ease of porting PARAID to future 
Linux kernel versions depends on future modifications 
to the Linux Software RAID.  Because the logic for 
PARAID is fairly self-contained, it should be 
moderately portable to other software RAID 
implementations for other operating systems. 
 
6 Web Trace Replay 
 
Since the study of energy-efficiency approaches to 
RAIDs is relatively recent, most prior work on energy 
savings has been done analytically or via simulations.  
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Analytical methods provide us a fundamental 
understanding of systems with key variables.  
Simulation studies enable us to explore a vast parameter 
space to find broad understandings of system behaviors 
under a wide range of workload scenarios.  However, 
we chose implementation and empirical measurements 
to see if we could overcome unforeseen physical 
obstacles and conceptual blind spots to bring us one step 
closer to a deployable prototype.  When we designed, 
implemented, and evaluated PARAID empirically, we 
discovered why an empirical study is difficult for 
systems designed to save energy.   
 
• Needless to say, prototyping PARAID was the first 

barrier, and the system had to be stable enough to 
withstand heavy benchmarking workloads.   

• Commercial machines are not designed for energy 
measurements, and we had to rewire drives, power 
supplies and probes for power measurements.   

• The conceptual behaviors of a system are far from 
close to its physical behaviors; therefore, we had to 
adjust our design along the way.   

• Most benchmarks and workload generators measure 
the peak performance of a system at steady state, 
which is not applicable for measuring energy 
savings, where we need to capture daily workload 
fluctuations.  

• For trace replays, since our physical system 
configuration was largely fixed, we had to try to 
match different trace environments with our 
physical environments in terms of the memory size, 
traffic volume, disk space consumption, and so on.   

• Although a plethora of research trace replay tools is 
available, more sophisticated ones tend to involve 
kernel hooks and specific environments.  
Incompatibility of kernel versions prevented us 
from leveraging many research tools.  

• Finally, since it cannot be easily automated and 
cheaply parallelized, measuring energy savings on a 
server was very time-consuming.   

 
Taking these measurement challenges into 
consideration, we document our experimental settings to 
obtain our results.  We demonstrate the power savings 
and the performance characteristics of PARAID via web 
trace replays.  Although Web workloads are dominated 
by reads, they are still representative of a very large 
class of useful workloads.  We used the PostMark 
benchmark [15] (Section 7) to demonstrate PARAID’s 
performance characteristics in the presence of writes 
and under peak load.  The PostMark benchmark also 
stresses the gear-shifting overhead. 
 
6.1 Trace Replay Framework  
 
The measurement framework consisted of a Windows 
XP client and a Linux 2.6.5 server.  The client 

performed trace playback and lightweight gathering of 
measurement results, and the server hosted a web server 
running on a RAID storage device (Table 2).  On the 
server, one disk was used for bootstrapping, and five 
disks were used to experiment with different RAIDs.  
The client and server computers were connected directly 
to each other by a CAT-6 crossover cable so that 
extraneous network traffic would not interfere with the 
experiments 
 

 Server Client 
Processor Intel Xeon 2.8 Ghz Intel Pentium 4 2.8 Ghz 
Memory 512 Mbytes 1 Gbytes 
Network Gigabit Ethernet Gigabit Ethernet 
Disks Fujitsu MAP3367 

36.7Gbytes 15k RPM 
SCSI Ultra 320 
1 disk for booting  
5 disks for RAID 
experiments 

Seagate Barracuda 
ST3160023AS 160 
Gbytes 7200 RPM SATA 

Table 2:  Server and client computer specifications. 
 
To measure the power of the disks, the power 
measurement framework included an Agilent 34970A 
digital multimeter.  Each disk probe was connected to 
the multimeter on a unique channel, and the multimeter 
sent averaged data to the client once per second per 
channel via a universal serial bus.  Figure 4 shows the 
client and server computers and the multimeter in the 
measurement system. 

 
Figure 5: The measurement framework. 
 
