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Abstract: Semi-local functionals commonly used in density functional theory (DFT) studies of solids usually fail
to reproduce localized states such as trapped holes, polarons, excitons, and solitons. This failure is ascribed to self-
interaction which creates a Coulomb barrier to localization. Pragmatic approaches in which the exchange correlation
functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g., B3LYP and PBE0) have shown
to promise in rectifying this type of failure, as well as producing more accurate band gaps and reaction barriers. The
evaluation of exact exchange is challenging for large, solid state systems with periodic boundary conditions, espe-
cially when plane-wave basis sets are used. We have developed parallel algorithms for implementing exact exchange
into pseudopotential plane-wave DFT program and we have implemented them in the NWChem program package.
The technique developed can readily be employed in G-point plane-wave DFT programs. Furthermore, atomic forces
and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well
as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for
which conventional DFT methods do not work well, including calculations for band gaps in oxides and the elec-
tronic structure of a charge trapped state in the Fe(II) containing mica, annite.
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Introduction

A number of failures are known to exist in traditional implemen-
tations of plane-wave density functional theory (DFT), such as
the underestimation of band gaps, the inability to localize excess
spin density, and the underestimation of chemical reaction bar-
riers. These problems are a consequence of having to rely on
computationally efficient approximations to the exact exchange-
correlation functional (e.g., LDA and GGA) used by plane-wave
DFT programs. It is generally agreed upon that the largest error
in these approximations is their failure to completely cancel out
the orbital self-interaction energies, or in plain terms these
approximations result in electrons partially seeing themselves.1,2

In the Hartree-Fock approximation, the exchange energy is cal-
culated exactly and no self-interaction is present; however, it is

by construction a single particle theory and all correlation
effects are missing from it. In all practical implementations of
DFT the exchange energy is calculated approximately, and the
cancellation of the self-interaction is incomplete.

It is not known how much importance to place on this extra
interaction. Experience has shown that many of the failures
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associated with the erroneous self-interaction term can be cor-
rected by approaches in which DFT exchange correlation func-
tionals are augmented with some fraction of exact exchange
(hybrid-DFT, e.g. B3LYP3,4 and PBE05). These methods have
been fairly successful in many problems of molecular chemistry
and solid-state physics. For example, they were able to yield
localized charge states such as polarons, excitons6 and solitons,
which have posed problems for conventional DFT.6 They are
also known to restore size consistency for systems where con-
ventional DFT functionals are incorrect (e.g., dissociation of
H2\plus ion7), and they significantly improve the band gaps8–10

and spin structure11 of solids, reaction barriers,12 and NMR
shielding constants.13

The drawback of hybrid-DFT, however, is that it is signifi-
cantly more expensive than conventional DFT (e.g., LDA, and
GGA); for plane-wave methods hybrid-DFT requires the compu-
tation of O(N2

e) fast fourier transforms (FFT), whereas conven-
tional DFT only needs O(Ne) FFTs, where Ne is the number of
electrons. With the advent of new parallel machines, which are
100 to a 1000 times larger than current teraflop machines, these
extra computational costs should easily be overcome. Scalable
implementations of plane-wave DFT methods began appearing
on hundreds of processors in the early to mid 1990s14–16 and
improvements continue to this day.17–20 Notably (Gordon Bell
Prize) Gygi et al.20 have scaled a band structure calculation
involving Ne 5 12,000 orbitals using eight Brilllouin zone sam-
pling points on 64 K nodes of Blue Gene L using the Qbox
FPMD code. However, to date parallel algorithms for plane-
wave DFT methods have focused only on conventional DFT,
and not hybrid-DFT. This has led to a seemingly contradictory
result: hybrid-DFT scales worse than conventional DFT on par-
allel machines,21 even though the overall computational cost of
hybrid-DFT is significantly higher and in principle should scale
much better.

In this study, we present a parallel implementation of hybrid-
DFT in a pseudopotential plane wave code based on a novel
approach to the calculation of the exact exchange term, and
illustrate its application to calculations for which conventional
DFT does not work well. Our implementation of the hybrid-
DFT method is explained in the ‘‘Hybrid-DFT Formalism Based
on Maximally Localized Wannier Orbitals’’ section. The exact
exchange term in this implementation is rewritten in terms of
maximally localized Wannier orbitals. A critical step in our
implementation requires that the integration of the exact
exchange integrals be limited to a single unit cell, while at the
same time allowing for the treatment of extended systems. In
the ‘‘Parallel Algorithm for Hybrid-DFT Calculations in a Plane-
Wave Basis’’ section presents a strategy for parallelizing the
exchange term in plane-wave DFT. The parallel algorithm pro-
posed here is based on the two-dimensional processor grid strat-
egy proposed by Gygi et al. for conventional DFT.20 However,
our algorithm makes additional use of data replication to over-
come the bottleneck associated with exact exchange term. In the
‘‘Hybrid-DFT Calculations’’ section, the hybrid-DFT method is
applied to several systems for which conventional DFT methods
do not work well, including calculations for the band gaps of
oxides,, and the electronic structure of a charge trapped state in
annite. Finally, conclusions are given in the ‘‘Conclusion’’ section.

Hybrid-DFT Formalism Based on Maximally
Localized Wannier Orbitals

The DFT energy and one-electron Hamiltonian (or gradient)
with hybrid-DFT functionals for a set of N"

occ 1 N#
occ unre-

stricted orbitals, {wr,n} may be written as1,22
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where a and b are constants. The total density q 5 q: 1 q; is
the sum of the spin densities given by

q" rð Þ ¼
XN"

occ

n¼1

w";n rð Þ
%% %%2 and q# rð Þ ¼
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occ

n¼1

w#;n rð Þ
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The local and non-local pseudopotentials, Vl and V̂NL repre-
sent the electron-ion interaction, the double integral represents
the Coulomb interaction between the electrons, and Eion!!ion is
the Coulomb interaction between the ions. Ex[q:,q;] is the local
exchange functional, Ec[q:,q;] is the local correlation functional,
Ex!!exact [{w}] is the exact exchange energy given by the stand-
ard expression23

Ex!exact wf g½ ( ¼ ! 1

2

X

r¼";#

XNr
occ

n¼1

ZZ
qrnm rð Þqrmn r0ð Þ

r! r0j j
drdr0 (4)

And the exchange kernel Kr
nm (r) is

Kr
nm rð Þ ¼

Z
qrmn r0ð Þ
r! r0j j

dr0 (5)

where the overlap densities are given by

qrnm rð Þ ¼ w#
r;n rð Þwr;m rð Þ (6)

The implementation of the exchange term in terms of plane-
waves is straightforward for finite systems. The integrals

ZZ
qrnm rð Þqrmn r0ð Þ

r! r0j j
drdr0 )

ZZ

X

qrnm rð Þqrmn r0ð Þ
r! r0j j

drdr0 (7)
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are restricted to the volume X of one unit cell using the aperi-
odic or free-space boundary conditions procedure given in
Appendix A. For extended systems, traditional implementations
are done in terms of plane-wave expanded Bloch states24

wr;nk rð Þ ¼ eik)rffiffiffiffi
X

p
X

G

wr;nk Gð ÞeiG)r (8)

Substituting these states into Eq. (4) results in the following
formula

Ex!exact wf g½ ( ¼ ! 1
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where

qrnk;ml Gð Þ ¼
X

G0

w#
r;nk G0ð Þwr;ml G

0 þGð Þ (10)

As pointed out by Gygi and Balderechi25–28 and others,8,29–32

this expression must be evaluated with some care especially for
small Brillioun zone samplings and small unit cell size, because
of the singularity at G 2 k 2 l 5 0.

