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Abstract. The nearest neighbor search problem in general dimensions finds application in com-
putational geometry, computational statistics, pattern recognition, and machine learning. Although
there is a significant body of work on theory and algorithms, surprisingly little work has been done
on algorithms for high-end computing platforms and no open source library exists that can scale
efficiently to thousands of cores. In this paper, we present algorithms and a library built on top of
Message Passing Interface (MPI) and OpenMP that enable nearest neighbor searches to hundreds of
thousands of cores for arbitrary dimensional datasets.

The library supports both exact and approximate nearest neighbor searches. The latter is based
on iterative, randomized, and greedy KD-tree searches. We describe novel algorithms for the con-
struction of the KD-tree, give complexity analysis, and provide experimental evidence for the scal-
ability of the method. In our largest runs, we were able to perform an all-neighbors query search
on a 13 TB synthetic dataset of 0.8 billion points in 2,048 dimensions on the 131K cores on Oak
Ridge’s XK6 “Jaguar” system. These results represent several orders of magnitude improvement over
current state-of-the-art methods. Also, we apply our method to non-synthetic data from machine
learning data repositories. For example, we perform an all-nearest-neighbor search on a variant of
the ”MNIST” handwritten digit dataset with 8 million points in 784 dimensions on 16,384 cores of
the ”Stampede” system at the Texas Advanced Computing Center, achieving less than one second
per PKDT iteration.
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1. Introduction . Given a set R of n reference points {ri}ni=1 ∈ Rd, and a
distance metric d(ri, rj) (e.g., the Euclidean metric ‖ri− rj‖2), we seek to find the k-
nearest neighbors (KNN) for points {qi}mi=1 ∈ Rd from a query points set Q. When the
query points are the same as the reference points, KNN is commonly refer to as the all
nearest neighbors problem. Solving the k-nearest neighbors problem is easy by direct
search in O(mn) work. That is, for each query point all distances to the reference
points are evaluated followed by a k-selection problem in a list of n numbers. The
all-KNN problem requires O(n2) work, which is prohibitively expensive when n is large.
Spatial data structures can deliver O(n log n) or even O(n) complexity, asymptotically,
for fixed dimension d. But for high dimensions (say, d ≥ 10), spatial data structures
provably deteriorate; for large d all known exact schemes end up having the complexity
of the direct algorithm [47].1

In many applications however, the distribution of points is mostly concentrated in
a lower-dimensional subspace of Rd. In such cases, find approximate nearest neighbors
(ANN) using indexing techniques (tree-type data structures or hashing techniques) can
be more realistic than direct searches. For each query point qi, ANN attempts to find
some points rj that have high probability to be the k closest points in the given
metric. Those that are not among the ”exact” nearest neighbors are close to being
so. In the following of this paper, we refer to the exact k-nearest neighbors search
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problem as KNN, and the approximate nearest neighbors search problem as ANN. This
paper mainly focus on a scheme that uses tree indexing to solve ANN.

Motivation and significance. The KNN problem is a fundamental problem
that serves as a building block for higher-level algorithms in computational statistics
(e.g., kernel density estimation), spatial statistics (e.g., n-point correlation functions),
machine learning (e.g., classification, regression, manifold learning), high-dimensional
and generalized N-body problems, dimension reduction for scientific datasets, and
uncertainty estimation [13, 41, 38]. Examples of the applicability of these methods to
science and engineering include image analysis and pattern recognition [45], materials
science [15], cosmological applications [18], particulate flow simulations [36], and many
others [1]. Despite nearest neighbors search being fundamental for many algorithms
in computational data analysis, there is little work on scaling it to high-performance
parallel platforms.

1.1. Our approach and contributions. We introduce algorithms, complex-
ity analysis, and experimental validation for tree-construction and nearest neighbor
searches in arbitrary dimensions.

• Direct nearest neighbors. We propose two parallel algorithms for the direct
calculation of the KNN problem. The first one prioritizes computing time
over memory by replicating the query and reference points while minimizing
the synchronization costs. This method is useful when absolute wall-clock
performance is important. It is work-, but not memory-, optimal. The sec-
ond algorithm uses a cyclic iteration that is memory optimal but has more
communication. Both algorithms can be used for modestly-sized datasets to
compute exact distances and verify correctness of approximate algorithms.
But since the perform direct evaluations they cannot scale with m and n.

• Parallel tree construction. We present PKDT, a set of parallel tree construction
algorithms for indexing structures in arbitrary number of dimensions. The
algorithm supports several types of trees (e.g., ball trees, metric trees, or KD-
trees). It is a recursive, top-down algorithm in which every node corresponds
to a group of processes and one group of reference points. The key feature of
the algorithm is that the tree is not replicated across MPI ranks. The tree is
used to partition and prune spatial searches across MPI processes.

• Approximate randomized nearest-neighbor searches. We present a randomized
tree algorithm based on PKDT, randomization, and iterative greedy searches,
for the solution of the ANN problem. Our implementation supports arbitrary
query and reference points. We test the accuracy on both synthetic and
machine-learning benchmark datasets and we report the results in §3.3. We
are able to obtain good accuracies with less than 5% of the distance evalua-
tions required for an exact search.

• Scalability tests on up to 131K cores. We conduct weak and strong scalability
tests for the various components of the method. The largest run is up to
nearly one billion 2048-dimensional reference points for the ANN problem for
k = 2048. This result dwarfs the previously reported result with one million
points in 10 dimensions for k = 3 [8] (see §3.4). Table 1.1 summarizes the
largest data size we run on each method.

• Software release. We make this software available as part of a library for
scalable data analysis tools. The library is under the GNU General Public
License, it is open-source, available at RKDT. The library supports hierarchical
kmeans trees, ball trees, KD trees, exact and approximate nearest neighbor
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searches, and kmeans clustering with different seeding variants.

data size
KNN ANN

2d partition cyclic partition PKDT randomized PKDT

number of points (million) 82 12 160 819

dimension 1,000 100 100 2,048

number of processes 16,384 12,288 12,288 16,384

million cycles/point/core 12 266 1 40

Table 1.1
Overall performance summarization of different nearest neighbors search. We listed the latest

data sizes in our experiments for each methods, for which the all nearest neighbors are selected.

To our knowledge, our framework is the first scheme that enables such levels of
performance and parallelism for arbitrary dimension computational geometry prob-
lems. Our tree construction and nearest-neighbors are already being used for kernel
summation and treecodes in high dimensions [24, 25].

1.2. Limitations. PKDT has several limitations: (1) It has not be designed for
frequent insertions or deletion of points. (2) PKDT does not resolve the curse of dimen-
sionality. If the dataset has high intrinsic dimension, the approximation errors will
be very large. (3) We have only examined `2 distance metrics and many applications
require other distance metrics. However, this is a simple implementation issue, at
least for standard distance metrics.

1.3. Related work. There is a very rich literature on nearest neighbor algo-
rithms and theory. The most frequently used algorithm is the KD-tree [12], which at
each level partitions the points into two groups according to one coordinate. Fuku-
naga et al [14] propose another tree structure that groups points by clustering points
with kmeans into k disjoint groups. If the metric is non Euclidean, however, ball tree
or metric tree might provide better performance [7, 46, 31]. As the dimensionality
increases, each of these methods lose their effectiveness quickly, requiring visit almost
all leaf nodes in a tree. In fact in high-dimensional spaces there are no known algo-
rithms for exact nearest neighbor search that are more efficient than the direct exact
search (or linear search per query point). Modern implementations of exact searches
include [18, 37, 8, 27].

Avoiding this curse of dimensionality requires two ingredients. The first is to
settle for approximate searches. The second is to introduce the assumption that the
dataset has a lower intrinsic dimensionality, i.e., the dataset points lie on a lower
dimensional subspace of Rd [20, 35, 6]. Given this, the search complexity per query
point can be theoretically reduced from O(n) to O(η log n), where η is determined
only by the intrinsic dimensionality of data points [44, 39, 5, 9]. Several approxi-
mate algorithms have been proposed, with their main theoretical result being that,
asymptotically, they can bound the relative error in the distance from the true nearest
neighbor. No algorithm offers an actual practical accuracy guarantee, while simulta-
neously bounding the work complexity. There are two main classes of approximations,
randomized tree based and hashing based algorithms.

Randomized tree algorithms were first proposed in [9]. Different variants of this
approach have been used for the KNN problem: [30, 2, 19, 28]. In this paper we follow
the work of [19]. Another tree-based algorithm, without randomization, that supports
approximate KNN by pruning the tree search is presented in [27].
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A different approach to approximate is KNN is to use hashing. Locality sensitive
hashing (LSH) bins the reference points so that similar points are grouped into the
same bucket with high probability. The details of the LSH algorithm can be found
in [5]. The original implementation of LSH can be found in [4]. In [33], the au-
thors present excellent analysis and implementation of the LSH algorithm on a GPU
architecture. No open-source LSH based algorithms for HPC distributed memory ar-
chitectures are available. We have implemented an MPI LSH algorithm, and we will
discuss its comparison with randomized trees in a future article.

