
11

Parallax BASIC StampParallax BASIC Stamp®®
TutorialTutorial
Developed by:Developed by:

Electronic Systems Technologies Electronic Systems Technologies
College of Applied Sciences and Arts College of Applied Sciences and Arts
Southern Illinois University CarbondaleSouthern Illinois University Carbondale
http://www.siu.edu/~imsasa/http://www.siu.edu/~imsasa/estest

Martin HebelMartin Hebel
mhebel@siu.edumhebel@siu.edu
With support from:With support from:
Will Devenport, Mike Palic and Mike SinnoWill Devenport, Mike Palic and Mike Sinno

Sponsored by:Sponsored by:
Parallax, Inc.Parallax, Inc.
http://www.parallax.com/http://www.parallax.com/

Updated: 3/14/03 Version 1.0

2

Copyright NoticeCopyright Notice
Copyright 2002, Parallax, Inc. Copyright 2002, Parallax, Inc.
BASIC Stamp is a registered trademark of Parallax, Inc.BASIC Stamp is a registered trademark of Parallax, Inc.

Parallax, Inc. and participating companies are not Parallax, Inc. and participating companies are not
responsible for special, incidental, or consequential responsible for special, incidental, or consequential
damages resulting from any breach of warranty, or under damages resulting from any breach of warranty, or under
any legal theory, including lost profits, downtime, goodwill, any legal theory, including lost profits, downtime, goodwill,
damage to or replacement of equipment or property, nor damage to or replacement of equipment or property, nor
any costs of recovering, reprogramming, or reproducing any costs of recovering, reprogramming, or reproducing
any data stored in or used with Parallax products.any data stored in or used with Parallax products.

Unmodified distribution of this tutorial is allowed.Unmodified distribution of this tutorial is allowed.

Modifications to this tutorial are authorized for educational Modifications to this tutorial are authorized for educational
use internal to the school’s program of study. This use internal to the school’s program of study. This
copyright notice and development credits must remain.copyright notice and development credits must remain.

3

Use of the TutorialUse of the Tutorial
This tutorial is for novices in programming the BS2 This tutorial is for novices in programming the BS2
from Parallax, Inc. For advanced use please refer to from Parallax, Inc. For advanced use please refer to
your BASIC Stamp Manual, help files and other your BASIC Stamp Manual, help files and other
sources.sources.

The tutorial uses the Board of Education (BOE) as The tutorial uses the Board of Education (BOE) as
the primary carrier board for the BS2, though other the primary carrier board for the BS2, though other
boards and configurations may also be used.boards and configurations may also be used.

The majority of the tutorial is compatible with the The majority of the tutorial is compatible with the
HomeWork board and the BASIC Stamp Activity HomeWork board and the BASIC Stamp Activity
Board except where noted.Board except where noted.

We welcome any constructive feedback you wish to We welcome any constructive feedback you wish to
provide. A feedback page and survey are located at: provide. A feedback page and survey are located at:
http://imsinet.casa.siu.edu/bs2_tutorial/feedback.http://imsinet.casa.siu.edu/bs2_tutorial/feedback.htmhtm
If this link is no longer active, please contact If this link is no longer active, please contact
Parallax at Parallax at stampsinclassstampsinclass@parallax.com@parallax.com..

4

Parts RequiredParts Required
This tutorial was written to use a minimum number This tutorial was written to use a minimum number
of inexpensive components as possible in of inexpensive components as possible in
teaching the basic principles.teaching the basic principles.

The following are recommended:The following are recommended:
A BASIC Stamp 2 and a A BASIC Stamp 2 and a carrier boardcarrier board, such as the , such as the
BOE, HomeWork Board, Activity Board or NX-1000, BOE, HomeWork Board, Activity Board or NX-1000,
cables and software.cables and software.
Parts for Sections 4-7:Parts for Sections 4-7:
(3) 220 Ohm Resistors(3) 220 Ohm Resistors
(2) LEDs(2) LEDs
(2) N.O. Momentary Pushbuttons(2) N.O. Momentary Pushbuttons
(2) 1K Ohm Resistors(2) 1K Ohm Resistors
(1) 0.1 microfarad capacitor (1) 0.1 microfarad capacitor
(1) 100K Ohm Potentiometer(1) 100K Ohm Potentiometer
(1) Piezoelectric Speaker(1) Piezoelectric Speaker

Additional Parts for Sections 8,9Additional Parts for Sections 8,9
(1) 10K Ohm Resistor(1) 10K Ohm Resistor
(1) 10uF Capacitor(1) 10uF Capacitor
(1) ADC0831(1) ADC0831
(1) LM34 Temperature Sensor(1) LM34 Temperature Sensor

55

ContentsContents

Operation, Device I/O,
Memory, Serial Programming,
Versions, BOE

1: BASIC Stamp Anatomy & BOE

Power, I/O Connections,
HomeWork Board, BSAC, NX-1000, OEM,
Solder Boards

2: Other Carrier Boards

Physical Connection, Verifying Connection
Writing Code, ‘Running’ Code, Using Help

3: BASIC Stamp Editor

Digital Outputs: HIGH/LOW, OUTPUT, OUT.
Digital Inputs: INPUT, IN DEBUG, DIRS
Analog Input: RCTIME
Frequency Output: FREQOUT

4: Input, Processing, and Output

Memory Variables, Constants, I/O Aliases

5: Variables and Aliases

Sequential flow, Branching and Looping.
Conditionals: GOTO, IF.. THEN, FOR.. NEXT.
Subroutines: GOSUB BRANCH
Power Saving: END, SLEEP

6: Program Flow

DEBUG Modifiers, Math Operations,, Boolean
operations, LOOKUP, WRITE & READ, DATA

7: Math and Data Operations

SHIFTIN, SHIFTOUT
SERIN, SEROUT
PULSEIN, PULSOUT, PWM

8: Communications and Control

Decimal, Binary , Hexadecimal
Binary Coded Decimal
ASCII

App. B: Number Systems

GoGo

GoGo

GoGo

GoGo

GoGo

GoGo

GoGo

GoGo

GoGo

HomeHome Schematics Sec. 4-7Schematics Sec. 4-7

Schematics Sec. 8Schematics Sec. 8

StampPlot Lite, Standard/Pro
StampDAQ
OPTAScope

9: Data Acquisition

GoGo

LinksLinks

PIN, IF..THEN..ELSE, SELECT..CASE,
DO..LOOP, ON..GOTO, ON..GOSUB,
DEBUGIN

App. A: PBASIC 2.5 Revisions

GoGo

6

Section 1:Section 1: BASIC Stamp 2 Anatomy BASIC Stamp 2 Anatomy
MicrocontrollersMicrocontrollers
BASIC Stamp ComponentsBASIC Stamp Components
BASIC Stamp 2 PinsBASIC Stamp 2 Pins
BASIC Stamp 2 VersionsBASIC Stamp 2 Versions
Running a ProgramRunning a Program
Carrier and Experiment BoardsCarrier and Experiment Boards
Power ConnectionsPower Connections
Data ConnectionsData Connections
Serial Data ConnectorsSerial Data Connectors
I/O ConnectionsI/O Connections
Component Power ConnectionsComponent Power Connections
Connecting ComponentsConnecting Components
Breadboard ConnectionsBreadboard Connections
Other FeaturesOther Features

7

MicrocontrollersMicrocontrollers
Microcontrollers can be thought of as very small computers Microcontrollers can be thought of as very small computers
which may be programmed to control systems such as cell which may be programmed to control systems such as cell
phones, microwave ovens, toys, automotive systems, etc.phones, microwave ovens, toys, automotive systems, etc.

A typical household has upwards of 25 to 50 microcontrollers A typical household has upwards of 25 to 50 microcontrollers
performing performing embedded controlembedded control in numerous appliances and in numerous appliances and
devices.devices.

The BASIC Stamps are hybrid microcontrollers which are The BASIC Stamps are hybrid microcontrollers which are
designed to be programmed in a version of the designed to be programmed in a version of the BASICBASIC
programming language called programming language called PBASICPBASIC. .

Hardware support on the module allows fast, easy Hardware support on the module allows fast, easy
programming and use.programming and use.

8

BASIC Stamp Module ComponentsBASIC Stamp Module Components

5V Regulator
Regulates voltage
to 5V with a supply of
5.5VDC to 15VDC

Resonator
Sets the speed at which
instructions are processed.

EEPROM
Stores the tokenized
PBASIC program.

Interpreter Chip
Reads the BASIC
program from the
EEPROM and executes
the instructions.

Serial Signal
Conditioning
Conditions voltage
signals between PC serial
connection (+/- 12V) and
BASIC Stamp (5V)

9

BASIC Stamp 2 PinsBASIC Stamp 2 Pins
Pin 1: SOUT

Transmits serial data during
programming and using the
DEBUG instruction

Pin 2: SIN

Receives serial data during
programming

Pin 3: ATN
Uses the serial DTR line to
gain the Stamps attention
for programming.

Pin 4. VSS

Communications
Ground (0V).

P0

Pins 5-20:
Input/Output (I/O)
pins P0 through P15

P1
P2
P3
P4
P5
P6
P7 P8

P9
P10
P11
P12
P13
P14
P15

 Pin 21. VDD

Regulated 5V.

 Pin 22. RES
Reset- LOW to
reset

 Pin 23. VSS

Ground (0V)

Pin 24. VIN

Un-regulated
input voltage
(5.5-15V)

10

BASIC Stamp 2 VersionsBASIC Stamp 2 Versions
There are several versions of the BASIC Stamp. This tutorial has been There are several versions of the BASIC Stamp. This tutorial has been
written for the BASIC Stamp 2 (BS2) series of controllers.written for the BASIC Stamp 2 (BS2) series of controllers.
Each BASIC Stamp has different features, below are the most popular:Each BASIC Stamp has different features, below are the most popular:

26 Bytes of RAM
63 bytes of
scratchpad memory

50MHz
10,000 instructions/
second

16K Bytes in
8 2K banks.
4000 lines of code

BS2sx

26 Bytes of RAM20MHz
4000 instructions/
second

2K Bytes
500 lines of code

BS2

I2C, Dallas 1- Wire,
LCD, polling
capabilities.
16 extra I/O on 40
pin version.

20 MHz Turbo16K Bytes in
8 2K banks.
4000 lines of code.

BS2p
24 and 40 pins
versions

26 Bytes of RAM
Less expensive, easy
to replace
components.

20MHz
4000 instructions/
second

2K Bytes
500 lines of code

BS2 OEM

Additional
Features

SpeedMemoryVersion

11

Running a ProgramRunning a Program

 A program is writtenA program is written
in the BASIC Stamp Editorin the BASIC Stamp Editor

 The Interpreter Chip reads the The Interpreter Chip reads the
program from EEPROM and program from EEPROM and
executes the instructions reading executes the instructions reading
and controlling I/O pins. The and controlling I/O pins. The
program will remain in EEPROM program will remain in EEPROM
indefinitely with or without power indefinitely with or without power
applied.applied.

 The program is tokenized,The program is tokenized,
or converted into symbolic format.or converted into symbolic format.

Tokenizer
 The tokenized program is The tokenized program is

transmitter through the serial cable transmitter through the serial cable
and stored in EEPROM memory.and stored in EEPROM memory.

12

Carrier and Experiment BoardsCarrier and Experiment Boards
The user may engineer their own power, communications The user may engineer their own power, communications
and control circuits for the BASIC Stamp, but for beginners and control circuits for the BASIC Stamp, but for beginners
an assortment of carrier and experimenter boards are an assortment of carrier and experimenter boards are
available for ease of development and testing.available for ease of development and testing.

The Board of Education (BOE) is one such board and will The Board of Education (BOE) is one such board and will
be the focus for this tutorial.be the focus for this tutorial.

Note the notchNote the notch
at the top of theat the top of the
BASIC Stamp andBASIC Stamp and
socket indicatingsocket indicating
module direction.module direction.

13

Power ConnectionsPower Connections
The Board of Education The Board of Education
may be powered from may be powered from
either:either:

6-15VDC
Wall Transformer,

center positive.

9V Battery

Many carrier boards, such
as the BOE, have an

additional 5V regulator to
supplement the on-module

regulator.

14

Data ConnectionsData Connections
A serial cable (modem cable) is connected A serial cable (modem cable) is connected
between BASIC Stamp and the computer’s serial between BASIC Stamp and the computer’s serial
communication port (COM port).communication port (COM port).

Serial means that data is sent or received one bit at a Serial means that data is sent or received one bit at a
time. time.
The serial cable is used to download the stamp with the The serial cable is used to download the stamp with the
program written in the text editor and is sometimes used program written in the text editor and is sometimes used
to display information from the BASIC Stamp using the to display information from the BASIC Stamp using the
DEBUG instruction.DEBUG instruction.
Ensure that you use are using aEnsure that you use are using a
Straight-ThroughStraight-Through cable (pins 2 cable (pins 2
and 3 do not cross from and 3 do not cross from
end-to-end) as opposed to a end-to-end) as opposed to a
Null-ModemNull-Modem cable (pins 2 and cable (pins 2 and
3 cross).3 cross).
There are different connectors forThere are different connectors for
different computer hardware.different computer hardware.

15

Serial Data ConnectorsSerial Data Connectors

The cable is typically connectedThe cable is typically connected
to an available DB 9 COM port.to an available DB 9 COM port.

A DB 25 to DB 9 A DB 25 to DB 9
adapter may adapter may
be needed on be needed on
older systemsolder systems

Newer systems mayNewer systems may
only have USB portsonly have USB ports
and require a USB-to-and require a USB-to-
Serial Adapter.Serial Adapter.

16

I/O ConnectionsI/O Connections
Code, such as Code, such as HIGH 8HIGH 8 will be written for the will be written for the
BASIC Stamp. This instruction will control a BASIC Stamp. This instruction will control a
device connected to P8 of the controller.device connected to P8 of the controller.

The P8 connection isThe P8 connection is
available on the headeravailable on the header
next to the breadboard next to the breadboard
area.area.

A connection to the I/O pins A connection to the I/O pins
is also available on the is also available on the
‘App-Mod’ header.‘App-Mod’ header.

17

Component Power ConnectionsComponent Power Connections
Power for the components are available on Power for the components are available on
headers also.headers also.

+5V (Vdd)+5V (Vdd) 0V or ground (Vss)0V or ground (Vss) Supply Voltage (Vin)Supply Voltage (Vin)

NOTE: Use of Vin
may cause damaging
voltages to be applied
to the BASIC Stamp.

Use only under directed
use!

18

Connecting ComponentsConnecting Components
Of course, an important aspect to any BASIC Stamp Of course, an important aspect to any BASIC Stamp
project are the components that will be connected to the project are the components that will be connected to the
I/O pins of the Stamp. I/O pins of the Stamp.

The carrier boards allow quick connections for the The carrier boards allow quick connections for the
components.components.

19

Breadboard ConnectionsBreadboard Connections

Breadboard are rows of connectors used to electrically Breadboard are rows of connectors used to electrically
connect components and wiring.connect components and wiring.

 Each row in each half Each row in each half
of the breadboard are of the breadboard are
electrically the same point.electrically the same point.

 Components are Components are
connected between rows and to connected between rows and to
the headers to make electrical the headers to make electrical
connections. connections.

 There exist no connections There exist no connections
between the headers and the between the headers and the
breadboards or in columns on breadboards or in columns on
the breadboard.the breadboard.

 Components should NOT Components should NOT
be connected on a single row be connected on a single row
or they will be shorted out of or they will be shorted out of
the circuit.the circuit.

20

This image is the This image is the
Board of Education Board of Education
with several with several
components components
connected.connected.

The connectionsThe connections
on the breadboardon the breadboard
create a completecreate a complete
path for currentpath for current
to flow.to flow.

I/OI/O
PinPin

Vdd (5V)Vdd (5V)

21

Other FeaturesOther Features

Reset Button to restart theReset Button to restart the
program on the BASIC Stampprogram on the BASIC Stamp

Servo Header ConnectorsServo Header Connectors

Power-On LEDPower-On LED

ProgrammingProgramming
PortPort

22

SummarySummary
The BASIC Stamp is like a miniature The BASIC Stamp is like a miniature
computer that can be programmed to read computer that can be programmed to read
and control Input/Output pins.and control Input/Output pins.

Programs written on a PC are tokenized, Programs written on a PC are tokenized,
serially transmitted and stored in the BASIC serially transmitted and stored in the BASIC
Stamp's EEPROM.Stamp's EEPROM.

The Board of Education provides a means The Board of Education provides a means
of programming and connecting devices to of programming and connecting devices to
the BASIC Stamp.the BASIC Stamp.

23

End of Section 1End of Section 1

24

Section 2: Other Carrier BoardsSection 2: Other Carrier Boards
Basic Stamp HomeWork BoardBasic Stamp HomeWork Board
BASIC Stamp Activity BoardBASIC Stamp Activity Board
NX-1000NX-1000
Solder Carrier BoardSolder Carrier Board
OEM moduleOEM module

25

Other Programming BoardsOther Programming Boards

While this tutorial focuses on the Board of While this tutorial focuses on the Board of
Education (BOE) carrier board, there are many Education (BOE) carrier board, there are many
others which may be used.others which may be used.
All the boards have:All the boards have:

Power Connectors.Power Connectors.
Communications ports.Communications ports.
P-numbered I/O connections.P-numbered I/O connections.
Many have a separate 5V regulator for devices.Many have a separate 5V regulator for devices.

26

BASIC Stamp HomeWork BoardBASIC Stamp HomeWork Board
The HomeWork Board is an inexpensive The HomeWork Board is an inexpensive
alternative for student projects.alternative for student projects.

The BASIC Stamp is The BASIC Stamp is
integral to the board integral to the board
instead of a separate instead of a separate
module.module.

All I/O have 220 ohm All I/O have 220 ohm
current limiting resistors. current limiting resistors.
This means that the 220 This means that the 220
ohm resistors used for ohm resistors used for
connections in this tutorial connections in this tutorial
may be omitted.may be omitted.

27

BASIC Stamp Activity BoardBASIC Stamp Activity Board
The BASIC Stamp Activity Board is great board for The BASIC Stamp Activity Board is great board for
novice users because it has commonly used novice users because it has commonly used
devices which are pre-connected to the BASIC devices which are pre-connected to the BASIC
Stamp allowing quick program testing.Stamp allowing quick program testing.

On-Board devices:On-Board devices:
• 4 buttons4 buttons
• 4 LEDs4 LEDs
• SpeakerSpeaker
• PotentiometerPotentiometer
• X10 power line interfaceX10 power line interface
• Sockets for specific add-on ICsSockets for specific add-on ICs

28

Each device is numbered, such as the blue button/LED Each device is numbered, such as the blue button/LED
with P7/8 (the switch is used for input, the LED is used for with P7/8 (the switch is used for input, the LED is used for
output).output).

The 1The 1stst number is the I/O number if you are using a BASIC Stamp I. number is the I/O number if you are using a BASIC Stamp I.
The 2The 2ndnd number is the I/O number if you are using the BASIC Stamp 2 number is the I/O number if you are using the BASIC Stamp 2
family.family.
Code such as HIGH 8 will operate the blue button/LED combination Code such as HIGH 8 will operate the blue button/LED combination
with the BS2.with the BS2.
Code in this tutorial is compatible with this board except where noted.Code in this tutorial is compatible with this board except where noted.

Programs in
this tutorial will not
work with the BS1.

29

NX-1000NX-1000
This board is a great experimenter's board. It has a wide variety of This board is a great experimenter's board. It has a wide variety of
devices which are NOT pre-connected. devices which are NOT pre-connected.

A large breadboard area accommodates many other devices.A large breadboard area accommodates many other devices.

7-Segment
LED Display

Current-
Limited LEDs

Audio
Amp

LCD
Header

Speaker
& Pot

High-Current
Drivers

Active-Low switchesSelectable
Oscillator

Spare Serial
Connector

 Jumper wires are
used between
headers to connect
desired devices to
I/O pins.

Programming
Serial Connector

30

Through-Hole Solder Carrier BoardThrough-Hole Solder Carrier Board
For more permanent construction, boards with solder For more permanent construction, boards with solder
connections are available.connections are available.

31

OEM moduleOEM module
The BASIC Stamp 2 The BASIC Stamp 2
OEM is a discreet OEM is a discreet
component version of component version of
the BS2 which may be the BS2 which may be
purchased in kit form.purchased in kit form.
The male header The male header
provides the means to provides the means to
‘plug-it’ into your own ‘plug-it’ into your own
board, or connect to board, or connect to
other boards.other boards.

Regulated 5V (Vdd)

Ground- 0V (Vss)

5.5 – 15V input (Vin)

Reset Input (RES)

P0-P15 I/O

Power the board with EITHER:
A) 5.5-15VDC on Vin. This will
also provide 5VDC regulated
output on Vdd.

B) Regulated 5V Input on Vdd.

32

SummarySummary
There are a variety boards that may be used There are a variety boards that may be used
with the BASIC Stamp.with the BASIC Stamp.

Each has advantages and disadvantages. Each has advantages and disadvantages.
Choosing the best choice based on features Choosing the best choice based on features
and cost is important.and cost is important.

33

End of Section 2End of Section 2

34

Section 3: BASIC Stamp EditorSection 3: BASIC Stamp Editor
BASIC Stamp EditorBASIC Stamp Editor
Identifying the BASIC StampIdentifying the BASIC Stamp
Writing the ProgramWriting the Program
Downloading or Running CodeDownloading or Running Code
Tokenizing and ErrorsTokenizing and Errors
Commenting CodeCommenting Code
DEBUG WindowDEBUG Window
Memory MapMemory Map
PreferencesPreferences
Help FilesHelp Files
Instruction Syntax ConventionInstruction Syntax Convention

35

BASIC Stamp EditorBASIC Stamp Editor
The BASIC Stamp Editor is the application that is The BASIC Stamp Editor is the application that is
used to write, edit, and download the PBASIC used to write, edit, and download the PBASIC
programs for the BASIC Stamp.programs for the BASIC Stamp.

The software may be downloaded for free from The software may be downloaded for free from
ParallaxParallax. Some installations of Windows 95 and . Some installations of Windows 95 and
98 may require an additional file to be installed. 98 may require an additional file to be installed.
Please see the information on the download page Please see the information on the download page
for more information.for more information.

Once installed, the Stamp Editor will be available Once installed, the Stamp Editor will be available
on your desktop, and as a menu option underon your desktop, and as a menu option under
Start Start Program Files Program Files Parallax Inc Parallax Inc

36

Identifying the BASIC StampIdentifying the BASIC Stamp

Connect the BASIC Stamp Connect the BASIC Stamp
carrier board to your carrier board to your
computer with a serial computer with a serial
cable.cable.

Power-up your BASIC Power-up your BASIC
Stamp carrier board.Stamp carrier board.

Use the Use the IdentifyIdentify button to button to
verify communications to verify communications to
your BASIC Stamp.your BASIC Stamp.

37

Identification ErrorsIdentification Errors

If the ID shows:If the ID shows:
No Device TypeNo Device Type
No LoopbackNo Loopback
No EchoNo Echo
It usually means the BASIC Stamp is not connected properly to the It usually means the BASIC Stamp is not connected properly to the
computer with a serial cable.computer with a serial cable.

Verify the carrier board is connected to the computer with a serial Verify the carrier board is connected to the computer with a serial
cable, full-modem variety (not null-modem).cable, full-modem variety (not null-modem).

If your computer has multiple If your computer has multiple
COM ports, try another.COM ports, try another.

If the COM port you are usingIf the COM port you are using
is not listed, try adding it tois not listed, try adding it to
the Stamp Editor usingthe Stamp Editor using
EditEdit PreferencesPreferences..

38

If the ID shows:If the ID shows:
No Device TypeNo Device Type
Loopback - YesLoopback - Yes
Echo – YesEcho – Yes
It usually means the BASIC Stamp is connected, but it It usually means the BASIC Stamp is connected, but it
has no power.has no power.

Verify the carrier board has power supplied and the power Verify the carrier board has power supplied and the power
light is on (if available).light is on (if available).

39

If the COM port cannotIf the COM port cannot
be opened, it usually meansbe opened, it usually means
another program has controlanother program has control
of the port.of the port.

Close any applicationsClose any applications
which may be using the port, which may be using the port,
including terminal programs,including terminal programs,
dial-up programs, Palm Pilot programs, PC Anywhere, dial-up programs, Palm Pilot programs, PC Anywhere,
StampPlot and other communication programs.StampPlot and other communication programs.

If you cannot resolve the problem, if possible:If you cannot resolve the problem, if possible:
Test another person’s operational board on your computer using Test another person’s operational board on your computer using
their cable and yours.their cable and yours.
Test your board on another computer, preferably one that had a Test your board on another computer, preferably one that had a
working BASIC Stamp.working BASIC Stamp.
Contact Parallax support: Contact Parallax support: support@parallax.comsupport@parallax.com

40

Writing the ProgramWriting the Program

BASIC Stamp programs BASIC Stamp programs
are written in a version of are written in a version of
BASIC called PBASIC BASIC called PBASIC
entered into the BASIC entered into the BASIC
Stamp Editor.Stamp Editor.

A program typically reads A program typically reads
inputs, processing data, inputs, processing data,
and controls outputs.and controls outputs.

Programs must conform Programs must conform
to the rules of syntax so to the rules of syntax so
that the BASIC Stamp that the BASIC Stamp
can understand what you can understand what you
are telling it.are telling it.

DEBUG “Hello World”

41

Once a program is entered, the Run Once a program is entered, the Run
button (or Ctrl-R) is used to tokenize button (or Ctrl-R) is used to tokenize
and download the program to the and download the program to the
BASIC Stamp.BASIC Stamp.

Downloading or Running CodeDownloading or Running Code

The Editor will request you The Editor will request you
indicate the style of BASIC indicate the style of BASIC
Stamp you are using.Stamp you are using.

The style may be selected from the The style may be selected from the
menu, or by selecting your ‘color’ of menu, or by selecting your ‘color’ of
your BASIC Stamp on the button bar.your BASIC Stamp on the button bar.

DEBUG “Hello World”‘{$STAMP BS2}
DEBUG “Hello World”

A A directivedirective will be added to the top of will be added to the top of
your code.your code.

42

Tokenizing and ErrorsTokenizing and Errors

If there are errors:If there are errors:
An error message will appear indicating a An error message will appear indicating a
problem, the status turns problem, the status turns redred and code is and code is
highlighted.highlighted.
Generally, the error can be found by Generally, the error can be found by
looking before the highlighted area.looking before the highlighted area.
Read your code carefully looking for the Read your code carefully looking for the
syntax errorsyntax error or or bugbug. In this example . In this example
DEBUG is incorrectly spelled.DEBUG is incorrectly spelled.

Code may be syntax checked without Code may be syntax checked without
downloading by using the Syntax Check downloading by using the Syntax Check
button.button.

When a program is ‘Ran’ the PBASIC code is converted to symbolic When a program is ‘Ran’ the PBASIC code is converted to symbolic
format called tokens. These are stored in ROM memory on your format called tokens. These are stored in ROM memory on your
BASIC Stamp.BASIC Stamp.

In order to tokenize your program, the code must to conform to the In order to tokenize your program, the code must to conform to the
rules of syntax for the language.rules of syntax for the language.

43

Commenting CodeCommenting Code
Comments, or remarks, are descriptions or Comments, or remarks, are descriptions or
explanations the programmer puts in the code to explanations the programmer puts in the code to
clarify what it is doing.clarify what it is doing.

Comments are signified by leading with an Comments are signified by leading with an
apostrophe.apostrophe.

Comments are NOTComments are NOT
syntax checked, norsyntax checked, nor
do they increase thedo they increase the
size of your program.size of your program.
So comment oftenSo comment often
and at length!and at length!

44

DEBUG WindowDEBUG Window

Programs may contain a Programs may contain a
DEBUG instruction. This DEBUG instruction. This
instruction sends serial data instruction sends serial data
back to the computer on the back to the computer on the
serial cable.serial cable.

When DEBUG is present in a When DEBUG is present in a
program, a DEBUG window will program, a DEBUG window will
open in the Editor to view the open in the Editor to view the
returning data.returning data.

The DEBUG button may be The DEBUG button may be
used to manually open a used to manually open a
DEBUG window.DEBUG window.

45

Memory MapMemory Map

The Memory Map button will open the BASIC Stamp The Memory Map button will open the BASIC Stamp
window.window.
This window shows how program (EEPROM) and variable This window shows how program (EEPROM) and variable
memory (RAM) is being utilized.memory (RAM) is being utilized.
Note that the program is stored in memory from bottom-up.Note that the program is stored in memory from bottom-up.

EEPROM Memory:EEPROM Memory:
Program space of Program space of
tokenized programtokenized program

RAM Memory:RAM Memory:
VariablesVariables

RAM Memory:RAM Memory:
I/O ControlI/O Control

46

PreferencesPreferences
Under the Preferences button you may:Under the Preferences button you may:

Change color, font, and tab spacing for the text editor Change color, font, and tab spacing for the text editor
and debug screen.and debug screen.

Set the COM port on which Set the COM port on which
the stamp is connected to, or the stamp is connected to, or
be in automatic detection mode.be in automatic detection mode.

Modify the DEBUGModify the DEBUG
settings.settings.

You are encouraged toYou are encouraged to
look through the availablelook through the available
settings to become familiarsettings to become familiar
with them.with them.

47

Help FilesHelp Files
There exists a help file that is There exists a help file that is
very thorough at assisting very thorough at assisting
you with any problems or you with any problems or
questions you might have questions you might have
about instruction syntax or about instruction syntax or
use while programming.use while programming.

By highlighting an instruction By highlighting an instruction
and pressing and pressing F1F1, the help , the help
files will open to display files will open to display
information on that information on that
instruction.instruction.

Help provides a description, Help provides a description,
syntax (format) and example syntax (format) and example
for each instruction.for each instruction.

48

Instruction Syntax ConventionInstruction Syntax Convention
BASIC Stamp instructions follow a common code BASIC Stamp instructions follow a common code
convention for parameters (parts) of instructions.convention for parameters (parts) of instructions.

Take for example the FREQOUT instructions, which may Take for example the FREQOUT instructions, which may
be used to generate tones from a speaker:be used to generate tones from a speaker:
FREQOUTFREQOUT Pin, Period, Freq1 {, Freq2}Pin, Period, Freq1 {, Freq2}

The instruction requires that the The instruction requires that the PinPin, , PeriodPeriod, and , and Freq1Freq1 is supplied is supplied
and that each are separated by commas.and that each are separated by commas.
Optionally, the user MAY provide Optionally, the user MAY provide Freq2Freq2 indicated by braces { }. indicated by braces { }.

While PBASIC is NOT case-sensitive, the common While PBASIC is NOT case-sensitive, the common
convention is to capitalize instructions, and use 1convention is to capitalize instructions, and use 1st st letter letter
upper-case for all other code.upper-case for all other code.

49

SummarySummary
The BASIC Stamp Editor is an IDE The BASIC Stamp Editor is an IDE
(Integrated Development Environment) for:(Integrated Development Environment) for:

Hardware identification.Hardware identification.
Coding of the program.Coding of the program.
Syntax (language rules) checking.Syntax (language rules) checking.
Memory utilization reporting.Memory utilization reporting.
Tokenizing and program transfer.Tokenizing and program transfer.
Integrated instruction help.Integrated instruction help.