In this work, we chose instead to implement exact exchange
for periodic crystals using a formalism based on localized Wan-
nier orbitals.33,34 The set of Wannier orbitals, {wr,n (r2R)}, at
different Bravais lattice vectors, R, are related to the complete
set of Bloch functions, {wr,nk}, by the following unitary trans-
formation over k.

wr;n r! Rð Þ ¼ X
8p3

Z

BZ

e!ik)Rwr;nk rð Þdk (11)

where 8p3/X is the volume of the first Brillioun zone.24 The
inverse Wannier transform can be readily written as a unitary
transform over R and is

wr;nk rð Þ ¼
X

R

eik)Rwr;n r! Rð Þ (12)

These orbitals form a complete and orthonormal set. In addi-
tion, since these orbitals are generated by a unitary transforma-
tion, the exact exchange energy, as well as other quantities such
as the total energy and density, from this complete set is equal
to that from the original Bloch orbitals. Similarly, any set of
orbitals related to the Bloch orbitals by a unitary transformation
over the occupied band orbital index n can be used in Eq. (11).

In general, a complete set of Bloch orbitals (complete sam-
pling of the Brillouin zone) is needed to evaluate the complete
set of Wannier orbitals [Eq. (11)]. However, for nonmetallic sys-
tems with sufficiently large unit cells, it turns out that one can
obtain at least one of the complete sets of Wannier orbitals con-
tained in the manifold of the sets of Wannier orbitals from hav-
ing only the G-point Bloch functions, wr,nk50 of all the occupied
bands. The strategy for doing this is quite simple. The trick is to
apply a Marzari-Vanderbilt localization unitary transformation
(which is the counterpart of the Foster-Boys transformation for
finite systems)33–35 over n to wr,nk50 to produce a new set of
G-point Bloch functions to ~wr;nk¼0. These new orbitals, which are
maximally localized, are extremely localized within each cell for
non-metallic systems with a sufficiently large unit cells.34 If this
is the case, then ~wr;nk¼0 can be represented as a sum of piece-
wise localized functions, ~wr;n r! Rð Þ, on the Bravais lattice by

~wr;nk¼0 rð Þ ¼
X

R

~wr;n r! Rð Þ (13)

Since Eq. (13) is just Eq. (12) with k 5 0, ~wr;n r! Rð Þ form
a complete set of Wannier orbitals contained in the manifold of
the sets of Wannier functions. With this new set of localized
orbitals the exchange term per unit cell can be written as
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To evaluate this integral in a plane-wave basis set requires
some care, as representing overlap densities ~w#

r;n rð Þ~wr;m rð Þ
' (

in
Fourier space results in the inclusion of redundant periodic
images (see Fig. 1). The interaction between these images, due to
the long-range nature of the Coulomb potential, would result in
an incorrect integration of the exchange term. Therefore, to use
the plane-wave method, one has to limit integration in the
exchange term to a single cell so that interactions between images
are eliminated.36,37 To do this, we replace the standard Coulomb
kernel in Eq. (14) by the following cutoff Coulomb kernel.

fcutoff rð Þ ¼
1! 1! e! r=Rcð ÞNþ2

' (N

r
(15)

where r 5 |r 2 r0|, and N and Rc are adjustable parameters. The
kernel defined by Eq. (15) is shown in Figure 2. This kernel rap-
idly decays to zero at distances larger than Rc. Hence Eq. (14)
can be transformed to

Ex!exact ¼ ! 1

2
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3
ZZ
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That is replacing ~wr;n rð Þ with ~wr;nðrÞ, combined with using
Eq. (15), in Eq. (16) will give the same energy, since the cutoff
coulomb interaction is nearly 1/r with itself, and zero with its
periodic images. The parameter Rc must be chosen carefully. It
has to exceed the size of each Wannier orbital to include all of
the orbital in the integration, while concurrently having 2Rc be
smaller than the shortest linear dimension of the unit cell to
exclude periodic interactions. Finally we note that when one
uses the cutoff Coulomb kernel, localized orbitals are not needed
to calculate the exchange term since Eq. (16) can be unitary
transformed, resulting in
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While using the localized functions here is not required in
this formulation, one should still evaluate the set of maximally
localized Wannier functions to estimate their extent and conse-
quently the minimal size of the unit cell. We note however, that
the decay of the Wannier functions is a rather conservative esti-
mate and a more reasonable measure of this decay is the extent
of the localized overlap densities, which will decay at least
twice as fast as the Wannier orbitals. The justification for this
assertion can be obtained by recasting the above formulation
[i.e., eqs. (11)–(17)] in terms of delocalized and localized over-
lap densities instead of molecular and Wannier orbitals.

To demonstrate the convergence of our proposed cutoff Cou-
lomb procedure we have tested it on a theoretical periodic model

of linear alkanes (!!CH2!!CH2!!). This system was chosen,
because it has previously been shown that the extent of the
localized orbitals of a full Hartree-Fock solution is anywhere
from 7 !!CH2!! units for a threshold of 1023 to 29 !!CH2!!
units for a threshold of 10210.38 However, we expect that the
exact exchange energy, Eq. (17), will be nearly converged by
7 !!CH2!! units, since by squaring the localized orbitals a
threshold of only 1026 will be seen for the localized overlap
densities. The hybrid DFT calculations (PBE0, Ecut 5 70 Ry)
were performed in simple cubic unit cells containing 2, 4, 6, 8,
and 10 !!CH2!! units. The respective unit cells had dimen-
sions of 2.5Å 3 12Å 3 12Å, 5.0Å 3 12Å 3 12Å, 7.5Å 3
12Å 3 12Å, 10Å 3 12Å 3 12Å, and 12.5Å 3 12Å 3 12Å.
Within these cells, the carbon-carbon and carbon-hydrogen
bond lengths were set to 1.496Å and 1.095Å, and the
C!!C!!C and H!!C!!H bond angles were set to 113.348 and
105.488. For each of the five unit cells, calculations were per-
formed using a series of five cutoff Coulomb kernels with
increasing values of Rc (N 5 8 and Rc 5 2, 4, 6, 8, and 10
Bohrs). In Figure 3, the exact exchange energy per electron
contribution of the hybrid exchange term and the value of the
HOMO-LUMO gap for each of the five unit cells a function of
Rc is shown. As expected, that both the exchange energy and
band gap were found to converge very rapidly with respect to
system size (8 !!CH2!! units) and cutoff Coulomb kernel size
(Rc 5 8 Bohrs).