Scalability and available software. As we mentioned there is little on dis-
tributed memory scalable algorithms for nearest-neighbor searches. Also, while there
is excellent theoretical work on parallel KD-tree construction [3], no implementations
are available. Nearest neighbor algorithms using direct search or LSH on GPUs can be
found in [16, 42, 34, 17]. The one exception is the FLANN package [30, 28], which sup-
ports multithreading and some MPI based parallelism in which the reference points
are partitioned across processors and the query points are replicated. In [30] no all-
KNN results are presented for the MPI version, and runs are done only up to eight
nodes and for very small m (number of query points). FLANN’s MPI parallel scheme
resembles the scheme described in §2.2.1 but with approximate searches. This scheme
does not scale well for the all-KNN problem as it requires replication of the query set
on each MPI process. Other open-source libraries include MLPACK [8] and ANN [27].
These libraries do not support distributed memory parallelism. We discuss more the
performance of these codes and FLANN in §3.4. In all, to the best of our knowledge,
no scalable KNN libraries exist.

Outline of the paper. In §2, we introduce the basic algorithmic components of
the method: the single node optimization of distance calculations and KNN search
(shared memory parallelization) (§2.1); two schemes for direct exact parallel KNN

search (§2.2.1 and §2.2.2); and our main contribution, the parallel tree construction
and ANN search in §2.3. In §3, we apply our KNN algorithms on large UCI datasets [22]
and discuss the relationship between the convergence and the intrinsic dimensions.
Finally, we report more results on the performance and scalability of the method on
very large synthetic datasets.

2. Methods. We have implemented several scalable methods for both KNN and
ANN. In the following sections, we discuss the different components and we provide
weak and strong scaling results.

2.1. Single-node distance and k-nearest neighbor kernels. We use single-
node, multi-threaded kernels for both distance calculations and KNN searches on locally
stored points. The distances between all (qi, rj) pairs of points are computed as
follows. The sets of reference points R and query points Q are stored as n × d and
m × d matrices, respectively, with one point per row. Then, we compute Dij =
|qi|2 + |rj |2 − 2ri · qj for all (i, j), i ∈ 1 . . .m, j ∈ 1 . . . n, where Dij is the square of
the distance between query point i and reference point j. By expressing the −2ri ·qj
term as the matrix-matrix product −2RQT , we can use a BLAS DGEMM call, which
delivers high single-node performance and portability to various homogeneous and
heterogeneous platforms.

With the above squared-distance kernel, a single-node KNN calculation is quite
simple. It can be implemented by calling the above distance routine and, for each
query point, sorting the squared distances in ascending order while keeping track of
the index of the reference point corresponding to each distance. Clearly, this approach
exposes a great deal of parallelism. However, for sufficiently small k (k << n), we
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would waste a significant amount of time by sorting each row of D in its entirety. Since
we only care about the first k nearest points, we address this problem by maintaining a
minimum heap of size k for each query point. Scanning the n reference points requires
inserting every reference point into the minimum heap at a cost of O(log k). Thus
the total complexity is O(n log k), which is less expensive than a sort of O(n log n).

One implementation issue encountered in the development of the direct KNN ker-
nel involves the fact that vendor tuned DGEMM routines provide very poor multi-
threaded performance when multiplying a tall, skinny matrix by a relatively small
matrix. In our code, this happens when computing distances between a small number
of query points and a large number of reference points with low dimensionality. We
have observed this problematic behavior in both Intel’s MKL and GOTO BLAS. We
are currently addressing this problem by developing a customized high performance
kernel for nearest neighbor searches, which achieves more uniform performance. Those
results will be reported elsewhere.

2.2. Brute-force Direct KNN. We have implemented two distributed direct
evaluation (brute-force) nearest neighbor algorithms according to different data par-
tition schemes: two-dimensional partitioning and cyclic partitioning.

2.2.1. Two dimensional partitioning with query point replication. We
first consider a partitioning scheme in which the reference and query points are divided
into rparts and qparts pieces, respectively, and distributed across rparts · qparts nodes
(see Figure 2.1(a)). This scheme is more memory-intensive than the cyclic partitioning
scheme we describe later since the reference points and the query points are replicated
qparts and rparts times, respectively. However, all calculations performed are local until
a reduction at the very end.

Algorithm 1 rectDirectK(nglobal,mglobal, k, d, rparts, qparts)

1: Choose nlocal and mlocal.
2: Read nlocal reference points into rlocal starting with dnglobal/rpartse · id.
3: Read mlocal query points into qlocal starting with dmglobal/qpartse · id.
4: D = computeDistances(rlocal,qlocal, nlocal,mlocal, k, dim)
5: for i = 0 . . . qparts − 1 do Sort ith row of D
6: Perform k-reduction among processes with ranks id%qparts, id%qparts +
qparts, . . . , id%qparts + (rparts − 1) · qparts.

7: Process has k-nearest neighbors for qlocal if id < qparts.

Algorithm 1 shows how this partitioning is used to compute the KNN. Each pro-
cess computes a matrix containing the distance between each (ri,qj) pair, and sorts
each row of the matrix (the distances for each query point) to select the k minimum
distances. Finally, we perform a k-min reduction among all processes which have the
same query points.

Assuming the query and reference points are partitioned into an equal number
of pieces, each process’s memory consumption grows as O( n√

p + m√
p + nm

p ), since

each set of points is replicated
√
p times. Since our algorithm requires an all-pairs

distance calculation, a sort of the computed distances (selection sort for small k and
merge sort for large k), and a reduction on the k minimum of those distances, its

time complexity is O
(
mnd
p + 1√

p (m + n) + mn
p (log n√

p ) + k log
√
p

)
for large k, and
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O
(
mnd
p + 1√

p (m+ n) + mn
p + k log

√
p

)
for small k.

(a) Rectangular partitioning (b) Cyclic partitioning

Fig. 2.1. Data partition for direct search. (a) Diagram of rectangular partitioning. Here the
query points are partitioned into four parts and the reference points into three. The processes in each
column are part of the same group when the k-reduction is performed at the end of the algorithm.
Depending on the mapping to MPI processes, the query points, the reference points, or both are
replicated (b) Diagram of cyclic partitioning. Notice that now there is no replication but the method
requires four steps and cyclic-shift of the query or reference points, depending on which one is of
smaller cardinality.

2.2.2. Cyclic partitioning for large problem sizes. By using a partitioning
scheme that does not replicate any data across processes, we can solve the exact KNN for
significantly larger problem sizes than would fit into a single nodes’s memory when
using the replicated partitioning scheme. However, the reduced memory footprint
comes at the cost of additional computation time. As illustrated in Figure 2.1(b),
in this method, both R and Q are partitioned into p nearly-equally sized partitions
distributed among the processes.

Algorithm 2 shows how to use such a partitioning to compute the k-nearest neigh-
bors. The algorithm works as follows. A given partition of Q remains pinned to its
“home” process, while in each of p communication steps, each partition of R shifts
one process to the left in a “ring” of processes. At each communication step, a process
runs the local direct KNN kernel and merges the results with the current k minimum
distances for each query point. Depending on which set is larger, we can cycle either
the reference points or the query points.

The communication cost of this algorithm is O(ptS +ndtT ), where tS is the setup
time (latency) required for each message, and tT is the time required to transmit each
double-precision value. Because communication and computation can be overlapped
completely for sufficiently large m and n, the time complexity is determined by the
time spent in the local direct KNN calculation, which is O(mndp +m+n+ mn

p log n
p ) for

large k and O(mndp +m+ n+ mnk
p ) for small k. The memory cost for this approach

is O(mn+m+n
p ).

2.3. Randomized KD tree (PKDT). Parallelizing tree operations with perfor-
mance guarantees depends on the application and is hard even in low dimensions,
especially in distributed memory architectures. Most of the tree algorithms for high
dimensions follow a top-down approach in which the points are grouped recursively
into tree nodes and then, during search, different pruning strategies are used [40].
Other techniques such as space-filling curves [21], graph partitioning [10] and geo-
metric partitioning [26] have been used for parallelization, but for high-dimensional
datasets these are not as successful and we are not aware of any parallel implementa-
tions. For this reason we have opted for the top-down basic approach.
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Algorithm 2 cyclicDirectK(r, q, nglobal,mglobal, k, dim)

1: Choose send partner and recv partner.
2: for i = 0 . . . p− 1 do
3: if kmin set then
4: kmin new ← directKQuery(Ri,Qi, nlocal,mlocal, k, d)
5: temp← kmin merge(kmin, kmin new,mlocal, k)
6: kmin← temp
7: else
8: kmin← directKQuery(Ri,Qi, nlocal,mlocal, k, d)
9: kmin set← TRUE

10: end if
11: send(r, send partner)
12: r ← recv(recv partner)
13: end for
14: send(r, send partner)
15: r ← recv(recv partner)

Fig. 2.2. Hyperplane splitting. An illustration of the hyperplane splitting.

Forgetting parallelism for a moment, the basic algorithm is a classical top-down
recursive construction of a binary tree. Starting at the root. We split the points into
two groups, and create two new nodes (the left and right child of the root). Then
we assign one group of points to one child and the other group to the other child.
We compared two point splitting schemes: clusters based (refered as PKDTC) and
hyperplane based (refered as PKDTH).

In PKDTC , we use kmeans with a large number of clusters (greater than two, so
that we can control the number of points per leaf node) and then we assign clusters
to different nodes. Hyperplane splitting is quite common and includes standard KD-
trees. Clustering is used in FLANN [30, 29] and we want to test its performance. The
clustering algorithm is given in the appendix. The hyperplane splitting is illustrated
in Algorithm 3 and Figure 2.2.

