Parallel Numerical Algorithms Chapter 4 - Sparse Linear Systems Section 4.2 - Banded Matrices

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Outline

(1) Band Systems
(2) Tridiagonal Systems
(3) Cyclic Reduction

Banded Linear Systems

- Bandwidth (or semibandwidth) of $n \times n$ matrix \boldsymbol{A} is smallest value w such that

$$
a_{i j}=0 \quad \text { for all } \quad|i-j|>w
$$

- Matrix is banded if $w \ll n$
- If $w \gg p$, then minor modifications of parallel algorithms for dense LU or Cholesky factorization are reasonably efficient for solving banded linear system $\boldsymbol{A x}=\boldsymbol{b}$
- If $w \lesssim p$, then standard parallel algorithms for LU or Cholesky factorization utilize few processors and are very inefficient

Narrow Banded Linear Systems

- More efficient parallel algorithms for narrow banded linear systems are based on divide-and-conquer approach in which band is partitioned into multiple pieces that are processed simultaneously
- Reordering matrix by nested dissection is one example of this approach
- Because of fill, such methods generally require more total work than best serial algorithm for system with dense band
- We will illustrate for tridiagonal linear systems, for which $w=1$, and will assume pivoting is not needed for stability (e.g., matrix is diagonally dominant or symmetric positive definite)

Tridiagonal Linear System

- Tridiagonal linear system has form

$$
\left[\begin{array}{ccccc}
b_{1} & c_{1} & & & \\
a_{2} & b_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n-1} & b_{n-1} & c_{n-1} \\
& & & a_{n} & b_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1} \\
y_{n}
\end{array}\right]
$$

- For tridiagonal system of order n, LU or Cholesky factorization incurs no fill, but yields serial thread of length $\Theta(n)$ through task graph, and hence no parallelism
- Neither cdivs nor cmods can be done simultaneously

Tridiagonal System, Natural Order

Two-Way Elimination

- Other orderings may enable some degree of parallelism, however
- For example, elimination from both ends (sometimes called twisted factorization) yields two concurrent threads (odd-numbered nodes and even-numbered nodes) through task graph and still incurs no fill

Tridiagonal System, Two-Way Elimination

Odd-Even Ordering

- Repeating this idea recursively gives odd-even ordering (variant of nested dissection), which yields even more parallelism, but incurs some fill

Tridiagonal System, Odd-Even Ordering

Cyclic Reduction

- Recursive nested dissection for tridiagonal system can be effectively implemented using cyclic reduction (or odd-even reduction)
- Linear combinations of adjacent equations in tridiagonal system are used to eliminate alternate unknowns
- Adding appropriate multiples of $(i-1)$ st and $(i+1)$ st equations to i th equation eliminates x_{i-1} and x_{i+1}, respectively, from i th equation
- Resulting new i th equation involves x_{i-2}, x_{i}, and x_{i+2}, but not x_{i-1} or x_{i+1}

Cyclic Reduction

- For tridiagonal system, i th equation

$$
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=y_{i}
$$

is transformed into

$$
\bar{a}_{i} x_{i-2}+\bar{b}_{i} x_{i}+\bar{c}_{i} x_{i+2}=\bar{y}_{i}
$$

where

$$
\begin{array}{cl}
\bar{a}_{i}=\alpha_{i} a_{i-1}, & \bar{b}_{i}=b_{i}+\alpha_{i} c_{i-1}+\beta_{i} a_{i+1} \\
\bar{c}_{i}=\beta_{i} c_{i+1}, & \bar{y}_{i}=y_{i}+\alpha_{i} y_{i-1}+\beta_{i} y_{i+1}
\end{array}
$$

with $\alpha_{i}=-a_{i} / b_{i-1}$ and $\beta_{i}=-c_{i} / b_{i+1}$

Cyclic Reduction

- After transforming each equation in system (handling first two and last two equations as special cases), matrix of resulting new system has form