50

End of Section 3End of Section 3

51

Section 4: Input, Output, and ProcessingSection 4: Input, Output, and Processing
Usage NotesUsage Notes
Before Changing HardwareBefore Changing Hardware
Inputs, Processing, and OutputsInputs, Processing, and Outputs
Stamp I/OStamp I/O
Output - Connecting an LEDOutput - Connecting an LED

Blinking the LED with HIGH, LOWBlinking the LED with HIGH, LOW
Blinking the LED with OUTPUT and OUTBlinking the LED with OUTPUT and OUT

DebuggingDebugging
DEBUG InstructionDEBUG Instruction
DEBUG for Program Flow InformationDEBUG for Program Flow Information
Using DEBUG ? to Display StatusUsing DEBUG ? to Display Status

Digital InputsDigital Inputs
Connecting an Active-Low SwitchConnecting an Active-Low Switch
Reading the SwitchReading the Switch

Controlling Outputs with InputsControlling Outputs with Inputs
DIRS, INS, OUTSDIRS, INS, OUTS
Reading Analog Values with RCTimeReading Analog Values with RCTime
Frequency OutputFrequency Output

52

Usage NotesUsage Notes
This section is used to teach principles and This section is used to teach principles and
construct a basic circuit.construct a basic circuit.

By the end of this section a complete circuit By the end of this section a complete circuit
will be constructed consisting of 2 LEDs, 2 will be constructed consisting of 2 LEDs, 2
switches, a speaker and an RC network.switches, a speaker and an RC network.

This circuit is also used in sections 5, 6 and This circuit is also used in sections 5, 6 and
7.7.

53

Before Changing HardwareBefore Changing Hardware
Before you modify the hardware connected to the Before you modify the hardware connected to the
BASIC Stamp, it is best to download a simple BASIC Stamp, it is best to download a simple
program.program.

This prevents the new hardware from applying This prevents the new hardware from applying
voltages which may cause damage to pins voltages which may cause damage to pins
configured for other hardware.configured for other hardware.

Download the following program to the BASIC Download the following program to the BASIC
Stamp:Stamp:

DEBUG "HELLO WORLD!"

54

Inputs, Processing, and OutputsInputs, Processing, and Outputs
Any system or program accepts input, process Any system or program accepts input, process
information, and controls outputs.information, and controls outputs.

The BASIC Stamp, and other microcontrollers, The BASIC Stamp, and other microcontrollers,
specialize in using input devices such as switches, specialize in using input devices such as switches,
and controlling output devices such as LEDs (Light and controlling output devices such as LEDs (Light
Emitting Diodes).Emitting Diodes).

A program, written in a form of the BASIC A program, written in a form of the BASIC
language called language called PBASICPBASIC, is used for processing by , is used for processing by
writing code that instructs the BS2 what actions to writing code that instructs the BS2 what actions to
take.take.

Processing OutputInput

55

Stamp I/OStamp I/O
There are 16 I/O (Input/Output) pins on the BS2 There are 16 I/O (Input/Output) pins on the BS2
labeled P0 to P15. These are the pins through labeled P0 to P15. These are the pins through
which input and output devices may be connected.which input and output devices may be connected.

Depending on the code that is written, each pin Depending on the code that is written, each pin
may act as an input to read a device, or as an may act as an input to read a device, or as an
output to control a device.output to control a device.

We will begin by using a very common and simple We will begin by using a very common and simple
output device -- the LED.output device -- the LED.

56

Output - Connecting an LEDOutput - Connecting an LED

Connect an LED to P8 as shown:Connect an LED to P8 as shown:

In this configuration a LOW, or 0V, at P8 will allow current to In this configuration a LOW, or 0V, at P8 will allow current to
flow through the LED to Vdd (+5V) lighting it. When P8 is HIGH flow through the LED to Vdd (+5V) lighting it. When P8 is HIGH
(+5V), no current will flow and the LED will not light. The LED is (+5V), no current will flow and the LED will not light. The LED is
Active Low.Active Low.

An LED is a diode, meaning electrons can flow in
only one direction, so polarity is important. The LED
should have a flat side indicating the cathode or
negative terminal. Also, the anode (positive
terminal) generally has a longer lead than the
cathode.

Connected on P8.
Angle of shot
makes it appear
to be on P9.

Vdd, NOT Vin.

Note cathode:
the ‘flat side’ of
LED

220 ohm = RED RED BROWN GOLD

57

Another configuration that could be used is to have the Another configuration that could be used is to have the
LED LED Active-HighActive-High. In this configuration the LED will light . In this configuration the LED will light
when the output is HIGH, or +5V. Current flows from when the output is HIGH, or +5V. Current flows from
ground or Vss (0V) to the 5V output on P8.ground or Vss (0V) to the 5V output on P8.

Do NOT build this circuit, it is for information only. The Do NOT build this circuit, it is for information only. The
circuit on the previous slide should be constructed.circuit on the previous slide should be constructed.

The 220Ω resistor will limit current flow to
approximately 20mA . The output current
from a BS2 pin should be limited to 20mA
maximum. The maximum current for an
LED is generally 30mA.

58

Blinking the LED with HIGH, LOWBlinking the LED with HIGH, LOW
Use the Stamp Editor to enter the following program:Use the Stamp Editor to enter the following program:

Download or run the program.Download or run the program.

Monitor the LED. It should blink at a rate of 1 second OFF, Monitor the LED. It should blink at a rate of 1 second OFF,
5 seconds ON. If not, check your configuration and code.5 seconds ON. If not, check your configuration and code.

‘Prog 4A: Blink LED program

Main:
 HIGH 8 'Turn off LED
 PAUSE 1000 'Wait 1 second
 LOW 8 'Turn on LED
 PAUSE 5000 'Wait 5 seconds
GOTO Main 'Jump back to beginning

59

Code DiscussionCode Discussion
HIGH defines the pin to be an output and sets it to a HIGH state, digital HIGH defines the pin to be an output and sets it to a HIGH state, digital
1 or 5V.1 or 5V.

HIGH HIGH pin 0-15pin 0-15
HIGH 8HIGH 8

LOW defines the pin to be an output and sets it to a LOW state, digital LOW defines the pin to be an output and sets it to a LOW state, digital
0 or 0V.0 or 0V.

LOW LOW pin 0-15pin 0-15
LOW 8LOW 8

PAUSE instructs the BS2 to wait for the defined number of PAUSE instructs the BS2 to wait for the defined number of
milliseconds (1/1000 seconds).milliseconds (1/1000 seconds).

PAUSE PAUSE time in milliseconds 0-65535time in milliseconds 0-65535
PAUSE 1000PAUSE 1000

GOTO instructs the BS2 to jump to the defined label. More about this GOTO instructs the BS2 to jump to the defined label. More about this
will be covered in Programming Structures.will be covered in Programming Structures.

GOTO GOTO LabelLabel

60

Blinking the LED with OUTPUT and OUTBlinking the LED with OUTPUT and OUT
The HIGH and LOW instructions perform 2 actions:The HIGH and LOW instructions perform 2 actions:

Sets direction of the I/O pin to an output.Sets direction of the I/O pin to an output.
Sets the state of the output to be 0 or 1 (0V or 5V)Sets the state of the output to be 0 or 1 (0V or 5V)

Another means to perform the same process is to Another means to perform the same process is to
use code to set the direction, then the state.use code to set the direction, then the state.

Enter and run this example.Enter and run this example.
' Prog 4B: Blink LED program using OUTPUT and OUT

OUTPUT 8 'Set P8 to be an output
Main:
 OUT8 = 1 'Turn off LED1
 PAUSE 1000 'Wait 1 second
 OUT8 = 0 'Turn on LED1
 PAUSE 5000 'Wait 5 seconds
GOTO Main 'Jump back to beginning

61

Code DiscussionCode Discussion
OUTPUT sets the pin to act as an output.OUTPUT sets the pin to act as an output.

OUTPUT OUTPUT pinpin
OUTPUT 8OUTPUT 8
The BS2 on startup sets all I/O pins to inputs.The BS2 on startup sets all I/O pins to inputs.

OUT sets the state of the output.OUT sets the state of the output.
OUTpin = OUTpin = 1 or 01 or 0
OUT8 = 1OUT8 = 1
1 sets the output HIGH (5V – Digital High or 1).1 sets the output HIGH (5V – Digital High or 1).
0 sets the output LOW (0V – Digital Low or 0).0 sets the output LOW (0V – Digital Low or 0).

Depending on program need, sometimes it is better to use Depending on program need, sometimes it is better to use
the HIGH and LOW instructions, and other times to use the HIGH and LOW instructions, and other times to use
OUTPUT and OUT.OUTPUT and OUT.

62

Challenge 4A: Blink a 2Challenge 4A: Blink a 2 ndnd LED LED
1.1. Connect a second Connect a second active-lowactive-low LED on LED on

P9.P9.

2.2. Code a program to blink only this LED Code a program to blink only this LED
using HIGH and LOW instructions.using HIGH and LOW instructions.

3.3. Code a program to blink only this LED Code a program to blink only this LED
using OUTPUT and OUT instructions.using OUTPUT and OUT instructions.

SolutionSolution

SolutionSolution

SolutionSolution

63

Challenge 4B: LED CyclingChallenge 4B: LED Cycling
Code a program to perform the following sequence Code a program to perform the following sequence
(use HIGH and LOW):(use HIGH and LOW):

LED1 on P8 ON, LED2 on P9 OFFLED1 on P8 ON, LED2 on P9 OFF
Wait 2 secondsWait 2 seconds
LED1 on P8 ON, LED2 on P9 ONLED1 on P8 ON, LED2 on P9 ON
Wait 1 secondWait 1 second
Both LEDs OFFBoth LEDs OFF
Wait one-half secondWait one-half second
RepeatRepeat SolutionSolution

64

DebuggingDebugging
Debugging refers to the act of finding errors in code and Debugging refers to the act of finding errors in code and
correcting them. There are 2 types of errors which can be correcting them. There are 2 types of errors which can be
made when coding: made when coding: Syntax errorsSyntax errors and and Logical errorsLogical errors..

Syntax errorsSyntax errors are those that occur when the are those that occur when the
editor/compiler does not understand the code written.editor/compiler does not understand the code written.

An example would be: GO TO MainAn example would be: GO TO Main
The PBASIC tokenizer, which takes our code and puts it The PBASIC tokenizer, which takes our code and puts it
in a form the BS2 understands, does not have an in a form the BS2 understands, does not have an
instruction called GO TO (it has one called GOTO). instruction called GO TO (it has one called GOTO).

This section of code would be flagged as having a This section of code would be flagged as having a
syntax problem, which we identify and correct.syntax problem, which we identify and correct.

65

Logical errorsLogical errors are those which have a valid are those which have a valid
syntax, but fail to perform the action we desire.syntax, but fail to perform the action we desire.

For example, our program runs, but it seems the For example, our program runs, but it seems the
LED is off an abnormally long time. Looking at the LED is off an abnormally long time. Looking at the
code we find the bug: code we find the bug:
PAUSE 50000PAUSE 50000 instead of instead of PAUSE 5000PAUSE 5000..

The PBASIC compiler was perfectly happy with a The PBASIC compiler was perfectly happy with a
50 second pause, but logically it was not what we 50 second pause, but logically it was not what we
wanted to happen.wanted to happen.

Syntax errors are easily flagged when we try to run Syntax errors are easily flagged when we try to run
the program. Logical errors are more difficult the program. Logical errors are more difficult
because they require the programmer to analyze the because they require the programmer to analyze the
code and what is occurring to determine the ‘bug’.code and what is occurring to determine the ‘bug’.

66

DEBUG InstructionDEBUG Instruction
The DEBUG instruction provides a valuable tool The DEBUG instruction provides a valuable tool
for the programmer.for the programmer.

It provides a means of real-time feedback in It provides a means of real-time feedback in
debugging to:debugging to:

Observe program execution.Observe program execution.
Observe program values.Observe program values.

It also allows the programmer to use a very It also allows the programmer to use a very
sophisticated output device – A computer monitor.sophisticated output device – A computer monitor.

When a DEBUG instruction used, the Stamp When a DEBUG instruction used, the Stamp
Editor’s DEBUG window will open and display the Editor’s DEBUG window will open and display the
data.data.

67

When we run, or download, a program to the BS2, When we run, or download, a program to the BS2,
the program is transferred serially from Stamp the program is transferred serially from Stamp
Editor though a serial COM port to the BASIC Editor though a serial COM port to the BASIC
Stamp. Stamp.

Using the same serial connection, the BS2 can Using the same serial connection, the BS2 can
transfer data back to the Stamp Editor to be transfer data back to the Stamp Editor to be
displayed.displayed.

Throughout this tutorial we will use DEBUG for Throughout this tutorial we will use DEBUG for
various indications and describe the syntax used.various indications and describe the syntax used.

68

DEBUG for Program Flow InformationDEBUG for Program Flow Information
Sometimes it is difficult to analyze a problem in the Sometimes it is difficult to analyze a problem in the
code because we have no indication where in the code because we have no indication where in the
program the BS2 is currently at. A simple DEBUG program the BS2 is currently at. A simple DEBUG
in the code can provide feedback as to flow.in the code can provide feedback as to flow.

DEBUG “A description of code to be performed”,CRDEBUG “A description of code to be performed”,CR
CR is short for carriage return to move the cursor to the CR is short for carriage return to move the cursor to the
next line.next line.

DEBUG could be used to help identify the ‘bug’ DEBUG could be used to help identify the ‘bug’
where 50000 was typed instead of 5000.where 50000 was typed instead of 5000.

69

By placing some key DEBUG statements, we can observe By placing some key DEBUG statements, we can observe
the flow of the program. Of course, in most cases you may the flow of the program. Of course, in most cases you may
want to only place a DEBUG in the most likely areas based want to only place a DEBUG in the most likely areas based
on observation.on observation.
'Prog 4C: Blink LED program with DEBUG location

OUTPUT 8 'Set P8 to output
Main:
 DEBUG " Turn Off LED",CR
 OUT8 = 1 'Turn off LED
 DEBUG " Wait 1 second",CR
 PAUSE 1000 'Wait 1 second
 DEBUG " Turn Off LED",CR
 OUT8 = 0 'Turn on LED
 DEBUG " Wait 5 seconds",CR
 PAUSE 50000 'Wait 5 seconds
 DEBUG " Go repeat program",CR
GOTO Main 'Jump back to beginning

70

Using DEBUG ? to Display StatusUsing DEBUG ? to Display Status
Another simple use of DEBUG is to indicate the status of Another simple use of DEBUG is to indicate the status of
an output or input.an output or input.

DEBUG ? OUTpinDEBUG ? OUTpin

Say for example the P8 LED was not lighting. Is it a code Say for example the P8 LED was not lighting. Is it a code
problem (OUT8 not going low?) or an electronics problem problem (OUT8 not going low?) or an electronics problem
(LED in backwards?).(LED in backwards?).

Using DEBUG inUsing DEBUG in
key spots, the status key spots, the status
of P8 can be verified.of P8 can be verified.

'Prog 4D: Blink LED program with DEBUG
value

Main:
 HIGH 8 'Turn off LED1
 DEBUG ? OUT8
 PAUSE 1000 'Wait 1 second
 LOW 8 'Turn on LED1
 DEBUG ? OUT8
 PAUSE 5000 'Wait 5 seconds
GOTO Main 'Jump back to beginning

71

Challenge 4C: DebuggingChallenge 4C: Debugging
Modify the code from Challenge 4B to indicate the status of Modify the code from Challenge 4B to indicate the status of
P8 and P9 and describe the number of seconds of the P8 and P9 and describe the number of seconds of the
pause. pause.

Example output:Example output:

SolutionSolution

72

Digital InputsDigital Inputs
Just as P0 – P15 on the BASIC Stamp can act as Just as P0 – P15 on the BASIC Stamp can act as
outputs to control devices, they can act as inputs outputs to control devices, they can act as inputs
to read devices, such as switches.to read devices, such as switches.

By default, the BASIC Stamp I/O pins will act as By default, the BASIC Stamp I/O pins will act as
inputs unless specifically set to be an output. In inputs unless specifically set to be an output. In
our code we specify the I/O as inputs out of good our code we specify the I/O as inputs out of good
programming habits.programming habits.

INPUT pinINPUT pin
INPUT 10INPUT 10

73

Connecting an Active-Low SwitchConnecting an Active-Low Switch
Connect a push-button switch to P10 as shown:Connect a push-button switch to P10 as shown:

The push-buttons used in this
tutorial have 4 terminals. 2 are
electrically connected on one side of
the button, and the other 2 on the
other side. By wiring to opposing
corners we ensure the proper
connection independent of button
rotation.

Button alone

The push-button is a momentary normally-The push-button is a momentary normally-
open (N.O.) switch. When the button IS NOT open (N.O.) switch. When the button IS NOT
pressed (open), P10 will sense Vdd (5V, pressed (open), P10 will sense Vdd (5V,
HIGH, 1) because it is HIGH, 1) because it is pulled-uppulled-up to Vdd. to Vdd.

 When PB1 IS pressed (closed), P10 will senseWhen PB1 IS pressed (closed), P10 will sense
 Vss (0V, LOW, 0) making it Vss (0V, LOW, 0) making it Active-LowActive-Low..

1KΩ = Brown Black Red Gold

74

Active-High Push-Button SwitchActive-High Push-Button Switch
Another configuration that could have been used is shown Another configuration that could have been used is shown
here. Notice that the position of the switch and resistor here. Notice that the position of the switch and resistor
have been reversed.have been reversed.

When the button IS NOT pressed (open), P10 will sense Vss (0V, When the button IS NOT pressed (open), P10 will sense Vss (0V,
LOW, 0) because it is LOW, 0) because it is pulled-downpulled-down to Vss. to Vss.
When PB1 IS pressed (closed), P10 will sense Vdd When PB1 IS pressed (closed), P10 will sense Vdd
(5V, HIGH, 1) making it (5V, HIGH, 1) making it Active-HighActive-High..

Do NOT build this circuit, it is for information only. The Do NOT build this circuit, it is for information only. The
circuit on the previous slide should be constructed.circuit on the previous slide should be constructed.

The BASIC Stamp has uncommitted inputs. That
is, when an I/O pin is not connected and acting as
an input, it cannot be assured to be either HIGH
or LOW. Pull-up and pull-down resistors are
needed to commit the input to the non-active
(open) state for switches.

The 1K resistor is used to prevent a short-circuit
between Vdd and Vss when the switch is closed.

75

Reading the SwitchReading the Switch
The digital value of an input can be read using the The digital value of an input can be read using the INpinINpin
instruction.instruction.

A 1 or 0 will be returned indicating a HIGH or LOW state A 1 or 0 will be returned indicating a HIGH or LOW state
on the input.on the input.

This program uses DEBUG to display the digital value. This program uses DEBUG to display the digital value.
Enter and Run the program. Note the value displayed Enter and Run the program. Note the value displayed
when the push-button is in the down and up states.when the push-button is in the down and up states.
'Prog 4E: Display the status of PB1 on P10

INPUT 10 'Set P10 to be an input

Main:
 DEBUG ? IN10 'Display status of P10
 PAUSE 500 'Short pause
GOTO Main 'Jump back to beginning

76

Challenge 4D: Reading a 2Challenge 4D: Reading a 2 ndnd Button Button

1.1. Add a second active-low push-button Add a second active-low push-button
switch on P11.switch on P11.

2.2. Code a program to display the status of Code a program to display the status of
only PB2 on P11.only PB2 on P11.

3.3. Code a program to display the status of Code a program to display the status of
BOTH switches.BOTH switches.

SolutionSolution

SolutionSolution

SolutionSolution

77

Controlling Outputs with InputsControlling Outputs with Inputs
Now that we can control outputs and read inputs, it's time Now that we can control outputs and read inputs, it's time
to perform a little processing and put the pieces together.to perform a little processing and put the pieces together.

The state of an input may be read with The state of an input may be read with INpiINpin.n.

The state of an output may be controlled with The state of an output may be controlled with OUTpinOUTpin..

Here is a program that will use the input pushbutton PB1 Here is a program that will use the input pushbutton PB1
on P10 to control output LED1 on P8.on P10 to control output LED1 on P8.
'Prog 4F: Controlling LED1 with input PB1

INPUT 10 'Set P10 to be an input
OUTPUT 8 'Set P8 to be an output

Main:
 OUT8 = IN10 'Set LED1 = PB1
GOTO Main 'Jump back to beginning

78

Challenge 4E: Switch & LED ControlChallenge 4E: Switch & LED Control
1.1. Code a program that will controlCode a program that will control

LED2 on P9 with PB2 on P11.LED2 on P9 with PB2 on P11.

2.2. Code a program that will control:Code a program that will control:
LED1 on P8 with PB2 on P11LED1 on P8 with PB2 on P11
LED2 on P9 with PB1 on P10LED2 on P9 with PB1 on P10

3.3. Code a program that will control:Code a program that will control:
LED1 and LED 2 on P8 and P9 with LED1 and LED 2 on P8 and P9 with
button PB1 on P10.button PB1 on P10.

SolutionSolution

SolutionSolution

SolutionSolution

79

DIRS, INS, OUTSDIRS, INS, OUTS
Up to this point I/O have been set as inputs or Up to this point I/O have been set as inputs or
outputs, and states set or read individually.outputs, and states set or read individually.

Looking at the Memory Map, there are Looking at the Memory Map, there are
3 16-bit registers which set the 3 16-bit registers which set the
direction for the I/O, and which are direction for the I/O, and which are
read or written to.read or written to.

OUTPUT 8OUTPUT 8 sets bit 8 (P8) for sets bit 8 (P8) for
output in the DIRS register.output in the DIRS register.
This may also be written as This may also be written as
DIR8=1DIR8=1 (1=output, 0 = input). (1=output, 0 = input).

OUT9 =1OUT9 =1 sets the output state in sets the output state in
the OUTS register for bit 9 (P9).the OUTS register for bit 9 (P9).

IN10IN10 reads the value in the 10 reads the value in the 10thth bit bit
(P10) of INS.(P10) of INS.

Note: The colors of these
registers are not affected by the
code.

80

The I/O can also be addressed as nibbles, The I/O can also be addressed as nibbles,
bytes or the entire word.bytes or the entire word.

IN0
OUT0
DIR0

IN15
OUT15
DIR15

TO As BITS

IND
OUTD
DIRD

INC
OUTC
DIRC

INB
OUTB
DIRB

INA
OUTA
DIRA

As
NIBBLES

(High Byte)
INH

OUTH
DIRH

(Low Byte)
INL

OUTL
DIRL

As
BYTES

INS
OUTS
DIRS

As 16-Bit
WORDS

81

In our circuit, there are output devices on P8 and In our circuit, there are output devices on P8 and
P9, and input devices on P10 and P11. P8 – P11 P9, and input devices on P10 and P11. P8 – P11
make up nibble C.make up nibble C.

The direction of the I/O can be set as a nibble The direction of the I/O can be set as a nibble
with: with:
DIRC = %0011DIRC = %0011 in binary. It may also be written as in binary. It may also be written as
DIRC = 3DIRC = 3 in decimal, but the binary form is much in decimal, but the binary form is much
easier to read for determining individual bit states.easier to read for determining individual bit states.

This will set the DIRS nibble C for input (P11), input This will set the DIRS nibble C for input (P11), input
(P10), output (P9), output (P8).(P10), output (P9), output (P8).
Note that the bit positions are most-significant bit (MSB) Note that the bit positions are most-significant bit (MSB)
to least-significant bit (LSB).to least-significant bit (LSB).

82

Some various examples to illustrate the flexibility, code Some various examples to illustrate the flexibility, code
savings, and increased speed possibilities:savings, and increased speed possibilities:

To read the entire lower byte (P0-P7) as inputs:To read the entire lower byte (P0-P7) as inputs:
DIRL=%00000000DIRL=%00000000
X = INLX = INL

To count up in binary on 8 LEDs connected on P8 to To count up in binary on 8 LEDs connected on P8 to
P15:P15:
DIRH = %11111111DIRH = %11111111
FOR X = 0 to 255FOR X = 0 to 255
 OUTH = X OUTH = X
NEXTNEXT

To set 4 outputs on P4-P7 equal to 4 inputs on To set 4 outputs on P4-P7 equal to 4 inputs on
P12-P15:P12-P15:
DIRS = %0000000011110000DIRS = %0000000011110000
OUTB = INDDOUTB = INDD

83

Reading Analog Values with RCTimeReading Analog Values with RCTime
A very simple method of bringing analog data into the A very simple method of bringing analog data into the
BASIC Stamp is through the use of an instruction called BASIC Stamp is through the use of an instruction called
RCTime.RCTime.

RCTime requires a capacitor and a resistor network, either RCTime requires a capacitor and a resistor network, either
of which may be variable (adjustable). Common variable of which may be variable (adjustable). Common variable
resistance devices include:resistance devices include:

Variable-Turn Resistors (Potentiometers)Variable-Turn Resistors (Potentiometers)
Photo-ResistorsPhoto-Resistors
Temperature sensing devices such as thermistorsTemperature sensing devices such as thermistors

Using RCTime with any of these devices can provide real-Using RCTime with any of these devices can provide real-
time analog data input.time analog data input.

84

Connecting the RC NetworkConnecting the RC Network
Connect the Resistor-Capacitor (RC) network:Connect the Resistor-Capacitor (RC) network:

RCTime measures the time to charge the capacitor
through the resistor. The higher the resistance or
capacitance, the longer the time. For a full discussion
on RCTime, please see your editor help files or BASIC
Stamp Manual.

RC Network alone Full Circuit with RC Network

Resistor, capacitor
and center pin of
potentiometer on
same row.

You may also use a 1uF capacitor with a 10K ohm
potentiometer.

85

RCTime CodeRCTime Code
Enter and run the following code.Enter and run the following code.

Adjust the resistor full each direction and monitor the value. The full Adjust the resistor full each direction and monitor the value. The full
range should be approximately 0-6000.range should be approximately 0-6000.

'Prog 4G: Monitoring RCTime

Pot VAR WORD 'Variable to hold results

Main:
 HIGH 7 'Discharge network
 PAUSE 1 'Time to fully discharge
 RCTIME 7,1,Pot 'Read charge time and store in Pot
 DEBUG ? Pot 'Display value of Pot
 PAUSE 500 'Short pause
GOTO Main 'Jump back to beginning

86

RCTime Code DiscussionRCTime Code Discussion
Pot VAR WORDPot VAR WORD defines a variable named Pot. More defines a variable named Pot. More
about variables will be discussed in the next section.about variables will be discussed in the next section.

HIGH 7HIGH 7 places +5V on pin 7, discharging the capacitor. places +5V on pin 7, discharging the capacitor.

PAUSE 1PAUSE 1 provides time to allow the capacitor to fully provides time to allow the capacitor to fully
discharge.discharge.

RCTIME 7,1,PotRCTIME 7,1,Pot instructs the BS2 to time on pin 7 how instructs the BS2 to time on pin 7 how
long it takes leave the specified state (1) and store the long it takes leave the specified state (1) and store the
results into the variable Pot.results into the variable Pot.

RCTIME pin, state, variableRCTIME pin, state, variable

87

RCTime GraphRCTime Graph

Measured at P7

1V/div

0.5mS/div

Vss

In digital, a HIGH (1) or LOW In digital, a HIGH (1) or LOW
(0) is commonly denoted by (0) is commonly denoted by
Vdd or Vss (5V and 0V), but Vdd or Vss (5V and 0V), but
there exists a there exists a threshold threshold
voltagevoltage, above which the , above which the
controller senses a HIGH, and controller senses a HIGH, and
below which the controller below which the controller
senses a low.senses a low.

The threshold voltage for the The threshold voltage for the
BASIC Stamp is around 1.7V.BASIC Stamp is around 1.7V.

HIGH 7

PAUSE 1

Begin
RCTime
sensing

Threshold
Crossed

Time to
cross

88

RCTime Graph ComparisonRCTime Graph Comparison

As resistance decreases As resistance decreases
the current increases the current increases
allowing the capacitor to allowing the capacitor to
charge more quickly.charge more quickly.

A value proportional to A value proportional to
the time to reach the new the time to reach the new
state is stored.state is stored.

With a high resistance, With a high resistance,
the current is low and the the current is low and the
capacitor takes a capacitor takes a
relatively long time to relatively long time to
charge.charge.

89

Frequency OutputFrequency Output
The PBASIC instruction FREQOUT can be used to easily The PBASIC instruction FREQOUT can be used to easily
drive a speaker for sound-effects.drive a speaker for sound-effects.
Connect the components to the circuit.Connect the components to the circuit.

NOTE: If you are using the BASIC Stamp
Activity Board, the speaker is on P11.
You will need to adjust the code used in
this part accordingly.

90

Frequency Output CodeFrequency Output Code
Enter and run the following code:Enter and run the following code:

If all went well you should be hearing a tone.If all went well you should be hearing a tone.

The syntax of FREQOUT is:The syntax of FREQOUT is:
FREQOUT FREQOUT pin, duration in milliseconds, frequency in Hertzpin, duration in milliseconds, frequency in Hertz

The allowable duration and frequency is 0 – 32767 though The allowable duration and frequency is 0 – 32767 though
your speaker will only have decent tone generation your speaker will only have decent tone generation
between 500-4000Hz or so.between 500-4000Hz or so.

'Prog 4G: Simple Frequency Generation
'Activity Board -- use FREQOUT 11 for pin 11.

Main:
 FREQOUT 1, 2000, 1000 'Tone at 1000Hz for 2 seconds
 PAUSE 1000 'Short pause
GOTO Main 'Jump back to beginning

91

Challenge 4F: Variable Frequency ControlChallenge 4F: Variable Frequency Control
Combine what was learned in using RCTIME and Combine what was learned in using RCTIME and
FREQOUT to code a program which changes the FREQOUT to code a program which changes the
tone of the speaker in relation to the potentiometer tone of the speaker in relation to the potentiometer
setting.setting.

SolutionSolution

HintHint

92

SummarySummary
The BASIC Stamp can control simple output devices, such The BASIC Stamp can control simple output devices, such
as LEDs, with instructions such as HIGH, LOW and OUT.as LEDs, with instructions such as HIGH, LOW and OUT.

The BASIC Stamp can read simple input devices, such as The BASIC Stamp can read simple input devices, such as
switches, using the IN instruction.switches, using the IN instruction.

Multiple I/O can be read or written to as grouping of bits.Multiple I/O can be read or written to as grouping of bits.

Simple resistive analog values may be read using the Simple resistive analog values may be read using the
RCTime instruction.RCTime instruction.

Output frequency on a pin can be performed with the Output frequency on a pin can be performed with the
FREQOUT instruction.FREQOUT instruction.

93

End of Section 4End of Section 4

94

Section 5: Variables and AliasesSection 5: Variables and Aliases
Variables Variables

RAM MemoryRAM Memory
Variable TypesVariable Types
Variable DeclarationVariable Declaration
Variable ConventionsVariable Conventions
Coding with VariablesCoding with Variables

ConstantsConstants
Coding with ConstantsCoding with Constants

I/O AliasesI/O Aliases
Coding using I/O AliaseCoding using I/O Aliase
Common Circuit DeclarCommon Circuit Declar

95

Variables OverviewVariables Overview
Variables are needed when a program requires a Variables are needed when a program requires a
value to be stored.value to be stored.

Variables correspond to a memory location which Variables correspond to a memory location which
we can read from and write to (Random Access we can read from and write to (Random Access
Memory – RAM).Memory – RAM).