We also note that for very large systems ([200 atoms) the
overall cost of the computation can be reduced by using maxi-
mally localized Wannier functions since each individual maxi-
mally localized Wannier function only overlaps with a (in many
cases small part) part of other Wannier functions in the same
cell. Although this advantage is not discussed in this work, we
explored it in our work and found that the amount of computa-
tion could be reduced significantly.

In Appendix B we present the formulae for the Fourier repre-
sentation of Eq. (15), and in Appendix C, the formulae for ana-
lytical derivatives with respect to the lattice parameters.

Figure 1. Localized orbital of a 72 atom unit cell of a SiO2 crystal,
along with its artificial periodic images.

Figure 2. Plot of the cutoff coulomb kernel, Eq. (14) (R 5 6.0
Bohrs, N 5 8).
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Parallel Algorithm for Hybrid-DFT Calculations
in a Plane-Wave Basis

During the course of total energy minimization or molecular dy-
namics simulation the electron gradient dEHybrid-DFT/dw#

r;n, [Eq.
(3)] needs to be calculated as efficiency as possible. For a pseu-
dopotential plane-wave calculation the main parameters that
determine the cost of a calculation are Ng, Nocc, Na, and Nproj,
where Ng is the size of the three-dimensional FFT grid, Nocc is
the number of occupied orbitals, Na is the number of atoms, and
Nproj is the number of projectors per atom. The evaluation of the
gradient, when exact exchange is included, involves four major
computational pieces with varying degrees of parallelism:

1. The Hartree potential VH and the local exchange and correla-
tion potentials Vx 1 Vc.

* The main computational kernel in these computations is
the calculation of Nocc three-dimensional FFTs

2. The exact exchange operator, SmKnmwm

* The major computational kernel in this computation
involves the calculation of (Nocc11)*Nocc three-dimen-
sional FFTs.

3. The nonlocal pseudopotential, V̂NL

* The major computational kernel in this computation can be
expressed by the following matrix multiplications: G 5

Pt*C, and C2 5 P*G, where P is an Ng 3 (Nproj*Na) ma-
trix, C and C2 are Ng 3 Nocc matrices, and G is an
(Nproj*Na) 3 Nocc matrix. We note that for most pseudopo-
tential plane-wave calculations Nproj*Na + Nocc.

4. Enforcing orthogonality

* The major computational kernels in this computation are
following matrix multiplications: S 5 Ct*C and C2 5 C*S,
where C and C2 are Ng 3 Nocc matrices, and S is an Nocc

3 Nocc matrix.

Algorithm 1: Serial Algorithm for Calculating Exact
Exchange in a Plane-Wave Basis

Input: w 2 Ng 3 Nocc array
Output: Kw 2 Ng 3 Nocc array
for m 5 1,Nocc

for n 5 1,m
for r 5 1,Ng qmn(r) 5 wm(r)*wn(r)
qmn(G) / FFT_rc(qmn(r))
for G 5 1,Ng Vmn(G) 5 fscreened(G)*qmn(G)
Vmn(r) / FFT_cr(Vmn(G))
for r 5 1,Ng Kwm(r) 2 5 Vmn(r)*wn(r)
if m\[n for r 5 1,Ng Kwn(r) 2 5 Vmn(r)*wm(r)

end for
end for

The computation of the exact exchange operator, SmKnmwm,
with a cost of O(N2

occ*Ng*log(Ng)), is by far the most demanding

Figure 3. Hybrid DFT results for periodic supercells containing 2, 4, 6, 8, and 10 !!CH2!! units using
a series of five cutoff Coulomb kernels with increasing values of Rc (N 5 8 and Rc 5 2, 4, 6, 8, and
10 Bohrs). The exact exchange energy per electron contribution of the hybrid exchange term (left) and
the HOMO-LUMO gap (right) for each of the five unit cells a function of Rc is shown.
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term in a pseudopotential plane-wave hybrid-DFT calculation. A
simple serial algorithm for calculating exact exchange operator
is given in Algorithm 1. In this algorithm the routines FFT_rc,
and FFT_cr are defined to be the forward and reverse three-
dimensional FFTs. The cost of this algorithm is quite high, since
it requires the computation of Nocc*(Nocc11) three-dimensional
FFTs. For a modest size problem containing Nocc 5 200 filled
orbitals, the above algorithm will need to compute ,40,000
three-dimensional FFTs.

There are several possible ways to parallelize this algorithm.
A straightforward way is to do a spatial decomposition of the
orbitals, wn, as shown in Figure 4a. This approach is versatile,
and straightforward to implement. However it requires using
parallel three-dimensional FFTs, whose parallel efficiencies are
effectively limited to ,N1=3

g processors (or processor groups).
Another way to parallelize this algorithm is to distribute the
orbitals across the processors as shown in Figure 4b. An advant-
age of this type of distribution is that parallel FFTs are not
required. Instead the parallelization is done by moving the orbi-
tals to set up the O(N2

occ) wave-function pairs. In particular, a
multicast of O(Nocc) orbitals across the processors (or processor
row) followed by a multi-reduction which reverses the pattern.
We note that with this type of algorithm one could readily fill a
very large parallel machine by assigning each a few FFTs to
each processor. However, to get this type of algorithm to work
it will be vital to mask latency, as the interconnects between the
processors will be flooded with O(Nocc) streams, each on long
messages comprising Ng floating point words of data.

Algorithm 2: Parallel Algorithm for Calculating Exact
Exchange in a Plane-Wave Basis Using a Two-Dimensional

Processor Grid

Input: C 2 (Ng/Np_i) 3 (Nocc/Np_j) array
Output: Kw 2(Ng/Np_i) 3 (Nocc/Np_j) array

Work Space: C 2 (Ng/Np_i) 3 Nocc array
KC 2 (Ng/Np_i) 3 Nocc array

Np 5 total number of processors, where Np 5 Np_i*Np_j
Np_i 5 size of column processor group
Np_j 5 size of row processor group
taskid_i 5 rank along the column processor group
taskid_j 5 rank along the row processor group
C / 0
C / 0
Gather w onto C
Row_Reduction (C)
counter 5 0
for m 5 1,Nocc

for n 5 1,m
if counter 55 taskid_j then
for r 5 1,(Ng/Np_i) qmn(r) 5 wm(r)*Cn(r)
qmn(G) / Column_FFT_rc(qmn(r))
for G 5 1,(Ng/Np_i) Vmn(G) 5 fscreened(G)*qmn(G)
Vmn(r) / Column_FFT_cr(Vmn(G))
for r 5 1,(Ng/Np_i) KCm(r) 2 5 Vmn(r)*Cn(r)
if m\[n for r 5 1,(Ng/Np_i) KCn(r) 2 5 Vmn(r)*Cm(r)

end if
counter 5 mod(counter 11,Np_j)
end for

end for
Row_Reduce(KC)
Scatter KC back to Kw

In our current implementation we chose to parallelize the
exchange algorithm by distributing both the spatial and orbital
dimension over a two-dimensional processor grid as shown in
Figure 4c. This type of distribution is slightly more complicated
in that it requires performing parallel three-dimension FFTs
along the processor grid columns, as well as broadcasting the
orbitals along the processor grid rows. A parallel algorithm for