To measure the power of a disk, we inserted a 0.1-ohm 
resistor in series in the power-supply line, as shown in 
Figure 5.  The multimeter measured the voltage drop 
across the resistor, Vr.  The current I through the 
resistor—which is also the current used by the disk—
can be calculated as Vr/R.  Knowing the voltage drop 
across the disk, Vd, its power consumption is then Vd 
times I. 
 
In the measurement system, we removed each disk from 
the server and introduced a resistor into its +12V and 
+5V power lines.  The +12V line supplied power to the 
spindle motor; the +5V line provided power to the disk 
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electronics.  The SCSI cable was connected directly to 
the motherboard, which allowed the cable to maintain 
the same performance as if the disks were connected to 
the SCSI hot swappable backplane in the server. 

 
Figure 6: The resistor inserted in series between the 
power supply and the disk adapter. 
 
On the client, the Agilent Multimeter software logged 
the data using Microsoft Excel XP.  The multi-threaded 
trace driver, implemented in Java 1.5, was designed to 
replay web access log traces and collect performance 
numbers.  The driver handled associated requests 
generated from the same IP address in separate threads, 
to emulate users clicking through web pages.  The trace 
driver also collected server-side and end-to-end 
performance numbers.   
 
The server hosted an Apache 2.0.52 web server on top 
of an ext2 file system operating over a RAID storage 
device that is described in Table 1. 
 
6.2 Web Server Workload  
 
Workload characteristics affect PARAID’s ability to 
save energy.  Under a constant high load, PARAID will 
not have opportunities to downshift and save energy.  
Under a constant light workload, trivial techniques like 
turning everything on and off can be used to save 
energy.  In practice, workloads tend to show cyclic daily 
and weekly fluctuations.   The chosen workload needs 
to capture these cyclic fluctuations to demonstrate 
PARAID’s energy savings.  In the trace we replayed, 
the number of accesses during peak hours can be 10x 
higher than that during light hours.   
 
We chose a Web server workload, captured within the 
Computer Science Department at Florida State 
University.  The web server has 512 Mbytes of RAM, 
two 1.8 GHz Intel P4 CPUs, and two 120-GByte disks 
in a RAID-0 configuration.  The activity was captured 
from August 2004 to November 2004.  The file system 
contained approximately 47 Gbytes of data, 44,000 
directories, and 518,000 files.  A snapshot of the file 

system was recreated from the last day of the trace to 
account for the files not referenced by the web trace and 
associated disk space usage.  Although the trace 
playback might reference files that were deleted or 
moved, web server content tends to persist once created 
[2].  Also, the replay did not include dynamic file 
content, which accounts for relatively few references.   
 
To protect privacy, the actual file blocks stored on the 
web server were refilled with random bits.  Also, file 
names were encrypted via an SHA-1 algorithm [23], to 
anonymize files that were not referenced or not meant to 
be available to the public (e.g. homework_solutions.txt).   
 
We chose a 50-hour trace starting from September 19, 
2004.  The cyclic workload pattern is characteristic 
throughout the two-month long trace (Figure 1).  The 
duration included 26,000 requests, with 1038 Mbytes of 
data.   Due to the multi-threaded nature, the trace was 
replayed five times. The data is presented at the 90% 
confidence level. 
 
6.3 Web Trace Replay Experimental Settings 
 
PARAID was compared with a RAID-5 device.   The 
PARAID device used five disks with four gears:  gear N 
contains disks 0 to N.  Both client and server were 
cleanly rebooted before each experiment, and PARAID 
was configured to start with the lowest gear, with 
content in different gears pre-populated.  The client 
replayed pre-encrypted trace log entries to the server.  
Due to the hardware mismatch and light trace workload, 
the collected trace was accelerated at different speeds to 
illustrate the range of possible savings with different 
levels of workloads.  The presented data included 32x, 
64x, 128x, and 256x speedup factors.  Timing 
dependent on human interactions, such as the time 
between user mouse clicks on links, was not 
accelerated.   
 