Variables allow the programmer to use descriptive Variables allow the programmer to use descriptive
words to indicate the contents of the memory words to indicate the contents of the memory
location.location.

Aliases may also be declared for I/O control to Aliases may also be declared for I/O control to
allow descriptive words to indicate device allow descriptive words to indicate device
connections.connections.

96

RAM MemoryRAM Memory
Once a program in entered, the Memory Map Once a program in entered, the Memory Map
button on the toolbar may be clicked to view the button on the toolbar may be clicked to view the
contents of the code memory (EEPROM Map) and contents of the code memory (EEPROM Map) and
the variable memory (RAM Map).the variable memory (RAM Map).

In the BS2, the code spaceIn the BS2, the code space
is 2K bytes (2048 bytes) inis 2K bytes (2048 bytes) in
size and fills from the size and fills from the
bottom up.bottom up.

The RAM for variableThe RAM for variable
storage is 26 bytes in size.storage is 26 bytes in size.

97

INS, OUTS and DIRS are the registers (RAM INS, OUTS and DIRS are the registers (RAM
locations) which hold the status of the I/O pins.locations) which hold the status of the I/O pins.

REG0 – REG12 are 16-bit registers (word sized) REG0 – REG12 are 16-bit registers (word sized)
used for general variable storage.used for general variable storage.

The variable registers may hold:The variable registers may hold:
13 16-bit variables (Words)13 16-bit variables (Words)
26 8-bit variables (Bytes)26 8-bit variables (Bytes)
52 4-bit variables (Nibbles)52 4-bit variables (Nibbles)
208 1-bit variables (Bits)208 1-bit variables (Bits)

OROR
Any combination of the aboveAny combination of the above
within memory size constraints.within memory size constraints.

98

A variable may be declared to be a word, byte, nibble or A variable may be declared to be a word, byte, nibble or
bit. To maximize the limited memory, programmers use bit. To maximize the limited memory, programmers use
the smallest size that will meet the needs of the variable the smallest size that will meet the needs of the variable
requirements.requirements.
The maximum number of unique states (modulus) for each The maximum number of unique states (modulus) for each
size is: size is: 22n n where where nn is the number of bits. is the number of bits.
i.e.: A byte, with 8 bits, has 2i.e.: A byte, with 8 bits, has 288 unique values or 256. unique values or 256.
In binary, the maximum value for each size is:In binary, the maximum value for each size is:
22nn-1 where -1 where nn is the number of bits. is the number of bits.
i.e.: A byte, with 8 bits, can hold 0 to 2i.e.: A byte, with 8 bits, can hold 0 to 288-1, or 0 to 255.-1, or 0 to 255.

Variable TypesVariable Types

0 to 65535 unsigned
-32768 to +32767 signed

0 to 255
0 to 15
0 or 1

21616-bit Word
28Byte
24Nibble (Nib)
21Bit

99

Variable DeclarationVariable Declaration
A variable in PBASIC is declared with the syntax of: A variable in PBASIC is declared with the syntax of:
variableName VAR sizevariableName VAR size

For example, the following will declare a variable named For example, the following will declare a variable named
TemperatureTemperature and allocate a byte of memory for it. This 8- and allocate a byte of memory for it. This 8-
bit location can be used to hold values between 0 and 255.bit location can be used to hold values between 0 and 255.
Temperature VAR BYTETemperature VAR BYTE

'Prog 5A: Test of variable declaration

' *************** Declare Variables
Temperature VAR BYTE
My_Count VAR WORD
Switch1 VAR BIT
ButtonNum VAR NIB

Temperature = 100

100

Open the Memory Map to see how the RAM was allocated Open the Memory Map to see how the RAM was allocated
for the various declarations:for the various declarations:

My_Count
16-bit Word

Temperature
8-bit Byte

ButtonNum
4-bit Nibble

Switch1
1-bit

Memory is allocated top to
bottom, left to right from
largest variables to smallest
independent of the order
declared.

101

Variables can be read and modified. Enter and run the Variables can be read and modified. Enter and run the
following code. Monitor the values of each as to when they following code. Monitor the values of each as to when they
overflow the limits of their size.overflow the limits of their size.

'Prog 5B: Test of variable sizes

' *********************** Declare Variables
ByteCount VAR BYTE
WordCount VAR WORD
BitCount VAR BIT
NibCount VAR NIB

Main:
 WordCount = WordCount + 1000 'Add to each variable
 ByteCount = ByteCount + 20
 NibCount = NibCount + 1
 BitCount = BitCount + 1
 DEBUG CLS 'Clear the screen
 DEBUG ? WordCount : DEBUG ? ByteCount : DEBUG ? NibCount : DEBUG ? BitCount
 PAUSE 500
GOTO Main

Colons may be used to separate instructions on a single line

102

Variable ConventionsVariable Conventions
Good variable naming and commenting is important and Good variable naming and commenting is important and
there are certain rules in naming:there are certain rules in naming:

Variables cannot contain special characters such as !,Variables cannot contain special characters such as !,
@,$ except for an underscore, _. @,$ except for an underscore, _. My_VariableMy_Variable
Variables may contain numbers but cannot start with a Variables may contain numbers but cannot start with a
number. number. Freq1Freq1
Variable names cannot be a PBASIC instruction. Variable names cannot be a PBASIC instruction.
Variables should have descriptive names. Generally, Variables should have descriptive names. Generally,
capitalize the 1capitalize the 1stst character of each word. character of each word. CountOfPressesCountOfPresses
Declare all variables at the top of your code and Declare all variables at the top of your code and
comment their use.comment their use.
Size the variable appropriate to its use conserving Size the variable appropriate to its use conserving
memory whenever possible.memory whenever possible.
Re-use variables for common tasks such as multiple Re-use variables for common tasks such as multiple
loops in the code.loops in the code.

103

'Sample program with variables

' ****************** Declarations **************************
' ****************** Variables
x VAR BYTE 'General use variable
PressCount VAR WORD 'Holds number of times button is pressed
Pot_Value VAR WORD 'Value of Pot from RCTIME
Switch1 VAR BIT 'Value of switch 1

All the variables in the above code fragment are legally named and All the variables in the above code fragment are legally named and
follow good convention.follow good convention.

Examples of illegal variable names:Examples of illegal variable names:
My CountMy Count Space in nameSpace in name
1Switch1Switch Starts with a valueStarts with a value
Stop!Stop! Invalid name characterInvalid name character
Count Count PBASIC instructionPBASIC instruction

Due to space constraints, the tutorial examples may be briefer in Due to space constraints, the tutorial examples may be briefer in
commenting than good practice dictates.commenting than good practice dictates.

104

Challenge 5A: Variable NamingChallenge 5A: Variable Naming
Declare variables for the following requirements:Declare variables for the following requirements:

To hold the number of seconds in a minute.To hold the number of seconds in a minute.

To hold the number of dogs in a litter.To hold the number of dogs in a litter.

To hold the count of cars in a 50 car garage.To hold the count of cars in a 50 car garage.

To hold the status of an output.To hold the status of an output.

To hold the indoor temperature.To hold the indoor temperature.

To hold the temperature of a kitchen oven.To hold the temperature of a kitchen oven.

SolutionSolution

105

Coding with VariablesCoding with Variables
To assign a variable a value, an equation sets it equal to a value:To assign a variable a value, an equation sets it equal to a value:
VariableName = value VariableName = value

Once assigned a value, variables may be used in place of values for Once assigned a value, variables may be used in place of values for
any number of purposes.any number of purposes.

Enter and test this program by slowly and quickly adjusting the Enter and test this program by slowly and quickly adjusting the
potentiometer.potentiometer.

'Prog 5C: Play tone based on amount of potentiometer movement
'Activity board users use FREQOUT 11 instead of 1
'****************** Declarations ************************
'****************** Variables
Pot_Current VAR WORD 'Current value of potentiometer
Pot_Last VAR WORD 'Last value of potentiometer
Freq_Play VAR WORD 'Tone to sound speaker

Main:
HIGH 7: PAUSE 1 ' Read Potentiometer using RCTIME
RCTIME 7,1,Pot_Current ' and store as current pot value
Freq_Play = Pot_Current - Pot_Last ' Determine amount of change since last reading

 FREQOUT 1,500,Freq_Play ' Play tone based on change
Pot_Last = Pot_Current ' Save current pot value for last value

GOTO Main

106

ConstantsConstants
Constants provide the ability to assign names to values that Constants provide the ability to assign names to values that do not do not
change. change. They allow an easier reading of code.They allow an easier reading of code.

Unlike variables, which are used at run-time, constants are used when Unlike variables, which are used at run-time, constants are used when
the program is compiled or tokenized and the program is compiled or tokenized and use no additional memoryuse no additional memory..

Common uses of constants:Common uses of constants:
Naming of I/O pin numbers.Naming of I/O pin numbers.
Naming of values which will not change such as PI (Note: the BS2 Naming of values which will not change such as PI (Note: the BS2
operates on whole numbers only).operates on whole numbers only).

Constant names follow the same rules as variables and are declared Constant names follow the same rules as variables and are declared
as follows:as follows:
constantName CON valueconstantName CON value

An example may be in Program 5C of naming the pin to which the An example may be in Program 5C of naming the pin to which the
speaker is connected:speaker is connected:
Speaker CON 1Speaker CON 1

107

Coding with ConstantsCoding with Constants
In fact, let's clean up program 5C using constants.In fact, let's clean up program 5C using constants.

By using constants the code is more readable, and if we need to By using constants the code is more readable, and if we need to
change a pin connection, only the constant value needs to be change a pin connection, only the constant value needs to be
updated.updated.

'Prog 5D: Play tone based on amount of potentiometer movement using constants
'****************** Declarations ************************
'****************** Variables
Pot_Current VAR WORD 'Current value of potentiometer
Pot_Last VAR WORD 'Last value of potentiometer
Freq_Play VAR WORD 'Tone to sound speaker
'****************** Constants
Speaker CON 1 ' Speaker pin (Activity board users use 11)
PotPin CON 7 ' Potentiometer pin
SpeakerDur CON 500 ' Duration to sound speaker

Main:
 HIGH PotPin : PAUSE 1 ' Read Potentiometer using RCTIME
 RCTIME PotPin,1,Pot_Current ' and store as current pot value
 Freq_Play = Pot_Current - Pot_Last ' Determine amount of chance since last reading
 FREQOUT Speaker, SpeakerDur, Freq_Play ' Play tone based on change
 Pot_Last = Pot_Current ' Save current pot value for last value
GOTO Main

108

Challenge 5B: LED ConstantsChallenge 5B: LED Constants
Below is the challenge solution to blink 2 LEDs. Modify the Below is the challenge solution to blink 2 LEDs. Modify the
code to use constant names for LED pin connections.code to use constant names for LED pin connections.

'** 4B Challenge Solution – Blink second LED **

Main:
LOW 8 'LED1 on
HIGH 9 'LED2 off
PAUSE 2000 'Wait 2 seconds
LOW 9 'LED2 ON (P9 LED stays on)
PAUSE 1000 'Wait 1 second
HIGH 8 'LED1 off
HIGH 9 'LED2 off
PAUSE 500 'Wait one-half second

GOTO Main

SolutionSolution

109

I/O AliasesI/O Aliases
Just as names can be assigned to RAM memory locations Just as names can be assigned to RAM memory locations
using the VAR instruction, VAR can be used to assign using the VAR instruction, VAR can be used to assign
names to the status of I/O when using the names to the status of I/O when using the ININ and and OUTOUT
instructions. This creates an instructions. This creates an aliasalias name for the I/O. name for the I/O.
AliasName VAR INpinAliasName VAR INpin
AliasName VAR OUTpinAliasName VAR OUTpin

Example: Example: PB1 VAR IN10PB1 VAR IN10

This allows for cleaner code and does not use any This allows for cleaner code and does not use any
additional memory.additional memory.

110

Coding using I/O AliasesCoding using I/O Aliases
Let's modify a previous program to make it a bit more Let's modify a previous program to make it a bit more
readable using I/O aliases.readable using I/O aliases.
Notice that OUTPUT and INPUT could not be made more Notice that OUTPUT and INPUT could not be made more
readable without first assigning constants to the pin readable without first assigning constants to the pin
numbers.numbers.

'{$STAMP BS2}
'Prog 5E: Controlling output LED1 with PB1 using I/O Variables

' **************** Declarations **************
' **************** I/O Aliases
PB1 VAR IN10 ' Pushbutton input pin
LED1 VAR OUT8 ' LED1 output pin

'**************** Set I/O Directions
INPUT 10 'Set P10 to be an input
OUTPUT 8 'Set P8 to be an output

Main:
 LED1 = PB1 'Set LED state = pushbutton state
GOTO Main 'Jump back to beginning

111

Challenge 5C: I/O AliasesChallenge 5C: I/O Aliases
Code a program that will control:Code a program that will control:
LED2 on P9 with the PB1 on P10LED2 on P9 with the PB1 on P10
LED1 on P8 with the PB2 on P11LED1 on P8 with the PB2 on P11

SolutionSolution

112

Common Circuit DeclarationsCommon Circuit Declarations
For the remainder of this section, a common For the remainder of this section, a common
section of declarations will apply to all the section of declarations will apply to all the
programs to minimize the amount of coding and programs to minimize the amount of coding and
space required.space required.

In some cases an LED may be controlled with In some cases an LED may be controlled with
HIGH and LOW, other times it may be controlled HIGH and LOW, other times it may be controlled
with IN and OUT. Note that these 2 uses require 2 with IN and OUT. Note that these 2 uses require 2
different variables. If only different variables. If only LED1 VAR OUT8LED1 VAR OUT8 were were
used, a line of code such as used, a line of code such as HIGH LED1HIGH LED1 would would
really mean really mean HIGH 1HIGH 1 or or HIGH 0HIGH 0 since LED1 would since LED1 would
return the return the valuevalue of OUT8. of OUT8.

113

' *********Section 5 Common Circuit Declarations ***********
' ***************** I/O Aliases *******************
LED1 VAR OUT8 'LED 1 pin I/O
LED2 VAR OUT9 'LED 2 pin I/O
PB1 VAR IN10 'Pushbutton 1 pin I/O
PB2 VAR IN11 'Pushbutton 2 pin I/O
Pot VAR WORD ‘Potentiometer value
' **************** Constants ************************
LED1_Pin CON 8 ' Constant to hold pin number of LED 1
LED2_Pin CON 9 ' Constant to hold pin number of LED 2
PB1_Pin CON 10 ' Constant to hold pin number of pushbutton 1
PB2_Pin CON 11 ' Constant to hold pin number of pushbutton 2
Speaker CON 1 ' Speaker Pin ***** Activity board users set to 11 ******
Pot_Pin CON 7 ' Input for Potentiometer RCTIME network
PB_On CON 0 ' Constant for state of pressed switch (Active-Low)
PB_Off CON 1 ' Constant for state of un-pressed switch
LED_On CON 0 ' Constant for state to light an LED (Active-Low)
LED_Off CON 1 ' Constant for state to turn off an LED
' **************** Set common I/O directions ********
OUTPUT LED1_Pin 'Set pin for LED1 to be an output
OUTPUT LED2_Pin 'Set pin for LED2 to be an output
INPUT PB1_Pin 'Set pin for pushbutton 1 to be an input
INPUT PB2_Pin 'Set pin for pushbutton 2 to be an input
' **************** Example uses ***********************
'LED2 = LED_On 'OUT9 = 0
'LED1 = PB1 'OUT8 = IN10
'HIGH LED1_Pin 'HIGH 8

114

SummarySummary
Variables are used to hold values that change in Variables are used to hold values that change in
the program.the program.

There are 26 bytes available for variables.There are 26 bytes available for variables.

Variables may be sized as bits, nibbles, bytes or Variables may be sized as bits, nibbles, bytes or
words depending on the required size.words depending on the required size.

Constants can be declared to hold name values Constants can be declared to hold name values
that DO NOT change.that DO NOT change.

I/O pins can be names to give a descriptive I/O pins can be names to give a descriptive
identifier to the pin's use. identifier to the pin's use.

115

End of Section 5End of Section 5

116

Section 6: Program FlowSection 6: Program Flow
 Introduction to FlowIntroduction to Flow

Program Planning – Pseudo-Code & FlowchartsProgram Planning – Pseudo-Code & Flowcharts
Sequential FlowSequential Flow
Sequential Flow ExampleSequential Flow Example

 Branching OverviewBranching Overview
 Looping with GOTOLooping with GOTO
 Looping Flow ExampleLooping Flow Example

 Conditionals OverviewConditionals Overview
 IF-THEN IF-THEN
 IF-THEN Example: AlarmIF-THEN Example: Alarm
 Looping with a CounterLooping with a Counter
 Repeating AlarmRepeating Alarm
 FOR-NEXTFOR-NEXT
 Repeating Alarm with FOR-LoopRepeating Alarm with FOR-Loop
 Speaker Tone with FOR-LoopSpeaker Tone with FOR-Loop

 SubroutinesSubroutines
 Cleaner Coding with GOSUBSCleaner Coding with GOSUBS
 Sounding Alarms with GOSUBSounding Alarms with GOSUB

 Using the BRANCH InstructionUsing the BRANCH Instruction
 Saving Power – END & SleepSaving Power – END & Sleep

117

Introduction to FlowIntroduction to Flow
The programs in the tutorial have been relatively easy and The programs in the tutorial have been relatively easy and
follow a sequence of steps from top to bottom. At the end follow a sequence of steps from top to bottom. At the end
of each program, GOTO Main has been used to loop the of each program, GOTO Main has been used to loop the
program back to the start.program back to the start.

Virtually all microcontroller programs will continually repeat Virtually all microcontroller programs will continually repeat
since they are typically embedded in processes to be since they are typically embedded in processes to be
operated continually.operated continually.

Sequential flow (top to bottom), looping, unconditional Sequential flow (top to bottom), looping, unconditional
branching, and conditional branching will be explored in branching, and conditional branching will be explored in
this section.this section.

The newer PBASIC 2.5 implementation greatly extends The newer PBASIC 2.5 implementation greatly extends
control structures. Please review control structures. Please review Appendix A Appendix A after this after this
section.section.

118

Program Planning – Pseudo-Code & FlowchartsProgram Planning – Pseudo-Code & Flowcharts

Depending on your proficiency, a little Depending on your proficiency, a little
planning can help a lot in developing planning can help a lot in developing
programs.programs.

Plan your device placement carefully for good Plan your device placement carefully for good
layout and utilization of I/O.layout and utilization of I/O.
Decide on variables needed for storage or Decide on variables needed for storage or
manipulation.manipulation.
Plan the flow of your program. Use pseudo-Plan the flow of your program. Use pseudo-
code and/or flowcharts to structure the code code and/or flowcharts to structure the code
properly.properly.

119

Pseudo-CodePseudo-Code
Pseudo-Code are English statements Pseudo-Code are English statements
describing what steps the program will take. describing what steps the program will take.
They are not programmable code, but a They are not programmable code, but a
guide in writing the code.guide in writing the code.

For example, a program is needed to control For example, a program is needed to control
the temperature of an incubator at 101F. the temperature of an incubator at 101F.
Without even knowing code, a general Without even knowing code, a general
outline can be made in pseudo-code.outline can be made in pseudo-code.

120

Start of programStart of program
Measure temperatureMeasure temperature
Temperature < 100 F?Temperature < 100 F?

Yes, Turn on heatYes, Turn on heat

Temperature > 102 F?Temperature > 102 F?
Yes, Turn on cooling fanYes, Turn on cooling fan

Go back to start.Go back to start.

121

FlowchartsFlowcharts
Flowcharts are means of developing the Flowcharts are means of developing the
flow of a program visually.flow of a program visually.
Symbols are used to indicate the type of Symbols are used to indicate the type of
operation.operation.

Pre-Defined Pre-Defined
ProcessProcess

ConnectorConnectorDecisionDecision

ProcessProcessInput/OutputInput/OutputStart/StopStart/Stop

122

Start

Measure
Temperature

Temp.
< 100

Energize
Heater

Temp.
> 102

Energize
Fan

Star
t

Yes

No

Yes

No

123

Sequential FlowSequential Flow
Sequential flow of code begins at the top with the Sequential flow of code begins at the top with the
first instruction, then the next in line, then the next first instruction, then the next in line, then the next
and so on.and so on.

When there exist logical errors in the code, one of When there exist logical errors in the code, one of
the best means is to manually step through it by the best means is to manually step through it by
looking at each line and analyzing what it looking at each line and analyzing what it
performs, then moving to the next appropriate performs, then moving to the next appropriate
line. At some point the programmer may see a line. At some point the programmer may see a
flaw in the flow of the program.flaw in the flow of the program.

Sequential flow is the easiest to program and Sequential flow is the easiest to program and
debug.debug.

124

Sequential Flow ExampleSequential Flow Example
Pseudo-Code:Pseudo-Code:

Start of programStart of program
Turn off LED 1Turn off LED 1
Turn off LED 2Turn off LED 2
Pause for 2 secondsPause for 2 seconds
Light LED 1Light LED 1
Pause for 2 secondsPause for 2 seconds
Light LED 2Light LED 2
End of programEnd of program

Flowchart:Flowchart:
' <<<< INSERT COMMON
' CIRCUIT DECLARATIONS >>>>

'Prog 6A: Example of sequential flow

' ****** Main program ************
LED1 = LED_Off 'Turn off LED 1
LED2 = LED_Off 'Turn off LED 2
PAUSE 2000 'Pause for 2 sec.
LED1 = LED_On 'Light LED 1
PAUSE 2000 'Pause for 2 sec.
LED2 = LED_On 'Light LED 2
END

Code:Code:
Start

Turn OFF LED1

Turn OFF LED2

2 Second Pause

Turn ON LED1

Turn ON LED2

2 Second Pause

End

125

Sequential Flow Example DiscussionSequential Flow Example Discussion
In all three, the flow of the program was from the top In all three, the flow of the program was from the top
to the bottom with no branches, loops, or decisions. to the bottom with no branches, loops, or decisions.
Even though most programs will contain loops and Even though most programs will contain loops and
branches, sections of the program will be sequential.branches, sections of the program will be sequential.

The previous program only performs the routine once, The previous program only performs the routine once,
because there is no looping. It will perform the routine because there is no looping. It will perform the routine
when the program is downloaded (ran) or any time the when the program is downloaded (ran) or any time the
BS2 is reset.BS2 is reset.

After the program is complete, the circuit speaker may After the program is complete, the circuit speaker may
click and the LED’s may blink briefly. click and the LED’s may blink briefly.

In many cases, the code comments may be the In many cases, the code comments may be the
flowchart text or pseudo-code descriptions.flowchart text or pseudo-code descriptions.

126

Challenge 6A : Sequential CodeChallenge 6A : Sequential Code
Write and test code for the following operation (use the Write and test code for the following operation (use the
common circuit variables and constants).common circuit variables and constants).

SolutionSolution

START

LED1 OFF

LED2 OFF

Sound Speaker
at 1000Hz
for 2 sec.

LED1 ON

LED2 ON

Sound Speaker
at 1000Hz
for 2 sec.

END

127

Branching Overview - GOTOBranching Overview - GOTO
Branching is the act of breaking out of a sequence Branching is the act of breaking out of a sequence
to perform code in another location of the to perform code in another location of the
program.program.

The simplest form of branching is to use the The simplest form of branching is to use the
GOTOGOTO instruction: instruction: GOTO GOTO labellabel

A label is a name given to a certain location in the A label is a name given to a certain location in the
program. The labels follow the same naming program. The labels follow the same naming
convention that variables and constants do. They convention that variables and constants do. They
should be representative of the code to be should be representative of the code to be
performed.performed.

128

Looping with GOTOLooping with GOTO
Looping is the act of repeating a section of code.Looping is the act of repeating a section of code.

Our programs in section 4 used looping with Our programs in section 4 used looping with
GOTOs extensively so the programs would repeat.GOTOs extensively so the programs would repeat.

Let's modify program 6A to include looping.Let's modify program 6A to include looping.

129

Looping Flow ExampleLooping Flow Example

Pseudo-Code:Pseudo-Code:

Start of programStart of program
Turn off LED 1Turn off LED 1
Turn off LED 2Turn off LED 2
Pause for 2 secondsPause for 2 seconds
Light LED 1Light LED 1
Pause for 2 secondsPause for 2 seconds
Light LED 2Light LED 2
Go back to startGo back to start

' <<<< INSERT COMMON
' CIRCUIT DECLARATIONS >>>>

'Prog 6B: Example of sequential flow
' with looping

' ****** Main program ************
Main:
 LED1 = LED_Off 'Turn off LED 1
 LED2 = LED_Off 'Turn off LED 2
 PAUSE 2000 'Pause for 2 sec.
 LED1 = LED_On 'Light LED 1
 PAUSE 2000 'Pause for 2 sec.
 LED2 = LED_On 'Light LED 2
GOTO Main 'Repeat sequence

Code:Code:
Flowchart:Flowchart:

Start

Turn OFF LED1

Turn OFF LED2

2 Second Pause

Turn ON LED1

Turn ON LED2

2 Second Pause

130

Looping Flow DiscussionLooping Flow Discussion

The program will The program will
be in a continual be in a continual
loop.loop.

Enter and run the Enter and run the
program.program.

Is the lighting of Is the lighting of
LED 2 noticeable? LED 2 noticeable?
Why not? How Why not? How
could the program could the program
be modified to be be modified to be
better?better?

' <<<< INSERT COMMON
' CIRCUIT DECLARATIONS >>>>

'Prog 6B: Example of sequential flow
' with looping

' ****** Main program ************
Main:
 LED1 = LED_Off 'Turn off LED 1

 LED2 = LED_Off 'Turn off LED 2

 PAUSE 2000 'Pause for 2 sec.

 LED1 = LED_On 'Light LED 1

 PAUSE 2000 'Pause for 2 sec.

 LED2 = LED_On 'Light LED 2

GOTO Main 'Repeat sequence

Execution begins

Sequence of steps

Branch back to main
for loop

131

Conditionals OverviewConditionals Overview
The previous example is an The previous example is an unconditional branchunconditional branch; the ; the
program will branch back to Main regardless of any code program will branch back to Main regardless of any code
parameters.parameters.

In a In a conditional branchconditional branch a decision is made based on a a decision is made based on a
current condition to branch or not to branch.current condition to branch or not to branch.

As humans, we constantly make decisions based on input As humans, we constantly make decisions based on input
as to what to perform. Shower too cold? Turn up the hot. as to what to perform. Shower too cold? Turn up the hot.
Shower too hot? Turn down the hot water.Shower too hot? Turn down the hot water.

Microcontrollers can be programmed to act based on Microcontrollers can be programmed to act based on
current conditions. Switch closed? Sound an alarm!current conditions. Switch closed? Sound an alarm!

132

IF…THEN IF…THEN
The The IF-THENIF-THEN is the primary means of conditional is the primary means of conditional
branching.branching.
IF IF condition condition THEN THEN addressLabeladdressLabel

If the condition is evaluated to be true, execution will If the condition is evaluated to be true, execution will
branch to the named address label.branch to the named address label.

If the condition is not true, execution will continue to the If the condition is not true, execution will continue to the
next step in the program sequence.next step in the program sequence.

A condition is typically an equality:A condition is typically an equality:
value1 = value2value1 = value2
value1 > value2value1 > value2
value1 < value2value1 < value2
IN8 = 1IN8 = 1

Compared to many versions of BASIC and
other languages, the PBASIC 2.0 implementation
of the IF-THEN is fairly limited. See the PBASIC 2.5
appendix for new implementations of IF-THEN.

133

IF-THEN Example: AlarmIF-THEN Example: Alarm
This program will sound the alarm as long as pushbutton 1 This program will sound the alarm as long as pushbutton 1
is pressed.is pressed.

Start:Start:
• Is button 1 pressed?Is button 1 pressed?
• Yes, Go sound AlarmYes, Go sound Alarm
• No, Go back to startNo, Go back to start

AlarmAlarm
• Sound speakerSound speaker
• Go back to start of programGo back to start of program

' <<<< INSERT SECTION 5 COMMON
' CIRCUIT DECLARATIONS >>>>

'Prog 6C: Conditional Branching Alarm

Main:
 ' If pushbutton 1 is pressed,
 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 'Sound the alarm
 FREQOUT Speaker, 1000, 2000
GOTO Main

Pseudo-Code

Flowchart Program Code

Button 1
Pressed

Main

Speaker
2000Hz for
1 second

Main

TrueFalse

134

IF-THEN Code DiscussionIF-THEN Code Discussion

Main:
 ' If switch 1 is pressed,
 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 'Sound the alarm
 FREQOUT Speaker, 1000, 2000
GOTO Main

Without button 1 pressed, the condition would be false,Without button 1 pressed, the condition would be false,
(PB1 = 1, PB_On = 0) and the flow of our code would (PB1 = 1, PB_On = 0) and the flow of our code would
follow this path:follow this path:

Condition is
false, continue
to next line

Go back to
start of program

And so it would repeat as long as the switch is not pressed.And so it would repeat as long as the switch is not pressed.

Execution begins

135

Main:
 ' If switch 1 is pressed,
 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 'Sound the alarm
 FREQOUT Speaker, 1000, 2000
GOTO Main

With button 1 pressed, the condition would be trueWith button 1 pressed, the condition would be true
(PB1 = 0, PB_On = 0) and the flow of our code would(PB1 = 0, PB_On = 0) and the flow of our code would
follow this path:follow this path:

Condition is
true, GOTO the
address label
of alarm

And so it would repeat as long as the button is pressed.And so it would repeat as long as the button is pressed.

Follow the
sequence

Execution begins

Go back to
start of program

136

Challenge 6B: Potentiometer AlarmChallenge 6B: Potentiometer Alarm
Code a program to perform the following:Code a program to perform the following:

If the value of the potentiometer is greater than 2000, sound the If the value of the potentiometer is greater than 2000, sound the
speaker at 2000 Hz for 1 second.speaker at 2000 Hz for 1 second.
If the value of the potentiometer is less than 1000, sound the If the value of the potentiometer is less than 1000, sound the
speaker at 1000 Hz for 0.5 seconds. speaker at 1000 Hz for 0.5 seconds.
Use the flowchart in programming your code.Use the flowchart in programming your code.

SolutionSolution

Main

Read
Potentiometer

Pot > 2000

Pot < 1000

Sound speaker
2000Hz for 1

second

Sound speaker
1000Hz for 0.5

second

Main

Main

True

True

False

False

137

Challenge 6C: Lock-in AlarmChallenge 6C: Lock-in Alarm
Code a program that will sound a 2000Hz, 1 second tone if PB1 is Code a program that will sound a 2000Hz, 1 second tone if PB1 is
pressed. The alarm will lock-in and repeat until PB2 is pressed. pressed. The alarm will lock-in and repeat until PB2 is pressed.
Follow the following flowchart.Follow the following flowchart.

SolutionSolution

Main

Pushbutton 1
Pressed

Sound speaker
2000Hz for 1

Second

Pause 0.5 Seconds

Pushbutton 2
Pressed

Main

True

True

False

False

138

Looping with a CounterLooping with a Counter
In many circumstances a program needs to keep count of In many circumstances a program needs to keep count of
an event, such as the number of times a button is pressed. an event, such as the number of times a button is pressed.
A counter may also be used to perform an action a specific A counter may also be used to perform an action a specific
number of times.number of times.

A counter is simply a variable which is incremented or A counter is simply a variable which is incremented or
decremented each instance (typically by 1). decremented each instance (typically by 1).