In a hyperplane based scheme, we calculate a projection direction and project
all points onto this direction, then split the points according to the median of the
projected values. We tested three ways to choose the projection direction. The
first one is selecting a coordinate axis at random, i.e., uniformly sampling a number
from d integers. The second is to choose the coordinate with the largest variance
considering all points within a node. The third alternative is to choose the direction
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where the points are furthest apart. To do this, we first compute the centroid c of all
points within a node, then find the furthest point p1 from c, and a second point p2

which is furthest from p1. Finally we project points along the direction p = p1 −p2.
After projecting points onto this direction and calculate the median m of all projected
values, we simply separate points into two groups by assigning points whose projected
values is smaller than m to the left child, and the other to the right child. All of these
three resulted in similar accuracies when used for the ANN problem. For the rest of this
paper, the complexity estimates are computed using the random selection criterion.

In the end we found the hyperplane partition superior. First, partitioning points
evenly using a hyperplane results in roughly the same number of points per group,
which has implications to the parallel implementation and the load balancing of the
algorithm. In other words, each child node has the same number of points as the
others. Second, clustering based partition is more expensive as it requires solving
kmeans problems multiple times. Third, we observe that the hyperplane splitting
results in better pruning during neighbor searches. In the following parts, we only
focus on PKDTH , and the details of PKDTC can be found in Appendix B.

2.3.1. Tree construction. A standard tree construction uses the NodeSplit
function summarized in Algorithm 3. Let T be a tree node; XT be all the points
assigned to T , lT be the level of the node T in the tree. Hyperplane splitting requires
a direction pT along which XT are projected. mT is the median of all projected values
xpT . Denote Xl and Xr as the subset of XT , which contains the points assigned to
the left child node and right child node of T respectively. For bookeeping we use
a maxLevel setting to indicate the maximum allowed level of a node and we use
minNumofPoints (minimum number of points a node have to hold) to decide whether
to split a node further or not.

Algorithm 3 NodeSplit(T , XT )

1: if lT ==maxLevel || |XT | < minNumofPoints then
2: store XT in T
3: return
4: end if
5: pT = SplitDirection(T ,XT )
6: xpT = Project(XT ,pT )
7: mT = Median(xpT )
8: for xi ∈ XT do
9: if xpT ,i < mT then

10: assign xi to Xl

11: else
12: assign xi to Xr

13: end if
14: end for
15: NodeSplit(LeftChild(T ),Xl)
16: NodeSplit(RightChild(T ),Xr)

Shared memory PKDTH construction: Building a shared memory tree is
straightforward. As mentioned before, we use the random selection to choose the pro-
jection direction, thus the cost of line 5 isO(1). The implementations of line 6 and 8-14
in Algorithm 3 are simply a OpenMP parallel-for, which have a complexity of O(n).
To find the median, we use a select algorithm to find the n/2-th smallest element in the
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input array (Appendix C). The only difference between the shared memory selection
and Appendix C is there is no Allreduce() operation. The average complexity of select
is O(n). The total work of Algorithm 3 is then W (n) = O(n)+2W (n/2) = O(n log n).
As a result, using the PRAM model, the time complexity of shared memory tree con-
struction with p threads is O((n log n)/p+ log p).

Distributed memory PKDTH construction: We parallelize Algorithm 3 using
a distributed top-down algorithm. At each level, a node is split to two children, each
of which contain one groups of points (in this implementation points locate on the
lefthand side or the righthand side of the hyperplane). A tree node is shared among
multiple processes. We implement this by assigning an MPI communicator to each
node T . This communicator is recursively split as illustrated in Figure 2.3. Each of
those processes within one node’s communicator maintains a local data structure for
the tree node containing its MPI communicator and pruning information to traverse
incoming queries. In each process, these data structures are stored in a doubly-linked
list representing a path from root to leaf for that process’s portion of the tree. The
minimum granularity of PKDTH node is one MPI process. At the leaf, we switch to
the local shared memory tree.

Fig. 2.3. Recursive tree construction and the corresponding communicators. An illustra-
tion of the splitting of communicators used for reference point redistribution among children. The
highlighted nodes represent a path from root to leaf as stored by a single process.

The scheme is summarized in Algorithm 4, where CT is the communicators of
node T . Choosing the split direction requires a broadcast (process 0 choose a random
coordinate axis and then broadcast the number to other processes). The projection
is local and the parallel median (using randomized quick select in Appendix C) has
an expected complexity of O(tc log p log n+ n/p), where tc = ts + tw [43]. Partition-
ing the points to the two children nodes is the most communication-intensive part.
In PointRepartition() (line 15 in Algorithm 4), the points are shuffled among
processes. Each process would have have two subsets Xl and Xr after assigning
membership by the median of projected values (line 8-14 in Algorithm 4). In order to
split the current node T to two children nodes, the communicator CT will be divided
to two sub communicators. As shown in Figure 2.4, the COMM WORLD is split to
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two communicators COMM1 and COMM2, each has two out of four processes. On
process 0, 14 points (in red color) belong to the right node Xl and 6 points (in green
color) go to Xr. In the next level, p0 is assigned to COMM1, which is the communi-
cator of left node of T . Those 6 points in green must be shuffled to either p2 or p3,
i.e, to any process assigned to be the right sub communicator (right child node).

Algorithm 4 DistributedNodeSplit(T ,XT , CT )

1: if size(CT ) == 1 || lT ==maxLevel || |XT | < minNumofPoints then
2: SharedNodeSplit(T ,XT )
3: return
4: end if
5: pT = ParSplitDirection(T ,XT )
6: xpT = Project(XT ,pT )
7: mT = ParMedian(xpT )
8: for xi ∈ XT do
9: if xpT ,i < mT then

10: assign xi to Xl

11: else
12: assign xi to Xr

13: end if
14: end for
15: Xnew = PointRepartition(Xl,Xr, CT )
16: Cnew = CommSplit(CT )
17: DistributedNodeSplit(Kid(T ),Xnew, Cnew)

Fig. 2.4. Here we illustrate the problem of load balancing when we split a node and its
communicator. The blue region (with communicator COMM WORLD) denotes the parent. Notice that
every process in COMM WORLD has an equal number of points. After the hyperplane split, some points
go to the left child (red) and some to the left child (green). Also, we need to split COMM WORLD to
COMM1 and COMM2, assign processes to each communicator, and redistribute the points from the parent
to the children. There is no unique way to do this, but the goal is that upon completion each process
in COMM1 and COMM2 has again the same number of points with as little communication as possible.
Using an MPI Alltoallv() is one possible way to do it.
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This will create severe load-balancing issues without carefully designed shuf-
fling strategy. We discuss three ways to solve the data points shuffling problem
(PointRepartition()), and compare different methods in details.

2.3.2. Load balanced data exchange. It is necessary to ensure the workload
is evenly distributed in each process at every level of the tree. There are different ways
to obtain the load balance, we present three variants for the PointRepartition()
function. The problem is illustrated in Figure 2.4.

All-to-all data exchange: We repartition the points by using MPI Alltoallv()

directly at each level. Before calling this function, it is necessary to determine the
MPI process that each point belongs to and ensure that after repartition, each process
has an equal number of points. The algorithm that supports arbitrary spatial trees
is given in Algorithm 5, where rtargeti is the target rank that point i have to be
redistributed to.

Algorithm 5 Alltoall exchange(Xl,Xr, CT )

1: nloc = |Xl|+ |Xr|
2: nglb = MPI Allreduce(nloc, CT )
3: navg = nglb/size(CT )
4: for each X ∈ {Xl,Xr} do
5: nc = |X|
6: MPI Scan(nc, nscan, CT )
7: for i = 0 : nc-1 do
8: rtargeti = b(i+ nscan)/navgc
9: end for

10: MPI Alltoallv(XT , r
target, CT )

11: end for

Assuming average message size of O(nd/p2), the complexity of the exchange is
O(twnd/p + tsp). Therefore the expected complexity (omitting O()) of one split at
level ` with p` = p/2` MPI tasks and n` points can be estimated as following: the
projection costs n`d/p` work, the median calculation costs tc log2p` log n` + n`/p`
and the exchange cost is twn`d/p` + tsp`. Median-based splits result in perfect load
balancing so that n`/p` = n/p. Summing over the levels of the tree (1, . . . , log p), we
obtain the expected complexity of the construction to be

O
(

(ts + tw) log2p log n+ (1 + tw log p)
nd

p
+ tsp

)
. (2.1)

Figure 2.4 illustrates an example of the all-to-all data exchange strategy at one
level. One drawback is that all processes have a chance to exchange data with each
others. For large process counts and large dimensionality d, the communication cost
will be excessive due to the twnd/p log p term. More importantly, MPI resources get
taxed by managing such a massive exchange (essentially we’re shuffling the whole
dataset), which leads to having to use very small grain size to avoid running out of
memory.

Pointwise data exchange: One way to resolve the massive exchange from
MPI Alltoallv() is a different point wise exchange approach in Algorithm 6: Sup-
pose there are p processes. As shown in Figure 2.5 (a), process j with j < p/2 is
assigned to Cl otherwise it is assigned to Cr. To redistribute the points, a process
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with j < p/2 sends its local Xr to p − j and receives X′l from p − j. This exchange
introduces memory/work imbalance (worst case is dn/p), which as we traverse the
tree may grow to O(nd/p log p/2). In terms of memory, such complexity severely lim-
its scalability. Hence, after exchanging points at each level, we need to rebalance the
points among all processes within the same child communicator (Cl or Cr). Rebal-
ance() in Algorithm 7 uses an iterative point-to-point communication to balance the
load.