6.4 Power Savings 
 
Figure 7 compares PARAID and RAID-5 in terms of 
the amount of power consumed over time, with different 
speedup factors.  In these graphs, each data point is 
averaged over 30 minutes.   
 
Since PARAID started with the lowest gear, the first 
finding was that turning off 3 out of 5 drives did not 
achieve anywhere near 60% energy savings.  Powering 
off a disk only stopped it from spinning its platter and 
therefore, only the 12V line was shut off.   
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Figure 7: Power graphs over 256x (a), 128x (b), 64x(c), and 32x (d) speedup factors. 
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Figure 8: Disk utilization graphs over 256x(a), 128x(b), 64x(c), and 32x(d) speed-up factors. 
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Figure 9: Peak-hour latency (a) and total completion time (b) for PARAID and RAID devices over 256x, 
128x, 64x, and 32x speed-up factors. 
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Power was still needed for the 5V line that powered the 
electronics, so that it could listen for a power-up 
command and passed commands along the daisy-
chained SCSI cable.  Therefore, the power never 
dropped to zero for the PARAID cases, even when all of 
the disks were powered off.  In fact, a disk with the 
spindle motor powered off still consumed about three 
watts of power for the electronics, which is noticeably 
higher than the 1.0W to 2.5W extracted from various 
datasheets and used in many simulations [4, 10, 13, 22, 
29, 30, 31].  Although these numbers may be hard-
drive- and vendor-specific, they do show that these 
variations in physical characteristics can change the 
expected results drastically.   
 
The second surprise is that the cyclic patterns observed 
in the web log (Figure 1) have a poor correlation with 
the energy consumption at the disk-drive level (Figure 
7).  Although this finding reveals more about the nature 
of caching than the energy benefits of PARAID, it does 
suggest the value of further investigations into the 
relationship between server-level activities and after-
cache device-level activities. 
 
To make sure that the daily cyclic patterns are not 
completely lost below the memory cache, we examined 
the disk usage level over time (Figure 8).  We found that 
the cyclic effect is still present, but PARAID had 
successfully consolidated the loads to the lowest gear, 
so that the remaining disks could be powered off to save 
power.  The disk utilization graph also reveals that if the 
entire RAID is power-switched as a whole, the 
opportunity to save power is quite limited. 
 
Table 3 lists the energy saved versus the speed-up 
factor.  When the trace was played back at 128x and 
256x the normal speed, PARAID was overloaded and 
had to power on all disks over most of the time.  As the 
speed of the trace was slowed down, PARAID found 
opportunities to save power.  PARAID was able to use 
12% less power than RAID 5 at 64x speedup.  At 32x 
speedup, PARAID was able to use 19% less power.  
The power savings were calculated as the area between 
the RAID 5 and PARAID power curves, divided by the 
area under the RAID 5 power curve.   
 

Speed-up Power Savings Variance(+/-) 
256x 3.3% 0.42% 
128x 1.2% 0.57% 
64x 12% 0.96% 
32x 19% 0.22% 

Table 3: The percent energy saved versus the speed-
up factor. 
 
6.6 Performance 
 
For performance, Figure 9 shows the CDFs of per-
request latency and completion time respectively, in 
milliseconds.  The per-request latency measures the 

time from the last byte of the request sent from the 
client to the first byte of data received at the client.  The 
completion time measures the time between sending the 
first byte of a request from the client to receiving the 
last byte at the client end.  Throughput was a less 
meaningful metric, since the usability of a Web server 
largely depends on the responsiveness of user requests 
[16]. 
 
As expected, increased trace playback speed lengthens 
latencies and completion times.  However, the 
differences between RAID-5 and PARAID are nearly 
identical at a 32x speed-up factor.  At 256x speed, 
RAID 5 had 85% of the file requests served with 
latencies less than 10 ms, compared to 76% for 
PARAID.   RAID 5 had 79% of the file requests served 
with a completion time less than 10 ms, compared to 
71% for PARAID. 
 