Steps in using counters:Steps in using counters:
Declare a variable for the counterDeclare a variable for the counter
Reset or initialize the counterReset or initialize the counter
Update the counterUpdate the counter
Act upon value of countAct upon value of count

139

Repeating AlarmRepeating Alarm
This example uses a counter to This example uses a counter to
sound the speaker 5 times when sound the speaker 5 times when
PB1 is pressed.PB1 is pressed.

' <<<< INSERT SECTION 5 CIRCUIT DECLARATIONS
'Prog 6D: Looping with counter Alarm
Counter VAR NIB 'Variable for counting

Main:
 ' If pushbutton 1 is pressed,

 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 Counter = 0 'Initialize counter
Alarm_Again:
 FREQOUT Speaker, 500, 2000 'Sound the alarm
 PAUSE 500
 Counter = Counter + 1 'Increment Counter
 IF Counter < 5 THEN Alarm_Again 'Check counter
GOTO Main

Main

Pushbutton 1
Pressed

Set Counter to 0

Sound Speaker
200Hz for 0.5

Seconds

Increment
Counter by 1

Pause for 0.5
Seconds

Counter < 5

Main

False True

True

False

140

Repeating Alarm Major PointsRepeating Alarm Major Points

' <<<< INSERT SECTION 5 CIRCUIT DECLARATIONS
'Prog 6D: Looping with counter Alarm
Counter VAR NIB 'Variable for counting

Main:
 ' If pushbutton 1 is pressed,
 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 Counter = 0 'Initialize counter
Alarm_Again:
 FREQOUT Speaker, 500, 2000 'Sound the alarm
 PAUSE 500
 Counter = Counter + 1 'Increment Counter
 IF Counter < 5 THEN Alarm_Again 'Check counter
GOTO Main

A variable appropriately
sized is declared.

Counter is reset to 0
Upon entering routine.

Counter is updated
within loop.

Counter is checked. If
not at full count, loop
back AFTER the reset
point. Insert DEBUG ? Counter after the update to view the count

141

FOR-NEXTFOR-NEXT
Since looping routines using counters is so prevalent, a Since looping routines using counters is so prevalent, a
specialized loop called the FOR-Loop or FOR-NEXT can specialized loop called the FOR-Loop or FOR-NEXT can
be used in many instances.be used in many instances.

The general structure of a FOR-Loop is:The general structure of a FOR-Loop is:
FOR variable = start_value TO end_valueFOR variable = start_value TO end_value

'Block of code to be repeated'Block of code to be repeated
NEXTNEXT

The above example will increment or update by +1 each The above example will increment or update by +1 each
repetition starting from the start_value to the end_value. repetition starting from the start_value to the end_value.
An optional STEP value may be used to update by other An optional STEP value may be used to update by other
increments:increments:
FOR variable = start_value TO end_value STEP valueFOR variable = start_value TO end_value STEP value

'Block of code to be repeated'Block of code to be repeated
NEXTNEXT

142

Repeating Alarm with FOR-LoopRepeating Alarm with FOR-Loop
This example uses a FOR-Loop This example uses a FOR-Loop
counter to sound the speaker 5 counter to sound the speaker 5
times when PB1 is pressed.times when PB1 is pressed.

' <<<< INSERT SECTION 5 COMMON
 CIRCUIT DECLARATIONS >>>>>>

'Prog 6E: Looping with Counter Alarm using FOR-Loop
Counter VAR NIB 'Variable for counting

Main:
 ' If pushbutton 1 is pressed, then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 FOR Counter = 0 to 4
 FREQOUT Speaker, 500, 2000 'Sound the alarm
 PAUSE 500
 NEXT
GOTO Main

Note that the flowchart has not changed,
only the method to code it.

Main

Pushbutton 1
Pressed

Set Counter to 0

Sound Speaker
200Hz for 0.5

Seconds

Increment
Counter by 1

Pause for 0.5
Seconds

Counter < 5

Main

False True

True

False

143

Repeating Alarm with FOR-Loop Major PointsRepeating Alarm with FOR-Loop Major Points

' <<<< INSERT SECTION 5 COMMON CIRCUIT DECLARATIONS
'Prog 6E: Looping with Counter Alarm using FOR-Loop
Counter VAR NIB 'Variable for counting

Main:
 ' If pushbutton 1 is pressed,
 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 FOR Counter = 0 to 4
 FREQOUT Speaker, 500, 2000 'Sound the alarm
 PAUSE 500
 NEXT
GOTO Main

A variable appropriately
sized is declared.

Counter is set to start
value (0) upon start of
FOR-Loop

Counter is updated by 1.
 If the count has not
exceeded the end value
(4), repeat sequence.

144

Speaker Tone with FOR-LoopSpeaker Tone with FOR-Loop
The counter value in the FOR-Loop is often used within the The counter value in the FOR-Loop is often used within the
code. Enter and run this example. Analyze it to determine code. Enter and run this example. Analyze it to determine
how it works.how it works.

' <<<< INSERT SECTION 5 COMMON CIRCUIT DECLARATIONS >>>>
'Prog. 6F: Using FOR-Loop for frequency generation

Freq VAR WORD

FOR Freq = 500 to 4000 Step 100
 FREQOUT Speaker, 50, Freq
NEXT

END

145

Challenge 6D: Count to Presses with FOR-LoopChallenge 6D: Count to Presses with FOR-Loop
Code a program that will keep track of the total number of times PB1 Code a program that will keep track of the total number of times PB1
was pressed, and sound that number of tones (pressed oncewas pressed, and sound that number of tones (pressed once one one
beep, pressed twice beep, pressed twice two beeps, etc) up to 15. A flow chart is two beeps, etc) up to 15. A flow chart is
provided to guide you. Use a FOR-Loop and a variable to keep track provided to guide you. Use a FOR-Loop and a variable to keep track
of total times pressed.of total times pressed.

SolutionSolution

Main

Pushbutton 1
Pressed

Increment
Presses by 1

Set Counter to 0

Sound Speaker
2000Hz for

0.5 Seconds

Increment
Counter by 1

Pause for 0.5
Seconds

Counter <=
Presses

Main

False

True

True

False

146

Subroutine OverviewSubroutine Overview
So far in the examples a GOTO has been used to branch So far in the examples a GOTO has been used to branch
to another routine. When the code in the routine is to another routine. When the code in the routine is
complete, a GOTO was used to go to a specific label, complete, a GOTO was used to go to a specific label,
namely Main.namely Main.

Often times a routine is called by multiple locations in a Often times a routine is called by multiple locations in a
program, but instead of always branching back to a specific program, but instead of always branching back to a specific
location, we need to the code to return to where it location, we need to the code to return to where it
branched from.branched from.

A GOSUB is a special type of branching instruction to call a A GOSUB is a special type of branching instruction to call a
routine. When the routine is complete, execution returns to routine. When the routine is complete, execution returns to
the next statement after a call.the next statement after a call.

The routine called by a GOSUB is known as a The routine called by a GOSUB is known as a subroutine subroutine
(GO SUBroutine).(GO SUBroutine).

147

The basic structure and flow of a GOSUB call is:The basic structure and flow of a GOSUB call is:
code beforecode before
GOSUB address_labelGOSUB address_label
code aftercode after

address_label:address_label:
subroutine codesubroutine code

RETURNRETURN

1. Call the subroutine

3.Return from the subroutine

2. Process the subroutine

Every GOSUB must end with a RETURN. The return points are maintained
in what is called a stack. GOSUBs add to the stack, RETURNs take from the
stack. GOSUBs without returns cause the stack to overflow and cause problems.
Have you ever had your computer crash due to a 'Stack Overflow'?

148

Cleaner Coding with GOSUBSCleaner Coding with GOSUBS
A good program should be easy to read. Often the main A good program should be easy to read. Often the main
loop only consists of GOSUB calls. The subroutines loop only consists of GOSUB calls. The subroutines
perform various actions required by the program. By perform various actions required by the program. By
reading through the main loop, the basic operation of the reading through the main loop, the basic operation of the
program can often be determinedprogram can often be determined..

Main:Main:
GOSUB ReadInputDeviceGOSUB ReadInputDevice
GOSUB ControlOutputDeviceGOSUB ControlOutputDevice

GOTO MainGOTO Main

ReadInputDevice:ReadInputDevice:
'code'code

RETURNRETURN

ControlOutputDevice:ControlOutputDevice:
'code'code

RETURNRETURN

Another good practice is to write
subroutines that fit entirely on
a single screen (25 lines) for easier
reading and debugging.

149

Sounding Alarms with GOSUBSounding Alarms with GOSUB
This program uses This program uses
GOSUBs to sound the GOSUBs to sound the
speaker if either speaker if either
pushbutton is pressed.pushbutton is pressed.

The 'Pre-Defined The 'Pre-Defined
Process' block is used to Process' block is used to
denote a subroutine call, denote a subroutine call,
which is written as which is written as
separate routine.separate routine.

Main

Check
Button 1

Check
Button 2 Sound

Speaker

Check Button 1

Button 1
Pressed

Return

True

False

Sound Speaker

Set Freq to 1000

Sound
Speaker

Check Button 2

Button 2
Pressed

Return

True

False Set Freq to 2000

Sound Speaker
at Freq for 1

second

Return

150

Enter and run.Enter and run.

Since the Since the
conditional IF-conditional IF-
THEN calls a THEN calls a
routine directly routine directly
the code jumps the code jumps
over the GOSUB over the GOSUB
if the button is if the button is
NOT pressed.NOT pressed.

With structured With structured
code it is easier code it is easier
to read and to read and
modify individual modify individual
routines and add routines and add
routines.routines.

' <<<< INSERT SECTION 5 COMMON CIRCUIT DECLARATIONS
'Prog 6G: Sounding alarm with GOSUBs

Freq VAR Word

Main:
 GOSUB Check_PB1 'Call subroutine for PB1
 GOSUB Check_PB2 'Call subroutine for PB2
GOTO Main

Check_PB1: ' *** Sound alarm if PB1 pressed
 If PB1 = PB_Off THEN Check1_Done ' If NOT pressed, jump
 Freq = 1000 ' Set Tone
 GOSUB Sound_Speaker ' over GOSUB
Check1_Done:
RETURN

Check_PB2: ' *** Sound alarm if PB2 pressed
 If PB2 = PB_Off THEN Check2_Done ' If NOT pressed, jump
 Freq = 2000 ' Set Tone
 GOSUB Sound_Speaker ' over GOSUB
Check2_Done:
RETURN

Sound_Speaker: ' *** Sound speaker for alarm
 FREQOUT Speaker, 1000,Freq 'Sound speaker
RETURN

151

Flow with no buttons pressed.Flow with no buttons pressed.

Main:
 GOSUB Check_PB1 'Call subroutine for PB1
 GOSUB Check_PB2 'Call subroutine for PB2
GOTO Main

Check_PB1: ' *** Sound alarm if PB1 pressed
 If PB1 = PB_Off THEN Check1_Done 'If NOT pressed, jump
 GOSUB Sound_Speaker ' over GOSUB
Check1_Done:
RETURN

Check_PB2: ' *** Sound alarm if PB2 pressed
 If PB2 = PB_Off THEN Check2_Done 'If NOT pressed, jump
 GOSUB Sound_Speaker ' over GOSUB
Check2_Done:
RETURN

Sound_Speaker: ' *** Sound speaker for alarm
 FREQOUT Speaker, 1000,2000 'Sound speaker
RETURN

152

Flow with PB1 pressedFlow with PB1 pressed

Main:
 GOSUB Check_PB1 'Call subroutine for PB1
 GOSUB Check_PB2 'Call subroutine for PB2
GOTO Main

Check_PB1: ' *** Sound alarm if PB1 pressed
 If PB1 = PB_Off THEN Check1_Done 'If NOT pressed, jump
 GOSUB Sound_Speaker ' over GOSUB
Check1_Done:
RETURN

Check_PB2: ' *** Sound alarm if PB2 pressed
 If PB2 = PB_Off THEN Check2_Done 'If NOT pressed, jump
 GOSUB Sound_Speaker ' over GOSUB
Check2_Done:
RETURN

Sound_Speaker: ' *** Sound speaker for alarm
 FREQOUT Speaker, 1000,2000 'Sound speaker
RETURN

153

Challenge 6E: Adding a SubroutineChallenge 6E: Adding a Subroutine
Add an alarm-operational indicator to Program 6G. Add an alarm-operational indicator to Program 6G.

Code a subroutine to light LED1 for 0.25 seconds. Call Code a subroutine to light LED1 for 0.25 seconds. Call
the subroutine from your main loop. the subroutine from your main loop.

Draw the modified main loop and new routine in Draw the modified main loop and new routine in
flowchart form.flowchart form.

NOTE: The controller may operate so quickly you may NOTE: The controller may operate so quickly you may
not discern the LED blinking. Add a one second pause not discern the LED blinking. Add a one second pause
in the main loop to help see the blink.in the main loop to help see the blink.

SolutionSolution

154

Using the BRANCH InstructionUsing the BRANCH Instruction
It is common for programs to need to take a It is common for programs to need to take a
different action based on the value of some different action based on the value of some
variable. Using IF-THEN’s a sample variable. Using IF-THEN’s a sample
program snippet may be:program snippet may be:

The BRANCH instruction may be used for The BRANCH instruction may be used for
much simpler (and memory-saving) way:much simpler (and memory-saving) way:

IF X=0 THEN Routine0IF X=0 THEN Routine0
IF X=1 THEN Routine1 IF X=1 THEN Routine1
IF X=2 THEN Routine2IF X=2 THEN Routine2
… and so on… and so on

BRANCH X,[Routine0,Routine1,Routine2]BRANCH X,[Routine0,Routine1,Routine2]

155

The structure of BRANCH is:The structure of BRANCH is:
BRANCH offset,[label0,label1,label2…]BRANCH offset,[label0,label1,label2…]

Based on the value of the offset (0 to 255), Based on the value of the offset (0 to 255),
execution will branch to the defined label.execution will branch to the defined label.

BRANCH X, [Label0, Label1, Label2]BRANCH X, [Label0, Label1, Label2]

Label0:Label0:
……

Label1:Label1:
……

Label2:Label2:
……

X = 0X = 0

X = 1X = 1

X = 2X = 2

156

The following program will use PB1 to increment a variable, The following program will use PB1 to increment a variable,
Press_Count, to a maximum value of 3 and branch to a Press_Count, to a maximum value of 3 and branch to a
routine based on X.routine based on X.

' <<<< COMMON CIRCUIT DECLARATIONS
‘Prog 6H: Using BRANCH for display and sounds
Press_Count VAR NIB
X VAR BYTE

Main:
 GOSUB Butn_UP_Count 'Go check if PB1 pressed
 GOSUB Run_Routine 'Go run routine for sounds/display
GOTO Main

Butn_Up_Count:
 IF PB1 = PB_OFF THEN End_Up_Count 'If button not pressed, end routine
 FREQOUT Speaker,500,4000 'Beep speaker to indicate button is down
 Press_Count = Press_Count + 1 'Add one to count
 IF Press_Count <4 THEN End_Up_Count 'If < 4, ok, otherwise reset
 Press_Count = 0 'Reset count to 0
END_Up_Count:
 Return 'Return from routine

Code continues on next screenCode continues on next screen

157

Run_Routine:
 BRANCH Press_Count, [Blink, Wink, Cycle, Quiet] 'Branch based on offset
Return

Blink: 'Routine blinks LEDs and plays one tone
 TOGGLE LED1_Pin : TOGGLE LED2_Pin
 FREQOUT Speaker, 100,500
 PAUSE 250
Return

Wink: 'Routine winks each LED and plays 2 tones
 LED1 = LED_On : LED2 = LED_Off
 FREQOUT Speaker, 500,4000
 LED1 = LED_Off : LED2 = LED_On
 FREQOUT Speaker, 500,2000
Return

Cycle: 'Blinks LED and cycles frequency up
 FOR X = 1 to 20
 TOGGLE LED1_PIN
 TOGGLE LED2_PIN
 FREQOUT Speaker, X * 10, 200 * X
 NEXT
 PAUSE 500
Return

Quiet: 'Peaceful silence
 LED1 = LED_Off : LED2 = LED_Off
 PAUSE 500
Return

In Program 6H, as PB1 is pressed, the LEDs and In Program 6H, as PB1 is pressed, the LEDs and
speaker will provide 4 unique behaviors.speaker will provide 4 unique behaviors.

158

Challenge 6F: Adding a Branch RoutineChallenge 6F: Adding a Branch Routine

Add a 5Add a 5thth routine unique routine to Program 6H. routine unique routine to Program 6H.

SolutionSolution

159

Saving Power – END & SLEEPSaving Power – END & SLEEP
We may not think much about the power We may not think much about the power
used by the BS2 when running off a wall used by the BS2 when running off a wall
outlet, but when running on batteries it outlet, but when running on batteries it
doesn't take long to deplete them.doesn't take long to deplete them.

If our program doesn't need to operate If our program doesn't need to operate
continually, we can END it saving power.continually, we can END it saving power.

Also, our program may not need to be Also, our program may not need to be
performing tasks continually. There may be performing tasks continually. There may be
times it may 'sleep' saving power.times it may 'sleep' saving power.

160

ENDEND
When the BS2 is running and performing When the BS2 is running and performing
instructions, it uses 8mA of current.instructions, it uses 8mA of current.

By ending a program (using By ending a program (using ENDEND), the BS2 goes), the BS2 goes
into a low power mode and stops all instruction into a low power mode and stops all instruction
processing, consuming only 40uA of current. processing, consuming only 40uA of current.
That's 200 times less current. That's 200 times less current. Note: This current Note: This current
draw does NOT take into account any loads draw does NOT take into account any loads
being driven, such as LEDs.being driven, such as LEDs.

The BS2 will not wake again until power is cycled The BS2 will not wake again until power is cycled
or it is reset.or it is reset.

161

SleepSleep
Sleep allows the BASIC Stamp to go into a low Sleep allows the BASIC Stamp to go into a low
power mode for a set period of time.power mode for a set period of time.
Sleep PeriodSleep Period

Period Period is the amount of seconds to sleep, rounded up is the amount of seconds to sleep, rounded up
to the nearest 2.3 seconds.to the nearest 2.3 seconds.

When 'Sleeping' the BASIC Stamp will wake When 'Sleeping' the BASIC Stamp will wake
momentarily every 2.3 seconds. During this time, momentarily every 2.3 seconds. During this time,
all I/O will be switched back to inputs momentarily. all I/O will be switched back to inputs momentarily.
 This may have negative effects in some systems. This may have negative effects in some systems.

In many cases, PAUSE can be replaced with In many cases, PAUSE can be replaced with
SLEEP to conserve power.SLEEP to conserve power.

162

SummarySummary
Sequential flow performs instructions from top of Sequential flow performs instructions from top of
code to the bottom.code to the bottom.
Looping using GOTO can be used to branch to a Looping using GOTO can be used to branch to a
new location identified in the program.new location identified in the program.
An IF-THEN can be used to perform branches in a An IF-THEN can be used to perform branches in a
program based on a defined condition.program based on a defined condition.
The FOR-NEXT loop is a specialized loop for The FOR-NEXT loop is a specialized loop for
counting.counting.
GOSUB are used to branch AND return from GOSUB are used to branch AND return from
routine.routine.
The BRANCH instruction can be used to branch to The BRANCH instruction can be used to branch to
one of several locations based on a parameter.one of several locations based on a parameter.
END and SLEEP can be used to conserve battery END and SLEEP can be used to conserve battery
life.life.

163

End of Section 6End of Section 6

164

Section 7: Math and Data OperationsSection 7: Math and Data Operations
Math OverviewMath Overview
DEBUG ModifiersDEBUG Modifiers
Basic Math OperationsBasic Math Operations

Integer Math and Variable SizesInteger Math and Variable Sizes
Precedence of OperationsPrecedence of Operations
Maximum Workspace LimitMaximum Workspace Limit
Signed Math OperationsSigned Math Operations

Boolean Operations and MathBoolean Operations and Math
Boolean EvaluationsBoolean Evaluations
Bitwise Boolean OperatorsBitwise Boolean Operators

LOOKUP TableLOOKUP Table
Writing and Reading EEPROMWriting and Reading EEPROM
DATA StatementDATA Statement

165

Math OverviewMath Overview
The BASIC Stamp can perform many math The BASIC Stamp can perform many math
operations. Some important limitations are:operations. Some important limitations are:

The BASIC Stamp operates in The BASIC Stamp operates in integer mathinteger math, meaning it , meaning it
does not calculate with decimal places.does not calculate with decimal places.
In order to store negative values, WORD sized variables In order to store negative values, WORD sized variables
are required. Not all math operations support negative are required. Not all math operations support negative
values.values.
The largest value of intermediate math operations is The largest value of intermediate math operations is
65,535.65,535.
Math operations in a line of code are performed from left Math operations in a line of code are performed from left
to right, not based on operator precedence, though to right, not based on operator precedence, though
parenthesis may be used for precedence.parenthesis may be used for precedence.
There are ways around many math limitation discussed There are ways around many math limitation discussed
in this section, but they are beyond the scope of this in this section, but they are beyond the scope of this
tutorial.tutorial.

166

DEBUG ModifiersDEBUG Modifiers
So far this tutorial has been using So far this tutorial has been using DEBUG ?DEBUG ? to to
display the contents of I/O or variables.display the contents of I/O or variables.

The DEBUG instruction is quite flexible in the way The DEBUG instruction is quite flexible in the way
it can display and format data by using modifiers.it can display and format data by using modifiers.

Data may be displayed as:Data may be displayed as:
ASCII characters (No modifier).ASCII characters (No modifier).
Decimal values (DEC).Decimal values (DEC).
Hexadecimal values (HEX).Hexadecimal values (HEX).
Binary values (BIN).Binary values (BIN).

167

DEBUG Modifies ExamplesDEBUG Modifies Examples

Indicated Binary with 8 Indicated Binary with 8
placesplaces

%01000001%01000001DEBUG IBIN8 65DEBUG IBIN8 65

Indicated Binary - %Indicated Binary - %%1000001%1000001DEBUG IBIN 65DEBUG IBIN 65

Indicated Hexadecimal -$ Indicated Hexadecimal -$
with 2 placeswith 2 places

$41$41DEBUG IHEX2 65DEBUG IHEX2 65

BinaryBinary10000011000001DEBUG BIN 65DEBUG BIN 65

Signed DecimalSigned Decimal-65-65DEBUG SDEC -65DEBUG SDEC -65

Decimal ValueDecimal Value6565DEBUG DEC 65DEBUG DEC 65

ASCII ValueASCII ValueAADEBUG 65DEBUG 65

ExplanationExplanationOutputOutputModifier CodeModifier Code

168

DEBUG FormattingDEBUG Formatting
Strings of text may be displayed by enclosing in Strings of text may be displayed by enclosing in
Double-Quotes.Double-Quotes.
DEBUG "Hello"DEBUG "Hello"

Use predefined constants for formatting lines and Use predefined constants for formatting lines and
the screen:the screen:
CRCR – Carriage Return to move to next line. – Carriage Return to move to next line.
HOMEHOME – Cursor to home position. – Cursor to home position.
CLSCLS – Clear Screen – Clear Screen

Separate multiple values with commas.Separate multiple values with commas.
DEBUG CLS,"The value is ", DEC 65, CRDEBUG CLS,"The value is ", DEC 65, CR

169

DEBUG Values ExampleDEBUG Values Example
'Prog 7A: Displaying values from Potentiometer
'Adjust potentiometer to view values.

Pot VAR WORD
Main:

HIGH 7 : PAUSE 10 'Prepare capacitor
RCTIME 7,1,Pot 'Read RC Time
Pot = Pot / 20 'Scale

'Display Header
DEBUG CLS, "ASCII VALUE BINARY HEXADECIMAL", CR

'Display Values
DEBUG Pot," ", DEC3 Pot, " ", IBIN8 Pot, " ", IHEX2 Pot
PAUSE 1000

GOTO Main

170

Basic Math OperationsBasic Math Operations
The BASIC Stamp can perform many math operations, The BASIC Stamp can perform many math operations,
such as: such as:

+ Add+ Add
- Subtract- Subtract
* Multiple* Multiple
/ Divide/ Divide

Operations can be used in assignment to a variable:Operations can be used in assignment to a variable:
X = Y * 2X = Y * 2

Operations may also be used in instructions such as Operations may also be used in instructions such as
DEBUG:DEBUG:
DEBUG DEC Y * 2DEBUG DEC Y * 2

171

Integer Math and Variable SizesInteger Math and Variable Sizes
The BASIC Stamp works in Integer Math, that is it The BASIC Stamp works in Integer Math, that is it
does not compute with decimal places.does not compute with decimal places.
DEBUG DEC 100 / 3DEBUG DEC 100 / 3
Result: 33Result: 33

When assigning data to variables, ensure the When assigning data to variables, ensure the
variable is large enough to hold the result.variable is large enough to hold the result.
X VAR BYTEX VAR BYTE
X = 100X = 100
X = X * 3X = X * 3
DEBUG DEC XDEBUG DEC X
Result: 44. Result: 44. Why?Why?

172

Precedence of OperationsPrecedence of Operations
Math operations are performed from left to Math operations are performed from left to
right of the equation and NOT based on right of the equation and NOT based on
precedence of operators.precedence of operators.
DEBUG DEC 10 + 5 * 2DEBUG DEC 10 + 5 * 2
Result: 30Result: 30

Parenthesis may be used to set precedence Parenthesis may be used to set precedence
in calculations.in calculations.
DEBUG DEC 10 + (5 * 2)DEBUG DEC 10 + (5 * 2)
Result: 20Result: 20

173

Maximum Workspace LimitMaximum Workspace Limit
The maximum value for any intermediate operation is The maximum value for any intermediate operation is
65,535. Care should be taken when performing complex 65,535. Care should be taken when performing complex
calculations to ensure this value is not exceeded:calculations to ensure this value is not exceeded:
DEBUG DEC 5000 * 100 / 500DEBUG DEC 5000 * 100 / 500
Result: 82 Result: 82 5000 * 100 exceeded limit. 5000 * 100 exceeded limit.

Grouping will not help in this case:Grouping will not help in this case:
DEBUG DEC 5000 * (100 / 500)DEBUG DEC 5000 * (100 / 500)
Result: 0 Result: 0 (100/500) is 0.2, or integer 0. (100/500) is 0.2, or integer 0.

Write the equation to prevent overflow or underflow without Write the equation to prevent overflow or underflow without
losing too much accuracy:losing too much accuracy:
DEBUG DEC 5000 / 500 * 100DEBUG DEC 5000 / 500 * 100
Result: 1000Result: 1000

174

Signed Math OperationsSigned Math Operations
The BASIC Stamp can work with negative values:The BASIC Stamp can work with negative values:

Word sized variables must be used to hold results for a Word sized variables must be used to hold results for a
range of –32,768 to +32,767.range of –32,768 to +32,767.

Operations on negative values is limited, and generally Operations on negative values is limited, and generally
should only be used with +, - and * when working with should only be used with +, - and * when working with
signed values.signed values.

Use the DEBUG SDEC (signed decimal) modifier to Use the DEBUG SDEC (signed decimal) modifier to
view signed values.view signed values.
X VAR WORDX VAR WORD
X = 100 * -20X = 100 * -20
DEBUG SDEC X,CRDEBUG SDEC X,CR
Result: -2000Result: -2000

175

Some Other Math FunctionsSome Other Math Functions
PBASIC has a variety of other math functions. PBASIC has a variety of other math functions.
The following is a partial list.The following is a partial list.

X = 80X = 80
DEBUG DEC X MIN 100DEBUG DEC X MIN 100
Result: 100Result: 100

Returns the value limited to the Returns the value limited to the
specified minimum or maximum.specified minimum or maximum.

MIN, MIN,
MAXMAX

DEBUG DEC 40 // 6DEBUG DEC 40 // 6
Result: 4 (40-36)Result: 4 (40-36)

Modulus -- Returns the remainder.Modulus -- Returns the remainder.
What is left after all the possible What is left after all the possible
whole quantities are taken out?whole quantities are taken out?

////

DEBUG DEC SQR 100DEBUG DEC SQR 100
Result: 10Result: 10

Returns the square root integer Returns the square root integer
value. value.

SQRSQR

DEBUG DEC SIN 180DEBUG DEC SIN 180
Result: -122Result: -122

Returns trigonometric value in binary Returns trigonometric value in binary
radians from -128 to 128 over 0 to radians from -128 to 128 over 0 to
360 degrees360 degrees

SIN, SIN,
COSCOS

DEBUG DEC ABS -50DEBUG DEC ABS -50
Result: 50Result: 50

Returns the absolute valueReturns the absolute valueABSABS

176

Challenge 7A: Scaling the PotentiometerChallenge 7A: Scaling the Potentiometer
Scale the input data from the potentiometer to display its Scale the input data from the potentiometer to display its
position in degrees from 0 at the minimum position to 300 position in degrees from 0 at the minimum position to 300
(or what you feel is appropriate for the movement of your (or what you feel is appropriate for the movement of your
potentiometer) at the maximum position.potentiometer) at the maximum position.

Show the value in the DEBUG window as a decimal Show the value in the DEBUG window as a decimal
value with 3 places (i.e: 090).value with 3 places (i.e: 090).
Always display the data on the 1Always display the data on the 1stst line of the DEBUG line of the DEBUG
window.window.
Hint: To scale the data, multiply the value by the new Hint: To scale the data, multiply the value by the new
maximum and divide by the old maximum, but be maximum and divide by the old maximum, but be
careful of the math constraints!careful of the math constraints!
Due to the non-linearity of the RCTIME results, your Due to the non-linearity of the RCTIME results, your
program will not be entirely accurate.program will not be entirely accurate.

SolutionSolution

177

Boolean Operations and MathBoolean Operations and Math
The BASIC Stamp can perform Boolean The BASIC Stamp can perform Boolean
operations in 2 ways:operations in 2 ways:

Evaluation of expressionsEvaluation of expressions
Bit manipulationBit manipulation

States:States:
A state can either be considered TRUE or A state can either be considered TRUE or
FALSE, or the bit states of 1 and 0 respectively.FALSE, or the bit states of 1 and 0 respectively.
If an input returns a 1, it would be considered to If an input returns a 1, it would be considered to
be TRUE.be TRUE.

178

Summary of Boolean OperationSummary of Boolean Operation
T = TRUE (or 1) F = FALSE (or 0)T = TRUE (or 1) F = FALSE (or 0)

F = F F = F XORXOR F F
T = F T = F XORXOR T T
T = T T = T XORXOR F F
F = T F = T XORXOR T T

Exclusive OR: Either, but Exclusive OR: Either, but
not both, must be true for not both, must be true for
the result to be truethe result to be true

XORXOR

F = F F = F OROR F F
T = F T = F OROR T T
T = T T = T OROR F F
T = T T = T OROR 1 1

Any must be true for the Any must be true for the
result to be true (need result to be true (need
this OR that)this OR that)

OROR

F = F F = F ANDAND F F
F = F F = F ANDAND T T
F = T F = T ANDAND F F
T = T T = T ANDAND T T

All must be true for the All must be true for the
result to be true (need result to be true (need
this AND that).this AND that).

ANDAND

F = F = NOTNOT T T
T = T = NOTNOT F F

Inverts the stateInverts the stateNOTNOT

179

Boolean EvaluationsBoolean Evaluations
AND, OR and XOR may be used in IF-THEN AND, OR and XOR may be used in IF-THEN
statements to evaluate multiple conditions.statements to evaluate multiple conditions.