In order to find the parter rank in the point-to-point communication (Line 2
in Algorithm 7), we first sort the number of points on each process, then we can
make a pair of every two processes by matching the process with the largest num-
ber of points to the process with the smallest number of points, then the process
with the second largest number of points to the process with the second smallest
number of points, etc.. Without loss of generality, we assume each process has
ni points and n0 < n1 < n2 < · · · < np−1, then the communication pairs are
(rank0, rankp−1), (rank1, rankp−2), · · · , (rankp/2−1, rankp/2). We can show that the
maximum number of exchanges required to obtain perfect load balance is log p and
the overall memory requirement for the construction is O(2nd/p).

Proof.

1) The first exchange in Algorithm 7: the number of points on each process will

be n
(1)
i = n

(1)
p−1−i =

n
(0)
i +n

(0)
p−1−i

2 , each process has the number of points as

n
(0)
0 + n

(0)
p−1

2
, · · · ,

n
(0)
p/2−1 + n

(0)
p/2

2
, |,
n
(0)
p/2−1 + n

(0)
p/2

2
, · · · ,

n
(0)
0 + n

(0)
p−1

2

2) The second exchange: note the numbers of points on the first half of processes
and the second half of processes are symmetric. A second exchange on all
processes is equivalent to exchange points within each half of processes. After
sorting the number of points on each half and reorder, the number of points

on each process is an average of 4 n
(0)
i .

3) Similarly, after the third exchange, each process would have an average of

8 n
(0)
i . Finally at the t-th exchange (t = dlog pe), the number of points

on each process would be
∑p−1
i=0 n

(0)
i /p. That is after log p point-to-point

communications, perfect load balance is achieved. Figure 2.5 (b) gives an
example of this rebalance procedure.

The sort can be done using a distributed bitonic sort with time complexity log2 p.
This scheme removes O(tsp) from equation (2.1):

O
(

(ts + tw) log2p log n+ (1 + tw log p)
nd

p

)
. (2.2)

Its main value however, is that it avoids collectives and has a lower memory footprint
than MPI Alltoallv().

Replication of the complete tree at each process: Note that neither of the
above schemes stores all nodes of the tree (the complete tree) at every single process,
but only log p nodes (the path from the root to the leaf). By storing the whole tree,
we can remove the log p factor from the O(twnd/p log p) point-exchange cost. This
algorithm is described in [3]. The basic structure of the algorithm is exactly the same
as Algorithm 3 but now all the steps are parallelized using all of the processors. Each
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Algorithm 6 Pointwise exchange(Xl,Xr, CT )

1: {Cl, Cr} = CommSplit(CT )
2: r =rank(CT )
3: if r < p/2 then
4: Send Xl to rank (p− r)
5: Receive X′r from rank (p− r)
6: Rebalance(X′, Cl)
7: else
8: Send Xr to rank (p− r)
9: Receive X′l from rank (p− r)

10: Rebalance(X′, Cr)
11: end if

Algorithm 7 Rebalance(XT , CT )

1: for i = 1 : log p do
2: find my partner rank
3: if nmy rank < nmy partner rank then
4: Receive (nmy partner rank − nmy rank)/2 points from my partner rank
5: else
6: Send (nmy rank − nmy partner rank)/2 points to my partner rank
7: end if
8: end for

processor shuffles its points to the appropriate nodes using a top-down approach, with
synchronizations at each node. At the leaf level, an MPI Alltoallv() redistributes
the points to their correct locations. All stages but the final all-to-all are perfectly
balanced, and the complexity can be simplified to

O
(

log p log n (ts log p+ twp) + (1 + tw)
dn

p
+ tsp

)
. (2.3)

The last two terms come from the actual point redistribution at the leaves. The main
drawback is now all the communications happened within the the global communi-
cator MPI COMM WOLRD. During computing the median, this would significantly
increase the communication costs if the number of processes is large. Experimental
details to compare these three data exchanging method is given in §3.

2.3.3. Nearest neighbors search algorithms. In this section, we introduce
different tree traversal algorithms to find either exact (KNN) or approximate nearest
neighbors (ANN). Two typical tree traversal strategies are the greedy traversal and the
bounding ball traversal. In a greedy traversal (Algorithm 8), on the current node T a
query point q only visits one of T ’s children nodes, i.e., q would only search nearest
neighbors in one leaf node on the tree. In the bounding ball traversal (Algorithm 9),
a bounding ball Bq,ρ is defined as an d dimensional solid sphere centered at q with
a radius ρ. At node T , q would visit all children nodes which have overlapped with
Bq,ρ. At a result, q would visit all leaf nodes that intersect with Bq,ρ. These two
traversal approaches are illustrated in Figure 2.6.

Based on these two tree traversal algorithms, we can solve both KNN and ANN

problems.
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(a) point-to-point data exchange (b) recursive load balancing

Fig. 2.5. Point-wise load balancing. An illustration of point-wise load balancing scheme. First
each pair of processes from each child node exchange corresponding data points with each other.
Then a second pointwise data exchange occurs to reload balancing points within the child node.
After log p iterations, the point are well balanced.

(a) greedy traversal (b) bounding ball traversal

Fig. 2.6. Illustration of the greedy and the bounding ball traversal strategies. In a greedy
traversal, a query point (marked) as circle only visit the leaf node it belongs to, as in figure (a) the
shaded region. In a bounding ball traversal, a query point would visit all the leaf nodes which overlap
the query’s bounding ball Bq,ρ.

1) KNN (exact nearest neighbors) by PKDTH . In order to find the true nearest
neighbors, we would visit all necessary leaf nodes which contain the true neighbors.
Ideally if we know the distance between a query q and its k-th nearest neighbors
rk, we can use a bounding ball traversal with the radius ρ = ‖q − rk‖. Of course
rk is unknown, but a good heuristic about rk can be obtained by a greedy traversal
at first. In other words we solve KNN problem by a two stage tree traversals. In
the first pass, each query point would use a greedy traversal to go to one leaf node,
and then search the exact k-nearest neighbors inside that leaf. Let rgreedyk be the
k-th nearest neighbor of q founded by greedy traversal, then a second bounding ball
search with radius ρ = ‖q−rgreedyk ‖ is performed to select all nearest neighbors inside
Bq,‖q−rgreedyk ‖. Finally the closest k out of all found neighbors are returned.

The effectiveness of the KNN using PKDTH depends on the number of nodes we
visit, which in turn depends on the radius of the bounding balls. In the case that
a significant overlap among bounding balls and leaf nodes occurs, which is typical
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Algorithm 8 GreedyTraversal(q, T )

1: if isLeafNode(T ) then
2: DirectSearch(q, XT )
3: else
4: for each query point q do
5: if pT · q−mT < 0 then
6: Assign q to Tl
7: else
8: Assign q to Tr
9: end if

10: end for
11: Distribute q to appropriate process
12: GreedyTraversal(q, T ′)
13: end if

Algorithm 9 BoundingBallTraversal(q, ρ, T )

1: if isLeafNode(T ) then
2: DirectSearch(q, XT )
3: else
4: for each query point q do
5: if pT · q−mT ≤ ρ then
6: Assign q to Tl
7: end if
8: if mT − pT · q ≤ ρ then
9: Assign q to Tr

10: end if
11: end for
12: Distribute q to appropriate processes
13: BoundingBallTraversal(q, ρ, T ′)
14: end if

in datasets with high intrinsic dimension, these exact searches using bounding balls
will end up evaluating distances with all reference points. Then there is no difference
between the tree based search and the direct search. To avoid memory exhaustion
in these cases, we allow each process to store only a specified maximum number of
query points during a tree traversal. If this limit is reached at an internal tree node,
we stop the traversal early on that subtree and run an approximate search on that
node.

2) ANN (approximate nearest neighbors) by randomized PKDTH . The exact
tree search algorithm might be in trouble if a query point have to visit many leaf nodes,
which is likely in high dimensions. Instead of performing an exact search, we can visit
only one leaf node, as what is described in Algorithm 8. The problem with this
approach is it has very low accuracy. However, suppose there is a method which visit
the leaf node randomly with an error ε, then after r independent runs, the accuracy
can be improved to 1− εr. This inspires the randomized PKDT algorithm.

Let’s take the case in Figure 2.7 as an example. There are two points r1 and
r2 which are both very close to the hyperplane H1, but located on opposite sides.
Suppose there is a third point q that is close to both of these two. We ought to visit
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both regions to correctly identify the nearest neighbors of q. But if we choose another
hyperplane, say H2, which is equivalent to rotate the reference points, all r1, r2 and
q locates to the right side of H2. In this situation, greedy traversal is enough to find
the true neighbors of q. Our method is based on the sequential algorithm described
in [19]. The basic idea is to avoid pruning: rotate the points randomly, build a
KD-Tree, and search for nearest neighbors only at one leaf; iterate and combine the
results from previous iteration till convergence. Algorithm 10 summarizes the whole
procedures.

Fig. 2.7. Illustration of random KD tree search

Algorithm 10 randomProjectionTreeSearch(q,R)

1: N (q) = {}
2: for i = 1 : r do
3: Rotate Points from XT to Xi

T
4: DistributedNodeSplit(Troot,R, MPI COMM WORLD)
5: N i(q) = GreedyTraversal(q, T )
6: Merge result of N (q) and N i(q) to N (q)
7: end for

Compared to the exact tree search, which is likely to visit many nodes, especially
in high dimensions. The randomized PKDT only visit one leaf node at a time. Hence at
most, the number of nodes a query point will visit would be r, where r is the number
of iterations. It has been demonstrated that if data has a low intrinsic dimensional
manifold structure, random projection could converge fast [9, 19].