7 PostMark Benchmark 
 
The PostMark benchmark is a popular ISP synthetic 
benchmark, which is used to stress the peak 
performance of a storage device for its read- and write-
intensive activity [15].  Running PostMark with 
PARAID starting at the lowest gear can be indicative of 
overhead and latency of gear-shifts during a request 
burst.  The PostMark Benchmark was run directly on 
the server. 
 
In Figure 10, we present PostMark results comparing 
the elapsed times of RAID 5, PARAID starting with the 
highest gear, and PARAID starting with the lowest gear 
under three different configurations.  Each configuration 
was measured five times.  PARAID propagated updates 
synchronously during gear shifts. 
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Figure 10: Postmark results for a RAID 5 device 
compared to a PARAID device starting in the 
highest gear and starting in the lowest gear. 
 
Under different PostMark configurations, PARAID 
starting with the highest gear demonstrates performance 
similar to RAID 5, which is reflective of how we have 
preserved     the    layout    of     underlying   RAID   and  
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          (a)                (b) 
Figure 11: The power consumption for the Postmark Benchmark experiments at 20k files - 100k transactions 
for PARAID starting in a high gear (a) and PARAID starting in a low gear (b). 
 
introduced minimal disturbances to the md data path.  
PARAID may actually perform slightly better, partly 
due to its intentional caching of some dirty data waiting 
to be propagated to lower gears.  Figure 11(a) shows 
that the energy consumption of PARAID and RAID-5 is 
also comparable in these configurations.   Note that 
during the first 30 seconds of the PostMark benchmark, 
the buffered-write interval of ext2 prevented accesses to 
be landed on the disk. 
 
Figure 10 also compares the performance of RAID-5 
with PARAID starting in the lowest gear.  It 
demonstrates the current up-shift policy that prevents 
PARAID from being responsive to bursts.  The 
slowdown factor is about two, since it took about two 
minutes for gears to up-shift incrementally (spin-up 
disk, propagate updates, and determine whether to up-
shift further) (Figure 11b). The most responsive 
approach is obviously jumping from gear 1 to gear 4.  
However, this would cause too many gear shifts 
throughout a day.  Fortunately, from what we observed, 
daily web workloads tend to cause few gear shifts.  
Thus, this overhead is not noticeable.  As future work, 
we will explore online algorithms to improve the 
responsiveness to burst loads while minimizing the 
number of gear shifts. 
 
8 Related Work 
 
Prior energy-reduction studies have been mostly in the 
area of mobile computing [7, 12].  Only recently have 
energy reductions been a concern in server-class 
computing.  Various approaches range from the 
hardware level and the RAID level to the file system 
level and the server level.   
 
Reducing power consumption in hard disks:  Based 
on simulations, Carrera, et al. [4] suggested using 
hypothetical two-speed disks such that during periods of 

high intensity, the disk runs at maximum throughput, 
using the most power.  During periods of lower 
intensity, the disk spins at a lower speed before possibly 
going into an idle state.  The simulation reports disk 
energy savings between 15% to 22% for web servers 
and proxy servers, with throughput degradation of less 
than 5%.   
 
Energy-efficient RAIDs:  Hibernator [31] aims to 
reduce energy consumption in arrays of disks without 
degrading performance.  Hibernator explores the 
possibility of using disks that can spin at variable speeds 
to achieve energy savings.  According to demand, data 
blocks are placed at different tiers of disks spinning at 
different speeds.  A novel disk block distribution 
scheme moves disk content among tiers to match disk 
speeds.  When performance guarantees are violated, 
Hibernator spins disks at full speed to meet the demand.  
In simulation, Hibernator shows a 65% energy savings.  
 