In an IF-THEN, a value is true if it is greater than 0.In an IF-THEN, a value is true if it is greater than 0.
IF PB1 THEN RoutineIF PB1 THEN Routine ' True if button is not pressed (Active-Low)' True if button is not pressed (Active-Low)
IF Pot THEN RoutineIF Pot THEN Routine ' True if Pot > 0' True if Pot > 0

Comparisons are evaluated to be 1 or True when Comparisons are evaluated to be 1 or True when
the condition is met.the condition is met.

IF (PB1=PB_On) THEN Routine IF (PB1=PB_On) THEN Routine ' True if button is pressed ' True if button is pressed
' (0 = 0 for Active Low)' (0 = 0 for Active Low)

IF (POT > 1000) THEN RoutineIF (POT > 1000) THEN Routine ' True if potentiometer > 1000' True if potentiometer > 1000

180

Using Boolean math, the results of individual evaluations Using Boolean math, the results of individual evaluations
are combined using the logic rules for an overall result.are combined using the logic rules for an overall result.

The following program will sound the speaker when BOTH The following program will sound the speaker when BOTH
pushbuttons are pressed (PB1 AND PB2 must be pushbuttons are pressed (PB1 AND PB2 must be
pressed).pressed).
'Program 7A: Boolean Evaluations'Program 7A: Boolean Evaluations
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***
Main:Main:
 'Sound Alarm if both buttons are pressed'Sound Alarm if both buttons are pressed
 IF (PB1=PB_On) AND (PB2=PB_On) THEN AlarmIF (PB1=PB_On) AND (PB2=PB_On) THEN Alarm
GOTO MainGOTO Main

Alarm:Alarm:
 FREQOUT Speaker,100,2000FREQOUT Speaker,100,2000
GOTO MainGOTO Main

181

If neither button is pressed:If neither button is pressed:
 (PB1=PB_On) AND (PB2=PB_On)(PB1=PB_On) AND (PB2=PB_On)

1 = 01 = 0
FalseFalseFalseFalse

1 = 01 = 0

False AND False = FalseFalse AND False = False

0 = 00 = 0
FalseFalseTrueTrue

1 = 01 = 0

True AND False = FalseTrue AND False = False

0 = 00 = 0
TrueTrueTrueTrue

0 = 00 = 0

True AND True = TrueTrue AND True = True

If only PB1 button is pressed:If only PB1 button is pressed:
 (PB1=PB_On) AND (PB2=PB_On)(PB1=PB_On) AND (PB2=PB_On)

If both buttons are pressed:If both buttons are pressed:
 (PB1=PB_On) AND (PB2=PB_On)(PB1=PB_On) AND (PB2=PB_On)

182

Challenge 7B:Boolean EvaluationsChallenge 7B:Boolean Evaluations
Use AND and OR evaluations:Use AND and OR evaluations:
2.2. Modify Program 7A to sound the alarm Modify Program 7A to sound the alarm

when either button is pressed.when either button is pressed.

3.3. Modify Program 7A to sound the alarm if Modify Program 7A to sound the alarm if
the potentiometer is greater than 500 or the potentiometer is greater than 500 or
PB1 is pressed.PB1 is pressed.

4.4. Modify Program 7A to sound the alarm if Modify Program 7A to sound the alarm if
the potentiometer is greater than 500 but the potentiometer is greater than 500 but
only if PB2 is not pressed.only if PB2 is not pressed.

SolutionSolution

SolutionSolution

SolutionSolution

183

Bitwise Boolean OperatorsBitwise Boolean Operators
While AND, OR, NOT and XOR may be While AND, OR, NOT and XOR may be
used to evaluate expressions, there exist used to evaluate expressions, there exist
the Bitwise Boolean operators which may be the Bitwise Boolean operators which may be
used to evaluate or modify groups of bits.used to evaluate or modify groups of bits.

The bitwise operators also perform AND, The bitwise operators also perform AND,
OR, NOT and XOR, but on one or more bits OR, NOT and XOR, but on one or more bits
in a nibble, byte or word length value in in a nibble, byte or word length value in
binary.binary.

184

Each bit in one expression is logically evaluated Each bit in one expression is logically evaluated
with the same bit position in a second expression.with the same bit position in a second expression.

Take for example: %1010 | %1110 (| = OR)Take for example: %1010 | %1110 (| = OR)
Each bit in the first nibble is OR'd with the same bit Each bit in the first nibble is OR'd with the same bit
position in the second nibble (% indicates a binary position in the second nibble (% indicates a binary
value).value).

%1010%1010
%1110%1110
%1110%1110

Where either column has a 1, the result has a 1.Where either column has a 1, the result has a 1.

185

The following are the bitwise operators:The following are the bitwise operators:
& = AND& = AND
| = OR (Typically Shift \ Key to get a bar - |)| = OR (Typically Shift \ Key to get a bar - |)
^ = XOR^ = XOR
~ = NOT~ = NOT

What would be the result of %1111 & %0100 ? What would be the result of %1111 & %0100 ?
Click for answer.Click for answer. %0100%0100

186

One common use is to invert the state of a Active-One common use is to invert the state of a Active-
Low input:Low input:
IF IN8 = 0 THEN ….IF IN8 = 0 THEN ….

It just doesn't seem 'natural' in programming It just doesn't seem 'natural' in programming
sometimes to be active-low. When a button is sometimes to be active-low. When a button is
pressed, it is more natural to want a HIGH than a pressed, it is more natural to want a HIGH than a
LOW (active-low buttons and LEDs are common LOW (active-low buttons and LEDs are common
because of electrical properties of many devices).because of electrical properties of many devices).

By using a bitwise NOT to invert the data:By using a bitwise NOT to invert the data:
IF ~IN8 = 1 THEN ….IF ~IN8 = 1 THEN ….

Inverting an InputInverting an Input

187

Masking BITsMasking BITs
Bit masking is used to force a single bit, or bits, in Bit masking is used to force a single bit, or bits, in
a byte to a certain state using the Boolean bit-wise a byte to a certain state using the Boolean bit-wise
operators.operators.

For example, given any byte value, bit position 3 For example, given any byte value, bit position 3
(starting with 0) may be force on with: (starting with 0) may be force on with: ByteVal = ByteVal =
ByteVal | %00001000ByteVal | %00001000..

Program 7B will count from 0 to 255 in binary, and Program 7B will count from 0 to 255 in binary, and
use the various operators for masking. Note the use the various operators for masking. Note the
effect of the mask for each.effect of the mask for each.

188

'Prog. 7B – Byte Masking'Prog. 7B – Byte Masking
X VAR BYTEX VAR BYTE
MASK CON %00111100MASK CON %00111100
DEBUG CLSDEBUG CLS

Main:Main:
FOR X = 0 TO 255FOR X = 0 TO 255
 DEBUG HOME, " AND & OR | XOR ^",CRDEBUG HOME, " AND & OR | XOR ^",CR
 DEBUG " VALUE ",IBIN8 X," ",IBIN8 X," ",IBIN8 X,CRDEBUG " VALUE ",IBIN8 X," ",IBIN8 X," ",IBIN8 X,CR
 DEBUG " MASK ",IBIN8 MASK," ",IBIN8 MASK," ",IBIN8 MASK,CRDEBUG " MASK ",IBIN8 MASK," ",IBIN8 MASK," ",IBIN8 MASK,CR
 DEBUG "RESULT ",IBIN8 X & MASK," ",IBIN8 X | MASK," ",IBIN8 X^MASK,CRDEBUG "RESULT ",IBIN8 X & MASK," ",IBIN8 X | MASK," ",IBIN8 X^MASK,CR
 PAUSE 1000PAUSE 1000
NEXTNEXT
GOTO MainGOTO Main

189

Use & 0 to force a bit LOW, | 1 to force a bit HIGH, and ^ 1 Use & 0 to force a bit LOW, | 1 to force a bit HIGH, and ^ 1
to complement (toggle) a bit.to complement (toggle) a bit.
The BASIC Stamp works in bits naturally, and can actually The BASIC Stamp works in bits naturally, and can actually
change any bit state using a Bit modifier:change any bit state using a Bit modifier:
ByteVal.BIT3 = 1.ByteVal.BIT3 = 1.
Masking is used more heavily in microprocessor based Masking is used more heavily in microprocessor based
systems which are not bit-oriented.systems which are not bit-oriented.

190

LOOKUP TableLOOKUP Table
A Lookup table is similar to branching in that A Lookup table is similar to branching in that
a table is indexed, but in this case a value is a table is indexed, but in this case a value is
stored in the variable.stored in the variable.
LOOKUP index,[value0,value2,…],variableLOOKUP index,[value0,value2,…],variable

For example, given the following:For example, given the following:

LOOKUP I,[85,123,210,15],RLOOKUP I,[85,123,210,15],R

If I = 0, 85 would be stored in RIf I = 0, 85 would be stored in R
If I = 1, 123 would be stored in RIf I = 1, 123 would be stored in R
and so on….and so on….

00

191

Playing a Tune with LookupPlaying a Tune with Lookup
This program uses a table to look up 29 notes This program uses a table to look up 29 notes
used to play a song. Notice how constants are used to play a song. Notice how constants are
used to define the frequency for each note.used to define the frequency for each note.
Can you recognize the song?Can you recognize the song?

'Prog. 7C – Playing a tune with LOOKUP'Prog. 7C – Playing a tune with LOOKUP
I I VAR BYTEVAR BYTE ' Counter for position in tune.' Counter for position in tune.
Freq Freq VAR WORD VAR WORD ' Frequency of note for Freqout.' Frequency of note for Freqout.
C C CON 523 CON 523 ' C note' C note
D D CON 587 CON 587 ' D note' D note
E E CON 659 CON 659 ' E note' E note
G G CON 784 CON 784 ' G note' G note
R R CON 0 CON 0 ' Silent pause (rest).' Silent pause (rest).
FOR I = 0 to 28 FOR I = 0 to 28 ' Play the 29 notes of the Lookup table.' Play the 29 notes of the Lookup table.
 LOOKUP I, [E,D,C,D,E,E,E,R,D,D,D,R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C], FreqLOOKUP I, [E,D,C,D,E,E,E,R,D,D,D,R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C], Freq
 FREQOUT 1,350,FreqFREQOUT 1,350,Freq ' *** Use 11 instead of 1 for Activity Board' *** Use 11 instead of 1 for Activity Board
NEXTNEXT

192

Challenge 7D: Playing Charge! Using LookupChallenge 7D: Playing Charge! Using Lookup

The following program plays the Charge! Tune.The following program plays the Charge! Tune.

Write a new program that uses 2 lookup tables to Write a new program that uses 2 lookup tables to
get the note's frequency AND duration and plays get the note's frequency AND duration and plays
the tune (don't worry about using note constants).the tune (don't worry about using note constants).

SpeakerSpeaker CON 1 '11 for Activity boardCON 1 '11 for Activity board
FREQOUT Speaker, 150, 1120FREQOUT Speaker, 150, 1120
FREQOUT Speaker, 150, 1476FREQOUT Speaker, 150, 1476
FREQOUT Speaker, 150, 1856FREQOUT Speaker, 150, 1856
FREQOUT Speaker, 300, 2204FREQOUT Speaker, 300, 2204
FREQOUT Speaker, 9, 255FREQOUT Speaker, 9, 255
FREQOUT Speaker, 200,1856FREQOUT Speaker, 200,1856
FREQOUT Speaker, 600, 2204FREQOUT Speaker, 600, 2204

SolutionSolutionThere also exists an instruction called LOOKDOWN.
Use your help files to investigate the use of this instruction!

193

Writing and Reading EEPROMWriting and Reading EEPROM
Data is typically stored using variables in RAM Data is typically stored using variables in RAM
memory. RAM is volatile memory, in that when memory. RAM is volatile memory, in that when
power is lost, the contents of RAM is destroyed.power is lost, the contents of RAM is destroyed.

EEPROM memory is persistent in that it will EEPROM memory is persistent in that it will
maintain its contents in the event of a power maintain its contents in the event of a power
failure. In fact, this is where your BS2 program is failure. In fact, this is where your BS2 program is
stored.stored.

WRITE and READ are instructions that allow the WRITE and READ are instructions that allow the
programmer to store and recall data in this non-programmer to store and recall data in this non-
volatile memory.volatile memory.

194

WRITE allows the storage of a byte value into a WRITE allows the storage of a byte value into a
memory address:memory address:
WRITE address, byte valueWRITE address, byte value

READ reads the contents of a memory address READ reads the contents of a memory address
and stores it into the specified variableand stores it into the specified variable
READ address, variableREAD address, variable

EEPROM has a finite number of WRITE cycles EEPROM has a finite number of WRITE cycles
(> 1000). Continual, long term-use of WRITE is (> 1000). Continual, long term-use of WRITE is
not recommended.not recommended.

195

'Store 10 in address 1'Store 10 in address 1
WRITE 1,10WRITE 1,10

'Read contents of address 1'Read contents of address 1
'and store in variable X'and store in variable X
READ 1, XREAD 1, X

10

 There are 2048 memory locations in the There are 2048 memory locations in the
BS2.BS2.

 Program memory is stored from bottom of Program memory is stored from bottom of
memory up. Writing over program space will memory up. Writing over program space will
corrupt your program. corrupt your program.

 Memory address are shown in Memory address are shown in
Hexadecimal. Hex may be used Hexadecimal. Hex may be used
in memory addresses:in memory addresses:

10

'Store 10 in address $0FF'Store 10 in address $0FF
WRITE $0FF,10WRITE $0FF,10

196

Testing READ and WRITETesting READ and WRITE
Enter and run the Program 7D on the next slide. Enter and run the Program 7D on the next slide.
program. program.

It will display the current contents of the 1It will display the current contents of the 1stst 10 10
memory locations, write new values to those memory locations, write new values to those
address, and re-read.address, and re-read.

Power down and back up the BASIC Stamp. Note Power down and back up the BASIC Stamp. Note
that the values have not changed when power was that the values have not changed when power was
removed.removed.

The Memory Map window of the Editor does NOT The Memory Map window of the Editor does NOT
show changes to memory caused by WRITE.show changes to memory caused by WRITE.

197

'Program 7D: Reading and Writing to EEPROM'Program 7D: Reading and Writing to EEPROM
AddrAddr VAR VAR BYTEBYTE
ValueValue VARVAR BYTEBYTE

DEBUG CR,"READING MEMORY ",CR : DEBUG CR,"READING MEMORY ",CR :
GOSUB ReadMemoryGOSUB ReadMemory

PAUSE 2000 : DEBUG CR,"WRITING VALUES TO EEPROM ",CRPAUSE 2000 : DEBUG CR,"WRITING VALUES TO EEPROM ",CR
GOSUB WriteMemoryGOSUB WriteMemory

PAUSE 2000 : DEBUG CR,"READING MEMORY AGAIN ",CRPAUSE 2000 : DEBUG CR,"READING MEMORY AGAIN ",CR
GOSUB ReadMemoryGOSUB ReadMemory
ENDEND

ReadMemory: FOR Addr = 0 TO 9ReadMemory: FOR Addr = 0 TO 9 ' Cycle through 10 addresses ' Cycle through 10 addresses
READ Addr, ValueREAD Addr, Value ' Read value from EEPROM address, store in Value ' Read value from EEPROM address, store in Value
DEBUG DEC Value," " ' Display contents of ValueDEBUG DEC Value," " ' Display contents of Value

 NEXTNEXT
 RETURN RETURN

WriteMemory: FOR Addr = 0 TO 9WriteMemory: FOR Addr = 0 TO 9 ' Cycle through 10 addresses' Cycle through 10 addresses
Value = AddrValue = Addr ' Set value equal to address to get a unique value' Set value equal to address to get a unique value
WRITE Addr, ValueWRITE Addr, Value ' Store contents of Value into EEPROM address ' Store contents of Value into EEPROM address

 NEXT NEXT
 RETURNRETURN

198

Storing a tune in EEPROMStoring a tune in EEPROM
Program 7E puts READ and WRITE to use by storing Program 7E puts READ and WRITE to use by storing
notes (frequency values) in EEPROM memory to be played notes (frequency values) in EEPROM memory to be played
back as a 'tune'. Once the program is running:back as a 'tune'. Once the program is running:

Adjust the potentiometer to a desired frequency.Adjust the potentiometer to a desired frequency.
Press PB1 to store the note. LED1 will blink.Press PB1 to store the note. LED1 will blink.
Store as many notes as you desire (up to 255).Store as many notes as you desire (up to 255).
Press PB2 to play your tune.Press PB2 to play your tune.
Power down and up, press PB2 to play your tune again.Power down and up, press PB2 to play your tune again.
You may test your tune, then store more notes.You may test your tune, then store more notes.
When storing a note, the next address is filled with a 0 When storing a note, the next address is filled with a 0
to mark the end of tune.to mark the end of tune.
Since the address is defined as a byte variable, the Since the address is defined as a byte variable, the
maximum number of notes is 256 and well clear of the maximum number of notes is 256 and well clear of the
program storage area.program storage area.

199

' Prog 7E: Stores notes for creating a tune.' Prog 7E: Stores notes for creating a tune.
' INSERT COMMON CIRCUIT DECLARATIONS
AddrAddr VAR BYTEVAR BYTE 'EEPROM Address 'EEPROM Address
Freq Freq VAR WORD 'Frequency VAR WORD 'Frequency
LED1 = LED_Off : LED2 = LED_OffLED1 = LED_Off : LED2 = LED_Off
Main:Main:
 GOSUB FindToneGOSUB FindTone
 IF PB1=PB_ON THEN StoreNoteIF PB1=PB_ON THEN StoreNote
 IF PB2=PB_ON THEN PlayTuneIF PB2=PB_ON THEN PlayTune
GOTO MainGOTO Main

FindTone:FindTone: 'Play note based on pot. Position'Play note based on pot. Position
 HIGH Pot_PIN : PAUSE 1HIGH Pot_PIN : PAUSE 1
 RCTIME Pot_Pin,1, FreqRCTIME Pot_Pin,1, Freq
 FREQOUT Speaker, 500, FreqFREQOUT Speaker, 500, Freq
 RETURNRETURN

StoreNote: ' Store freq. In EEPROM. StoreNote: ' Store freq. In EEPROM.
 ' Divide by 25 to condense to byte' Divide by 25 to condense to byte
 WRITE Addr, Freq / 25 MIN 1 MAX 255WRITE Addr, Freq / 25 MIN 1 MAX 255
 Addr = Addr + 1Addr = Addr + 1 ' Next address' Next address
 WRITE Addr, 0WRITE Addr, 0 ' Store 0 to mark end' Store 0 to mark end
 LED1 = LED_OnLED1 = LED_On ' Blink LED1' Blink LED1
 PAUSE 500 : LED1 = LED_OffPAUSE 500 : LED1 = LED_Off
GOTO MainGOTO Main

PlayTune: PlayTune:
 LED2 = LED_OnLED2 = LED_On 'Turn on LED2'Turn on LED2
 PAUSE 1000PAUSE 1000
 Addr = 0Addr = 0 ' Start of EEPROM' Start of EEPROM
TuneLoop:TuneLoop:
 READ Addr, FreqREAD Addr, Freq 'Read EEPROM'Read EEPROM
 IF Freq = 0 THEN EndTuneIF Freq = 0 THEN EndTune ' 0 = end of tune ' 0 = end of tune
 FREQOUT Speaker, 500,Freq * 25 'Play noteFREQOUT Speaker, 500,Freq * 25 'Play note
 Addr = Addr + 1Addr = Addr + 1 ' Increment and do next note' Increment and do next note
GOTO TuneLoopGOTO TuneLoop

EndTune:EndTune:
 PAUSE 2000PAUSE 2000
 LED2 = LED_Off LED2 = LED_Off 'LED2 off'LED2 off
 GOTO MainGOTO Main

200

DATA StatementDATA Statement
The DATA statement may used to predefine the contents of EEPROM The DATA statement may used to predefine the contents of EEPROM
memory locations. The general format of a DATA Statement is:memory locations. The general format of a DATA Statement is:
Label DATA value, value, valueLabel DATA value, value, value
oror
Label DATA "String"Label DATA "String"
The use of Labels is optional:The use of Labels is optional:
DATA "String"DATA "String"

The values specified are stored starting at the 'top' (address 0) of the The values specified are stored starting at the 'top' (address 0) of the
BASIC Stamp's EEPROM unless a starting address is provided:BASIC Stamp's EEPROM unless a starting address is provided:
Label DATA @address,"String"Label DATA @address,"String"

The starting EEPROM address may then be accessed by use of the The starting EEPROM address may then be accessed by use of the
READ instruction:READ instruction:
READ 0,variableREAD 0,variable
READ Label, variableREAD Label, variable

Label points to the STARTING address. Subsequent addresses can Label points to the STARTING address. Subsequent addresses can
be accessed by adding to the starting address:be accessed by adding to the starting address:
READ Label+1, variableREAD Label+1, variable

201

' Prog. 7F: Using DATA to store ' Prog. 7F: Using DATA to store
X X VAR VAR NIBNIB
Value Value VAR VAR BYTEBYTE
 ' Store string starting at address 0 ' Store string starting at address 0
 ' or next available location ' or next available location
MSG1MSG1 DATADATA "HELLO",CR"HELLO",CR

 ' Store string starting at address Hex $20' Store string starting at address Hex $20
MSG2MSG2 DATADATA @$020,66,89,69,13@$020,66,89,69,13

 ' Loop through and read/display ' Loop through and read/display
 ' data in MSG1' data in MSG1
FOR X = 0 to 5FOR X = 0 to 5

READ MSG1+X, ValueREAD MSG1+X, Value
DEBUG ValueDEBUG Value

NEXTNEXT
 ' Loop through and read/display' Loop through and read/display
 ' data in MSG1' data in MSG1
FOR X = 0 to 3FOR X = 0 to 3

READ MSG2+X, ValueREAD MSG2+X, Value
DEBUG ValueDEBUG Value

NEXTNEXT

Open the Memory Map to see where the
data is stored. Note unused bytes in the
row are filled with binary 0 (null).

Check 'Display ASCII' to view
data as ASCII Characters.

202

Using DATA for a Phonebook DialerUsing DATA for a Phonebook Dialer
The code on the following screen uses DATA The code on the following screen uses DATA
Statements to create a phone book program.Statements to create a phone book program.

The user selects a name using PB1, then dials The user selects a name using PB1, then dials
that person's number using PB2.that person's number using PB2.

The The DTMFOUTDTMFOUT instruction generates tones used instruction generates tones used
in dialing a telephone. in dialing a telephone. NOTE: This is for NOTE: This is for
simulation only. Refer to your BASIC Stamp simulation only. Refer to your BASIC Stamp
Manual for instructions on interfacing the BS2 Manual for instructions on interfacing the BS2
to the telephone system!to the telephone system!

203

'Prog. 7G: DATA Phonebook Dialer
' INSERT COMMON CIRCUIT DECLARATIONS
DATADATA @$00,"BILL"@$00,"BILL"
DATADATA @$10,"555-1234"@$10,"555-1234"
DATADATA @$20,"PARALLAX"@$20,"PARALLAX"
DATADATA @$30,"1-888-512-1024"@$30,"1-888-512-1024"
DATADATA @$40,"JIM"@$40,"JIM"
DATADATA @$50,"555-4567"@$50,"555-4567"
DATADATA @$60,0@$60,0
NameName VARVAR BYTEBYTE

XX VAR VAR BYTEBYTE
CC VARVAR BYTEBYTE
Name = $00Name = $00

Main:Main:
 DEBUG CLS,"Press PB1 to select name.",CR DEBUG CLS,"Press PB1 to select name.",CR
 DEBUG "Press PB2 to dial number.",CR DEBUG "Press PB2 to dial number.",CR
 FOR X = 0 TO 15 FOR X = 0 TO 15
 READ Name+X,C READ Name+X,C
 IF C = 0 THEN EndName IF C = 0 THEN EndName
 DEBUG C DEBUG C
 NEXT NEXT
EndName:EndName:
 PAUSE 1000 PAUSE 1000
 IF PB1=PB_ON THEN NextName IF PB1=PB_ON THEN NextName
 IF PB2=PB_ON THEN DialNumber IF PB2=PB_ON THEN DialNumber
GOTO MainGOTO Main

NextName:NextName:
 Name = Name + $20 Name = Name + $20
 READ Name,C READ Name,C
 IF C <> 0 THEN Main IF C <> 0 THEN Main
 Name = $00 Name = $00
GOTO MainGOTO Main

DialNumber:DialNumber:
 DEBUG CR DEBUG CR
 FOR X = 0 to 15 FOR X = 0 to 15
 READ Name+$10+X,C READ Name+$10+X,C
 IF C = 0 THEN EndDIAL IF C = 0 THEN EndDIAL
 DTMFOUT Speaker,[C] DTMFOUT Speaker,[C]
 DEBUG C DEBUG C
 NEXT NEXT
EndDial:EndDial:
 PAUSE 1000 PAUSE 1000
GOTO MainGOTO Main

204

Challenge 7E: Analyze and Modify PhonebookChallenge 7E: Analyze and Modify Phonebook

1) Analyze program 7G and answer the 1) Analyze program 7G and answer the
following questions:following questions:

How does the program identify the end of the How does the program identify the end of the
name or number?name or number?
How does the program move to the next name How does the program move to the next name
in the listing?in the listing?
How does the program access the correct How does the program access the correct
number to dial?number to dial?

2) Add an entry for your own name and 2) Add an entry for your own name and
number and test.number and test.

SolutionSolution

SolutionSolution

205

SummarySummary
Math operations are limited to integer math Math operations are limited to integer math
with intermediate operations of 65,535.with intermediate operations of 65,535.
Boolean operators, such as AND, OR can Boolean operators, such as AND, OR can
be used logically combine multiple be used logically combine multiple
evaluations.evaluations.
Boolean bitwise operators can be used in Boolean bitwise operators can be used in
modifying individual bits in a group.modifying individual bits in a group.
READ, WRITE and DATA instructions can READ, WRITE and DATA instructions can
be used to store and read information from be used to store and read information from
non-volatile EEPROM memory.non-volatile EEPROM memory.

206

Section 8: Data Communications & ControlSection 8: Data Communications & Control
Data Communications OvervieData Communications Overvie
Parallel CommunicationsParallel Communications
Serial CommunicationsSerial Communications

Synchronous Communications� –Synchronous Communications� –
ADC0831 8-Bit Serial A/DADC0831 8-Bit Serial A/D
Reading the ADC0831 with SHIFReading the ADC0831 with SHIF
O-Scope Capture of SHIFTINO-Scope Capture of SHIFTIN

SHIFTOUTSHIFTOUT
Asynchronous SerialAsynchronous Serial

SERIN InstructionSERIN Instruction
Controlling the Buzzer's ToneControlling the Buzzer's Tone
Typical Asynchronous TimingTypical Asynchronous Timing
RS-232 StandardsRS-232 Standards
SEROUTSEROUT

Pulse Width DataPulse Width Data
Using PULSOUTUsing PULSOUT

O-Scope Capture of PULSOUTO-Scope Capture of PULSOUT
Positioning a Servo with PULSOPositioning a Servo with PULSO
Pulse Train CapturePulse Train Capture

PULSINPULSIN
Pulse Width ModulationPulse Width Modulation

PWM InstructionPWM Instruction
PWM WaveformsPWM Waveforms
Filtering PWMFiltering PWM

207

Data Communications OverviewData Communications Overview
Simple devices such as switches, LEDs, Simple devices such as switches, LEDs,
and buzzers are pretty simple to control or and buzzers are pretty simple to control or
read since the data is very simple – On or read since the data is very simple – On or
Off.Off.

More sophisticated devices require the More sophisticated devices require the
transfer of larger amounts of data. These transfer of larger amounts of data. These
devices include Analog to Digital converters, devices include Analog to Digital converters,
real time clocks, numerous other devices real time clocks, numerous other devices
and, of course, other controllers.and, of course, other controllers.

208

There are 2 primary means to transfer data There are 2 primary means to transfer data
between devices:between devices:

Parallel:Parallel: All bits are transferred All bits are transferred
simultaneously. Printers using the Centronics simultaneously. Printers using the Centronics
printer port and internal computer data transfers printer port and internal computer data transfers
are examples of parallel communication.are examples of parallel communication.

Serial:Serial: Bits are transferred one at a time. Bits are transferred one at a time.
Serial transfer examples include your mouse, Serial transfer examples include your mouse,
USB ports, TV remote controls, and USB ports, TV remote controls, and
programming of your BASIC Stamp through the programming of your BASIC Stamp through the
serial port.serial port.

209

Parallel CommunicationsParallel Communications
In parallel communications as many data In parallel communications as many data
lines are required as needed to transfer the lines are required as needed to transfer the
entire 'chunk' of data. entire 'chunk' of data.

Transferring a nibble? 4 data lines are required.Transferring a nibble? 4 data lines are required.
Transferring a byte? 8 data lines are required.Transferring a byte? 8 data lines are required.
Transferring a 16-bit word? 16 data lines are Transferring a 16-bit word? 16 data lines are
required.required.

Additional lines may be needed for common Additional lines may be needed for common
grounds, synchronization and control.grounds, synchronization and control.

210

The image below shows the parallel transfer The image below shows the parallel transfer
of a nibble. At any point the individual bits of a nibble. At any point the individual bits
comprise a value.comprise a value.

(LSB) Data 0

(MSB) Data 3

Data 2

Data 1

Binary: 0011
Decimal: 3

Binary: 1101
Decimal: 13

Binary: 1111
Decimal: 15

211

BASIC Stamp Parallel CommunicationsBASIC Stamp Parallel Communications
In this example, parallel communications In this example, parallel communications
will be performed to send data from one will be performed to send data from one
BASIC Stamp to another. BASIC Stamp to another.

In this section, we will be modifying the In this section, we will be modifying the
circuit, and we can use unpopulated circuit, and we can use unpopulated
boards for this example.boards for this example.

Following this, the board will be re-Following this, the board will be re-
populated with 1 LED (P8), and the populated with 1 LED (P8), and the
buzzer.buzzer.

212

Connect lines between 2 BASIC Stamps as Connect lines between 2 BASIC Stamps as
follows:follows:
Stamp #1 – Transmitter

P0
P1
P2
P3

Vss

Stamp #2 – Receiver
P4
P5
P6
P7
Vss

213

Program each BASIC Stamp with the appropriate Program each BASIC Stamp with the appropriate
program. Monitor the the DEBUG window from the program. Monitor the the DEBUG window from the
receiver. Since only 4 bits are used, only 16 receiver. Since only 4 bits are used, only 16
unique combinations may be transferred.unique combinations may be transferred.

' Program 8A-T: Nibble Parallel Transmitter' Program 8A-T: Nibble Parallel Transmitter
X VAR NIBX VAR NIB 'Variable for counting'Variable for counting
DIRA = %1111DIRA = %1111 'Set nibble A as outputs'Set nibble A as outputs

'(P0 – P3)'(P0 – P3)

Main:Main:
 FOR X = 0 to 15FOR X = 0 to 15 ' Count 0 to15' Count 0 to15
 OUTA = X OUTA = X ' Place data on Nibble A' Place data on Nibble A
 PAUSE 500PAUSE 500
 NEXTNEXT
GOTO MainGOTO Main

' Program 8A-R: Nibble Parallel Receiver' Program 8A-R: Nibble Parallel Receiver
Y VAR NIBY VAR NIB
DIRB = %0000DIRB = %0000 ' Set nibble B as inputs' Set nibble B as inputs

' (P4 - P7)' (P4 - P7)

Main:Main:
 Y = INBY = INB ' Read nibble B' Read nibble B
 DEBUG ? YDEBUG ? Y ' Display incoming data' Display incoming data
GOTO MainGOTO Main

214

When program 8A is ran, and the receiver is When program 8A is ran, and the receiver is
monitored, a long stream of 0's, then 1's, monitored, a long stream of 0's, then 1's,
then 2's, etc, is seen. This is because there then 2's, etc, is seen. This is because there
are no means in the example to inform the are no means in the example to inform the
receiver when it it getting new data.receiver when it it getting new data.