$$
\left[\begin{array}{ccccccc}
\bar{b}_{1} & 0 & \bar{c}_{1} & & & & \\
0 & \bar{b}_{2} & 0 & \bar{c}_{2} & & & \\
\bar{a}_{3} & 0 & \bar{b}_{3} & 0 & \bar{c}_{3} & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & \bar{a}_{n-2} & 0 & \bar{b}_{n-2} & 0 & \bar{c}_{n-2} \\
& & & \bar{a}_{n-1} & 0 & \bar{b}_{n-1} & 0 \\
& & & & \bar{a}_{n} & 0 & \bar{b}_{n}
\end{array}\right]
$$

Cyclic Reduction

- Reordering equations and unknowns to place odd indices before even indices, matrix then has form

$$
\left[\begin{array}{cccccccc}
\bar{b}_{1} & \bar{c}_{1} & & & & & & \\
\bar{a}_{3} & \bar{b}_{3} & \ddots & & & & & \\
& \ddots & \ddots & \bar{c}_{n-3} & & & & \\
& & \bar{a}_{n-1} & \bar{b}_{n-1} & 0 & & & \\
& & & 0 & \bar{b}_{2} & \bar{c}_{2} & & \\
& & & & \bar{a}_{4} & \bar{b}_{4} & \ddots & \\
& & & & & \ddots & \ddots & \bar{c}_{n-2} \\
& & & & & & \bar{a}_{n} & \bar{b}_{n}
\end{array}\right]
$$

Cyclic Reduction

- System breaks into two independent tridiagonal systems that can be solved simultaneously (i.e., divide-and-conquer)
- Each resulting tridiagonal system can in turn be solved using same technique (i.e., recursively)
- Thus, there are two distinct sources of potential parallelism
- simultaneous transformation of equations in system
- simultaneous solution of multiple tridiagonal subsystems

Cyclic Reduction

- Cyclic reduction requires $\log _{2} n$ steps, each of which requires $\Theta(n)$ operations, so total work is $\Theta(n \log n)$
- Serially, cyclic reduction is therefore inferior to LU or Cholesky factorization, which require only $\Theta(n)$ work for tridiagonal system
- But in parallel, cyclic reduction can exploit up to n-fold parallelism and requires only $\Theta(\log n)$ time in best case
- Often matrix becomes approximately diagonal in fewer than $\log n$ steps, in which case reduction can be truncated and still attain acceptable accuracy

Cyclic Reduction

- Cost for solving tridiagonal system by best serial algorithm is about

$$
T_{1} \approx 8 \gamma n
$$

where γ is time for one addition or multiplication

- Cost for solving tridiagonal system serially by cyclic reduction is about

$$
T_{1} \approx 12 \gamma n \log _{2} n
$$

which means that efficiency is less than 67%, even with $p=1$

Parallel Cyclic Reduction

- Partition: task i stores and performs reductions on i th equation of tridiagonal system, yielding n fine-grain tasks
- Communicate : data from "adjacent" equations is required to perform eliminations at each of $\log n$ stages
- Agglomerate : n / p equations assigned to each of p coarse-grain tasks, thereby limiting communication to only $\log p$ stages
- Map: Assigning contiguous rows to processors is better than cyclic mapping in this context
- "Local" tridiagonal system within each processor can be solved by serial cyclic reduction or by LU or Cholesky factorization

Parallel Cyclic Reduction

- Parallel execution time for cyclic reduction is about

$$
T_{p} \approx 12 \gamma\left(n \log _{2} n\right) / p+(\alpha+4 \beta) \log p
$$

- Algorithm efficiency is $E_{p}=\Omega(1 / \log n)$ relative to optimal serial counterpart, but relative to $T_{1}=\Theta(n \log n)$, it is strongly and weakly log-scalable
- Can decrease work to $W_{p}=\Theta(n \log p)$ by doing work-efficient serial algorithm locally
- Can lower communication cost to $\Theta\left(\alpha \log _{k} p+\beta k \log _{k} p\right)$ by exchanging ghost-zones of size k and doing $\log _{2} k$ cyclic reduction steps per exchange