Figure 4. Three parallel distributions for the occupied molecular orbitals: (a) parallel decomposition
in which only the spatial dimension Ng is distributed over a one-dimensional processor grid, (b) paral-
lel decomposition in which the orbital dimension Nocc is distributed over a one-dimensional processor
grid, (c) parallel decomposition in which both the spatial and orbital dimensions are distributed over a
two-dimensional processor grid. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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calculating the exchange operator with this distribution is given
in Algorithm 2. In this algorithm, the routines Column_FFT_rc,
and Column_FFT_cr are the forward and reverse parallel three-
dimensional FFTs along the processor columns, and Row_
Reduction is a parallel reduction along the processor rows. This
algorithm is very simple to implement, and it is perfectly load
balanced since each CPU only computes (Ne*(Ne11)/Np) three-
dimension FFTs. However, this simple algorithm can be
improved. One problem is that it uses a lot of workspace.
Another is that each CPU in the Row_Reduction subroutine
receives and sends a total of (Npj21)*(Ng/Npi)*(Ne/Npj), 5
NgNe/Npi amount of data, which is approximately twice as much
as is necessary to compute all pairs of wave functions.

A slightly more ambitious parallel algorithm for calculating the
exchange operator, which halves the workspace and communica-
tion overhead, while maintaining a good load balance, is given in
Algorithm 3. In this algorithm the communication between CPUs
is performed in the Brdcst_Step and Reduce_Step subroutines.
These subroutines basically implement an asynchronous radix-2
butterfly diagram except that instead of transferring a 2**(Levels-
1)*(Ng/Npi) chunk of data at the last step, i.e. l 5 (Levels-1), in
the for loop, they transfer only a (Ng/Npi)(Ne/Npj)(11(Npj-
2**Floor(Log2(Npj)))), 5 NgNe/Np chunk data, instead of a (Npj/2)
NgNe/Np chunk of data. The following broadcast and reduction
routines implement this special radix-2 butterfly algorithm.

We note that compared to a full broadcast or reduction, these
subroutines receive and send only a total of ,(Npj/2)*(Ng/
Npi)*(Ne/Npj) 5 NgNe/(2Npi) chunks of data. The partial exact
exchange computations are written using the Index_Compute
(shown in the Appendix) and HFX_Compute subroutines. The
Index_Compute subroutine is used to set up the index ranges
used to compute the exact exchange terms. The Exchng_Com-
pute subroutine is used to compute the three-dimensional FFTs
and point-wise products. This subroutine is computationally very
expensive since it computes (j22j1 1 1)*(i22i1 1 1) (or
(j22j1 1 1)(i22i1 1 2)/2, if i1 55 j1 and i2 55 j2) three-
dimensional FFTs. Thus it is important to make the various calls
to this subroutine as load balanced as possible. It is trivial to
make the first Log2(Npj) calls to HFX_Compute subroutine
compute exactly the same number three-dimensional FFTs on each
CPU. However, the indexing for computing the remaining pairs of
wave functions after the last special butterfly step requires some
special logic. The Index_Compute subroutine has three different
options. The first option is used for determining the indexes for
the first 0 to (Levels-1) steps. The second and third options are
used for determining the index ranges to the HFX_Compute sub-
routine after the special last butterfly broadcast step.

Algorithm 3: Incomplete Butterfly Parallel Algorithm for
Calculating Exact Exchange, in a Plane-Wave Basis Using
a Two-Dimensional Processor Grid. The Parameters Ne,
Np, Npi, Npj, taskid_i, and taskid_j, as well as the Input
and Output are the Same as in Algorithm 2 (Subroutines
Brdcst_Step, Index_Compute, and Exchng_Compute are

Given in Appendix D)

Work space: C 2 (Ng/Npi) 3 (wsize) array
KC 2 (Ng/Npi) 3(wsize) array

wsize 5 (Ne/Npj)*(Npj/2 1 11(Npj-2**Floor(Log2(Npj))))

C(;,1: (Ne/Npj)) 5 C; KC 5 0
Levels 5 Floor(Log2(Npj))
for l 5 0,(Levels21)
Brdcst_Step(l, taskid_j, Npj, C, Ng, Ne, requests, reqcnt)
Index_Compute(1, l, taskid_j, Npj, i1, i2, j1, j2, im, it)
Exchng_Compute(i1, i2, j1, j2, im, it, C, KC)
Row_WaitAll(requests, reqcnt)

end for
Index_Compute(2, l, taskid_j, Npj, i1, i2, j1, j2, im, it)
if (j2 - j1) then
Exchng_Compute(i1, i2, j1, j2, im, it, C, KC)

end if
Index_Compute(3, l, taskid_j, Np_j, i1, i2, j1, j2, im, it)
Exchng_Compute(i1, i2, j1, j2, im, it, C, KC)
for l 5 (Levels21),0
Reduce_Step(l, taskid_j, Npj, KC, Ng, Ne, requests, reqcnt)

end for
KC 15 KC(;,1: (Ne/Npj))

We have implemented both Algorithms 2 and 3 in the NWPW
module of the NWChem 5.1 program package.39 The overall and
major constituent timings for hybrid-DFT calculations of an 80
atom supercell of hematite (Fe2O3) with an FFT grid of Ng 5 723

(wavefunction cutoff energy 5 100 Ry and density cutoff energy
5 200 Ry) and orbital occupations of N"

occ 5 272 and N#
occ 5 272

are shown in Table 1 at various combinations of processor sizes
(Np) and processor grids (Np_j) for Algorithm 2. The best overall
timings with Algorithm 2 at each processor size (Np) are shown in
Figure 5 as well as in bold face in Table 1. These calculations
were performed on a quad-core Cray-XT4 system (NERSC Frank-
lin) composed of a 2.3 GHz single socket quad-core AMD Opteron
processors (Budapest). The NWChem program was compiled using
Portland Group FORTRAN 90 compiler, version 7.2.4, and linked
with the Cray MPICH2 library, version 3.02, for message passing.

The overall performance of our hybrid-DFT calculations
using Algorithm 2 is found to fairly reasonable for this size
problem. The best time per step takes 1190 seconds (20 min) for
16 processors down to 21.2 seconds with an 88% parallel effi-
ciency on 1024 processors and 12.3 seconds with a 75% parallel
efficiency on 2048 processors. As shown in Table 1, these tim-
ings are found to be very sensitive to the layout of the two-
dimensional processor grid. For 16, 32, 64, 128, 256, 512, 1024,
and 2048 processors, the best timings are found with 16 3 1, 32
3 1, 32 3 2, 32 3 4, 32 3 8, 32 3 16, 32 3 32, and 32 3 64
processor grids, respectively. For illustrative purposes, we also
report in Table 1 and Figure 5 the largest contributions to the
total electronic update step, including the exact exchange opera-
tor, the non-local pseudopotential operator, and orthogonality.
As expected the exact exchange computation dominates the
overall timing at all the processor sizes used in our study and it
is scaling to large processor sizes. In addition, these results
show that the non-local pseudopotential operator computations
are also scaling very well. Unfortunately, the orthogonality com-
putations are not scaling very well at large processor sizes, with
no speedups found beyond 100 processors. Since this computa-
tion takes less than a second per step it is not dominating the
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overall timings at the processor sizes used. However, by 2048
processors it is taking 10% of the overall computation.