A control line, or lines, could be used to A control line, or lines, could be used to
control flow and have the devices control flow and have the devices
communicate when new data is ready and communicate when new data is ready and
when it has been read.when it has been read.

215

Many devices transfer data in parallel formats. An Many devices transfer data in parallel formats. An
example is the ADC0801 Analog to Digital example is the ADC0801 Analog to Digital
converter which converts an analog voltage to a converter which converts an analog voltage to a
Parallel byte.Parallel byte.

Analog Voltage In
Digital Data Out

The ADC0801 has a number
of control pins for
communication control.
Please see an ADC0801 data
sheet for more information.

Link to datasheetLink to datasheet

216

Parallel Transfer SummaryParallel Transfer Summary
Parallel data transfer is very simple and very Parallel data transfer is very simple and very
fast. Data is simply placed-on or read-from fast. Data is simply placed-on or read-from
a 'bus'. Microcomputers use parallel data a 'bus'. Microcomputers use parallel data
transfers between the microprocessors and transfers between the microprocessors and
all the internal devices such as memory, all the internal devices such as memory,
sound cards, hard drives, CD-ROMS, etc.sound cards, hard drives, CD-ROMS, etc.

A major disadvantage is the large number of A major disadvantage is the large number of
lines (and thus I/O) required. This method lines (and thus I/O) required. This method
does not loan itself to communications over does not loan itself to communications over
any appreciable distance.any appreciable distance.

217

Serial communications sends a 'chunk' of Serial communications sends a 'chunk' of
data a single bit at a time. data a single bit at a time. 0110101001101010
This alleviates the need for numerous data This alleviates the need for numerous data
lines, but leads to other problems.lines, but leads to other problems.

Identify the data bits on the following trace:Identify the data bits on the following trace:

Is the data 01? 000111? 00001111?Is the data 01? 000111? 00001111?
Without more information, we really can't Without more information, we really can't
say for sure… and neither can a controller.say for sure… and neither can a controller.

Serial CommunicationsSerial Communications

218

In serial communications there are 2 major In serial communications there are 2 major
categories:categories:

Synchronous:Synchronous: Transmitter and receiver are Transmitter and receiver are
locked and synchronized in the transfer of data.locked and synchronized in the transfer of data.

Asynchronous:Asynchronous: Transmitter and receiver are Transmitter and receiver are
not locked, but in agreement of the transmission not locked, but in agreement of the transmission
timing.timing.

219

Synchronous Communications - SHIFTINSynchronous Communications - SHIFTIN
In synchronous communications often a separate In synchronous communications often a separate
clock line is used to lock the transmitter and clock line is used to lock the transmitter and
receiver together. receiver together.

One or the other sends clock pulses indicating One or the other sends clock pulses indicating
individual bit transfers.individual bit transfers.

We will work with a device that transfers data to We will work with a device that transfers data to
the BASIC Stamp using synchronous the BASIC Stamp using synchronous
communications. The ADC0831 serial analog to communications. The ADC0831 serial analog to
digital (A/D) converter. digital (A/D) converter. Link to data sheetLink to data sheet

220

ADC0831 8-Bit Serial A/DADC0831 8-Bit Serial A/D
Connect the ADC0831 as follows:Connect the ADC0831 as follows:

Note that the IC is placed
with top-down (notch at bottom)
for easier wiring.

The Activity
Board can accept
an ADC0831.
Note that slightly
different I/O are
used in the code.

Vin+

221

The ADC 0831 converts an analog voltage, The ADC 0831 converts an analog voltage,
typically 0-5V, to an 8-bit digital value.typically 0-5V, to an 8-bit digital value.
Pin descriptions:Pin descriptions:

CS:CS: Chip Select – Enables operation. Active low to Chip Select – Enables operation. Active low to
enable.enable.
Vin+:Vin+: Analog voltage input to be converted. Analog voltage input to be converted.
Vin-:Vin-: Negative reference (ground for this circuit). Negative reference (ground for this circuit).
CLK:CLK: Clock pulses are applied here to shift out each bit. Clock pulses are applied here to shift out each bit.
D0:D0: Data Output - Data appears at this output following Data Output - Data appears at this output following
each clock pulse.each clock pulse.
Vref:Vref: Upper reference voltage (+5V for this circuit). Upper reference voltage (+5V for this circuit).

222

Connecting a Temperature SensorConnecting a Temperature Sensor
Now that an A/D is connected, we need some Now that an A/D is connected, we need some
source of voltage to convert. A source could be a source of voltage to convert. A source could be a
voltage divider, a potentiometer, or many varieties voltage divider, a potentiometer, or many varieties
of sensors.of sensors.
One such sensor is the LM34, which converts One such sensor is the LM34, which converts
temperature to a voltage where the output is 0.01V temperature to a voltage where the output is 0.01V
per degree Fahrenheit. At 100F, the output will be per degree Fahrenheit. At 100F, the output will be
1.0 Volt. Connect the LM34 as indicated.1.0 Volt. Connect the LM34 as indicated.

Vdd Vin+
of ADC0831

Vss

After connecting, if the LM34
becomes very warm,
disconnect and reverse the
power leads. (It is common for
people to get these backwards).

Operational temperature for a
common LM34 style is +32F to
+300F.

Leaded LM34 from Parallax

223

Reading the ADC0831 with SHIFTINReading the ADC0831 with SHIFTIN
'Prog. 8B: Use SHIFTIN command to read the ADC0831 serial ADC'Prog. 8B: Use SHIFTIN command to read the ADC0831 serial ADC

ADresADres VARVAR BYTEBYTE ' A/D result (8 bits)' A/D result (8 bits)
ADcsADcs CONCON 1212 ' A/D enable (low true)' A/D enable (low true)
ADdatADdat CONCON 1515 ' A/D data line *** Activity board use 14' A/D data line *** Activity board use 14
ADclkADclk CONCON 1414 ' A/D clock *** Activity board use 15' A/D clock *** Activity board use 15

Main:Main:
LOW ADcsLOW ADcs ' Enable ADC' Enable ADC
SHIFTIN ADdat,ADclk,msbpost,[ADres\9]SHIFTIN ADdat,ADclk,msbpost,[ADres\9] ' Shift in the data' Shift in the data
HIGH ADcsHIGH ADcs ' Disable ADC' Disable ADC
DEBUG CLS,"Dec: ", DEC ADres DEBUG CLS,"Dec: ", DEC ADres ' Display the result in decimal' Display the result in decimal
DEBUG " Bin: ", IBIN8 ADres DEBUG " Bin: ", IBIN8 ADres ' Display the result in binary' Display the result in binary

' Display in hundredths of volts' Display in hundredths of volts
' Current Value * New Maximum (500) / Old Maximum (255) or 50/26' Current Value * New Maximum (500) / Old Maximum (255) or 50/26

DEBUG " Hundredths of Volt = ", DEC ADres * 50/26 ,CRDEBUG " Hundredths of Volt = ", DEC ADres * 50/26 ,CR
PAUSE 500PAUSE 500 ' Wait a 0.5 Seconds ' Wait a 0.5 Seconds

GOTO MainGOTO Main

224

A general form of SHIFTIN is:A general form of SHIFTIN is:
SHIFTIN SHIFTIN Dpin, Cpin, Mode, [Variable {\Bits}]Dpin, Cpin, Mode, [Variable {\Bits}]

DpinDpin defines the pin what will contain the data. defines the pin what will contain the data.
CpinCpin defines the pin that will be used for clocking. defines the pin that will be used for clocking.
Mode Mode defines the format the data will take in relation defines the format the data will take in relation
to the clock (more on this soon).to the clock (more on this soon).
VariableVariable is the variable to hold the data being is the variable to hold the data being
clocked-in.clocked-in.
BitsBits defines the number of bits to be shifted – thus defines the number of bits to be shifted – thus
the number of clock pulses to send.the number of clock pulses to send.

225

The example code is:The example code is:
LOW ADcsLOW ADcs ' Enable ADC' Enable ADC
SHIFTIN ADdat,ADclk,msbpost,[ADres\9]SHIFTIN ADdat,ADclk,msbpost,[ADres\9] ' Shift in the data' Shift in the data
HIGH ADcsHIGH ADcs ' Disable ADC' Disable ADC

When the SHIFTIN instruction is performed, the BASIC When the SHIFTIN instruction is performed, the BASIC
Stamp will send clock pulses on ADclk (P14), accept Stamp will send clock pulses on ADclk (P14), accept
the data on ADdat (P15), and shift the results into the data on ADdat (P15), and shift the results into
variable ADres for 9 bits. The 1variable ADres for 9 bits. The 1stst bit is unused, bit is unused,
providing 8 bits of data.providing 8 bits of data.

ADcs (P12) is set lowADcs (P12) is set low
to enable the IC.to enable the IC.

226

O-Scope Capture of SHIFTINO-Scope Capture of SHIFTIN

P15 – ADdat: Data line

P14 – ADclk: Clock line

ADres =

Clock 9 times

0

1st bit is
not valid data

0
MSB

0 1 0 1 0 1 0
LSB

= decimal 42
* 5V / 255 to scale
= 0.82V

Read Data after each clock pulse

First Pulse

At 100uS/Divisions, the data
rate is approximately
17,000 bits per second or
17 Kbps

227

Notice that first a clock pulse was sent, then Notice that first a clock pulse was sent, then
the data was read on the data line from the data was read on the data line from
MSB to LSB. This is why the setting of MSB to LSB. This is why the setting of
MSBPOST was used in the SHIFTIN mode.MSBPOST was used in the SHIFTIN mode.
MSB is first data, read after pulse (post).MSB is first data, read after pulse (post).

The other options for the mode are:The other options for the mode are:
MSBPREMSBPRE
LSBPOSTLSBPOST
LSBPRELSBPRE

228

Program 8B displays the temperature in Program 8B displays the temperature in
hundredths of volts.hundredths of volts.
ADres * 50 / 26 ADres * 50 / 26
Since 1V = 100F this calculation can also be used Since 1V = 100F this calculation can also be used
to calculate the temperature from the byte value.to calculate the temperature from the byte value.

With a total maximum range of 0 – 500F, and an With a total maximum range of 0 – 500F, and an
8-Bit A/D which has a maximum value of 255, the 8-Bit A/D which has a maximum value of 255, the
resolution of our circuit is:resolution of our circuit is:
500 / 255 or 1.96F (2F in integer math)500 / 255 or 1.96F (2F in integer math)

The LM34 cannot measure 500F, but the A/D is The LM34 cannot measure 500F, but the A/D is
scaled for 0-5V so 500 is used in the calculations.scaled for 0-5V so 500 is used in the calculations.

229

SHIFTOUTSHIFTOUT
SHIFTOUT works similarly to SHIFTIN, but SHIFTOUT works similarly to SHIFTIN, but
is used to send data to a device, such as an is used to send data to a device, such as an
external serial EEPROM.external serial EEPROM.
SHIFTOUT SHIFTOUT Dpin, Cpin, Mode, [OutputData {\Bits}]Dpin, Cpin, Mode, [OutputData {\Bits}]

Note that in both instructions, the BASIC
Stamp has control of the clock line.

230

Synchronous Communications SummarySynchronous Communications Summary
Using SHIFTIN and SHIFTOUT for Using SHIFTIN and SHIFTOUT for
synchronous communications, separate synchronous communications, separate
clock and data lines are required. The clock clock and data lines are required. The clock
is used to signal the position of each bit.is used to signal the position of each bit.

Since a separate line is used for bit position Since a separate line is used for bit position
signaling, relatively high data rates can be signaling, relatively high data rates can be
achieved.achieved.

This mode of communication still requires at This mode of communication still requires at
least 2 lines – Data and Clock. least 2 lines – Data and Clock.

231

Challenge 8A: Temperature AlarmChallenge 8A: Temperature Alarm
Program the BASIC Stamp to monitor the Program the BASIC Stamp to monitor the
temperature and alarm the buzzer at temperature and alarm the buzzer at
2000Hz for 1 second if a temperature 2000Hz for 1 second if a temperature
exceeds 100.exceeds 100.

SolutionSolution

232

Asynchronous CommunicationsAsynchronous Communications
Using Asynchronous communications, a single line Using Asynchronous communications, a single line
may be used. The position of each bit in the data may be used. The position of each bit in the data
stream is based upon an agreement in timing stream is based upon an agreement in timing
between the transmitter and receiver.between the transmitter and receiver.

This is a very popular form of serial This is a very popular form of serial
communications between devices, such as the communications between devices, such as the
serial port on your computer. When you program serial port on your computer. When you program
the BS2 or use DEBUG, the BASIC Stamp is using the BS2 or use DEBUG, the BASIC Stamp is using
RS-232 Asynchronous communication.RS-232 Asynchronous communication.

Another means is using the SEROUT and SERIN Another means is using the SEROUT and SERIN
instructions.instructions.

233

SERIN InstructionSERIN Instruction
A general form of the SERIN instruction is: A general form of the SERIN instruction is:
SEROUTSEROUT Tpin Baudmode, Timeout, Label,[Variable]Tpin Baudmode, Timeout, Label,[Variable]

Where:Where:
TpinTpin is the pin to transmit out from. 16 may be used to is the pin to transmit out from. 16 may be used to
transmit from the programming port.transmit from the programming port.
BaudmodeBaudmode is a value which defines characteristics of is a value which defines characteristics of
the data transmission, such as baud rate.the data transmission, such as baud rate.
TimeoutTimeout is the length of time to wait for data before is the length of time to wait for data before
continuing.continuing.
LabelLabel defines where to branch to if a timeout occurs. defines where to branch to if a timeout occurs.
VariableVariable holds the incoming data. holds the incoming data.

Let's test a program that uses SERIN to control Let's test a program that uses SERIN to control
the frequency of the buzzer.the frequency of the buzzer.

234

Controlling the Buzzer's ToneControlling the Buzzer's Tone
'Prog. 8C: Use SERIN instruction to control buzzer's tone'Prog. 8C: Use SERIN instruction to control buzzer's tone
RpinRpin CONCON 1616 ' From programming port' From programming port
BMode BMode CONCON 8484 ' BAUD mode -- Use 240 for BS2SX, BS2P' BAUD mode -- Use 240 for BS2SX, BS2P
MaxTime CONMaxTime CON 30003000 ' Timeout Value – 3 seconds' Timeout Value – 3 seconds
Freq Freq VAR VAR WORDWORD ' Hold incoming data' Hold incoming data

Main:Main:
 DEBUG CLS,"Enter a frequency and press return ",CRDEBUG CLS,"Enter a frequency and press return ",CR ' Request Freq' Request Freq
 SERIN RPin, BMode, MaxTime, Timeout, [DEC freq]SERIN RPin, BMode, MaxTime, Timeout, [DEC freq] ' Await serial data' Await serial data
 DEBUG "Playing tone at ", DEC Freq, "Hz.",CRDEBUG "Playing tone at ", DEC Freq, "Hz.",CR ' Notify user' Notify user
 FREQOUT 1,1000,FreqFREQOUT 1,1000,Freq ' Play tone' Play tone
 GOTO MainGOTO Main
Timeout:Timeout:
 DEBUG "Timeout!", CRDEBUG "Timeout!", CR ' Notify user of timeout' Notify user of timeout
 PAUSE 500PAUSE 500 ' Short wait' Short wait
GOTO MainGOTO Main

235

When the program runs, enter a value in the text When the program runs, enter a value in the text
box and hit Enter.box and hit Enter.

Notice what occurs when 3 seconds elapses Notice what occurs when 3 seconds elapses
without entering data.without entering data.

236

When data is entered in the textbox, it is transmitted from When data is entered in the textbox, it is transmitted from
the serial port to the BASIC Stamp which accepts it with the serial port to the BASIC Stamp which accepts it with
the SERIN instruction.the SERIN instruction.

As each character is entered it is seen in the Debug As each character is entered it is seen in the Debug
window output because the programming port window output because the programming port echoesechoes data data
back.back.

The SERIN instruction uses The SERIN instruction uses [DEC Freq][DEC Freq] to accept a string to accept a string
of characters for a value. If of characters for a value. If [Freq][Freq] were only used, only one were only used, only one
character of data would be accepted.character of data would be accepted.

The BASIC Stamp does NOT buffer data. The SERIN The BASIC Stamp does NOT buffer data. The SERIN
instruction must be awaiting data for it to be processed.instruction must be awaiting data for it to be processed.

237

When the transmitter sends data, it begins by When the transmitter sends data, it begins by
sending a sending a start-bitstart-bit, then the data bits (LSB to , then the data bits (LSB to
MSB) at set intervals, and finally a MSB) at set intervals, and finally a stop-bitstop-bit to to
complete the frame of data.complete the frame of data.

Transmission speeds are described by a BAUD Transmission speeds are described by a BAUD
rate. A common BAUD rate is 9600. This rate. A common BAUD rate is 9600. This
correlates to 9600 bits per second for RS-232. The correlates to 9600 bits per second for RS-232. The
inverse of this value (1/9600) is 104uS which is inverse of this value (1/9600) is 104uS which is
width of each bit, or bit interval.width of each bit, or bit interval.

The receiver will sense the start-bit:The receiver will sense the start-bit:
The first bit will be collected at the 1.5x the interval to be The first bit will be collected at the 1.5x the interval to be
at the center of the first data bit (1.5 x 104uS = 156uS).at the center of the first data bit (1.5 x 104uS = 156uS).
Each successive bit will be collected at the transmitted Each successive bit will be collected at the transmitted
interval.interval.

238

Typical Asynchronous TimingTypical Asynchronous Timing
Voltage = 5V/Division
Time = 200uS/Division

Start-Bit

156uS

1
LSB

104

0

104

1

104

1

104

0

104

0

104

1

104

0
MSB

104

Stop-Bit

Value = 01001101 Binary or 77 Decimal

Total byte transmission =
10 * 104uS = 1.04mS

239

RS-232 StandardsRS-232 Standards
While serial communication may be performed using any of While serial communication may be performed using any of
the standard I/O, they are not fully compliant with the RS-the standard I/O, they are not fully compliant with the RS-
232 standard.232 standard.

RS-232 defines a RS-232 defines a logic level 0 as +3 to +25Vlogic level 0 as +3 to +25V, and a logic , and a logic
levellevel 1 as –3V to –25V1 as –3V to –25V. This is an inverted signal with . This is an inverted signal with
non-TTL voltage levels.non-TTL voltage levels.

The programming port has circuitry to invert the signal to The programming port has circuitry to invert the signal to
make it more RS-232 compliant.make it more RS-232 compliant.

The BS2 can send data as inverted or non-inverted (true). The BS2 can send data as inverted or non-inverted (true).
This example used non-inverted since the programming This example used non-inverted since the programming
port inverts it with hardware.port inverts it with hardware.

240

Other major factors in defining the transmission Other major factors in defining the transmission
are:are:

Baud Rate – Speed at which the data is transmitted.Baud Rate – Speed at which the data is transmitted.
Number of data bits – Typically 8.Number of data bits – Typically 8.
Number of Stop bits – Typically 1.Number of Stop bits – Typically 1.
Whether Parity is used. Parity is an additional bit sent Whether Parity is used. Parity is an additional bit sent
to check the data frame for errors. Even (E), Odd (O) or to check the data frame for errors. Even (E), Odd (O) or
None (N) are common choices. Typically error None (N) are common choices. Typically error
checking is performed in other ways and the parity bit is checking is performed in other ways and the parity bit is
not used. not used.
A short hand method of summarizing the transmission A short hand method of summarizing the transmission
mode is: mode is:
Baud Bits-Parity-stop bitsBaud Bits-Parity-stop bits
9600 8-N-19600 8-N-1

241

The mode used in transmitting or receiving are The mode used in transmitting or receiving are
defined with a unique number.defined with a unique number.

The help files summarize common values. Note The help files summarize common values. Note
that since different BS2 styles operate at different that since different BS2 styles operate at different
speeds, it is important to ensure you are using the speeds, it is important to ensure you are using the
correct table. correct table.

242

SEROUTSEROUT
Just as SERIN can be used to accept data, Just as SERIN can be used to accept data,
SEROUT can be used to transmit data.SEROUT can be used to transmit data.
SEROUT SEROUT Tpin, Baudmode, [OutputData]Tpin, Baudmode, [OutputData]

In our example, DEBUG was used to send data to In our example, DEBUG was used to send data to
the computer. DEBUG is simply a specialized the computer. DEBUG is simply a specialized
SEROUT which is defined for P16, 9600 8-N-1. SEROUT which is defined for P16, 9600 8-N-1.

DEBUG also automatically opens the DEBUG DEBUG also automatically opens the DEBUG
window. Using SEROUT we must manually open window. Using SEROUT we must manually open
and configure the DEBUG Window.and configure the DEBUG Window.

243

Challenge 8B: Using SEROUTChallenge 8B: Using SEROUT
1) Program 8C used DEBUG to send data to the PC.1) Program 8C used DEBUG to send data to the PC.
Replace all DEBUG instructions with SEROUT instructions.Replace all DEBUG instructions with SEROUT instructions.
Sample: Sample: DEBUG "The value is: ", DEC X,CRDEBUG "The value is: ", DEC X,CR
Would become: Would become:
SEROUT TPIN, BMode, ["The value is: ", DEC X,CR]SEROUT TPIN, BMode, ["The value is: ", DEC X,CR]
P16 is used for both transmitting and receiving with theP16 is used for both transmitting and receiving with the
programming port. Test your program with the DEBUGprogramming port. Test your program with the DEBUG
window.window.

2) Change the BAUD rate to 1200 BAUD, 8-N-1, True for 2) Change the BAUD rate to 1200 BAUD, 8-N-1, True for
transmission and reception. Test.transmission and reception. Test.

SolutionSolution

SolutionSolution

244

Other SEROUT UsesOther SEROUT Uses
Since SEROUT only requires a single line Since SEROUT only requires a single line
for data transfers, it is a very popular choice for data transfers, it is a very popular choice
for communications.for communications.

Data may be easily transferred between Data may be easily transferred between
BASIC Stamps electrically:BASIC Stamps electrically:

BASIC Stamp #1
P0

Vss

BASIC Stamp #2
P1
Vss

.

.
SEROUT 0,84,[DataOut]
.
.

.

.
SERIN 1,84,[DataIn]
.
.

245

Optically, such as using infrared.Optically, such as using infrared.
LINKLINK

Using RF Transmitters/ReceiversUsing RF Transmitters/Receivers
LinkLink

For ModemsFor Modems
LinkLink

246

For Serial LCD ModulesFor Serial LCD Modules
LinkLink

With Motor ControlsWith Motor Controls
LinkLink

And many other devices including digital And many other devices including digital
voltmeters and GPS units.voltmeters and GPS units.

247

Asynchronous SummaryAsynchronous Summary
Asynchronous communications are very Asynchronous communications are very
popular because of the ability to transfer popular because of the ability to transfer
data with only a single line, making RF, data with only a single line, making RF,
optical and other forms possible easily.optical and other forms possible easily.

The data transfer is based on agreed The data transfer is based on agreed
timings and other characteristics.timings and other characteristics.

It is good for moderate data transfer speeds.It is good for moderate data transfer speeds.

248

Pulse Width DataPulse Width Data
Sometimes data may be represented by the Sometimes data may be represented by the
width of a byte instead of bits within a width of a byte instead of bits within a
stream.stream.

Some devices operate on sending or Some devices operate on sending or
receiving a pulse width.receiving a pulse width.

The BASIC Stamp can generate a pulse The BASIC Stamp can generate a pulse
using PULSOUT and capture a pulse using using PULSOUT and capture a pulse using
PULSIN.PULSIN.

249

Using PULSOUTUsing PULSOUT
PULSOUT sends a pulse for the defined period.PULSOUT sends a pulse for the defined period.
PULSOUT pin, periodPULSOUT pin, period

The pulse will be the opposite state of the current The pulse will be the opposite state of the current
state of the output.state of the output.

The period is a value between 1 and 65535. The The period is a value between 1 and 65535. The
length of the period is dependent on the style of length of the period is dependent on the style of
BS2:BS2:

BS2 and BS2E: 2uSBS2 and BS2E: 2uS
BS2SX: 0.8uSBS2SX: 0.8uS
BS2P: 0.75uSBS2P: 0.75uS

250

The following is a simple program to light the LED The following is a simple program to light the LED
using PULSOUT over a range of periods.using PULSOUT over a range of periods.

How would the operation of this circuit be different How would the operation of this circuit be different
if it began with LOW 8?if it began with LOW 8?

'Prog. 8D – Lighting an LED with PULSOUT
X VAR WORD
HIGH 8 'Start the LED in OFF state

Main:
 FOR X = 1 to 65000 STEP 1000
 PULSOUT 8, X ' Pulse LED for period of X
 DEBUG ? X ' Display value of X
 PAUSE 500 ' Short Pause
NEXT
GOTO Main

251

O-Scope Capture of PULSOUTO-Scope Capture of PULSOUT

With the BS2, a period of 1 is 2uS. If this pulse
lasts 20mS (5mS/div), what was the period? 10,000

252

Positioning a Servo with PULSOUTPositioning a Servo with PULSOUT
A very common use of PULSOUT is in A very common use of PULSOUT is in
motion control of a servo.motion control of a servo.

A non-modified servo operates by moving A non-modified servo operates by moving
the rotor to an absolute position defined by the rotor to an absolute position defined by
the length of a pulse.the length of a pulse.

A pulse width from 1mS to 2mS define a A pulse width from 1mS to 2mS define a
position for the servo between 0 and 180 position for the servo between 0 and 180
degrees.degrees.

253

1.0mS Pulses

1.5mS Pulses

2.0mS Pulses

254

The servos is powered from a high-current Vdd The servos is powered from a high-current Vdd
source (+5), though it can handle up to 6V for source (+5), though it can handle up to 6V for
greater force. The on-chip BS2 regulator does greater force. The on-chip BS2 regulator does
NOT supply sufficient current to drive the servo. If NOT supply sufficient current to drive the servo. If
your board has a separate regulator, you will be your board has a separate regulator, you will be
able to drive the servo.able to drive the servo.

The pulse stream The pulse stream
is directly from a is directly from a
BS2 I/O.BS2 I/O.

255

The BOE has headers for direct servo The BOE has headers for direct servo
connections from P12-P15. connections from P12-P15.

The power connection to the servo header is The power connection to the servo header is
Vin. If you are powering your BOE from a Vin. If you are powering your BOE from a
source greater than 6V the servo will be source greater than 6V the servo will be
damaged. 4AA batteries are the damaged. 4AA batteries are the
recommended source of power.recommended source of power.

Lead Color Code:
White
Red
Black

256

Controlling Servo PositionControlling Servo Position
With the BS2 and BS2 the period over which the With the BS2 and BS2 the period over which the
servo is controllable for 1mS – 2mS is 500 to servo is controllable for 1mS – 2mS is 500 to
1000. For the BS2SX and BS2P the period is 1000. For the BS2SX and BS2P the period is
1250-2500.1250-2500.

Program 8E uses serial communications with the Program 8E uses serial communications with the
DEBUG window to allow you to enter the angle to DEBUG window to allow you to enter the angle to
move the servo.move the servo.

Notice that a pulse train is sent by looping the Notice that a pulse train is sent by looping the
PULSOUT to provide the servo time to move to PULSOUT to provide the servo time to move to
the position. A pause of at least 20mS is required the position. A pause of at least 20mS is required
between pulses.between pulses.

257

'Prog. 8D: Controlling a servo using PULSOUT'Prog. 8D: Controlling a servo using PULSOUT
RpinRpinCONCON 1616 ' From programming port' From programming port
BMode BMode CONCON 8484 ' BAUD mode -- Use 240 for BS2SX, BS2P' BAUD mode -- Use 240 for BS2SX, BS2P
MaxTimeMaxTime CONCON 30003000 ' Timeout Value – 3 seconds' Timeout Value – 3 seconds
ServoServo CON CON 1313 ' Servo I/O' Servo I/O
Angle Angle VAR VAR WORDWORD ' Hold incoming data' Hold incoming data
PeriodPeriod VAR VAR WORDWORD ' Hold conversion to period' Hold conversion to period
XX VARVAR NIBNIB ' Counting variable' Counting variable

LOW SERVOLOW SERVO ' Start I/O out low for HIGH pulses' Start I/O out low for HIGH pulses

Main:Main:
 DEBUG CLS,"Enter an angle (0-180) and press return ",CRDEBUG CLS,"Enter an angle (0-180) and press return ",CR ' Request angle' Request angle
 SERIN RPin, BMode, MaxTime, Timeout, [DEC Angle]SERIN RPin, BMode, MaxTime, Timeout, [DEC Angle] ' Await serial data' Await serial data
 Period = Angle * 28 / 10 + 500Period = Angle * 28 / 10 + 500 ' Convert to persiod (BS2/E)' Convert to persiod (BS2/E)
' Period = Angle * 7 + 1250' Period = Angle * 7 + 1250 ' Convert to period (BS2SX/P)' Convert to period (BS2SX/P)
 DEBUG ? PeriodDEBUG ? Period ' Display period' Display period
 FOR X = 0 to 15FOR X = 0 to 15 ' Send pulse train of 16 pulses' Send pulse train of 16 pulses
 PULSOUT Servo, PeriodPULSOUT Servo, Period
 Pause 20Pause 20 ' Pause between pulses' Pause between pulses
 NEXTNEXT
Pause 1000Pause 1000
GOTO MainGOTO Main

Timeout:Timeout:
 DEBUG "Timeout!", CRDEBUG "Timeout!", CR ' Notify user of timeout' Notify user of timeout
 PAUSE 500PAUSE 500 ' Short wait' Short wait
GOTO MainGOTO Main

258

Pulse Train CapturePulse Train Capture

Pulse Width

259

Modified ServosModified Servos
The standard servo has motion only over a limited The standard servo has motion only over a limited
range (0-180 degrees). Internal to the servos is a range (0-180 degrees). Internal to the servos is a
feedback system and mechanical stops.feedback system and mechanical stops.

In modified version used by the BOE-Bot robot, In modified version used by the BOE-Bot robot,
the feedback network and stops are removed for the feedback network and stops are removed for
full, continuous motion as use as a wheel motor. full, continuous motion as use as a wheel motor.
The center value (750) is a dead stop, above and The center value (750) is a dead stop, above and
below this values will turn clockwise or counter below this values will turn clockwise or counter
clockwise at different speeds.clockwise at different speeds.

260

PULSINPULSIN
The BASIC Stamp also support the The BASIC Stamp also support the
measuring of a pulse using PULSIN.measuring of a pulse using PULSIN.
PULSIN PULSIN Pin, State, VariablePin, State, Variable

Pin Pin is the pin on which the pulse will be is the pin on which the pulse will be
measured.measured.