3. Experimental results. We present and analyze the performance and scal-
ability results of each of our algorithms on several x86 clusters. We examine both
single-node kernel performance, overall scalability, and accuracy of the ANN searches.

Platforms used. Our large strong- and weak-scaling results were obtained from
runs on the Jaguar system at the National Center for Computational Sciences, Kraken
platform at the National Institute for Computational Sciences, and the Lonestar,
Maverick and Stampede clusters at the Texas Advanced Computing Center. Table 3.1
provides a summary of machine characteristics
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Jaguar Kraken Lonestar Stampede Maverick

nodes 18,688 9,408 1,888 6,400 132
cores 299,008 112,896 22,656 102,400 2640

GB/node 32 16 24 32 256
clock (GHz) 2.2 2.6 3.3 2.7 2.8
GFlops/core 8.8 10 13 21.6 22.4

Table 3.1
Machine characteristics.

All machines have dual-socket nodes. Kraken have AMD’s Istanbul architecture
connected to a Cray SeaStar2+ router, and the routers are interconnected in a 3-D
torus topology. Each Jaguar compute node contains dual hex-core AMD Opteron
2435 (Istanbul) processors Jaguar uses a Gemini Torus topology. Lonestar is inter-
connected with QDR InfiniBand in a fat-tree topology and uses Intel Xeon X5680
processors for each socket. Maverick has Intel Xeon 2.8GHz E5-2680 v2 (Ivy Bridge)
CPUs. Maverick has the Mellanox FDR InfiniBand interconnect. Stampede nodes
has dual-soscket Intel Xeon 2.7GHz E5-2680 (Sandy Bridge) processors and 32GB
RAM. The interconnect is the Mellanox FDR InfiniBand in a 2-level fat-tree topol-
ogy. The libraries and executables were built using Intel compilers with MKL BLAS
on Lonestar, Maverick and Stampede, and the Cray compilers on Jaguar an Kraken
with vectorization and OpenMP.

Datasets. We test the performance on several datasets, both synthetic and real.
The synthetic datasets are points sampled from a normal distribution. Furthermore,
we also generate an embedded normal dataset, which we first generate a d-dimensional
normal data, then expand them into D-dimensional space by padding zeros and ro-
tation. In this way, the dataset could have an intrinsic dimensionality d. In the
following, we denote the embedded normal data as ”d − D normal”. We also use
small datasets to test and compare the exact tree search algorithms. The first one
is the US Census data from UCI Machine Learning Repository [22]. The second real
dataset comes from the Gabor wavelet features of MRI cardiac images; The third
one contains points from the phase space of a chaotic dynamical system. Finally,
we test five large real datasets to show the accuracy and convergence of PKDT. They
are ”covtype”, ”susy”, ”higgs”, ”gas sensor” from UCI Machine Learning Repository
[22], and the frequently used hand written digit dataset ”mnist8m” [23]. Table 3.2
summarize all the datasets used in this paper.

3.1. Brute force direct KNN performance. For the 2d partitioned direct k-
NN, we evaluate performance by conducting strong-scaling tests on 48 to 768 cores
(8 to 128 sockets) on Kraken. Our runs were performed with a fixed number of nodes
overall, m = n = 100, 000, and with three values of dimension, d = 8, 512, and 8192.
The results in Table 3.3 show nearly perfect linear strong scaling, indicating that
the communication and node interdependency caused by the k-reduction does not
produce a significant performance bottleneck. In Table 3.4, we demonstrate perfectly
flat weak scaling up to 16,384 MPI processes.

For the cyclic direct KNN, we evaluate performance by conducting weak-scaling
tests on 12 to 12,288 cores (1 to 1024 nodes) on Kraken. In this experiment, we use
a single MPI process per core and disable multi-threading within processes. Even
though we do achieve good performance with hybrid parallelism, this decision was
made to enable measuring the scalability to a larger number of independent processes.
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dataset number of points (millions) dimension intrinsic dim
US census 2.45 68 -

dynamical system 10 81 -
gabor wavelets 10 276 -

covtype 0.5 54 -
gas sensor 6.7 16 -

susy 4.5 18 -
higgs 10.5 28 -

mnist8m 8 784 -
normal 12 (largest) 100 100

embedded normal 819 (largest) 2048 10

Table 3.2
Dataset characteristics. ’-’ means the intrinsic dimensionality is unknown. For the synthesized

normal and embedded normal datasets, only the largest size are listed.

p
Time (s) GFLOP / s

d = 8 512 8, 192 8 512 8, 192

4 1.68 4.33 44.04 0.101 23.7 36.8

8 0.59 1.91 22.09 2.86 53.6 74.2

16 0.37 1.04 11.22 4.57 98.8 146

32 0.15 0.48 5.856 11.7 212 280

64 0.08 0.26 2.932 20.3 400 559

128 0.05 0.14 1.595 33.8 729 1027

Table 3.3
Strong scaling of direct KNN with 2d partitioning. The time required to complete a query and

the floating-point performance of the KNN calculation on Kraken. A square partitioning is used and
the total number of reference and query points is fixed at m = n = 100, 000. One process per socket
was used, with 6 OpenMP threads.

p = 4 16 4096 16, 384

Time (s) 27.85 27.83 27.96 27.72

TFLOP / s 0.03 0.11 28.0 111

Table 3.4
Weak scaling of direct KNN with 2d partitioning. The time required to complete a query and the

floating-point performance of the KNN calculation on Kraken. A square partitioning is used and the
number of points per block partition is fixed at m = n = 5000 reference and query points per MPI
process. In all runs, d = 1000. One process per socket was used, with 6 OpenMP threads.

We test the scalability of both an all nearest neighbors (the reference points and the
query points are the same), and a query set that is significantly larger than the
reference set.

The results of the weak scaling tests are summarized in Table 3.5. The algorithm
exhibits nearly perfectly linear weak scaling, which indicates that even for a relatively
small problem size per node, the cost of communication is hidden by overlapping it
with computation. In fact, for the largest run, the code sustains roughly 40% of peak
floating-point performance without any low-level optimization.
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p
m = n = 1000 m = 100000, n = 100

Time (s) TFLOP/s Time (s) TFLOP/s

96 4.58 0.44 49.1 0.38

192 9.30 0.80 97.7 0.76

384 18.4 1.61 195 1.53

768 36.9 3.23 403 2.96

1,536 73.9 6.45 815 5.85

3,072 151 12.6 — —

6,144 303 25.2 — —

12,288 604 50.5 — —

Table 3.5
Weak scaling of direct KNN with cyclic algorithm. The time required to complete a query and

the floating-point performance of the KNN calculation on Kraken. In all runs we used d = 100. We
use one process per core. Here m and n indicate the number of points per MPI process.

3.2. KNN using PKDT. We have evaluated the KNN performance and scalability of
our tree-based approach on the Kraken platform using different datasets.

We first compared PKDTH and PKDTC . For the exact tree search, the most im-
portant evaluation is how many points (or leaf nodes) a query should search. In the
worst case a query visits all leaf nodes and no pruning takes place. In the best case,
perfect pruning, every query visits only one leaf node. To measure the efficiency of
the pruning, we define the pruning percentage as

pruner% =
N − nr
N −N/p

(3.1)

where N is the total number of query points among all processes; nr is the number
of query points on a single process r; p is the number of processes.

dataset
hyperplane partition (100%) clustering grouping (100%)
min max avg min max avg

US census 45.90 99.98 89.92 32.87 99.87 63.83

dynamical system 97.76 99.97 98.99 0.6639 93.49 15.39

gabor wavelets 96.85 100.00 99.01 54.08 100.09 88.24

5d-100D normal 99.66 99.84 99.75 4.17 97.95 57.74

10d-100D normal 83.96 94.32 89.82 0 3.38 0.5456

Table 3.6
Pruning effect of exact tree search on different datasets. The pruning is obtained using 5

different datasets. The US census run uses 9,100 reference points and 500 query points per process,
and totally 256 processes. For the remaining four runs we use 10,000 reference points and 500
query points per process, for a total of 1,024 MPI processes. The maximum, minimum and average
pruning percentage across all processes are reported.

Table 3.6 shows the pruning percentage of both PKDTH and PKDTC on 5 different
datasets. Generally speaking, all those 5 datasets has lower intrinsic dimensionality
than their ambient dimensions. As a result, even the dimension is high, there are
some pruning that could be obtained. We could find the clustering partition has less
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pruning than the hyperplane partition on all the 5 datasets. On the other hand,
unlike PKDTH which has a perfect load balance, it is very difficult to maintain the
load balance for PKDTC . Since clustering is impossible to geneate clusters that all
have exact the same size, there is no guarantee then each kid has the same number
of reference points. All in all we prefer the hyperplane partition strategy, and in the
following scaling test, we only present the scalability of PKDTH .

p = 192 384 768 1536 3,072 6,144 12,288

5d

const. (s) 0.81 0.99 1.27 1.46 1.69 2.44 2.80

query (s) 3.82 4.25 5.10 5.81 13.07 18.92 28.42

% prune 98.86 99.40 99.68 99.83 99.91 99.95 99.97

10d

const. (s) 0.93 0.96 1.26 1.83 2.07 3.99 3.14

query (s) 37.61 55.92 81.57 115.72 162.11 267.27 379.75

% prune 75.04 82.41 87.99 91.96 94.74 96.54 97.56

Table 3.7
Weak scaling of PKDTH for KNN (k = 2) using the normal distribution data. The time (in seconds)

required for tree construction and query on Kraken with a fixed number of points per process. 10,000
reference points and 1000 query points per process were used for the 100-dimensional runs (points
are sampled from a 5-dimensional normal distribution, and embedded into 100-dimensional space.)
We use one MPI process per core.