We also checked the performance of Algorithm 3 for the
hybrid-DFT calculations of an 80, as well as a 160, atom super-
cell of hematite (Fe2O3) (see Fig. 6). We found that the parallel
efficiencies beyond a 1000 CPUs were appreciably better than
for Algorithm 2. With this algorithm the overall best timing per
step found for the 80 atom supercell was 3.6 seconds on 9792
CPUs, and for the 160 atom supercell of hematite was 17.7 sec-
onds on 23,936 CPUs. The timings results for the 160 atom
supercell are somewhat uneven, since limited numbers of proc-
essor grids were tried at each processor size. However, even
with this limited amount of sampling, these calculations were
found to have speedups to at least 25,000 CPUs. We expect that
further improvements will be obtained by trying more processor
geometry layouts.

Hybrid-DFT Calculations

All DFT and hybrid-DFT calculations in this study were per-
formed using the pseudopotential plane-wave program (NWPW
module) contained in the NWChem computational chemistry
package.39 Both the gradient corrected PBE9640 and hybrid
PBE05 exchange-correlation potentials were used. The valence
electron interactions with the atomic core are approximated with
a generalized norm-conserving Hamann41 or Troullier-Martins42

pseudopotentials modified to a separable form suggested by
Kleinman and Bylander.43 The hybrid-DFT calculations were
performed using the screened Coulomb kernel with parameters
Rc 5 8 Bohrs and N 5 8.

For our initial application, we examine the reaction and acti-
vation energies for several reactions involving silanes using DFT
and hybrid-DFT.

Table I. Timing in Seconds for 80 Atom Fe2O3 Hybrid-DFT Energy Calculations at Various Combinations of

Processor Sizes (Np) and Processor Grids (Np_j, Np_i5Np/Np_j).

Np Np_j 5 1 Np_j 5 2 Np_j 5 4 Np_j 5 8 Np_j 5 16 Np_j 5 32 Np_j 5 64

Total time

16 1.19E103
32 5.29E102 6.21E102
64 3.37E102 2.68E102
128 4.88E102 1.61E102 1.32E102 1.58E102

256 2.21E102 8.59E101 7.11E101 8.21E101 8.43E101 9.29E101
512 1.21E102 4.33E101 3.72E101 4.48E101 4.67E101

1024 2.33E102 7.28E101 3.08E101 2.12E101 2.66E101

2048 4.69E101 1.32E101 1.23E101
Exact exchange

16 1.16E103
32 5.10E102 6.09E102

64 3.28E102 2.62E102
128 4.82E102 1.57E102 1.28E102 1.53E102
256 2.17E102 8.35E101 6.85E101 7.83E101 7.86E101 8.40E101

512 1.19E102 4.17E101 3.54E101 4.21E101 4.07E101

1024 2.31E102 7.14E101 2.93E101 1.93E101 2.34E101

2048 4.57E101 1.22E101 1.04E101
Nonlocal pseudopotential

16 2.31E101
32 1.15E101 7.07E100
64 6.41E100 3.52E100
128 2.44E100 2.05E100 1.78E100 1.76E100

256 1.37E100 1.08E100 8.37E-01 8.34E-01 8.87E-01 1.16E100

512 5.25E-01 3.70E-01 3.21E-01 3.23E-01 4.97E-01
1024 3.72E-01 2.16E-01 1.48E-01 1.32E-01 1.82E-01

2048 1.10E-01 8.04E-02 6.57E-02
Orthogonality

16 3.38E100
32 1.68E100 1.59E100

64 7.84E-01 8.64E-01
128 3.02E-01 5.30E-01 6.41E-01 1.15E100
256 3.36E-01 3.57E-01 8.39E-01 1.46E100 3.11E100 5.54E100

512 2.60E-01 4.45E-01 7.37E-01 1.49E100 3.90E100

1024 2.61E-01 3.37E-01 5.63E-01 9.96E-01 2.19E100

2048 3.56E-01 4.50E-01 1.25E100

Bold face timings are the overall fastest simulations at each processor size. Timings determined from calculations on

the Franklin Cray-XT4 computer system at NERSC.
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SiH4 ! SiH2 þ H2 (13)

Si2H6 ! Si2H4 þ H2 (14)

Si2H6 ! SiH4 þ SiH2 (15)

Si2H4 ! 2SiH2 (16)

This reaction set is non-trivial as it involves breaking of
Si!!H, Si!!Si and H!!H bonds, along with significant electronic
and structural rearrangement. Reactions containing such dra-
matic changes in bonding are rarely able to give reliable results
in current implementations of DFT. Not surprisingly, prior DFT
calculations reported by Nachtigall et al. showed a wide var-
iance in predicted reaction and activation energies.12 Moreover,
their results showed that that exchange-correlation functionals
usually employed in plane-wave DFT calculations are the not
reliable. Gas-phase reaction energies were determined for all the
reactions13–16 and activation energies were calculated for reac-
tions13 and.14 The electronic wavefunctions were expanded in a
plane-wave basis with a cut-off energy of Ecut 5 70Ry. The
supercell used in these calculations was a face-centered-cubic
lattice with a lattice constant of a 5 20.1Å. In Figure 7 the
structural parameters for H2, SiH2, SiH4, and Si2H6, as well as
for the transition state species SiH4-TS, Si2H6-TS1, and Si2H6-

TS2 calculated at the DFT and hybrid-DFT levels are reported,
and in Table 2 the reaction and activation energies for the
silanes reactions13-16 involving silanes calculated at the levels of
DFT and hybrid-DFT theory are reported. Comparisons are
made to B3LYP, MP2, and E-QCISD(T) calculations reported by
Nachtigall et al.12 For the reaction energies very little difference
was found between the PBE96 and PBE0 calculations with the
average absolute differences from E-QCISD(T) were found to be
4.2 kcal/mol and 3.6 kcal/mol for PBE96, and PBE0 methods
respectively. For the activation energies average the PBE0 calcu-
lations increase the height of the reaction barriers and the absolute
differences from E-QCISD(T) were found to be 11.0 kcal/mol
and 5.3 kcal/mol for PBE96 and PBE0 methods respectively.