StateState is the desired pulse state to measure. 1 is the desired pulse state to measure. 1
for a HIGH pulse, 0 for a LOW Pulse.for a HIGH pulse, 0 for a LOW Pulse.

VariableVariable is where the period of the pulse is is where the period of the pulse is
stored.stored.

261

Several sensors report their readings by way of a Several sensors report their readings by way of a
pulse proportional to their reading.pulse proportional to their reading.

Ultra Sonic Range FinderUltra Sonic Range Finder
LINKLINK

PULSOUT and PULSIN can also be used for effective PULSOUT and PULSIN can also be used for effective
communications between BASIC Stamps, though communications between BASIC Stamps, though
'Stretching" the pulse slightly is recommended for 'Stretching" the pulse slightly is recommended for
accuracy.accuracy.

BASIC Stamp #1
P0

Vss

BASIC Stamp #2
P1
Vss

.
PULSOUT 0, DataOut * 10
.

.
PULSIN 1,DataIn
DataIn = DataIn / 10.
.

262

Pulse Width ModulationPulse Width Modulation
Pulse Width Modulation is used for device Pulse Width Modulation is used for device
control at varying levels.control at varying levels.

Instead of having an output ON or OFF, Instead of having an output ON or OFF,
PWM pulses the output to effectively control PWM pulses the output to effectively control
the percentage of time the output is on.the percentage of time the output is on.

This output may be used to drive DC loads This output may be used to drive DC loads
at a variable rate or voltage.at a variable rate or voltage.

263

PWM works by controlling the HIGH to LOW ratio PWM works by controlling the HIGH to LOW ratio
in a period of time.in a period of time.

In this wave form, it is high 25% of the time and In this wave form, it is high 25% of the time and
low 75% of the time. The average power applied low 75% of the time. The average power applied
to a load would be 25% of maximum. The to a load would be 25% of maximum. The
average voltage would be 25% of the maximum. average voltage would be 25% of the maximum.
Vave = %Duty * Vmax = 25% * 5V = 1.25VVave = %Duty * Vmax = 25% * 5V = 1.25V

264

Alternately, a 75% duty cycle would be high Alternately, a 75% duty cycle would be high
75% of the time. 75% of the time. 75% * 5V = 3.75V75% * 5V = 3.75V

When controlling the BASIC Stamp, Duty is When controlling the BASIC Stamp, Duty is
expressed as a value from 0 (0%) to expressed as a value from 0 (0%) to
255 (100%).255 (100%).

The BASIC Stamp PWM waves produced The BASIC Stamp PWM waves produced
will not be as 'clean' as discussed, but will will not be as 'clean' as discussed, but will
produce the desired effects.produce the desired effects.

265

PWM InstructionPWM Instruction
PWM PWM Pin, Duty, CyclesPin, Duty, Cycles

PinPin is the pin to use for output. is the pin to use for output.
DutyDuty is the value from 0 to 255 which defines the is the value from 0 to 255 which defines the
amount of time high.amount of time high.
CyclesCycles is the number of repetitions to drive the output, is the number of repetitions to drive the output,
0-255.0-255.

Program 8E will once again use the DEBUG Program 8E will once again use the DEBUG
interface to allow entering a PWM value for testing.interface to allow entering a PWM value for testing.

An LED does not have good linearity for An LED does not have good linearity for
brightness, but a high duty will cause the LED to brightness, but a high duty will cause the LED to
light dimly, and a low duty will light it more brightly. light dimly, and a low duty will light it more brightly.
Remember, the LED is connected active low.Remember, the LED is connected active low.

266

Driving an LED with PWMDriving an LED with PWM
'Prog. 8E: Controlling an LED with PWM'Prog. 8E: Controlling an LED with PWM
RpinRpin CONCON 1616 ' From programming port' From programming port
BMode BMode CONCON 8484 ' BAUD mode -- Use 240 for BS2SX, BS2P' BAUD mode -- Use 240 for BS2SX, BS2P
MaxTimeMaxTime CONCON 30003000 ' Timeout Value – 3 seconds' Timeout Value – 3 seconds
Duty Duty VAR VAR ByteByte ' Hold incoming data for duty' Hold incoming data for duty
XX VARVAR NIBNIB ' Counting variable' Counting variable

Main:Main:
 DEBUG CLS,"Enter a PWM duty (0-255) and press return ",CRDEBUG CLS,"Enter a PWM duty (0-255) and press return ",CR ' Request duty' Request duty
 SERIN RPin, BMode, MaxTime, Timeout, [DEC Duty]SERIN RPin, BMode, MaxTime, Timeout, [DEC Duty] ' Await serial data' Await serial data

FOR X = 0 to 5FOR X = 0 to 5 ' PWM LED 5 times' PWM LED 5 times
 PWM 8,Duty, 255PWM 8,Duty, 255
 NEXTNEXT
Pause 1000Pause 1000
GOTO MainGOTO Main

Timeout:Timeout:
 DEBUG "Timeout!", CRDEBUG "Timeout!", CR ' Notify user of timeout' Notify user of timeout
 PAUSE 500PAUSE 500 ' Short wait' Short wait
GOTO MainGOTO Main

267

PWM WaveformsPWM Waveforms

PWM duty of 25
(out of 255). Note
average voltage of
0.68V.

268

PWM duty of 225
(out of 255).
Note average
voltage of 4.21V

269

Filtering PWMFiltering PWM
By adding a low-pass filter to the circuit, the By adding a low-pass filter to the circuit, the
PWM may be converted to an analog PWM may be converted to an analog
voltage, though without buffering will be able voltage, though without buffering will be able
to drive very few devices without degrading to drive very few devices without degrading
the signal.the signal.

10K ohm is Brown-Black-Orange

The capacitor is an
Electrolytic
style and is polarity
sensitive. Be sure to
connect (–) to Vss

270

'Prog 8F: Cycle through PWM for Analog output
X VAR BYTE
Main:
 FOR X = 0 TO 255
 PWM 6,X,10 '***Activity board use P12
 NEXT
GOTO Main

PWM at I/O
Output

Filtered
PWM at Vout

Duty = 0 Duty = 255

271

End of Section 8End of Section 8

272

Section 9: Data AcquisitionSection 9: Data Acquisition
The DEBUG window is a great simple The DEBUG window is a great simple
method of monitoring data, but there are method of monitoring data, but there are
several software and hardware tools which several software and hardware tools which
can be of benefit also for monitor your can be of benefit also for monitor your
system.system.

This section will take a brief look at This section will take a brief look at
StampPlot Lite, StampPlot Pro/Standard, StampPlot Lite, StampPlot Pro/Standard,
StampDAQ, and the OPTAScope.StampDAQ, and the OPTAScope.

273

StampPlot ™ LiteStampPlot ™ Lite
StampPlot Lite is a digital strip chart StampPlot Lite is a digital strip chart
recorded for the BASIC Stamp and is freely recorded for the BASIC Stamp and is freely
distributed. distributed. LinkLink
StampPlot Lite accepts serial data and takes StampPlot Lite accepts serial data and takes
the place of your DEBUG window for the place of your DEBUG window for
monitoring.monitoring.

274

Some basic rules for using StampPlot:Some basic rules for using StampPlot:
To plot an analog value, DEBUG a decimal value.To plot an analog value, DEBUG a decimal value.
DEBUG DEC X,CRDEBUG DEC X,CR
5050
To plot a digital value, send up to 8 bits starting with %. To plot a digital value, send up to 8 bits starting with %.
DEBUG IBIN4 INA,CRDEBUG IBIN4 INA,CR
%1011%1011
To control or configure the plot, send a plot instruction To control or configure the plot, send a plot instruction
beginning with !. beginning with !. DEBUG "!SPAN 0,500",CRDEBUG "!SPAN 0,500",CR
Data strings not meeting the above will be sent to the Data strings not meeting the above will be sent to the
message box. message box. DEBUG "Hello World!",CRDEBUG "Hello World!",CR
All strings sent MUST end with a carriage return (CR).All strings sent MUST end with a carriage return (CR).

Lite can also send data collected to text files for Lite can also send data collected to text files for
importing into other programs.importing into other programs.

275

'Prog. 9A: Monitoring with StampPlot LIte
Temp VAR Word ' Holds converted temperature
ADres VAR BYTE ' A/D result (8 bits)
ADcs CON 12 ' A/D enable (low true)
ADdat CON 15 ' A/D data line *** Activity board use 14
ADclk CON 14 ' A/D clock *** Activity board use 15
LED CON 8
OUTPUT LED ' Set LED as output

PAUSE 1000 'Short pause for comms
DEBUG "!PNTS 500",CR 'Set number of data points
DEBUG "!RSET",CR 'Reset the plot

Main:
 LOW ADcs ' Enable ADC
 SHIFTIN ADdat,ADclk,msbpost,[ADres\9] ' Shift in the data
 HIGH ADcs ' Disable ADC
 Temp = ADres * 50/26 ' Calculate temperature
 HIGH LED ' Turn off alarm LED
 IF Temp < 100 THEN NoAlarm ' Is above alarm setpoint?
 DEBUG "Over Temperature!",CR ' Add message
 LOW 8 ' Light Alarm LED
NoAlarm:
 DEBUG DEC Temp, CR ' Sent temperature
 DEBUG IBIN1 OUT8,CR ' Send alarm bit as binary
 PAUSE 500 ' Wait a 0.5 Seconds
GOTO Main

276

When the DEBUG Windows open, it's a good idea When the DEBUG Windows open, it's a good idea
to make sure your data is properly formatted.to make sure your data is properly formatted.

Then close the DEBUG window so StampPlot can Then close the DEBUG window so StampPlot can
access that COM port.access that COM port.

Control &
Configuration

Analog Data

Digital Data

277

Select Port

Connect and
Plot Data

Reset your
BASIC Stamp

and watch your
data!

278

StampPlot ™ Standard/ProStampPlot ™ Standard/Pro
StampPlot Standard and Pro are compatible with StampPlot Standard and Pro are compatible with
Lite, but adds many features including Multiple Lite, but adds many features including Multiple
analog channels and Stamp controlled Graphical analog channels and Stamp controlled Graphical
User Interface (GUI) construction. User Interface (GUI) construction. LinkLink

Multiple analog values can be plotted by Multiple analog values can be plotted by
separating with a comma.separating with a comma.
DEBUG DEC X, ",", DEC Y,CRDEBUG DEC X, ",", DEC Y,CR
50,10050,100

Plot Control Objects can be created and read with Plot Control Objects can be created and read with
code.code.

279

'Prog. 8C: Plot and control with StampPlot Standard/Pro
Temp VAR Word ' Converted temperature
SetPoint VAR Byte ' Setpoint value
ADres VAR BYTE ' A/D result (8 bits)
ADcs CON 12 ' A/D enable (low true)
ADdat CON 15 ' A/D data line *** Activity board use 14
ADclk CON 14 ' A/D clock *** Activity board use 15
LED CON 8
OUTPUT LED ' Set LED as output

PAUSE 1000
DEBUG CR,"!POBJ Clear",CR ' Clear all plot control objects
DEBUG "!PPER 80,100",CR ' Set plot size

'Create a meter called Temp
DEBUG "!POBJ oMeter.Temp=80.,90.,20.,20.,0,200,0,200",CR

' Create a slider called SetP
DEBUG "!POBJ oHSlider.SetP=83.,68.,15.,5.,0,200,100",CR

DEBUG "!PNTS 500",CR ' Number of data points
DEBUG "!RSET",CR ' Reset Plot

SetPoint = 100 ' Set initial setpoint

Continued on next slide

280

Main:
GOSUB Read_Temp
GOSUB Get_SetPoint
GOSUB Update_Plot
PAUSE 500

GOTO Main

Read_Temp:
LOW ADcs ' Enable ADC
SHIFTIN ADdat,ADclk,msbpost,[ADres\9] ' Shift in the data
HIGH ADcs ' Disable ADC

 Temp = ADres * 50/26 ' Convert to temperature
HIGH LED ' Alarm LED off
IF Temp < SetPoint THEN NoAlarm ' Check if below setpoint
LOW 8 ' Enable alarm if not below

NoAlarm:
Return

Get_SetPoint:
 DEBUG "!READ (Setp)",CR ' Read setpoint from plot
 SERIN 16,84,500, Timeout,[DEC SetPoint] ' Accept returning data
Timeout:
Return

Update_Plot:
 DEBUG DEC Temp, ",", DEC SetPoint, CR ' Plot temp & setpoint
 DEBUG IBIN1 OUT8,CR ' plot alarm bit
 DEBUG "!POBJ Temp = ", DEC Temp,CR ' update meter reading
Return

281

Adjust
Setpoint

Select PortConnect &
Plot

282

StampPlot Standard is free for use by home StampPlot Standard is free for use by home
& educational BASIC Stamp users.& educational BASIC Stamp users.
The Pro license adds the ability to perform The Pro license adds the ability to perform
drag and drop building of interfaces.drag and drop building of interfaces.

283

StampDAQ ™StampDAQ ™
StampDAQ is a macro for Excel® (2000 or StampDAQ is a macro for Excel® (2000 or
higher) that may be used to bring data higher) that may be used to bring data
directly into a spread sheet for analysis. directly into a spread sheet for analysis.
LinkLink

Up to 10 values may be accepted.Up to 10 values may be accepted.
DEBUG "DATA,TIME,", DEC val1,",", DEC val2,CRDEBUG "DATA,TIME,", DEC val1,",", DEC val2,CR
DATA,TIME,50,100DATA,TIME,50,100
TIME is replaced by current time by StampDAQTIME is replaced by current time by StampDAQ

284

'Prog. 9C: Sending data to StampDAQ
Temp VAR Word
SetPoint VAR Byte
ADres VAR BYTE ' A/D result (8 bits)
ADcs CON 12 ' A/D enable (low true)
ADdat CON 15 ' A/D data line *** Activity board use 14
ADclk CON 14 ' A/D clock *** Activity board use 15
LED CON 8

PAUSE 1000
DEBUG CR,"CLEARDATA",CR 'Clear columns
DEBUG "LABEL,TIME,Temperature,,,,,,,",CR 'Label columns

Main:
LOW ADcs ' Enable ADC
SHIFTIN ADdat,ADclk,msbpost,[ADres\9] ' Shift in the data
HIGH ADcs ' Disable ADC
Temp = ADres * 50/26 ' Calculate Temp
DEBUG "DATA,TIME,", DEC Temp, CR ' Send data

 PAUSE 500
GOTO Main

285

Select a Worksheet
by dragging to 1st

position

Select COM port
Settings

Connect and reset the
BASIC Stamp

286

OPTAScope ®OPTAScope ®
Aside from using serial data, the OPTAScope is a Aside from using serial data, the OPTAScope is a
great little inexpensive 2–Channel USB O-Scope.great little inexpensive 2–Channel USB O-Scope.
The waveform captures in this tutorial were The waveform captures in this tutorial were
produced with it.produced with it.

LINK

287

End of Section 9End of Section 9

288

Appendix A: PBASIC 2.5 UpdatesAppendix A: PBASIC 2.5 Updates
IntroductionIntroduction
Version 2.5 DirectiveVersion 2.5 Directive
Compatibility with Version 2.0Compatibility with Version 2.0
I/O Aliases Using PINI/O Aliases Using PIN
IF…THEN…ELSEIF…THEN…ELSE
SELECT…CASESELECT…CASE
DO…LOOPDO…LOOP
EXITEXIT
ON…GOTOON…GOTO
ON…GOSUBON…GOSUB
DEBUGINDEBUGIN
Coding on Multiple LinesCoding on Multiple Lines

289

IntroductionIntroduction
Using the exact same BASIC Stamp, Using the exact same BASIC Stamp,
Parallax has extended the PBASIC Parallax has extended the PBASIC
language to incorporate new functionality language to incorporate new functionality
and control structures.and control structures.

The vast majority of the additions previously The vast majority of the additions previously
could have been formed using IF-THEN could have been formed using IF-THEN
statements, but the additions allow for statements, but the additions allow for
cleaner, more-structured coding.cleaner, more-structured coding.

290

Version 2.5 DirectiveVersion 2.5 Directive
Just as the program must contain a directive Just as the program must contain a directive
to define the version of the BASIC Stamp to define the version of the BASIC Stamp
being programmed, a new directive is added being programmed, a new directive is added
to define the version of the tokenizer to use.to define the version of the tokenizer to use.

291

Compatibility with Version 2.0Compatibility with Version 2.0
The new tokenizer (2.5) is fully compatible The new tokenizer (2.5) is fully compatible
with the previous version 2.0 code with one with the previous version 2.0 code with one
exception:exception:

Version 2.0 did NOT require a colon following a Version 2.0 did NOT require a colon following a
label identifier, though, by convention, one was label identifier, though, by convention, one was
normally used.normally used.
Version 2.5 DOES require a colon following a Version 2.5 DOES require a colon following a
label identifier.label identifier.

'{$STAMP BS2}
'{$PBASIC 2.5}

Main:
' Code goes here
Goto Main

292

I/O Aliases Using PINI/O Aliases Using PIN
In Version 2.0, both CON and VAR were used to define In Version 2.0, both CON and VAR were used to define
aliases for I/O to allow different instructions to access the aliases for I/O to allow different instructions to access the
I/O:I/O:
LED1 VAR OUT8LED1 VAR OUT8
LED1_Pin CON8LED1_Pin CON8
HIGH LED1_PinHIGH LED1_Pin ' HIGH 8' HIGH 8
LED1=0LED1=0 ' OUT8 = 0' OUT8 = 0

The PIN type definition creates an alias that may be used The PIN type definition creates an alias that may be used
in either fashion:in either fashion:
LED1 PIN 8LED1 PIN 8
HIGH LED1HIGH LED1 ' HIGH 8' HIGH 8
LED1 = 0LED1 = 0 ' OUT8 = 0' OUT8 = 0

This can greatly simplify programming.This can greatly simplify programming.

293

IF…THEN…ELSEIF…THEN…ELSE
The previous implementation of the IF statement was:The previous implementation of the IF statement was:
IF IF conditioncondition THEN THEN addressLabeladdressLabel
If the condition is TRUE, execution would branch to the If the condition is TRUE, execution would branch to the
defined label.defined label.

'{$STAMP BS2}
'Prog App A-1: Traditional IF
' Blink LED fast if switch is pressed, Blink LED slow if not
pressed
Main:
IF IN10=0 Then Fast 'Branch if pressed (TRUE)

LOW 8 'Blink slow if not pressed
PAUSE 1000
HIGH 8: PAUSE 1000

Fast:
LOW 8 'Blink Fast
PAUSE 200
HIGH 8: PAUSE 200

Done:
GOTO Main

Perform if
condition TRUE

Perform if
condition

FALSE

294

The new implementation allows the use of The new implementation allows the use of
non-jumps as the THEN statement:non-jumps as the THEN statement:
IF IF conditioncondition THEN THEN statements(s)statements(s)
IF IN10=0 THEN LOW 8: PAUSE 200: HIGH 8IF IN10=0 THEN LOW 8: PAUSE 200: HIGH 8

A statement block can be performed using an A statement block can be performed using an
IF-ENDIF block.IF-ENDIF block.
IFIF IN10=0 IN10=0 THENTHEN

LOW 8LOW 8
PAUSE 200PAUSE 200
HIGH 8HIGH 8

ENDIFENDIF

295

An ELSE may be used to define statements An ELSE may be used to define statements
to be performed if the statements are to be performed if the statements are
FALSE:FALSE:
IF IF conditioncondition THEN THEN

'Condition is true statements'Condition is true statements
ELSEELSE

'Condition is FALSE statements'Condition is FALSE statements
ENDIFENDIF

296

'{$STAMP BS2}
'{$PBASIC 2.5}
'Prog App A-2: Enhanced IF-THEN-ELSE
'Blink LED fast if switch is pressed, Blink LED slow if not pressed
Main:
IF IN10=0 THEN

LOW 8 'Blink fast if pressed (TRUE)
PAUSE 200
HIGH 8: PAUSE 200

ELSE
LOW 8 'Blink slow if NOT pressed (false)
PAUSE 1000
HIGH 8: PAUSE 1000

ENDIF
GOTO Main

Perform if
condition TRUE

Perform if
condition

FALSE

297

SELECT…CASESELECT…CASE
SELECT-CASE may be used to select an action SELECT-CASE may be used to select an action
based on the current status of a value.based on the current status of a value.
SELECT-CASE may be used to replace multiple SELECT-CASE may be used to replace multiple
IF-THEN statements.IF-THEN statements.
The structure is:The structure is:
SELECT expression:SELECT expression:

CASE conditionCASE condition
statement(s) to perform if condition is truestatement(s) to perform if condition is true

CASE conditionCASE condition
statement(s) to perform if condition is truestatement(s) to perform if condition is true

CASE ELSECASE ELSE
statement(s) to perform if no other conditionsstatement(s) to perform if no other conditions
are metare met

ENDSELECTENDSELECT

298

The condition for an expression may be:The condition for an expression may be:
A single value:A single value:
CASE 10CASE 10
A relational operator <,>,<=,<>,>=,=:A relational operator <,>,<=,<>,>=,=:
CASE <=5000CASE <=5000
Multiple conditions:Multiple conditions:
CASE <10, >100CASE <10, >100
A range:A range:
40 TO 10040 TO 100

299

' Prog App. A-2: Using Case-Select
'{$PBASIC 2.5}
POT VAR WORD : LED1 PIN 8 : LED2 PIN 9
SPEAKER PIN 1 'Use 11 with activity board
Main:
 HIGH 7: PAUSE 1 : RCTIME 7,1,POT ' Read potentiometer
 DEBUG ? POT ' Display value
 SELECT POT ' Begin SELECT based on POT value
 CASE < 1000 ' Perform if POT < 1000

HIGH LED2 ' LED2 Off
LOW LED1 ' LED1
FREQOUT Speaker,250,1000 ' Sound low tone

 CASE 1000 to 3000 ' Perform if POT is 1000 to 3000
HIGH LED2 ' Both LEDs off
HIGH LED1

 CASE 3000 TO 6000 ' Perform if POT is 3000 to 6000
LOW LED2 ' LED2 on
HIGH LED1 ' LED1 off
FREQOUT Speaker,250,2000 ' Sound high tone

 CASE ELSE ' Perform if no other case matches
DEBUG "OUT OF RANGE",CR ' Display message
PAUSE 250

 ENDSELECT ' End of select block
GOTO Main ' Repeat

300

DO…LOOPDO…LOOP
The DO-LOOP is a structured means of repeating The DO-LOOP is a structured means of repeating
a section of code, with or without conditionals.a section of code, with or without conditionals.
In it's simplest form, the DO-LOOP is used to In it's simplest form, the DO-LOOP is used to
repeat code continually, much as repeat code continually, much as GOTO MainGOTO Main has has
been used.been used.

DODO
statements(s) statements(s)

LOOPLOOP

The statements between DO and LOOP will repeat The statements between DO and LOOP will repeat
'forever'.'forever'.

301

A condition may be used to determine if the A condition may be used to determine if the
statements will be performed prior to the statements will be performed prior to the
statements (pretest).statements (pretest).
DO WHILE (DO WHILE (conditioncondition))

Statement(s)Statement(s)
LOOPLOOP

If the condition is determined to be false, If the condition is determined to be false,
execution will branch to after the loop.execution will branch to after the loop.

302

A condition may be used to determine if the A condition may be used to determine if the
statements will be performed again statements will be performed again afterafter the the
statements are performed once (posttest).statements are performed once (posttest).
DO DO

Statement(s)Statement(s)
LOOP WHILE (LOOP WHILE (conditioncondition))

If the condition is determined to be true If the condition is determined to be true after after
passing through oncepassing through once, execution will branch , execution will branch
to the top of the loop.to the top of the loop.

303

'{$PBASIC 2.5}
'Prog App A-4: Test of DO-LOOP
LED1 PIN 8
LED2 PIN 9
SW1 PIN 10
SW2 PIN 11

DO ' Start of main loop
 DO WHILE (SW1=0) ' Start of loop, perform

' if SW1 is pressed
 TOGGLE LED1 ' Blink LED1
 PAUSE 100
 LOOP ' End of loop

 DO ' Start of loop
 TOGGLE LED2 ' blink LED2
 PAUSE 100
 LOOP WHILE (SW2=0) ' End of loop,

' REPEAT if switch is pressed
 PAUSE 500 ' Pause for 1/2 second
LOOP ' End of main loop

Code is performed
only if condition is true,
then repeats while
the condition is true.

Code is performed
once, then repeats
while the condition
is true.

304

EXITEXIT
Exit may be used to gracefully exit a FOR-LOOP Exit may be used to gracefully exit a FOR-LOOP
or a DO-LOOP based on a condition.or a DO-LOOP based on a condition.
DODO

statement1statement1
statement2statement2
IF condition THEN EXITIF condition THEN EXIT

LOOPLOOP
statement3statement3

If the condition in the IF-THEN is TRUE, the DO-If the condition in the IF-THEN is TRUE, the DO-
LOOP will terminate and statement3 will be LOOP will terminate and statement3 will be
performed. performed.

305

ON…GOTOON…GOTO
ON-GOTO is functionally equivalent to the ON-GOTO is functionally equivalent to the
BRANCH statement in that an index value is BRANCH statement in that an index value is
used to branch to one of several labels.used to branch to one of several labels.
ON ON offsetoffset GOTO GOTO label0, label1, label2label0, label1, label2……

ON X GOTO Label0, Label1, Label2ON X GOTO Label0, Label1, Label2

Label0:Label0:
……

Label1:Label1:
……

Label2:Label2:
……

X = 0X = 0

X = 1X = 1

X = 2X = 2

306

ON…GOSUBON…GOSUB
ON-GOSUB combines the clean-coding of ON-GOSUB combines the clean-coding of
the ON-GOTO (or BRANCH) with the power the ON-GOTO (or BRANCH) with the power
of a GOSUB.of a GOSUB.
ON ON indexindex GOSUB GOSUB label0, label1, label2…label0, label1, label2…
ON X GOSUB Label0, Label1, Label2ON X GOSUB Label0, Label1, Label2

Label0:Label0:
……
RETURNRETURN

Label1:Label1:
……
RETURNRETURN

Label2:Label2:
……
RETURNRETURN

X = 0X = 0

X = 1X = 1

X = 2X = 2

307

'{$PBASIC 2.5}
'Prog App A-5: Test of ON-GOSUB
LED1 PIN 8 : LED2 PIN 9 : SW1 PIN 10: SW2 PIN 11 : Speaker PIN 1
Press_Count VAR NIB : X VAR BYTE

DO
 IF SW1=0 THEN Press_Count = Press_Count + 1 ' If SW1 pressed, add one
 IF Press_Count = 4 THEN Press_Count = 0 ' If 4, reset to 0
 ON Press_Count GOSUB Blink, Wink, Cycle, Quiet 'GOSUB based on Press_Count
 PAUSE 500
LOOP

Blink: 'Routine blinks LEDs and plays one tone
 TOGGLE LED1 : TOGGLE LED2 : FREQOUT Speaker, 100,500 : PAUSE 250
RETURN

Wink: 'Routine winks each LED and plays 2 tones
 LED1 = 0 : LED2 = 1 : FREQOUT Speaker, 500,4000 : LED1 = 1: LED2 = 0 : FREQOUT Speaker, 500,2000
RETURN

Cycle: 'Blinks LED and cycles frequency up
 FOR X = 1 to 20
 TOGGLE LED2 : TOGGLE LED2 : FREQOUT Speaker, X * 10, 200 * X
 NEXT
RETURN

Quiet: 'Peaceful silence
 LED1 = 1 : LED2 = 1
RETURN

308

DEBUGINDEBUGIN
Just as DEBUG implements a SEROUT to Just as DEBUG implements a SEROUT to
send text and data at 9600 BAUD back to send text and data at 9600 BAUD back to
the PC using the programming port, the PC using the programming port,
DEBUGIN accepts serial data from the PC DEBUGIN accepts serial data from the PC
on the programming port of the BASIC on the programming port of the BASIC
Stamp. This was previously done using the Stamp. This was previously done using the
SERIN instruction.SERIN instruction.

309

'{$PBASIC 2.5}
'Prog App A-6: Test of DEBUGIN to play a tone
Speaker PIN 1
Freq VAR WORD

DO
 DEBUG CLS,"Enter a frequency to play",CR ' Request a frequency
 DEBUGIN DEC Freq ' Accept returning data
 FREQOUT Speaker, 1000, Freq ' Sound tone
LOOP

310

Coding on Multiple LinesCoding on Multiple Lines
Sometimes a line of code becomes so long Sometimes a line of code becomes so long
it is difficult to view on the screen on in a it is difficult to view on the screen on in a
printout.printout.
Version 2.5 allows breaking a line after a Version 2.5 allows breaking a line after a
comma (not in quotes), for instructions that comma (not in quotes), for instructions that
may have many parameters, such as ON…may have many parameters, such as ON…
GOSUB:GOSUB:
ON x GOSUB label0, label2, label3,ON x GOSUB label0, label2, label3,

 label4, label5 label4, label5

311

SummarySummary
PBASIC 2.5 adds a great variety of codes to PBASIC 2.5 adds a great variety of codes to
make coding easier and more readable.make coding easier and more readable.

Structures such as IF…THEN…ELSE, Structures such as IF…THEN…ELSE,
ON…GOSUB, and SELECT…CASE allow ON…GOSUB, and SELECT…CASE allow
programmers to structure the code better.programmers to structure the code better.

Simple enhancements, such as PIN, remove Simple enhancements, such as PIN, remove
complexity from programming.complexity from programming.

312

End Appendix AEnd Appendix A

313

Appendix B: Number SystemsAppendix B: Number Systems
Introduction to Number SystemsIntroduction to Number Systems
DecimalDecimal
BinaryBinary
Binary to DecimalBinary to Decimal
Bit GroupingsBit Groupings
HexadecimalHexadecimal
Hexadecimal to DecimalHexadecimal to Decimal
Hexadecimal to BinaryHexadecimal to Binary
Binary Coded Decimal (BCD)Binary Coded Decimal (BCD)
Conversion TableConversion Table
Conversion CalculatorsConversion Calculators
ASCII CodesASCII Codes

314

Introduction to Number SystemsIntroduction to Number Systems
While we live in a world where the decimal While we live in a world where the decimal
number is predominant in our lives, number is predominant in our lives,
computers and digital systems are much computers and digital systems are much
happier working in another number system – happier working in another number system –
Binary.Binary.

This section will discuss various number This section will discuss various number
systems you will commonly encounter when systems you will commonly encounter when
working with microcontrollers.working with microcontrollers.

315

DecimalDecimal
It helps to first take a fresh look at a number It helps to first take a fresh look at a number
system we are familiar with. Decimal.system we are familiar with. Decimal.

Decimal is a Base-10 number system Decimal is a Base-10 number system
(Deci meaning 10). We use Base-10 (Deci meaning 10). We use Base-10
because that is the number of units on the because that is the number of units on the
first counting device used…. Fingers!first counting device used…. Fingers!

In a Base-10 number system there are 10 In a Base-10 number system there are 10
unique symbols – 0 through 9.unique symbols – 0 through 9.

316

Any position in a value can only contain one Any position in a value can only contain one
of these symbols, such as 1354. There are of these symbols, such as 1354. There are
4 places, each with one digit.4 places, each with one digit.

Each place to the left of the decimal point Each place to the left of the decimal point
signifies a higher power of 10.signifies a higher power of 10.