Colarelli et al. [6] introduced the idea of massive arrays 
of idle disks, the primary purpose of which is archival.  
A small set of cache disks are on to serve requests.  
Their simulation has reported comparable performance 
to traditional RAID, while using 1/15th of the power.  
PARAID is designed with a very different mindset, 
where energy savings are achieved with fluctuating 
loads that exercise all drives daily. 
 
Popular data concentration (PDC) [22] centers on the 
popularity, or the frequency, of file access.  PDC puts 
the most popular data on the first disk, the second most 
popular on the second disk, and so on.  Disks are 
powered off in PDC based on an idleness threshold.  
Without striping, PDC does not exploit disk parallelism. 
 
With the absence of disk striping, the power-aware 
cache management policy (PA-LRU) [29] saves power 
by caching more data blocks from the less active disks.  
Lengthening the access interval for less active disks 
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allows them to be powered off for longer durations.  
Partition-based cache management policy (PB-LRU) 
[30] divides the cache into separate partitions for each 
disk.  Each partition is managed separately by a 
replacement algorithm such as LRU.  PB-LRU provides 
similar energy savings of 16% to that of PA-LRU. 
 
Energy-aware storage systems:  Nightingale et al. [19] 
suggest BlueFS, a distributed file system, which uses a 
flexible cache hierarchy that adaptively decides when 
and where to access data, based on the energy 
characteristics of each device.  In measurements of an 
actual implementation, BlueFS achieved a 55% reduc-
tion in file system energy usage.   When used in combi-
nation, PARAID can extend the energy benefits with 
BlueFS. 
 
The Conquest-2 file system [27] uses inexpensive 
persistent RAM to store small files to save energy 
consumed by disks.  PARAID can be readily used as a 
counterpart to serve large files while conserving energy. 
 
Saving power in server clusters:  Chase, et al. [5] and 
Pinheiro, et al. [22] have developed methods for energy-
conscious server switching to improve the efficiency of 
server clusters at low request loads. They have reported 
energy reductions of 29% to 43% for Webserver 
workloads.   
 
The PARAID approach can be combined with the server 
paradigm, so that over-provisioned servers used to 
cushion highly bursty loads or pre-powered to anticipate 
load increases can turn off many PARAID drives.  Since 
powering on disks is much faster than booting servers, 
PARAID pays a lighter latency penalty to respond to 
traffic bursts.   
 
Further, in the case where traffic loads involve a 
mixture of reads and writes, disk switching in PARAID 
avoids data movement across machines and associated 
stress on the network infrastructure.  
 
9 Ongoing Work 
 
PARAID is an ongoing project.  Our top priority is to 
understand PARAID under a wider range of workloads.  
We are currently measuring PARAID with a UCLA 
web server workload.  Also, we are preparing to replay 
the cello99 trace [11] and a financial trace [26] from 
the UMass Trace Repository.   
 
Our next priority is to implement gear-centric parity 
schemes, so that single-drive failures can be recovered 
with minimal data loss.  We will incorporate the 
S.M.A.R.T tools [24] to monitor the health of disk 
drives continuously, to make more informed decisions 
on rationing power cycles, and to rotate the gear-
membership of disks. 

 
Currently PARAID is not optimized in the sense that the 
selection of the number of gears, the number of disks in 
each gear, and gear-shifting policies are somewhat 
arbitrary.  Since empirical measurement is not suitable 
for exploring a large parameter space, we are 
constructing a simulation for this purpose, and 
PARAID-validated simulation will give us much greater 
confidence in obtained results.  At the same time, we are 
exploring analytical approaches to develop online 
algorithms with provable optimality.   
 
Further, we will modify our disk synchronization 
scheme to explore the potential asynchrony of update 
propagation, to allow newly powered-on drives to serve 
requests immediately.   
 
Finally, we plan to mirror a PARAID server to FSU’s 
department server for live testing, and deploy PARAID 
in a real-world environment. 
 