For our next application, we calculate band gaps in insulators
using DFT and hybrid-DFT. It is well known that DFT calcula-
tions using local and semi-local exchange-correlation functionals
underestimate band gaps for semiconductors and insulators by as
much as 60%. The main source of error has been ascribed to the
lack of a discontinuity at the Fermi level in exchange-correlation
potentials of only the density. This type of exchange-correlation
functional contain at least some form of the discontinuity since
the effective potential is qualitatively different when going from
occupied states to unoccupied states. In Table 3, the band gaps
of Al2O3, TiO2, and SiO2 at the conventional PBE96 and hybrid
PBE0 DFT levels are reported. As one can see the band gaps at
the hybrid-DFT level are considerably better than at the conven-
tional DFT level. The band gaps were estimated by taking the
difference between the HOMO and LUMO single particle ener-

Figure 5. The overall fastest and the corresponding constituent tim-
ings taken from Table 1 for an 80 atom Fe2O3 hybrid-DFT energy
calculations. Calculations were performed on the Franklin Cray-XT4
computer system at NERSC. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 6. The overall fastest timings taken for an 80 (Algorithms 2
and 3) and 160 atom (Algorithm 3) Fe2O3 hybrid DFT energy calcu-
lations. Calculations were performed on the Franklin Cray-XT4
computer system at NERSC. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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gies at the G-point using large supercells. With this approach
only the minimal gaps at the G-point or at any point folded into
the G-point were obtained. However, since large unit cells were
used, many of the high-symmetry points in the Brillouin zone
were covered. In all these calculations a cutoff energy of 100

Ry was used, and the sizes of the supercells were 80, 72, and 72
atoms respectively for the three crystals. The default pseudopo-
tentials of NWChem were used, except for the Ti. It was found
that to obtain reliable structures for TiO2 the Ti pseudopotential
needed to include 3s and 3p states in the valence.

Figure 7. Geometries of silanes calculated at the PBE96, PBE0 levels. Bond lengths are in Å and
angles are in degrees. The values in normal font are the PBE96 results, italicized are for PBE0, and
the values in parenthesis are from Nachtigall.12 [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Table II. Reaction and Activation Energies (kcal/mol) of Silanes.

Method

SiH4?SiH21H2 Si2H4?2SiH2 Si2H6?SiH41SiH2 Si2H6?Si2H41H2

DDErxn DDEtsErxn Ets Erxn Erxn Erxn Ets1 Ets2

PBE96a 59.4 51.4 70.4 58.5 47.6 72.2 46.6 4.2 11.0

PBE0a 62.1 56.7 69.5 59.9 52.4 79.3 51.3 3.6 5.3
B3LYPb,c 59.8 58.0 61.0 53.0 51.8 84.6 54.2 1.0 2.1

MP2b,c 63.5 61.8 67.2 57.8 54.1 88.6 55.4 3.3 0.9

E-QCISD(T)b,c 60.3 60.0 62.8 54.5 52.0 87.8 55.4 – –

Zero-point corrections not included.
aGeometries were optimized.
bB3LYP/6-31111G(2df,2pd), MP2/6-31111G(2df,2pd), and extrapolated QCISD(T) calculations from Nachtigall.13

cGeometries not optimized, taken from Gordon et al.44
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Finally we illustrate our hybrid-DFT formalism by applying
it to charge trapped states in annite, an Fe(II) containing triocta-
hedral mica. There is evidence that oxidation of annite results in

mobile charge states inside the single-particle band gap, associ-
ated with localized Fe31 ion states. Rosso and Ilton53 have
shown using small cluster models within Hartree-Fock approxi-
mation that removing an electron from the Fe21 octahedral layer
results in a localized Fe31 state which is fairly mobile. A major
failing of commonly used DFT functionals, such as PBE96, is
their inability to model these types of charge trapped states. This
by-now well known failure is a byproduct of the self-interaction
contained in many functionals, with self-interaction creating an ar-
tificial Coulomb barrier to charge localization. In most cases, this
barrier overly favors delocalized electronic states, even for systems
where significant charge localization is expected. In Figure 8, we

Table 3. Band Gaps (eV) of Selected Systems.

Crystal Exp. PBE96 PBE0

Al2O3 9.0 5.9 8.4

TiO2 3.0 1.8 3.1
SiO2 8.9 6.1 8.7

Figure 8. Top illustrates the structure of annite and the location of its ferromagnetic octahedral layers.
Bottom shows the electron densities in the octahedral layer from DFT and Hybrid-DFT simulations of
oxidized annite. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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present results for the oxidation of annite at the conventional
PBE96 and hybrid PBE0 DFT levels are reported. In these cal-
culations a cutoff energy of 100 Ry was used, and the supercell
contained 88 atoms (K4Fe12Si12Al4O48H8). Default pseudopoten-
tials of NWChem were used. These calculations show that when
an electron is removed from the conventional PBE96 calcula-
tion, the spin down density is completely delocalized over the
octahedral layer. That is the oxidized octahedral layer in this
calculation consists of 12Fe12.0833 rather than 11Fe21 1 1Fe31.
On the other hand, a significant degree of charge localization
was seen in the hybrid PBE0 calculation.

Conclusions

We have developed a parallel algorithm for implementing exact
exchange into G-point pseudopotential plane-wave DFT, and we
have used this new development to perform hybrid-DFT calcula-
tion on several systems for which conventional DFT methods do
not work well including reaction barriers in silane systems, band
gaps in oxides and the electronic structure of a polaron in hema-
tite. The technique developed can readily be employed in plane-
wave DFT programs. Our implementation uses a formalism
based on maximally localized orbitals, which allows the integra-
tion over the infinite periodic space to be limited to a single unit
cell. This approach makes atomic forces trivial to implement.
Lattice stresses are also straightforward to implement, making it
applicable to both confined and extended systems, as well as
Car-Parrinello molecular dynamics simulations.45

We have presented two different parallel algorithms (Algo-
rithms 2 and 3) for computing exact exchange that are based on
using a two dimensional processor grid. A unique aspect of
Algorithm 3 is the development of an incomplete butterfly that
halves the amount of data communicated, as well as making ju-
dicious use of data replication, in the exact exchange compared
to a standard Broadcast algorithm (Algorithm 2). For less than
1000 CPUs both these algorithms were found to have similar
performances, however, beyond 1000 CPUs Algorithm 3 per-
formed appreciably better. For CPU sizes beyond a 1000 CPUs
the overall performance of our hybrid-DFT calculations using
Algorithm 3 was found to be fairly reasonable. For an 80 atom
Fe2O3 hybrid- DFT calculation (544 valence electrons), the fast-
est time per step found was 3.6 seconds on 9792 CPUs, and for
the 160 atom supercell (1088 valence electrons) of hematite was
17.7 seconds on 23,936 CPUs.