We evaluate the weak scaling performance of PKDTH for KNN problem on 128 to
24,576 cores (64 to 2048 nodes) on Kraken. In this experiment, we use a single MPI
process per core and disable multi-threading within processes. Even through we do
achieve good performance with hybrid parallelism, this decision was made to enable
measuring the scalability to a larger number of independent processes. Performance is
summarized in Table 3.7. We see that the construction time required to partition and
redistribute the points grows very slowly as a function of problem size and process
count. However, for the query points, there is some overlap in the bounding regions
of the clusters, some number of query points will be replicated to multiple kids in
the tree traversal. Since we test the weak scaling using data sampled from a normal
distribution, as the process count increase, the density of data points becomes more
and more large. Thus, it is likely that at the very beginning, there is a big overlap
near the hyperplane. As going to deeper level, the overlap might be reduced. The
query time increase quickly as the process count increases. This is mainly because
as the process count increases, although the pruning percentage also is improved, the
number of query points becomes larger on each leaf node, which means we should
perform the direct nearest neighbor search kernel in a larges scale of data points. For
example, when p = 12288, the maximum number of query points on a single leaf
node is 417065, compared with 65951 for p = 192, which is 6.3 times larger. And to
redistribute large amount of points also takes longer time. Generally speaking, the
pruning degrades since the point density of the generated dataset increases rapidly as
the problem size is increased.

3.3. ANN using randomized PKDT. In our first experiment, we study the overall
performance of randomized PKDT in terms of accuracy, convergence, and wall-clock
time. We use five real datasets in Table 3.8 to solve the all nearest neighbors problem,
i.e., the reference and query set are the same. Such runs are typical in learning tasks
as part of cross-validation (e.g., to decide how many neighbors to use for a supervised
classification problem).
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To measure accuracy of randomized PKDT, we use the hit rate and mean relative
error. Hit rate, “hit”, is defined as

hit =
1

nk

n∑
i=1

∣∣∣∣{N true
i

}k
j=1
∩
{
N found
i

}k
j=1

∣∣∣∣ (3.2)

where n is the number of points, k is the number of requested neighbors, N true
i is

the set of true neighbors of point i, and N found
i is the set of neighbors found by the

approximate approach.

error =
1

N

N∑
i=1

∑k
j=1

∣∣∣‖qi − rtruej ‖ − ‖qi − rfoundj ‖
∣∣∣∑k

j=1 ‖qi − rtruej ‖
(3.3)

The mean relative error is the mean of the relative difference between the distances
returned from an approximate search and the distances to the exact nearest neighbors.
The reason for using both metrics is that for a given query point q, an approximate
search may not return the exact nearest neighbor, but it may return a point that is
almost imperceptibly more distant from q than is the exact nearest neighbor. Because
of the prohibitive cost of computing an exact KNN solution for large data sets, we
compute both accuracy metrics for a random sample of O(log n) points.

The maximum iteration number is 100 and the termination threshold of conver-
gence is 99% for hit rate and 1E-4 for relative error. The leaf node size of PKDT is
always 2k. Usually the real data sets do have low intrinsic dimension. As a result,
even if the data have a high ambient dimension, randomized PKDT can still converge
fast. For the ”covtype” and ”gas sensor” sets, roughly 20 iterations are enough to
converge to a hit rate of 99%. For the ”gas sensor”, k = 2048 PKDT only requires
0.9%(15× 4096/6709412) evaluations compared to a direct search. (Notice that some
of these evaluations are repeated, since leaf nodes across different iterations may
overlap.) However, for the ”higgs” (a high-energy physics dataset) and ”mnist8m”
(a handwritten character recognition dataset), 100 iterations can only converge to
90% hit rate. It is usually acceptable for a very large k, especially the relative errors
is small (3 digits at least). Another interesting observation is that ”mnist8m” has a
much large ambient dimensionality than the ”higgs” (although ”higgs” is a larger set).
However using the same number of iterations, ”mnist8m” converges even faster an in-
dication that the dimensinoality is much lower than the ambient dimension 784. One
advantage of randomized PKDT over other algorithms is that there is no tree traversal
for the all nearest neighbors search problem. At each iteration only one leaf node is
visited, hence the time for different iterations is exactly the same. In Table 3.8, Ti
is the time of each iteration, and Ttotal is the total time of all iterations. The reason
that Ti’s for different k are different is because once the distances are calculated, the
complexity to find nearest neighbors for each query is O(n log k); to merge the nearest
neighbors with last iteration, all the nearest neighbors should be shuffled back to the
original process where the query points locate, the message size of each query is O(k).

The strong scaling performance of randomized PKDT using ”mnist8m” is illustrated
in Table 3.9. We take 10 iterations and do not report the accuracy. The construction
time of PKDT scales up to 8192 cores (1024 processes). For 16,384 cores, each process
only has less 8.1× 106/2048 ≈ 3955 points and there is no enough parallelism during
building the tree while the communication percentage increases with respect to grain
size. Yet, for all the runs, the query time scales almost linearly with the local problem
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dateset kNN
name N d k iter hit rate error Ti Ttotal

covtype 500,000 54
512 16 99.16% 6.4e-4 0.69 12
1024 16 99.01% 4.2e-4 1.37 24
2048 21 99.01% 1.7e-4 2.86 62

gas sensor 6,709,412 16
512 21 99.11% 5.4e-4 8.12 180
1024 18 99.05% 6.1e-4 16.67 312
2048 15 99.04% 7.2e-4 33.36 531

susy 4,500,000 18
512 60 99.15% 4.6e-4 5.27 320
1024 55 99.01% 4.8e-4 10.48 584
2048 51 99.03% 4.8e-4 21.62 1120

higgs 10,500,000 28
512 100 80.47% 1.0e-2 12.59 1264
1024 100 83.90% 7.8e-3 24.98 2518
2048 100 88.08% 5.3e-3 50.32 5054

mnist8m 8,100,000 784
512 100 86.37% 6.4e-3 18.93 1904
1024 100 88.92% 4.8e-3 29.92 2999
2048 100 91.21% 3.4e-3 53.63 5413

Table 3.8
Accuracy and time on several large real datasets of randomized PKDT. All the experiments are

run on Maverick using 32 nodes, one MPI process per socket. ’Ti’ is the time for each iteration,
’Ttotal’ is the total time spent. The maximum iteration number is set to be 100, and once the hit rate
touches 99%, the iteration will terminate automatically. Also in all experiments, we construct the
tree so that each leaf node has no more than 2k points, where k is the number of nearest neighbors.
Notice that this gives an indication of the overall distance evaluations. For example for the k = 512
”mnist8m” run, we take 100 PKDT iterations, which in turn means that we perform 102,400 distance
evaluations per query point or 1.2% of evaluations required in a direct evaluation. For the k = 2046
this number increases to 5%. For the ”gas sensor” dataset, we see that in all cases less than 1%
evaluations end up giving almost exact solutions, and indication that the intrinsic dimensionality is
really small.

size O(nd/p).

cores 1,024 2,048 4,096 8,192 16,384

MNIST8M
construction 51.75 31.67 18.99 12.11 18.55

query 542.71 257.48 132.70 71.67 48.11
speedup 1 2.06 3.92 7.10 8.92

Table 3.9
Strong Scaling of PKDT on Maverick: Strong scaling of 10 iterations of PKDT on Maverick for the

”mnist8m” dataset. In this run, k is 2048, the maximum leaf node size is then 4096. ’construction’
stands for tree construction time of the tree in total 10 iterations, and ’query’ is the total querying
time. The point-wise data exchange is applied in these runs.

Next we study the weak scaling performance of randomized PKDT. First of all, we
want to compare three difference data exchange mechanism discussed in §2.3.2. For
the purpose of extensively comparison, we tested only the tree construction part on
three different machines: Lonestar, Kraken and Jaguar. We use the metric millions
of cycles / point / core to compare across platforms, i.e., the number of clock cycles
that would be needed to perform the query for each point using only a single core.

On Lonestar (Table 3.10), the lower bandwidth of interconnect combined with
its less-tuned MPI stack clearly shows the differences in the scalability of the three
methods. the whole tree exchange performs well at small scales, but point-wise data
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exchange shows the best overall scalability. Weak-scaling results for point-wise data
exchange and the whole tree exchange on Kraken are presented in Table 3.11. Here
too, the whole tree exchange performs well at small p but does not scale well as we
increase the processes; however, point-wise exchange maintains very good efficiency
up to 96K cores. Table 3.12 presents weak-scaling results for all three data exchange
on Jaguar. On Jaguar, the differences between the three construction algorithms are
less marked, with the exception of the fact that whole tree exchange also fails to scale
to large p. Overall speaking, the whole tree exchange provides the best performance
at small p but does not scale well at large p. Point-wise exchange exhibits slightly
better performance and scalability than all-to-all exchange. It is not currently clear
why point-wise exchange fails to maintain the same level of parallel efficiency on
Jaguar that it exhibits on Kraken at comparable core counts. Further investigation
is necessary to explain this behavior.

