
Parallel Computing

2012

Slides credit: Kayvon Fatahalian, CMU & James Demmel, UCB.

Why Parallelism?

One common definition

• A parallel computer is a collection of processing
elements that cooperate to solve problems fast

We’re going to use multiple
processors to get it

We care about
performance *

Note: different motivation from “concurrent programming” using pthreads
that will be done in Network programming lab course.

Parallel Processing, Concurrency &
Distributed Computing
• Parallel processing
Performance (and capacity) is the main goal
More tightly coupled than distributed computation
• Concurrency
Concurrency control: serialize certain computations to ensure
correctness, e.g. database transactions
Performance need not be the main goal
• Distributed computation
Geographically distributed
Multiple resources computing & communicating unreliably
“Cloud” or “Grid” computing, large amounts of storage
 Looser, coarser grained communication and synchronization
• May or may not involve separate physical resources, e.g.
multitasking “Virtual Parallelism”

Course theme 1:

Designing and writing parallel programs ... large scale!

Parallel thinking

1. Decomposing work into parallel pieces

2. Assigning work to processors

3. Orchestrating communication/synchronization

Abstractions for performing the above tasks

 Writing code in popular parallel programming languages

Course theme 2:

Parallel computer hardware implementation: how
parallel computers work

Mechanisms used to implement abstractions efficiently
• - Performance characteristics of implementations
• - Design trade-offs: performance vs. convenience vs. cost

 Why do I need to know about HW?
• Because the characteristics of the machine really matter
• Because you care about performance (you are writing

parallel programs)

Course theme 3:

Thinking about efficiency

FAST != EFFICIENT

 Just because your program runs faster on a parallel
computer, it doesn’t mean it is using the hardware efficiently
– Is 2x speedup on 10 processors is a good result?

 Programmer’s perspective: make use of provided machine
capabilities

 HW designer’s perspective: choosing the right capabilities to
put in system (performance/cost, cost = silicon area?,
power?, etc.)

Course Logistics

Introduction to High Performance Computing for
Computational Scientists and Engineers,
by Georg Hager and Gerhard
Wellein. (Hager book)

“An Introduction to Parallel
Programming,” Peter Pacheco,
Morgan-Kaufmann Publishers, 2011.
(Pacheco book)

Parallel Programming in C
with MPI and OpenMP,
Quinn (Quinn book)

Syllabus
Introduction - Modern Parallel Computers - Types of Concurrency – Programming.

 Parallel Architectures – Interconnection Networks – Processor arrays – Multiprocessors – Multi Computers –
Flynn’s taxonomy.

Parallel Algorithm Design – Foster’s Design Methodology – Example Problems. (Parallel Patterns from UIUC
and UCB)

Message Passing programming Model – MPI – Point to Point & Collective Calls.

Algorithms for Illustrations – Sieve of Eratosthenes – Floyd’s Algorithm.

Performance analysis

 Speed up and Efficiency

 Amdahl’s Law

 Gustafson’s Barsis Law

 Karp Flatt Metric

 Isoefficiency Metric.

Matrix Vector Multiplication

Monte Carlo Methods

Matrix Multiplication

Solving linear System

finite Difference Methods

sorting algorithm

combinatorial Search.

 Shared Memory Programming – Open MP.

Piazza and github links

• Piazza site is up. (soft copies of Hager book and
Pacheco book are available)

• Github site will be up soon.

• XSEDE accounts

• (2 or 3) Individual Programming Assignments (Academic

integrity is must)

• (1 or 2) Group Programming Assignments

Why parallelism?

The answer 10 years ago
- To get performance that was faster
than what clock frequency scaling
would provide
- Because if you just waited until next
year, your code would run faster on
the next generation CPU

Parallelizing your code not
always worth the time
- Do nothing: performance doubling
~ every 18 months

End of frequency scaling

Power Wall

P = CV2F

P: power

C: capacitance

V: voltage

F: frequency

Higher frequencies typically
require higher voltages

Power vs. core voltage

Pentium M

Credit: Shimin Chin

Programmable invisible parallelism

Bit level parallelism

- 16 bit 32 bit 64 bit

Instruction level parallelism (ILP)

- Two instructions that are independent can be executed

simultaneously

- “Superscalar” execution

ILP example

ILP scaling

Single core performance scaling

• The rate of single
thread performance
scaling has decreased

 (essentially to 0)

1. Frequency scaling
limited by power

2. ILP scaling tapped
out

• No more free lunch
for software
developers!

Why parallelism?

The answer 10 years ago

- To get performance that was faster than what clock
frequency scaling would provide

- Because if you just waited until next year, your code would
run faster on the next generation CPU

The answer today:

- Because it is the only way to achieve significantly higher
application performance for the foreseeable future

Multi-cores

The PCI card housing a Xeon Phi coprocessor The 62-core Xeon Phi coprocessor

Intel Sandy Bridge
8 cores

IBM Power 7
8 cores

AMD MAGNY-COURS
12 cores

NVIDIA Kepler (2012)

The Tesla K20 GPU coprocessor card
With 2496 CUDA cores, 1.17 Tflops DP

Mobile processing

Apple A5: (in iPhone 4s and iPad 2)
Dual Core CPU + GPU + image processor
and more

NVIDIA Tegra:
Quad core CPU + GPU + image
processor...

Power limits heavily influencing designs

Supercomputing

• Today: clusters of CPUs + GPUs

• Pittsburgh Supercomputing Center:
Backlight

• 512 eight core Intel Xeon processors

 - 4096 total cores

ORNL Titan (#1,Nov 2012))

• http://www.olcf.ornl.gov/titan/

http://www.olcf.ornl.gov/titan/

Some more relevant info from Top500

Summary (what we learned)

Single thread performance scaling has ended

- To run faster, you will need to use multiple processing
elements

- Which means you need to know how to write
parallel code

Writing parallel programs can be challenging

- Problem partitioning, communication, synchronization

- Knowledge of machine characteristics is important

What you should get out of the course

In depth understanding of:

• When is parallel computing useful?

• Understanding of parallel computing hardware
options.

• Overview of programming models (software) and
tools, and experience using some of them

• Some important parallel applications and the
algorithms

• Performance analysis and tuning

• Exposure to various open research questions

Programming for performance

Motivation

• Most applications run at < 10% of the “peak” performance of a
system
– Peak is the maximum the hardware can physically execute

• Much of this performance is lost on a single processor, i.e., the code
running on one processor often runs at only 10-20% of the
processor peak

• Most of the single processor performance loss is in the memory
system
– Moving data takes much longer than arithmetic and logic

• To understand this, we need to look under the hood of modern

processors
– For today, we will look at only a single “core” processor
– These issues will exist on processors within any parallel computer

Matrix Multiplication

Possible lessons to learn from these
courses
• “Computer architectures are fascinating, and I really want to

understand why apparently simple programs can behave in
such complex ways!”

• “I want to learn how to design algorithms that run really fast
no matter how complicated the underlying computer
architecture.”

• “I hope that most of the time I can use fast software that
someone else has written and hidden all these details from
me so I don’t have to worry about them!”

• All of the above, at different points in time