We note that the parallel algorithms developed in this work
can also be readily applied to other standard plane-wave formu-
lations of exact exchange,29,30,32 screened exchange,46 or
screened exchange hybrids such as HSE.8,47,48 Finally, while
incorporating exact exchange in a pseudopotential plane-wave
calculation is still computationally challenging, we have shown
that even on modest size parallel machines, pseudopotential
plane-wave hybrid-DFT simulations containing 300 orbitals at a
cutoff energy for the density of 200 Ry can be computed in
roughly 10 seconds per step. With the advent of new parallel
machines along with additional algorithmic refinements and
code optimizations, we expect these timings can be further
improved in the very near future.
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Appendix A: Fourier Representation of the
Free-Space Coulomb Kernel

Free-space boundary conditions can be performed, provided the
density has decayed to zero at the edge of the supercell, by
restricting the integration to just one isolated supercell, X,

ECoulomb ¼ 1
2

Z

X

Z

X

q1 rð Þg r! r0j jð Þq2 r0ð Þdrdr0

VH rð Þ ¼
Z

X

g r! r0j jð Þq2 r0ð Þdr0 (A1)

This essentially defines a modified coulomb interaction

g r! r0j jð Þ ¼
1

r!r0j j for r; r0 2 X
0 otherwise

)
(A2)

Hockney and Eastwood showed that an interaction of the
form of eq. (A2) could still be used in conjunction with the
Fast-Fourier Transform convolution theorem.44,49 In their algo-
rithm, the interaction between neighboring supercells is removed
by padding the density with an external region of zero density,
or in the specific case of a density defined in cubic supercell of
length L, the density is extended to a cubic supercell of length
2L, where the original density is defined as before on the [0,L]3

domain and the remainder of the [0,2L]3 domain is set to zero.
The grid is 8 times larger than the conventional grid. The Cou-
lomb potential is calculated by convoluting the density with the
Green’s function kernel on the extended grid. The density on the
extended grid is defined by expanding the conventional grid to
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the extended grid and putting zeros where the conventional grid
is not defined. After the aperiodic convolution, the free-space
potential is obtained by restricting the extended grid to the con-
ventional grid.

The convolution theorem suggests that defining g(r) in recip-
rocal space will lead to a much higher accuracy. A straightfor-
ward definition in reciprocal space is

g rð Þ ¼
X

G

guniform Gð ÞeiG)r

guniform Gð Þ ¼ 1

h3

Z

X0

e!i G)r
2

* +

rj j
dr

(A3)

where X0 is the volume of the extended unit cell and h3 is the
volume of the unit cell divided by the number of conventional
FFT grid points. The reciprocal space definition gains accuracy
because the singularity at r

* ¼ r
* 0 in eq. (A1) is analytically inte-

grated out. Even when eq. (A3) is used to define the kernel, a
slight inexactness in the calculated electron-electron Coulomb
energy will always present due to the discontinuity introduced in
the definition of the extended density where the extended density
is forced to be zero in the extended region outside of X. How-
ever, this discontinuity is small, since the densities we are inter-
ested in decay to zero within X, thus making the finite Fourier
expansion of the extended densities extremely close to zero in
extended region outside of X.

Equation (A3) could be calculated numerically; however, al-
ternative definitions can be used with little loss of numerical ac-
curacy.50,51 In an earlier work,50,51 we suggested that the cutoff
Coulomb kernel could be defined as

g r
*

' (
¼ gshort!range r

*
' (

þ glong!range r
*

' (

gshort!range r
*

' (
¼
X

gshort!range G
*

' (
eiG

*
) r*

gshort!range G
*

' (
¼

4p

h3 G
*
%% %%2 1! e

!
G
*
%% %%2

4e2

 !0

BBB@

1

CCCA for G
*
%%%

%%% 6¼ 0

p
h3e2 for G

*
%%%

%%% ¼ 0

8
>>>>>>><

>>>>>>>:

glong!range r
*

' (
¼

erf e r
*
%% %%* +

r
*
%% %% for r

*
%%%
%%% 6¼ 0

2effiffi
p

p for r
*
%%%
%%% ¼ 0

8
>><

>>:
ðA4Þ

Appendix B: Fourier Representation of
the Cutoff Coulomb Kernel

Directly using Eq. (15) in a plane-wave program can lead to
inaccurate results because of the singularity contained in it at
r 5 0. However, very high accuracy can be obtained by using

the convolution theorem to define the cutoff Coulomb kernel
f(r). A straightforward definition in reciprocal space is

fcutoff rð Þ ¼
X

G

funiform Gð ÞeiG)r

funiform Gð Þ ¼ 1

h3

Z

X

e!i G)r
2

* + 1! 1! exp ! rj j=Rcð ÞNþ2
n o' (N

rj j
dr

(B1)

where X is the volume of the unit cell and h3 is X divided by
the number of conventional FFT grid points. The reciprocal
space definition gains accuracy because the singularity at r 5 r0

in Eq. (15) is analytically integrated out. Equation (B1) could be
calculated numerically; however we have found that the follow-
ing alternative definition can be used with little loss of numeri-
cal accuracy.

fcutoff rð Þ ¼ fshort!range rð Þ þ flong!range rð Þ
* +

3 1! 1! exp ! rj j=Rcð ÞNþ2
n o' (N

! "

fshort!range rð Þ ¼
X

G

fshort!range Gð Þexp iG ) rð Þ

fshort!range Gð Þ ¼
1
X

4p
Gj j2 1! e

!
Gj j2
4e2

' ( !

for Gj j 6¼ 0

1
X

p
e2 for Gj j ¼ 0

8
>><

>>:

flong!range rð Þ ¼
erf e rj jð Þ

rj j for rj j 6¼ 0

2effiffi
p

p for rj j ¼ 0

8
<

: (B2)

Appendix C: Analytical Derivatives with Respect
to the Lattice Parameters of the Screened
Coulomb Kernel

The screened Coulomb energy may be written in plane-wave ba-
sis by

Ecutoff Coulomb ¼ n
X

r;i

X
2

X

G

qr;i Gð Þ
%% %%2~fcutoff Gð Þ

( )
(C1)

where X is the unit cell volume, N1, N2, and N3 are the number
of FFT gridpoints in the first, second, and third dimensions,

qr;i Gð Þ ¼ 1

N1N2N3

X

r

qr;i rð Þ exp !iG ) rð Þ (C2)

is the inverse Fourier transform of the density.
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~fcutoff Gð Þ ¼
X

r

~fcutoff rð Þexp !iG ) rð Þ (C3)

is the inverse Fourier transform of the modified screened Cou-
lomb kernel. Which we define here by

~fcutoff rð Þ ¼ ~flong!short rð Þhcut rj jð Þ (C4)

with

hcut rj jð Þ ¼ 1! 1! exp ! rj j=Rð Þpþ2
n o' (p' (

(C5)

~flong!short rð Þ ¼ ~flong!range rj jð Þ þ 1

N1N2N3

3
P
G

~fshort!range Gj jð Þ exp iG ) rð Þ ðC6Þ

~fshort!range Gj jð Þ ¼
4p
Gj j2 1! exp ! Gj j2

4e2

' (' (
for Gj j 6¼ 0

p
e2

for Gj j ¼ 0

8
<

: (C7)

~flong!range rj jð Þ ¼
X

N1N2N3

erf e rj jð Þ
rj j for rj j 6¼ 0

X
N1N2N3

2effiffi
p

p for rj j ¼ 0

(
(C8)

Note that we have modified the definition of screened
Coulomb kernel in Eq. (15) by setting

~fcutoff rð Þ ¼ X
N1N2N3

fcutoff rð Þ (C9)