100101102103

= 1= 10= 100= 1000

317

4
x 1

4

5
x10

50

3
x100

300

1
x1000

1000

A number, such as 1354, is each place A number, such as 1354, is each place
value multiplied weight of that position.value multiplied weight of that position.

Thus 1354 is 1000 + 300 + 50 + 4.

318

BinaryBinary
In digital systems, there only only states In digital systems, there only only states
such as ON/OFF, TRUE/FALSE, such as ON/OFF, TRUE/FALSE,
HIGH/LOW, or any manner of other terms HIGH/LOW, or any manner of other terms
used… including only the digits of 0 and 1.used… including only the digits of 0 and 1.

Having only 2 states or unique values Having only 2 states or unique values
creates a binary number system. In binary, creates a binary number system. In binary,
we count and work with values in the same we count and work with values in the same
manner as decimal.manner as decimal.

319

Just as in decimal, each place is a higher Just as in decimal, each place is a higher
power, but not of 10, but 2 since binary is a power, but not of 10, but 2 since binary is a
2-based system.2-based system.

20212223

= 1= 2= 4= 8

320

By taking the value,1001, and multiplying By taking the value,1001, and multiplying
each digit by the weight of the position, we each digit by the weight of the position, we
can convert a binary value to decimal.can convert a binary value to decimal.

1
x 1

1

0
x2

0

0
x4

0

1
x8

8

Thus %1001 in binary is
8 + 0 + 0 + 1 = 9 Decimal

Binary to DecimalBinary to Decimal

321

If we see a number of 1001, is that decimal or If we see a number of 1001, is that decimal or
binary, or some other number system?binary, or some other number system?

When various number systems are used some When various number systems are used some
means is used to denote the system. means is used to denote the system.

Common ways to denote binary are:Common ways to denote binary are:
1001100122

%1001%1001 (Format used in programming the BASIC Stamp)(Format used in programming the BASIC Stamp)
1001b1001b
0b10010b1001

Decimal is typically not specially notated, but may Decimal is typically not specially notated, but may
be written as:be written as: 1001 10011010..

322

Bit GroupingsBit Groupings
Often Bits (Often Bits (BBinary Diginary Digitsits) are grouped to form) are grouped to form
specially sized combinations.specially sized combinations.

Nibble – 4 BitsNibble – 4 Bits

Byte – 8 BitsByte – 8 Bits

Word – 16 BitsWord – 16 Bits

Word is actually used to refer to a pre-defined Word is actually used to refer to a pre-defined
number of bits of any size (16-bit word, 24-Bit number of bits of any size (16-bit word, 24-Bit
word, 32-Bit word, etc). In programming the word, 32-Bit word, etc). In programming the
BASIC Stamp, 16-bits will be a WORD.BASIC Stamp, 16-bits will be a WORD.

323

In a nibble with 4-bits, the range of values isIn a nibble with 4-bits, the range of values is
%0000 (Decimal 0) to%0000 (Decimal 0) to
%1111 (Decimal 15: 8+4+2+1).%1111 (Decimal 15: 8+4+2+1).
Note there are 16 values: 0 to 15.Note there are 16 values: 0 to 15.

In a byte with 8-bits, the range of values isIn a byte with 8-bits, the range of values is
%00000000 (Decimal 0) to %00000000 (Decimal 0) to
%11111111 (Decimal 255: %11111111 (Decimal 255:
128+64+32+16+8+4+2+1)128+64+32+16+8+4+2+1)
Note there are 256 values: 0 to 255.Note there are 256 values: 0 to 255.

An equation to find the maximum count for any An equation to find the maximum count for any
number of bits is: number of bits is: 22nn-1 where n = number of bits-1 where n = number of bits. .
2288-1=255.-1=255.

324

HexadecimalHexadecimal
Digital systems work in binary because of their Digital systems work in binary because of their
nature of having only 2 states, but as humans we nature of having only 2 states, but as humans we
have a difficulty dealing with numbers such as %have a difficulty dealing with numbers such as %
01111101. It is long and difficult to read.01111101. It is long and difficult to read.

Hexadecimal is good middle between decimal and Hexadecimal is good middle between decimal and
binary. It allows for easier use, $7C, and relates binary. It allows for easier use, $7C, and relates
directly to binary.directly to binary.

Hexadecimal is a base-16 number system. It is Hexadecimal is a base-16 number system. It is
denoted by denoted by $7C $7C (BASIC Stamp)(BASIC Stamp), 7Ch, 0x7C , 7Ch, 0x7C oror
7C7C1616..

325

Each place is a higher power of 16.Each place is a higher power of 16.

16016116223

= 1= 16= 256= 4096

But since it is base-16, 16 unique digits are But since it is base-16, 16 unique digits are
needed . The first 10 are carried over from needed . The first 10 are carried over from
decimal, 0-9. The last 6 borrow from the decimal, 0-9. The last 6 borrow from the
alphabet, A-F, where:alphabet, A-F, where:
$A = 10 $B = 11 $C = 12$A = 10 $B = 11 $C = 12
$D = 13 $E = 14 $F = 15$D = 13 $E = 14 $F = 15

326

Hexadecimal to DecimalHexadecimal to Decimal
By taking the value,$7C, and multiplying By taking the value,$7C, and multiplying
each digit by the weight of the position, we each digit by the weight of the position, we
can convert a hexadecimal value to decimal.can convert a hexadecimal value to decimal.

C (12)
x 1

12

7
x16

112

Thus $7C in Hexadecimal is
112 + 12 = 124 Decimal.

327

Hexadecimal to BinaryHexadecimal to Binary
Because 16 (hex) is a whole Because 16 (hex) is a whole
power of 2 (binary), there is a power of 2 (binary), there is a
direct correlation between a direct correlation between a
hexadecimal value and a hexadecimal value and a
binary value.binary value.

Each hex value corresponds Each hex value corresponds
to a unique binary nibble, to a unique binary nibble,
since a nibble has 16 unique since a nibble has 16 unique
states.states.

Binary Hex
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

328

Because each nibble is a hexadecimal value, it is Because each nibble is a hexadecimal value, it is
simple to convert binary to hexadecimal and vice-simple to convert binary to hexadecimal and vice-
versa.versa.

00101110
E2

In programming or computer use many times In programming or computer use many times
values are represented in hexadecimal for a good values are represented in hexadecimal for a good
human to computer interface number system.human to computer interface number system.
DIRS = $00F0DIRS = $00F0
The COM1 address is $03F8The COM1 address is $03F8
The MAC address is: $0C12CEF69B01The MAC address is: $0C12CEF69B01

329

Binary Coded Decimal (BCD)Binary Coded Decimal (BCD)
BCD is used by many devices to have a BCD is used by many devices to have a
direct correlation between a binary nibble direct correlation between a binary nibble
and a decimal value.and a decimal value.

BCD is simply a subset of hexadecimal BCD is simply a subset of hexadecimal
where A (%1010) through F (%1111) are where A (%1010) through F (%1111) are
invalid. It is denoted by 95invalid. It is denoted by 95BCDBCD..

%10010101
95 hexadecimal or BCD

330

Conversion TableConversion Table
Binary Hex BCD Decimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 8 8
1001 9 9 9
1010 A Invalid 10
1011 B Invalid 11
0100 C Invalid 12
1101 D Invalid 13
1110 E Invalid 14
1111 F Invalid 15
00100110 26 26 38
11111111 FF Invalid 255

331

Conversion CalculatorsConversion Calculators
Many scientific calculators can convert Many scientific calculators can convert
between various number systems. The between various number systems. The
Microsoft Windows® calculator is one Microsoft Windows® calculator is one
example. It must first be placed in scientific example. It must first be placed in scientific
mode.mode.

332

Next, select the number system, enter a Next, select the number system, enter a
value, and select a new number system.value, and select a new number system.

Oct is Octal, a Base-8 number system, 0 to 7,
where each octal value represents 3 bits.

333

ASCII CodesASCII Codes
A byte doesn't always represent a value. In many cases A byte doesn't always represent a value. In many cases
the value represents a code for a use, such as the value represents a code for a use, such as
representing alpha-numeric characters. ASCII is one representing alpha-numeric characters. ASCII is one
example.example.

ASCII is a 7-bit code where each value represents a ASCII is a 7-bit code where each value represents a
unique character or control function for the transmission of unique character or control function for the transmission of
data, such as a text message to terminal. With 7-bits, data, such as a text message to terminal. With 7-bits,
there are 128 unique codes or characters that may be there are 128 unique codes or characters that may be
represented. This is a standard and strictly adhered too.represented. This is a standard and strictly adhered too.

Extended ASCII is an 8-bit code providing 256 unique Extended ASCII is an 8-bit code providing 256 unique
characters or codes. Different systems use the upper 128 characters or codes. Different systems use the upper 128
values as they desire.values as they desire.

334From Page 337 of the BASIC Stamp Manual Version 2

335

SummarySummary
As programmers, it is important to be able to As programmers, it is important to be able to
relate controllers in other number systems, relate controllers in other number systems,
such as binary, hexadecimal and BCD.such as binary, hexadecimal and BCD.

It is also important to understand the ASCII It is also important to understand the ASCII
table and use in representing control and table and use in representing control and
alphanumeric character representations.alphanumeric character representations.

336

End of Appendix BEnd of Appendix B

337337

338338

Sections 4-7 CircuitSections 4-7 Circuit

These circuits are constructed in section 4.These circuits are constructed in section 4.

Parts for sections 4-7:Parts for sections 4-7:
(3) 220 Ohm Resistors(3) 220 Ohm Resistors
(2) Red LEDs(2) Red LEDs
(2) N.O. Momentary Pushbuttons(2) N.O. Momentary Pushbuttons

(2) 1K Ohm Resistors(2) 1K Ohm Resistors
(1) 0.1 microfarad capacitor (1) 0.1 microfarad capacitor
(1) 100K Ohm Potentiometer(1) 100K Ohm Potentiometer
(1) Piezoelectric Speaker(1) Piezoelectric Speaker

339339

Section 8,9 CircuitSection 8,9 Circuit

Additional Parts for Sections 8,9Additional Parts for Sections 8,9
(1) 10K Ohm Resistors(1) 10K Ohm Resistors
(1) 10uF Capacitor(1) 10uF Capacitor
(1) ADC0831(1) ADC0831
(1) LM34 Temperature Sensor(1) LM34 Temperature Sensor

340340

' *********Section 5 Common Circuit Declarations ***********
' ***************** I/O Aliases *******************
LED1 VAR OUT8 'LED 1 pin I/O
LED2 VAR OUT9 'LED 2 pin I/O
PB1 VAR IN10 'Pushbutton 1 pin I/O
PB2 VAR IN11 'Pushbutton 2 pin I/O
Pot VAR WORD 'Potentiometer value
' **************** Constants ************************
LED1_Pin CON 8 ' Constant to hold pin number of LED 1
LED2_Pin CON 9 ' Constant to hold pin number of LED 2
PB1_Pin CON 10 ' Constant to hold pin number of pushbutton 1
PB2_Pin CON 11 ' Constant to hold pin number of pushbutton 2
Speaker CON 1 ' Speaker Pin ***** Activity board users set to 11 ******
Pot_Pin CON 7 ' Input for Potentiometer RCTIME network
PB_On CON 0 ' Constant for state of pressed switch (Active-Low)
PB_Off CON 1 ' Constant for state of un-pressed switch
LED_On CON 0 ' Constant for state to light an LED (Active-Low)
LED_Off CON 1 ' Constant for state to turn off an LED
' **************** Set common I/O directions ********
OUTPUT LED1_Pin 'Set pin for LED1 to be an output
OUTPUT LED2_Pin 'Set pin for LED2 to be an output
INPUT PB1_Pin 'Set pin for pushbutton 1 to be an input
INPUT PB2_Pin 'Set pin for pushbutton 2 to be an input
' **************** Example uses ***********************
'LED2 = LED_On 'OUT9 = 0
'LED1 = PB1 'OUT8 = IN10
'HIGH LED1_Pin 'HIGH 8

Common Circuit DeclarationsCommon Circuit Declarations

341

LinksLinks

342342

Challenge 4A-1: SolutionChallenge 4A-1: Solution

Anodes (to Vdd)
on same row

343343

Challenge 4A-2: SolutionChallenge 4A-2: Solution

'** 4A Challenge Solution – Blink second LED **

Main:
 HIGH 9 'Turn off LED2
 PAUSE 1000 'Wait 1 second
 LOW 9 'Turn on LED2
 PAUSE 5000 'Wait 5 seconds
GOTO Main 'Jump back to beginning

344344

Challenge 4A-3: SolutionChallenge 4A-3: Solution

'** 4A Challenge Solution – Blink second LED **

OUTPUT 9 'Set P9 to output
Main:
 OUT9 = 1 'Turn off LED2
 PAUSE 1000 'Wait 1 second
 OUT9 = 0 'Turn on LED2
 PAUSE 5000 'Wait 5 seconds
GOTO Main 'Jump back to beginning

345345

Challenge 4B: SolutionChallenge 4B: Solution
'** 4B Challenge Solution – Blink both LEDs **

Main:
LOW 8 'LED1
HIGH 9 'LED2
PAUSE 2000 'Wait 2 seconds
LOW 9 'LED2 ON (P9 LED stays on)
PAUSE 1000 'Wait 1 second
HIGH 8 'LED1 off
HIGH 9 'LED1 off
PAUSE 500 'Wait one-half second

GOTO Main

Did you waste code memory by turning on an already on P8 LED?

346346

Challenge 4C: SolutionChallenge 4C: Solution
'{$STAMP BS2}
'** 4C Challenge Solution Example **

Main:
LOW 8 'LED1
HIGH 9 'LED2
DEBUG ? OUT8
DEBUG ? OUT9
DEBUG "2 second pause",CR
PAUSE 2000 'Wait 2 seconds
LOW 9 'LED2 ON (LED P11 stays on)

 DEBUG ? OUT8
DEBUG ? OUT9
DEBUG "1 second pause",CR
PAUSE 1000 'Wait 1 second
HIGH 8 'LED1 off
HIGH 9 'LED2 off
DEBUG ? OUT8
DEBUG ? OUT9
DEBUG "0.5 second pause",CR
PAUSE 500 'Wait one-half second

GOTO Main

347347

Challenge 4D-1: SolutionChallenge 4D-1: Solution

Add a second pushbuttonAdd a second pushbutton

348348

Challenge 4D-2: SolutionChallenge 4D-2: Solution
'Challenge 4D: Reading PB2 on P11

INPUT 11 'Set P11 to be an input

Main:
 DEBUG ? IN11 'Display status of P11
 PAUSE 500 'Short pause
GOTO Main 'Jump back to beginning

349349

Challenge 4D-3: SolutionChallenge 4D-3: Solution
'Challenge 4D: Reading PBs on P10 and P11

INPUT 10 'Set P10 to be an input
INPUT 11 'Set P11 to be an input

Main:
 DEBUG ? IN10 'Display status of P10
 DEBUG ? IN11 'Display status of P11
 PAUSE 500 'Short pause
GOTO Main 'Jump back to beginning

350350

Challenge 4E-1: SolutionChallenge 4E-1: Solution
'Challenge: Controlling LED2 with PB2

INPUT 11 'Set P11 to be an input
OUTPUT 9 'Set P9 to be an output

Main:
 OUT9 = IN11 'Set LED2 = PB2
GOTO Main 'Jump back to beginning

351351

Challenge 4E-2: SolutionChallenge 4E-2: Solution
'Challenge: Control LED1 with input PB2
' Control LED2 with input PB1

OUTPUT 8 'Set P8 to be an output
OUTPUT 9 'Set P9 to be an output
INPUT 10 'Set P10 to be an input
INPUT 11 'Set P11 to be an input

Main:
 OUT8 = IN11 'Set LED1 = PB2
 OUT9 = IN10 'Set LED2 = PB1
GOTO Main 'Jump back to beginning

352352

Challenge 4E-3: SolutionChallenge 4E-3: Solution
'Challenge: Controlling LED1 and LED2 with PB1

OUTPUT 8 'Set P8 to be an output
OUTPUT 9 'Set P9 to be an output
INPUT 10 'Set P10 to be an output

Main:
 OUT8 = IN10 'Set LED1 = PB1
 OUT9 = IN10 'Set LED2 = PB1
GOTO Main 'Jump back to beginning

353353

Challenge 4F: HintChallenge 4F: Hint

Use the variable value of Use the variable value of potpot in the frequency portion of in the frequency portion of
the FREQOUT instruction.the FREQOUT instruction.

For a better tracking, reduces duration to 250 (1/4 second)For a better tracking, reduces duration to 250 (1/4 second)
and remove the PAUSE before looping back.and remove the PAUSE before looping back.

Debugging out values slows down loop time.Debugging out values slows down loop time.

354354

Challenge 4F: SolutionChallenge 4F: Solution
'{$STAMP BS2}
'Challenge 4F Solution - your exact code may vary
'Activity Board users should have FREQOUT 11…

Pot VAR WORD ' Variable to hold results

Main:
 HIGH 7 ' Discharge network
 PAUSE 10 ' Time to fully discharge
 RCTIME 7,1,Pot ' Read charge time and store in Pot
 FREQOUT 1, 250, Pot * 10 ' Sound tone for 1/4 second at frequency of

' Pot * 10 for better range
GOTO Main ' Jump back to beginning

TRY:
The FREQOUT instruction can play 2 frequencies at once for more
interesting tones: FREQOUT pin, duration, freq1, freq2

Modify the code for this:
FREQOUT 1,250,Pot,1000

355355

Challenge 5A: SolutionChallenge 5A: Solution
Example Solutions: Your names will vary but size should not.Example Solutions: Your names will vary but size should not.

To hold the number of seconds in a minute.To hold the number of seconds in a minute.
SecsInMin VAR BYTESecsInMin VAR BYTE
To hold the number of dogs in a litter.To hold the number of dogs in a litter.
DogsInLitter VAR NIBDogsInLitter VAR NIB
To hold the count of cars in a 50 car garage.To hold the count of cars in a 50 car garage.
Cars VAR BYTECars VAR BYTE
To hold the status of an output.To hold the status of an output.
PinOut VAR BITPinOut VAR BIT
To hold the indoor temperature.To hold the indoor temperature.
TempInDoor VAR BYTETempInDoor VAR BYTE
To hold the temperature of a kitchen oven.To hold the temperature of a kitchen oven.
Oven_Temp VAR WORDOven_Temp VAR WORD

356356

Challenge 5B: SolutionChallenge 5B: Solution
'{$STAMP BS2}
'** 5B Challenge Solution – Blink second LED with Constants **
'********** Declarations *********
'********** Constants
LED1 CON 8 'LED 1 pin number
LED2 CON 9 'LED 2 pin number

Main:
LOW LED1 'LED P8 on
HIGH LED2 'LED P9 off
PAUSE 2000 'Wait 2 seconds
LOW LED1 'LED P8 ON (LED P9 stays on)
PAUSE 1000 'Wait 1 second
HIGH LED1 'LED P8 off
HIGH LED2 'LED P9 off
PAUSE 500 'Wait one-half second

GOTO Main

357357

Challenge 5C: SolutionChallenge 5C: Solution
'Challenge 5C: Control output P8 with input P11
' Control output P9 with input P10

' ***************** I/O Variables *******************
LED1 VAR OUT8 'LED 1 pin I/O
LED2 VAR OUT9 'LED 2 pin I/O
PB1 VAR IN10 ‘PB1 pin I/O
PB2 VAR IN11 ‘PB2 pin I/O

' ************** Set I/O direction ****************
OUTPUT 8 'Set P8 to be an output
OUTPUT 8 'Set P9 to be an output
INPUT 10 'Set P10 to be an input
INPUT 11 'Set P11 to be an input

' ************* Main program *******************
Main:
 LED1 = PB2 'Set P8 output = P11 input
 LED2 = PB1 'Set P9 output = P10 input
GOTO Main ‘Loop back

358358

Challenge 6A: SolutionChallenge 6A: Solution
' *************** Program Specific Declarations **************
'Challenge 6A: Sequential Flow
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***

' ****** Main program ************
LED1 = LED_Off 'Turn off LED 1
LED2 = LED_Off 'Turn off LED 2
FREQOUT Speaker,2000,1000 'Sound speaker 1000Hz, 2 sec.
LED1 = LED_On 'Light LED 1
FREQOUT Speaker,3000,2000 'Sound speaker 3000Hz, 2 sec.
LED2 = LED_On 'Light LED 2
END

Note: If using the Activity Board, the LED on P11 will light
when the speaker sounds

359359

Challenge 6B: SolutionChallenge 6B: Solution
'Challenge 6B: Dual Alarms
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***

Main:
 HIGH Pot_Pin
 PAUSE 10
 RCTime Pot_Pin,1,Pot
 IF Pot > 2000 THEN Alarm1 ' Pot > 2000? Sound alarm1
 IF Pot < 1000 THEN Alarm2 ' Pot < 1000? Sound alarm2
GOTO Main

Alarm1:
 FREQOUT Speaker, 1000, 2000 'Sound the alarm
GOTO Main

Alarm2:
 FREQOUT Speaker, 500, 1000 'Sound the alarm
GOTO Main

360360

Challenge 6C: SolutionsChallenge 6C: Solutions

' Challenge 6C: Lock In Alarm
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***

Main:
 ' If pushbutton 1 is pressed,
 ' then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 FREQOUT Speaker, 1000, 2000 'Sound the alarm
 PAUSE 500
 IF PB2 = PB_On THEN Main 'Check if PB2 is pressed to clear alarm
GOTO Alarm

361361

Challenge 6D: SolutionChallenge 6D: Solution
'Challenge 6D: Sounding alarm to number of button presses.
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***

Counter VAR NIB 'Variable for counting
Presses VAR NIB 'Variable to hold number of presses

Main:
 ' If pushbutton 1 is pressed, then go sound alarm
 IF PB1 = PB_On THEN Alarm
GOTO Main

Alarm:
 Presses = Presses + 1 'Add 1 to number of presses
 FOR Counter = 1 to Presses 'Count to number of presses
 FREQOUT Speaker, 500, 2000 'Sound the alarm
 PAUSE 500
 NEXT
GOTO Main

362362

Challenge 6E: SolutionChallenge 6E: Solution
'Challenge 6E: Addition of subroutine to blink LED1
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***

Main:
 GOSUB Check_PB1 'Call subroutine for PB1
 GOSUB Check_PB2 'Call subroutine for PB2
 GOSUB Blink_LED1 'Call subroutine to blink LED1
 PAUSE 1000 'Pause to allow blink to show
GOTO Main

' Check_PB1, Check_PB2, Sound_Speaker not shown to save space

Blink LED1:
 LED1 = LED_ON
 PAUSE 250
 LED1 = LED_OFF
RETURN

Main

Check Button1

Check Button2

Blink LED1

Return

Blink LED1

LED2 ON

Pause for 0.25
seconds

LED2 ON

363363

' Modifications to program 6H for solution
.
.
.

IF Press_Count < 5 THEN End_Up_Count 'If < 5, ok, otherwise reset
.
.
.
BRANCH Press_Count, [Blink, Wink, Cycle, Quiet, New1] 'Branch based on offset
.
.
.
New1:

' Your control code
Return

Challenge 6F: SolutionChallenge 6F: Solution

364364

Challenge 7A SolutionChallenge 7A Solution
'Challenge 7A: Scaling Potentiometer
'*** Insert Common Circuit Declarations ***'*** Insert Common Circuit Declarations ***

Degrees VAR WORD
Max_Degree CON 300
Max_Value CON 6000

Main:
 HIGH Pot_Pin 'Read Potentiometer
 RCTime Pot_Pin,1,Pot

'Scale Pot data by multiplying by new maximum and
'dividing by the old maximum. Not that both maximums were
'divided by 100 to prevent overflowing the 65,535 limit on math

 Degrees = Pot * (Max_Degree/100) / (Max_Value/100)

'Display in home position the value with 3 places.
 DEBUG HOME, "Angle = ", DEC3 Degrees ,CR
GOTO Main

365365

Challenge 7B-1 SolutionChallenge 7B-1 Solution
'Challenge 7B-1: Boolean Evaluations
'*** Insert Common Circuit Declarations ***
Main:
 'Sound Alarm if EITHER buttons is pressed
 IF (PB1=PB_On) OR (PB2=PB_On) THEN Alarm
GOTO Main

Alarm:
 FREQOUT Speaker,100,2000
GOTO Main

366366

Challenge 7B-2 SolutionChallenge 7B-2 Solution
'Challenge 7B-2: Boolean Evaluations
'*** Insert Common Circuit Declarations ***
Main:
 HIGH Pot_pin 'Read potentiometer
 PAUSE 1
 RCTIME Pot_pin,1,Pot

 'Sound Alarm if Pot > 500 or PB1 pressed
 IF (PB1=PB_On) OR (POT > 500) THEN Alarm
GOTO Main

Alarm:
 FREQOUT Speaker,100,2000
GOTO Main

367367

Challenge 7B-3 SolutionChallenge 7B-3 Solution
'Challenge 7B-3: Boolean Evaluations
'*** Insert Common Circuit Declarations ***
Main:
 HIGH Pot_pin 'Read potentiometer
 PAUSE 1
 RCTIME Pot_pin,1,Pot

 'Sound Alarm if Pot > 500 but PB2 is not pressed
 IF (PB2=PB_Off) AND (POT > 500) THEN Alarm
GOTO Main

Alarm:
 FREQOUT Speaker,100,2000
GOTO Main

368368

Challenge 7D SolutionChallenge 7D Solution
'Challenge 7D - Playing Charge with LOOKUP Tables.
Speaker CON 1

I VAR NIB 'Table Index
F VAR WORD 'Frequency
D VAR WORD 'Duration

FOR I = 0 to 7
' Read duration from the table
LOOKUP I,[150,150,150,300,9,200,600],D
' Read frequency from the table
LOOKUP I,[1120,1476,1856,2204,255,1856,2204],F
' Play the note
FREQOUT Speaker,D,F

Next

369369

Challenge 7E-1 SolutionChallenge 7E-1 Solution
How does the program identify the end of the name or How does the program identify the end of the name or

number?number?
A byte of 0 is checked in the loops, and the listings, to A byte of 0 is checked in the loops, and the listings, to
identify the end.identify the end.

How does the program move to the next name in the How does the program move to the next name in the
listing?listing?
Names are stored at $20 (20 Hex) increments ($00, Names are stored at $20 (20 Hex) increments ($00,
$20,$40 ..). The NextName routine adds $20 to the Name $20,$40 ..). The NextName routine adds $20 to the Name
variable and checks to see if the 1variable and checks to see if the 1stst character is a byte of 0, character is a byte of 0,
if it is, it goes back to $00 and starts over.if it is, it goes back to $00 and starts over.

How does the program access the correct number to dial?How does the program access the correct number to dial?
The numbers are $10 above the name. By adding $10 to The numbers are $10 above the name. By adding $10 to
the current Name variable, the beginning of the number is the current Name variable, the beginning of the number is
addressed.addressed.

370370

DATA @$00,"BILL"

DATA @$10,"555-1234"

DATA @$20,"PARALLAX"

DATA @$30,"1-888-512-1024"

DATA @$40,"JIM"

DATA @$50,"555-4567"

DATA @$60,"MARTIN"

DATA @$70,"555-9876"

DATA @$80,00

Challenge 7E-2 SolutionChallenge 7E-2 Solution

371371

Challenge 8A-1 SolutionChallenge 8A-1 Solution
'Challenge 8A: Alarming Temperature detector'Challenge 8A: Alarming Temperature detector

ADresADres VARVAR BYTEBYTE ' A/D result (8 bits)' A/D result (8 bits)
ADcsADcs CONCON 1212 ' A/D enable (low true)' A/D enable (low true)
ADdatADdat CONCON 1515 ' A/D data line *** Activity board use 14' A/D data line *** Activity board use 14
ADclkADclk CONCON 1414 ' A/D clock *** Activity board use 15' A/D clock *** Activity board use 15
SpeakerSpeaker CONCON 11 ' Activity Board use 11' Activity Board use 11
TempTemp VARVAR WORDWORD ' Data converted to temperature' Data converted to temperature

Main:Main:
PAUSE 500PAUSE 500 'Short Pause'Short Pause
LOW ADcsLOW ADcs ' Enable ADC' Enable ADC
SHIFTIN ADdat,ADclk,msbpost,[ADres\9]SHIFTIN ADdat,ADclk,msbpost,[ADres\9] ' Shift in the data' Shift in the data
HIGH ADcsHIGH ADcs ' Disable ADC' Disable ADC
Temp = ADres * 50/26Temp = ADres * 50/26 ' Convert to temperature' Convert to temperature
DEBUG CLS, "Temperature = ", DEC TempDEBUG CLS, "Temperature = ", DEC Temp ' Display temperature' Display temperature
IF Temp <= 100 THEN MainIF Temp <= 100 THEN Main ' If <= 100, back to main' If <= 100, back to main
FREQOUT Speaker, 1000,2000FREQOUT Speaker, 1000,2000 ' If > 100, alarm' If > 100, alarm

GOTO MainGOTO Main

372372

Challenge 8B-1 SolutionChallenge 8B-1 Solution
'Solution 8B-1: Use SEROUT to send data to PC
Rpin CON 16 ' From programming port
TPin CON 16 ' To programming port

BMode CON 84 ' BAUD mode -- Use 240 for BS2SX, BS2P
MaxTime CON 3000 ' Timeout Value – 3 seconds
Freq VAR WORD ' Hold incoming data

Main:
 SEROUT TPIN, BMode, [CLS,"Enter a frequency and press return ",CR]
 SERIN RPin, BMode, MaxTime, Timeout, [DEC freq]
 SEROUT TPIN, BMode, ["Playing tone at ", DEC Freq, "Hz.",CR]
 FREQOUT 1,1000,Freq
 GOTO Main
Timeout:
 SEROUT TPIN, BMode, ["Timeout!", CR]
 PAUSE 500
GOTO Main

373373

Challenge 8B-2 SolutionChallenge 8B-2 Solution
'Solution 8B-2: Communicate at 1200 8-N-1
Rpin CON 16 ' From programming port
TPin CON 16 ' To programming port

BMode CON 813 ' BAUD mode – Use 2063 for BS2SX, BS2P
MaxTime CON 3000 ' Timeout Value – 3 seconds
Freq VAR WORD ' Hold incoming data

Main:
 SEROUT TPin, BMode, [CLS,"Enter a frequency and press return ",CR]
 SERIN RPin, BMode, MaxTime, Timeout, [DEC freq]
 SEROUT TPin, BMode, ["Playing tone at ", DEC Freq, "Hz.",CR]
 FREQOUT 1,1000,Freq
 GOTO Main
Timeout:
 SEROUT TPIN, BMode, ["Timeout!", CR]
 PAUSE 500
GOTO Main

As you test this, observe the speed at which the text appears in the DEBUG Window.

374

LinksLinks

Southern Illinois University Carbondale
Electronic Systems Technologies

GoGo GoGo

375

Yahoo!® Discussion Groups

BASIC Stamps Group
Great place to post
questions & get answers
from thousands of BASIC
Stamp users including
Parallax staff.

Parallax Educator's
Group
A dedicated group for
educators using Parallax
products in the classroom.
Approval required to join –
see home page.

GoGo GoGo

Educational Curriculum
 What is a Microcontroller
 Basic Analog and Digital
 Robotics!
 Earth Measurements
 Industrial Control
 Advanced Robotics GoGo

Software and other Downloads

More Links from Parallax

GoGo

GoGo