10 Lessons Learned 
 
The concept of PARAID was born as a simple concept 
to mimic the gear-shifting analogy in vehicles to 
conserve fuel.  However, turning this concept into a 
kernel component for practical deployment has been 
much more difficult than we anticipated.   
 
First, design-to-fit matters.  Our early design and 
prototype of PARAID involved cloning and modifying 
RAID-0.  As a result, we had to bear the burden of 
inventing replication-based reliability mechanisms to 
match different RAID levels.  However, our second-
generation design now can largely inherit the RAID 
encoding scheme, which makes the evolution of new 
RAID levels independent of PARAID.  Although the 
resulting energy savings and performance 
characteristics can be comparable, the architecture of 
PARAID can significantly affect its structural 
complexity, development time, and potential for 
practical deployment.   
 
Second, measuring energy consumption is difficult 
because of data alignment problems and a lack of 
integration of tools.  With continuous logging, aligning 
data sets is largely manual.  For multi-threaded 
experiments and physical disks, the alignment of data 
sets near the end of the experiment is significantly 
poorer than at the beginning of the experiment.  At the 
beginning, the results obtained from averages were not 
explainable, since unaligned square waves can be 
averaged into anything but squares.   
 
Third, measuring systems under normal loads is harder 
than measuring systems under peak loads.  We could 
not simply replay traces as quickly as possible, and we 
had to explore a range of speedup factors to see how 
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PARAID reacts to a different range of loads.  Since we 
are interested in server loads with constant streams of 
requests, we cannot apply the trick of skipping idle 
periods [21], since such opportunities are relatively 
infrequent.   
 
Fourth, modern systems are complex.  As modern 
hardware and operating systems use more complex 
optimizations, our perception of system behaviors 
increasingly deviates from their actual behaviors.  
Memory caching can reduce disk activity, while file 
systems can increase the burstiness of RAID traffic 
arrivals due to delayed write-back policies.  Disks are 
powered in spikes of current, making it difficult to 
compute power consumption with the areas under the 
spike.  Disk drives can still consume a significant 
amount of power even when they are spun down.   
 
Fifth, matching the trace environment to our 
benchmarking environment is difficult.  If we use a 
memory size larger than that of the machine being 
traced, we may encounter very light disk activity.  The 
opposite situation can saturate the disks and achieve no 
power savings.  Cyclic workload patterns before the 
cache may poorly reflect the workload patterns after the 
cache. Additionally, traces might not be using RAIDs, 
some traces may be too old, and the RAID geometry 
might not match our experimental settings.  The base 
system might have more than one CPU, which makes it 
difficult to judge whether a single modern CPU is 
powerful enough.  Although the operating system 
research community is well aware of these problems, 
the solutions still seem to be achieved largely by trial 
and error.   
 
11 Conclusion 
 
PARAID is a file system designed to save energy for 
large computing installations that currently rely upon 
RAID systems to provide fast, reliable data storage.  
PARAID maintains the desirable characteristics of 
standard RAIDs, while decreasing their energy use by 
up to 19%.  Since PARAID is not currently optimized, 
and since we measured only 5 drives (among which 2 
are always powered), we believe that optimized 
PARAID with many disks can achieve significantly 
more energy savings.  Since disk drives consume over 
27% of the entire energy use of a major data center, the 
use of PARAID via a simple software update can reduce 
total electricity costs by 5%, an improvement worth 
pursuing in a large data center.   
 
A second important conclusion arises from the research 
described in this paper.  Actual implementation and 
measurement of energy savings systems are vital, since 
many complex factors such as caching policies, memory 
pressure, buffered writes, file-system-specific disk 
layouts, disk arm rescheduling, and many physical 

characteristics of disk drives are difficult to fully 
capture and simultaneously validate using only simula-
tion.  Also, implementations need to address compatibi-
lity with legacy systems, the use of commodity 
hardware, and empirical evaluation techniques, all of 
which are necessary for practical deployments.   
 