Tree: Lonestar weak scaling
cores 192 384 768 1,536 3,072 6,144

all-to-all exchange
cycles 10.7 17.8 25.3 39.1 58.0 88.5
effic 100% 60% 42% 27% 18% 12%

point-wise exchange
cycles 6.9 8.4 9.8 11.3 13.0 15.2
effic 100% 83% 71% 62% 54% 46%

whole tree exchange
cycles 5.7 7.3 8.4 10.2 12.6 17.6
effic 100% 78% 69% 56% 45% 32%

Table 3.10
Weak-scaling of Tree Construction on Lonestar. This table shows the scalability of the three tree

construction variants on Lonestar in terms of millions of cycles per point per core and the efficiency
relative to the 192-core run. We use one process per socket with 6 OpenMP threads. We use 10K
points per process in 2,048 dimensions.

Tree: Kraken weak scaling
cores 1,536 3,072 6,144 12,288 24,576 49,152 98,304

point-wise exchange
cycles 18.0 17.9 21.2 25.8 30.1 36.0 43.1
effic 100% 100% 85% 70% 60% 50% 42%

whole tree exchange
cycles 14.0 12.5 20.7 31.7 59.3 - -
effic 100% 112% 68% 44% 24% - -

Table 3.11
Weak-scaling of Tree Construction on Kraken. This table shows the scalability of point-wise data

exchange and the whole tree exchange on Kraken in terms of millions of cycles per point per core.
The efficiency relative to the 1.5K core run. We use 10K points per process in 2,048 dimensions.

Finally, we illustrate the weak scaling performance of the randomized PKDT on
Stampede and Jaguar. The data exchange method is the point-wise exchange for all
runs. On stampede, we use 1024 normal distribution data; each process has 50,000
points; one process per socket with 8 threads. We test k = 2048 in this run. In
Figure 3.1, it is clear that the query part is the most expensive portion since selecting
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Tree: Jaguar weak scaling
cores 2,048 4,096 8,192 16,384 32,768 65,536 131,072

all-to-all exchange
cycles 11.1 16.4 20.3 27.3 33.5 46.1 51.1
effic 100% 68% 55% 41% 33% 27% 22%

point-wise exchange
cycles 9.8 12.5 15.8 22.9 32.4 38.8 49.8
effic 100% 78% 62% 43% 30% 25% 20%

whole tree exchange
cycles 5.3 8.1 10.7 25.5 34.2 132.3 -
effic 100% 66% 50% 21% 16% 4% -

Table 3.12
Weak-scaling of Tree Construction on Jaguar. This table shows the scalability of the three tree

construction variants on Jaguar in terms of millions of cycles per point per core and the efficiency
relative to the 2048-core run. We use one process per socket with 8 OpenMP threads. We use 10K
points per process in 2,048 dimensions.

k neighbors requires maintaining a maximum heap of size k as well as merging k
neighbors from the last iteration for each point. The construction part is linear with
respect to the number of processes, which is consistent with the analysis in §2.3.2.
The query part is almost constant because the local problem size is the same due to
the load balanced data exchange mechanism. Overall if k is relative large, PKDT can
get nearly constant weak scaling performance. For the small k case, we test the all
nearest neighbors case on Jaguar using 2048 dimensional normal data; each process
has 50,000 points; one process per socket with 8 threads. In the case of Figure 3.2
k = 2, the tree construction dominates the overall running time. Similarly, the query
time is nearly constant but the construction time scales with respect to the number
of processes.

We used the normalized cycles / points / core statistic to compare performances
across different systems. For weak scaling, increasing numbers indicate communica-
tion overheads and load imbalance. Notice that algorithmically we show that the
best-case complexity estimates include terms that grow with powers of log p, linearly
in p, or with factors that depend on log n that inherently limit the attainable efficien-
cies.

This is the first time that nearest neighbors solver has been scaled to this extent
and a first attempt to characterize the parallel scalability of state-of-the-art approxi-
mate nearest neighbors methods in leadership architectures. However, there are some
general conclusions that can be drawn. During the tree construction, the clear loser
in three different data exchange technique is the whole tree exchange, but again there
are regimes in which it performs well (small number of core counts). The interplay
between latency, bandwidth, points per leaf node size suggests significant opportuni-
ties for performance tuning and optimization depending on the machine architecture,
the dataset and its dimensionality.

3.4. Comparison with existing software packages. As we mentioned, no
software offers the capabilities of our library. But just do indicate that even in the
single node case, we outperform existing codes, we discuss a few examples. The first
package we discuss is MLPACK, which is only supports exact searches, but does not
have distributed memory parallelism. The larger dataset reported in [8] is has 1M
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Fig. 3.1. Weak scaling of PKDTon Stampede: Weak scaling of all nearest neighbors in 10
iterations of PKDT on Stampede. We use 1024 dimensional normal distribution data with k = 2048.
50,000 points per process are used; one process per socket with 8 threads. The percentages represent
the relative efficiency of each run normalized to the 128-core run.

points in 10 dimensions (the “randu” set) for KNN with k = 3. This test took 1020
secs on a 3.3 GHz AMD Phenom II X6 1100T processor (Table 1, [8]). Exact search
with PKDT takes 18 secs on node of Maverick (with 99.9%) hit-rate accuracy. Even if
we assume that the Phenom is 4× slower than the Ivy Bridge, PKDT is still over 10×
faster than MLPACK. Notice that MLPACK significantly outperforms packages in existing
high-level language packages like MATLAB, Scikit-Learn (Python) and WEKA (Java).

The second package we compare with is FLANN [30] a very popular approximate
nearest neighbor algorithm also based on random KD-trees. The randomization is over
the choice of coordinates to split, a different scheme than hours. FLANN supports
multithreading. It also has rudimentary support for MPI by splitting the reference
dataset across multiple MPI processes, performing the query for each subdataset
and then merging the results sequentially. (Notice that the authors compared FLANN

with the high-quality ANN library [27] used in the R package and found that FLANN

is significantly faster). To compare FLANN we downloaded it and compiled it on
the “Maverick” cluster using the same Intel compiler and flags as for our PKDT. We
considered the all-KNN problem with a Gaussian distribution of points, with n =160K,
d = 32, and k = 32. For FLANN we used the following parameters checks=2500, 8
trees and everything else to its default value. FLANN takes 155 seconds on the 20-core
“Maverick” node to deliver 75% hit rate (estimated by testing 2000 points). For PKDT
we used 16 iterations with 2000 points per leaf node and it required 20 secs, again for
75% hit rate (estimated by testing 2000 points). So PKDT is more than 7× faster than
FLANN, without considering distributed memory parallelism. Also, notice that FLANN

and MLPACK use single-precision arithmetic, whereas we use double-precision. So the
actual speed-ups can be even higher. At any rate, none of the existing packages can
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Fig. 3.2. Weak scaling of PKDTon Jaguar: Weak scaling of all nearest neighbors in 8 iterations
of PKDT on Jaguar. We use 2048 dimensional normal distribution data with k = 2048. 50,000 points
per process are used; one process per socket with 8 threads. The percentages represent the relative
efficiency of each run normalized to the 2,048-core run.

handle the large datasets one which we test PKDT.
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4. Conclusion. We presented a set of algorithms for the parallel tree construc-
tion for points in high-dimensions, for exact nearest neighbor searches, and for ap-
proximate nearest-neighbor searches using greedy search on randomized KD-trees. We
reported the accuracy and scalability of the scheme for synthetic and non-synthetic
datasets across different clusters and problem sizes and we demonstrated unprece-
dented scalability. As mentioned in the introduction the software is at
http://padas.ices.utexas.edu/matheme.

There are several things we did not have space to discuss. For example in [19]
the idea of “supercharging” is discussed in which the greedy search is augmented by
search on the nearest-neighbor graph. We implemented this in PKDT but we found,
consistently, that in the distributed memory setting the procedure is not effective
due to unpredictable memory loads and communication overheads: simply taking
more iterations is faster and more robust. Also, we have implemented a parallel
LSH algorithm. In a nutshell, similar good performance (in terms of accuracy and
scalability) can be obtain with the LSH algorithm, however it requires significant
parameter tuning for each dataset, whereas PKDT offers similar performance with no
tuning parameters. The discussion of the comparison will be reported elsewhere.

Appendix A. Point Grouping Using kmeans Clustering with Random-
ized Seeds. In this section, we outline the point-grouping mechanism, the kmeans
clustering. We use a standard kmeans clustering algorithm with the seeding intro-
duced in Ostrovsky et al. [32]. Its main feature is that it reduces the number of
iterations required to converge the kmeans algorithm and most importantly, removes
the need for multiple invocation of kmeans with different seeds. For well-clusterable
cases (e.g., mixtures of well-separated Gaussians), the new clustering can be orders
of magnitude faster than uniformly randomly selecting seeds among the input points
because it eliminates the need for repeated seed selection.

Parallelizing kmeans is straightforward [11]. Algorithm 11 describes the scheme.
It is easy to see that the complexity per iteration is O(kd(np + log p)), where k is the

Algorithm 11 kMeans(r, c, n, k)

1: for j = 1 · · ·n do
2: For each point rj , assign cluster membership by finding the closest centers ci
3: ci =

∑
rj , rj ∈ cluster i (Vi), |Vi| = ni

4: ni = Allreduce(ni)
5: ci = Allreduce(ci)
6: ci = ci/ni
7: end for

number of clusters, n is the number of points, and p is the number of processors.