The derivatives of with respect to the components of the cell
matrix huv can be calculated for a plane-wave basis by

@Ecutoff Coulomb

@huv

¼ n
X

r;i

@X
@huv

1
2

P
G

qr;i Gð Þ
%% %%2~fcutoff Gð Þ þ X

2

P
G

@ qr;i Gð Þj j2
@huv

~fcutoff Gð Þ

þ X
2

P
G

qr;i Gð Þ
%% %%2@~fcutoff Gð Þ

@huv

8
>><

>>:

9
>>=

>>;

¼ n
X

r;i

!X
2

X

G

qr;i Gð Þ
%% %%2~fcutoff Gð Þ htuv

* +!1

(

þX
2

X

G

qr;i Gð Þ
%% %%2 @~fcutoff Gð Þ

@huv

! ")

ðC10Þ

The derivative of the inverse Fourier transformed screened
Coulomb kernel can be computed using the following formulae

@~fcutoff Gð Þ
@huv

¼
X

r

@~fcutoff rð Þ
@huv

! "
exp !iG ) rð Þ (C11)

@~fcutoff rð Þ
@huv

¼
@~flong!short rð Þ

@huv
hcut rj jð Þ þ ~flong!short rð Þ @hcut rj jð Þ

@ rj j
@ rj j
@huv
(C12)

@~flong!short rð Þ
@huv

¼ ~flong!range rð Þ htð Þ!1
uv þ

@~flong!range rj jð Þ
@ rj j

@ rj j
@huv

þ 1

N1N2N3

X

G

@~fshort!range Gj jð Þ
@ Gj j2

@ Gj j2

@huv

 !

exp iG ) rð Þ ðC13Þ

~flong!range rj jð Þ
@ rj j

¼
X

N1N2N3

2effiffi
p

p expð!e2 rj j2
rj j ! erf e rj jð Þ

rj j2

' (
for rj j 6¼ 0

0 for rj j ¼ 0

(

(C14)

@~fshort!range Gj jð Þ
@ Gj j2

¼ ! 4p
Gj j4 1! exp ! Gj j2

4e2

' (' (
þ p

e2

exp !
Gj j2
4e2

' (

Gj j2 for Gj j 6¼ 0

0 for Gj j ¼ 0

8
><

>:
ðC15Þ

@hcut rj jð Þ
@ rj j

¼
! exp ! rj j=Rð Þpþ2

n o
1! exp ! rj j=Rð Þpþ2

n o' (p!1
p pþ 2ð Þ rj j

R

' (pþ1

R
(C16)

@ rj j
@huv

¼
X

s

rurs
rj j

htsv
* +!1

(C17)

@ Gj j2

@huv
¼ !2Gu

X

s

Gs htsv
* +!1

(C18)

Appendix D: Pseudocode for Brdcst_Step,
Exchng_Compute, and Index_Compute
Subroutines

Subroutine Brdcst_Step(l, taskid_j, Npj, C, Ng, Ne, requests,
reqcnt)

Levels 5 Floor(Log2(Npj)); shft 5 2**l;
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pfrom 5 (taskid_j1shft)%Npj; pto 5 (taskid_j1Npj-shft)%Npj
if l 55 (Levels21) then
sz 5 (Npj - 2**Level)/2 1 1

else
sz 5 2**l

end if
rindx 5 (Ne/Npj)*shft; rsize 5 (Ng/Npi)*(Ne/Npj)*sz;
ssize 5 rsize;

reqcnt 5 0;
reqcnt 15 1; Row_Isend(pto, ssize, C(:,1), requests(reqcnt))
reqcnt 15 1; Row_Irecv(pfrom, rsize, C(:,rindx), requests
(reqcnt))

Subroutine Reduce_Step(l, taskid_j, Npj, KC, Ng, Ne, tmp)
Levels 5 Floor(Log2(Npj)); shft 5 2**l;
pfrom 5 (taskid_j1shft)%Npj; pto 5 (taskid_j1Npj-shft)%Npj
if l 55 (Levels-1) then
sz 5 (Npj 2 2**Level)/2 1 1

else
sz 5 2**l

end if
sindx 5 (Ne/Npj)*shft; ssize 5 (Ng/Npi)*(Ne/Npj)*sz; rsize 5
ssize;

reqcnt 5 0;
reqcnt 15 1; Row_Isend(pto, ssize, KC(:,sindx), requests
(reqcnt))

reqcnt 15 1; Row_Irecv(pfrom, rsize, tmp, requests(reqcnt))
Row_WaitAll(requests, reqcnt)
KC(:,1:rsize) 1 5 tmp(:,1:rsize)
Subroutine Exchng_Compute(i1, i2, j1, j2, im, it, C, KC)
special 5 (i1 55 j1) and (i2 55 j2);counter 5 0
if (special) then
for m 5 i1,i2
for n 5 j1,m
if (counter%im) 55 it then
q(l) / Column_FFT_rc(C(:,m)*.C(:,n))
V(:) / Column_FFT_cr(fscreened(:)*.q(:))
KC(:,m)25 V(:)*.C(:,n); if m\[n KC(:,n)25 V(:)*.C(:,m)
end if
counter15 1

end for
end for

else
for m5 i1,i2
for n5 j1,j2
if (counter%im)55 it then
q(:)/ Column_FFT_rc(C(:,m)*.C(:,n))
V(:)/ Column_FFT_cr(fscreened(:)*.q(:))
KC(:,m)25 V(:)*.C(:,n); KC(:,n)25 V(:)*.C(:,m)

end if
counter15 1

end for
end for

end if

Subroutine Index_Compute(opt, l, taskid_j, Npj, i1, i2, j1, j2, im, it)
Levels5 Floor(Log2(Npj)); im5 1; it5 0
if (opt55 1) then
if (l55 0) then

i15 1; i25 (Ne/Npj); j15 i1; j25 i2
else
shft5 2**(l-1);sz5 shft;
if (l55 Levels) sz5 (Npj-2**Levels)/21 1
i1 5 1; i2 5 (Ne/Npj); j1 5 shft*(Ne/Npj); j2 5 j11sz*
(Ne/Npj)
if (l55 Levels) and (Npj%2)55 0 then
im5 2; it5 Floor(taskid_j/(Npj/2))
if (it55 1) then
swap(i1,j1); swap(i2,j2)

end if
end if

end if
else if (opt55 2) then
shft5 2**(Levels-1)
sz5 (Npj-2**Levels)/2
i15 1; i25 (Ne/Npj); j15 shft*(Ne/Npj); j25 j11sz*(Ne/Npj)-1

else if (opt55 3) then
shft5 2**(Levels-1)
sz5 (Npj-2**Levels)/21 1
i15 1; i25 (Ne/Npj); j25 (shft1sz)*(Ne/Npj)-1
j15 jend2(Ne/Npj)11
if (Npj%2)55 0 then
im5 2; it5 Floor(taskid_j/(Npj/2))
if (it55 1) then
swap(i1,j1); swap(i2,j2)

end if
end if

end if
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