Unfortunately, our research also shows that there are 
considerable challenges to performing such 
experiments.  We overcame several unforeseen 
difficulties in obtaining our test results, and had to 
invent techniques to do so.  This experience suggests the 
value of developing standard methods of measuring the 
energy consumption of computer systems and their 
components under various conditions.  We believe this 
is another fruitful area for study. 
 
Acknowledgements 
 
We would like to acknowledge Ted Baker, Kartik 
Gopalan, and Nancy Greenbaum for their early 
comments.  We also thank Noriel Lu, Sean Toh, Daniel 
Beech, Carl Owenby, and Nicholas Wallen for their 
early contributions to the measurements of PARAID.  
Additionally, we thank Jason Flinn, Daniel Peek, Margo 
Seltzer, Daniel Ellard, Ningning Zhu, HP, and 
StorageTek (now Sun Microsystems) for providing 
accesses to various tools and traces.  This work is 
sponsored by NSF CNS-0410896.   
 
References 
 
[1] M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R. Ganger, J. 
Hendricks, A.J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. R. 
Sambasivan, S. Sinnamohideen, J.D. Strunk, E. Thereska, M. Wachs, 
J.J. Wylie, Proceedings of the 4th USENIX Conference on File and 
Storage Technology (FAST '05), San Francisco, CA. December, 2005. 
 
[2] O. Brandman, J. Cho, H. Garcia-Molina, N. Shivakumar, Crawler-
Friendly Web Servers, SIGMETRICS Performance Evaluation 
Review, 2005. 
 
[3] P. Cao, E.W. Felten, K. Li, Implementation and Performance of 
Application-Controlled File Caching, Proceedings of the 1st 
Operating Systems Design and Implementation Symposium, 1994. 
 
[4] E. Carrera, E. Pinheiro, R. Bianchini, Conserving Disk Energy in 
Network Servers, Proceedings of the 17th Annucal ACM International 
Conference on Super Computers, 2003. 
 
[5] J. Chase, D. Anderson, P. Thakar, A. Vahdat, R. Doyal, Managing 
Energy and Server Resources in Hosting Centers, Proceedings of the 
18th ACM Symposium on Operating System Principles, 2001. 
 
[6] D. Colarelli, D. Grunwald, Massive Arrays of Idle Disks For 
Storage Archives, Proceedings of the 2002 ACM/IEEE Conference on 
Supercomputing, November 2002. 
 
[7] F. Douglis, P. Krishnan, B. Bershad Adaptive Disk Spin-down 
Policies for Mobile Computers  Proceedings of the 2nd USENIX 
Symposium on Mobile and Location-Independent Computing, 1995. 
 
[8] Fujitsu, MAP Series Disk Drive, 2005.  



 14 

http://www2.fcpa.fujitsu.com/sp_support/ext/enterprise/datasheets/ma
p10krpm-datasheet.pdf 
 
[9] J. Gray, Keynote Address Greetings from a Filesystem User, the 
4th USENIX Conference on File and Storage Technologies, 2005. 
 
[10] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, H. Franke, 
DRPM: Dynamic Speed Control for Power Management in Server 
Class Disks, Proceedings of the International Symposium on 
Computer Architecture, pages 169-179, June 2003. 
 
[11] HP Labs, Tools and Traces, 2005. 
http://www.hpl.hp.com/research/ssp/software/ 
 
[12] D.P. Helmbold, D.D.E. Long, B. Sherrod, A dynamic disk spin-
down technique for mobile computing, Proceedings of the 2nd Annual 
Internacional Conference on Mobile Computing and Networking 
(MobiCon’06), 1996. 
 
[13] H. Huang, P. Pillai, K.G. Shin, Design and Implementation of 
Power Aware Virtual Memory, Proceedings of the 2003 USENIX 
Annual Technical Conference, 2003. 
 