A.1. Seeding. To reduce the iterations of standard kmeans and obtain high
quality clusters, seeds can be carefully selected. A choice of the initial centroids
(seeding) with provable quality guarantees (under a quantitative assumption of clus-
terability) is discussed in [32]. Once the seeds have been computed, the ball-kmeans
or the standard kmeans iteration can be used. The algorithm in [32] is based on the
observation that k initial centroids that are far away from each other will belong to k
different clusters. To find these points, we first oversample on probabilities based on
the interpoint distances and then we eliminate bad seeds.

The oversampling step is summarized by Algorithm 12. First, we sample two

http://padas.ices.utexas.edu/matheme
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initial seeds (denote as s1 and s2) according to probabilities

p1j =

(
d2(rj , r̄)n+

∑
j d

2(rj , r̄)
)

(
2n
∑
j d

2(rj , r̄)
) (A.1)

p2j =
d2 (rj , s1)(∑

j d
2(rj , r̄) + nd2(r̄, s1)

) (A.2)

where n is the number of points, r̄ is the global mean of all points rj , s1 is the first
selected seed, and d(·, ·) is the distance between two points.

Then, for the remaining points, the sampling probability is given by

pj =
d2(rj , s

j
∗)∑

rj
d2(rj , s

j
∗)

(A.3)

where d(rj , s
j
∗) is the distance between point rj and its nearest seed sj∗, which has

already been chosen. Finally, a randomly sampled point based on the probability
from the unchosen set is used until a new seed is added. We repeat these steps until
we have chosen k seeds.

Algorithm 12 addSeeds(r, s, k)

1: if isempty(s) then
2: sample the first two seeds s1 and s2
3: end if
4: if |s| ≥ k then return
5: d(rj , s

j
∗) = minsi d(si, rj)

6: compute sampling probabilities p = {pj} according to Eq. A.3
7: s′ = random sample(r/{s}, p)
8: s← s ∪ s′
9: addSeeds(r/{s}, s, k)

After oversampling k′ seeds where k′ > k, We eliminate these seeds one by one to
exclude those which generate bad clustering quality, until finally we have k centers.
The seed elimination step is described in Algorithm 13. In more detail, we evaluate
the clustering quality of k′ − 1 seeds {si}k

′

i=1\sj for each sj , then delete the one with
the lowest quality. The clustering quality is measured by the kmeans loss L,

Lk(X) =
1

|X|

k∑
i=1

∑
x∈Vi

‖x− si‖2 (A.4)

where Vi is the Voronoi set of seed si. If the data is ε-separated, which implies

Lk(X)/Lk−1(X) ≤ ε2, [32] suggests oversampling k′ = 2k
1−5
√
ε

+ 2 log(2/
√
ε)

(1−5
√
ε)2

points is

sufficient to obtain good results. In practice, without any prior knowledge about the
ε, it is possible to estimate it by using a small subset of the input data.

k-Means seeding performance. We compare the performance of two types
of seeding approaches for kmeans. The first one is the standard uniformly randomly
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Algorithm 13 EliminateSeeds(r, s, k)

1: if |s| ≤ k then return
2: for i = 1 : |s| do
3: ni = |Vi| for si
4: s(i) ← s\si
5: compute the kmeans loss L(i) of s(i)

6: Ti = niL(i)

7: end for
8: s∗ = mins Ti
9: s← s\s∗

10: for i = 1 : |s| do
11: find Vi for each si
12: si ← mean(Vi)
13: end for
14: EliminateSeeds(r, s, k)

selection of seeds among the input points; the other is the Ostrovsky seeding.
Experiments run on the synthetic data, a mixture of eight Gaussians with unit

variance. Each center of these Gaussians is located on a vertex of a hypercube. Each
run was repeated 100 times. Clustering quality is measured by the loss function
Eqn. A.4 and the variance ratio V

V(X) = max

∑k
i=1 pi‖ci − c‖2∑k

i=1 pi
1
|Vi|
∑
x∈Vi
‖x− ci‖2

, (A.5)

where pi = ‖Vi‖
‖X‖ and c is the center of the whole dataset X. The higher the variance

ratio, the better clustering quality is.

D k seeding L(X) V(X) iters accuracy

3

4
random 4. 11±0.061 1.15±0.032 11.28±3.64 45.81%±0.88%

Ostrovsky 4.10±0.046 1.16±0.024 11.01±4.33 45.61%±0.63%

8
random 1.95±0.160 3.57±0.330 11.03±3.75 87.12%±5.65%

Ostrovsky 1.97±0.171 3.51±0.361 8.02±3.57 86.30%±6.01%

6

4
random 11.20±0.421 1.60±0.083 7.91±2.85 49.91%±0.06%

Ostrovsky 11.09±0.008 1.62±0.002 6.41±2.69 49.93%±0.04%

8
random 3.55±1.216 8.34±3.528 7.44±2.29 91.25%±7.13%

Ostrovsky 2.16±0.368 12.69±1.203 3.17±0.88 99.50%±2.16%

Table A.1
Clustering Quality: The clustering quality is measured by the kmeans loss, variance ratio,

number of kmeans iterations (iters), and the clustering accuracy (accuracy). We use a mixture of
8 Gaussians. Here D is the distance between each pair of Gaussian centers. k indicates the number
of target clusters (the best k is eight).

When the length of the hypercube edges is 6, the Gaussians are relatively well
separated, it is clear that the Ostrovsky seeds results in a better clustering than
random selected seeds. First, the loss function and variance ratio indicate better
quality. Second, the standard deviations of these measures are much smaller than
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those of random seeds, which implies the Ostrovsky seeds are more stable and can
be expected to always produce good clustering results. Third, the Ostrovsky seeds
require less iterations to converge. We also test the case of edge length 3. In this case,
there is no significant difference between two types of seedings. Generally speaking,
only the Ostrovsky seeding can be ”safely” used without need for repeated seeding,
which is expensive as it requires collective communication. On the other side, the
Ostrovsky seeds could also be a good clusterability heuristic. The loss function and
the variance ratio will vary slightly when k is close to the number of data’s intrinsic
groups. In Figure A.1, it is clear that the slope of the Ostrovsky seeding curve changes
sharply when k = 8, which is the number of Gaussians we used. As a counterpart, it
is less pronounced using uniformly random selected seeds.

Fig. A.1. Clusterability: The change in the value of the loss and the variance ratio is an
indication for the intrinsic number of clusters existing in the data. The blue lines stand for the
kmeans loss and the green lines stand for the variance ratio. The solid lines are the Ostrovsky seeds,
the dashed lines indicate random seeds. The x-axis is the number of clusters.

Appendix B. Clustering Tree. We briefly outline the construction of the
clustering tree. The node splitting algorithm works as follows:

Let T be a tree node, XT be all the points assigned in T , lT be the level of the
node T in the tree, and sT be the size of node T ’s communicator. Let i be a cluster
of points with centroid ci and radius Ri, Bc,R be a closed ball in Rd centered at c with
radius R, Ci be the tree node that owns group i, and Nc be the number of clusters
created in each split. Algorithm 14 describes the node-splitting procedure.

As outlined in Algorithm 14, we use a distributed top-down algorithm to construct
the tree and, at each level, split a node to two children, each of which contain one or
more groups of points. For assigning points to groups, we use our distributed kmeans
routine. Except that, the remaining point repartition and communicator splitting
procedures are similar to the PKDT.

Finally we sketch the complexity of the tree construction algorithm, assuming a
uniform tree. Let l be the level of a node. Computing the clusters takes O(d(nl/pl +
log pl)) time, where nl = n/2l are the points per node at the lth level and pl = p/2l

are the number of processors per node at the lth level. Furthermore, the collective to



FAST KNN ALGORITHMS 31

Algorithm 14 nodeSplit(T )

1: if lT ==maxLevel || |XT | < minNumofPoints then
2: return;
3: else
4: addSeeds(XT , seeds,Nc)
5: eliminateSeeds(XT , seeds,Nc)
6: centroids = kMeans(XT , seeds,Nc)
7: for each point x ∈ XT do
8: Assign x to cluster i such that d(x, ci) is minimized
9: end for

10: Assign clusters to children such that each child has roughly the same amount
of points

11: Assign processes for each child Ci
12: Split T ’s communicator, creating a new communicator for each Ci
13: Distribute points in each cluster i to processes in Ci
14: nodeSplit(Clocal)
15: end if

redistribute points within the node takes O(nl

p2l
pl) time (ignoring latency). From these

observations we can see that the overall complexity of the tree construction (assuming
a uniform tree) is O(dnp log2 p).

Appendix C. Distributed Select. To find the median value of an unordered
array, we apply a select operation. Select(k) finds the kth smallest value in an array.
For the median we use Select(n/2), where n is the total number of input elements.
Algorithm 15 describes our distributed-memory select function. A more sophisticated

Algorithm 15 ParSelect(arr, k)

1: N = AllReduce(arr.size())
2: choose a pivot point x from arr at random
3: arr less = [] arr great = []
4: for each point i in input array arr do
5: if arr[i] > x then
6: arr less.insert( arr[i] )
7: else
8: arr great.insert( arr[i] )
9: end if

10: end for
11: Nl = AllReduce(arr less.size())
12: Ng = AllReduce(arr great.size())
13: if N == 1 ‖ Nl == k ‖ Nl == N ‖ Ng == N then
14: return x
15: else if Nl > k then
16: ParSelect(arr less, k)
17: else
18: ParSelect(arr great, k −Nl)
19: end if

algorithm and more discussion can be also found in [43].
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