[14] A. Iyengar, J. Challenger, D. Dias, P. Dantzig, High-performance 
Web Site Design Techniques, IEEE Internet Computing, 4(2):17–26, 
March 2000. 
 
[15] J. Katcher, PostMark: A New File System Benchmark, Technical 
Report TR3022, Network Appliance Inc., October 1997 
 
[16] S. Manley, M. Seltzer, M. Courage, A Self-Scaling and Self-
Configuring Benchmark for Web Servers, Proceedings of the 1998 
ACM SIGMETRICS Joint International Conference on Measurement 
and Modeling of Computer Systems, Madison, Wisconsin, 1998  
 
[17] E. Miller, R. Katz, An analysis of file migration in a Unix 
supercomputing environments, Proceedings of the 1993 USENIX 
Winter Technical Conference, pages 421-433, 1993. 
 
[18] J. Moore, J. Chase, P. Ranganathan, R. Sharma, Making 
Scheduling "Cool": Temperature-Aware Workload Placement in Data 
Centers, Proceedings of the 2005 USENIX Annual Technical 
Conference, 2005. 
 
[19] E.B. Nightingale, J. Flinn, Energy-Efficiency and Storage 
Flexibility in the Blue File System, Proceedings of the 6th Symposium 
on Operating Systems Design and Implementation, December 2005. 
 
[20] D.A. Patterson, G. Gibson, RH Katz, A case for redundant arrays 
of inexpensive disks (RAID). ACM SIGMOD International 
Conference on Management of Data, 1(3):109-116, June 1988. 

 
[21] D. Peek, J. Flinn, Drive-Thru: Fast, Accurate Evaluation of 
Storage Power Management, Proceedings of the 2005 USENIX 
Annual Technical Conference, 2005. 
 
[22] E. Pinheiro, R. Bianchini, Energy Conservation Techniques for 
Disk Array-Based Servers, Proceedings of the 18th Annual ACM 
International Conference on Supercomputing (ICS'04), June 2004. 
 
[23] RFC-3174 - US Secure Hash Algorithm 1, 2001. 
http://www.faqs.org/rfcs/rfc3174.html 
 
[24] SANTools, Inc. 2005. http://www.santools.com/smartmon.html 
 
[25] D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch, R.W. 
Carton, J. Ofir, Deciding when to forget in the Elephant File System, 
Proceedings of the 17th ACM Symposium on Operating Systems 
Principles, 1999. 
 
[26] UMass Trace Repository, Storage Traces, 2005. 
http://signl.cs.umass.edu/repository/walk.php?cat=Storage 
 
[27] R. Xu, A. Wang, G. Kuenning, P. Reiher, G. Popek, Conquest: 
Combining Battery-Backed RAM and Threshold-Based Storage 
Scheme to Conserve Power, Work in Progress Report, 19th 
Symposium on Operating Systems Principles (SOSP), October 2003. 
 
[28] X. Yu, B. Gum, Y. Chen, R. Wang, K. Li, A. Krishnamurthy, T. 
Anderson, Trading Capacity for Performance in a Disk Array, 
Proceedings of the 4th Symposium on Operating Systems Design and 
Implementation, October 2000. 
 
[29] Q. Zhu, F.M. David, C. Devaraj, Z. Li, Y. Zhou, P. Cao, 
Reducing Energy Consumption of Disk Storage Using Power-Aware 
Cache Management, Proceedings of the 10th International Symposium 
on High Performance Computer Architecture, February 2004. 
 
[30] Q. Zhu, A. Shanker, Y. Zhou, PB-LRU: A Self-Tuning Power 
Aware Storage Cache Replacement Algorithm for Conserving Disk 
Energy, Proceedings of the 18th Annual ACM International 
Conference on Supercomputing (ICS'04), June 2004. 
 
[31] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, J. Wilkes, 
Hibernator: Helping Disk Arrays Sleep through the Winter, 
Proceedings of the 20th ACM Symposium on Operating Systems 
Principles, 2005. 
 
 

 