Parallel Tridiagonal Linear Solve

- We can achieve asymptotic work-efficiency and log-scalability via the following scheme, let

$$
\boldsymbol{A}=\underbrace{\left[\begin{array}{cccc}
0 & & & \\
x_{1} & \ddots & & \\
& \ddots & \ddots & \\
& & x_{n-1} & 0
\end{array}\right]}_{\mathcal{D}_{-1}(\boldsymbol{x})}+\underbrace{\left[\begin{array}{cccc}
y_{1} & & & \\
& \ddots & & \\
& & \ddots & \\
& & & y_{n}
\end{array}\right]}_{\mathcal{D}_{0}(\boldsymbol{y})}+\underbrace{\left[\begin{array}{cccc}
0 & z_{1} & & \\
& \ddots & \ddots & \\
& & \ddots & z_{n-1} \\
& & & 0
\end{array}\right]}_{\mathcal{D}_{+1}(\boldsymbol{z})}
$$

- Then define cyclic permutation matrix \boldsymbol{P} so that

$$
\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T}=\left[\begin{array}{cc}
\mathcal{D}_{0}\left(\boldsymbol{y}_{\text {odds }}\right) & \mathcal{D}_{0}\left(\boldsymbol{z}_{\text {odds }}\right)+\mathcal{D}_{-1}\left(\boldsymbol{x}_{\text {evens }}\right) \\
\mathcal{D}_{0}\left(\boldsymbol{x}_{\text {odds }}\right)+\mathcal{D}_{+1}\left(\boldsymbol{z}_{\text {evens }}\right) & \mathcal{D}_{0}\left(\boldsymbol{y}_{\text {evens }}\right)
\end{array}\right]
$$

for which LU factorization reduces to a tridiagonal matrix of dimension $n / 2$ using $O(n)$ fully concurrent work

Block Tridiagonal Systems

- Relatively fine granularity may make cyclic reduction impractical for solving single tridiagonal system on some parallel architectures
- Efficiency may be much better, however, if there are many right-hand sides for single tridiagonal system or many independent tridiagonal systems to solve
- Cyclic reduction is also applicable to block tridiagonal systems, which have larger granularity and hence more favorable ratio of communication to computation and potentially better efficiency

Iterative Methods

- Tridiagonal and other banded systems are often amenable to efficient parallel solution by iterative methods
- For example, successive diagonal blocks of tridiagonal system can be assigned to separate tasks, which can solve "local" tridiagonal system as preconditioner for iterative method for overall system

References - Banded Systems

- J. Dongarra and S. Johnsson, Solving banded systems on a parallel processor, Parallel Computing 5:219-246, 1987
- S. L. Johnsson, Solving narrow banded systems on ensemble architectures, ACM Trans. Math. Software 11:271-288, 1985
- E. Polizzi and A. H. Sameh, A parallel hybrid banded system solver: the SPIKE algorithm, Parallel Computing 32:177-194, 2006
- Y. Saad and M. Schultz, Parallel direct methods for solving banded linear systems, Linear Algebra Appl. 88:623-650, 1987

References - Tridiagonal Systems

- L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu, A scalable, numerically stable, high-performance tridiagonal solver using GPUs, SC12, Salt Lake City, Utah, November 10-16, 2012
- Ö. Eğecioğlu, C. K. Koc, and A. J. Laub, A recursive doubling algorithm for solution of tridiagonal systems on hypercube multiprocessors, J. Comput. Appl. Math. 27:95-108, 1989
- M. Hegland, On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU factorization, Numer. Math. 59:453-472, 1991
- S. L. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Stat. Comput. 8:354-392, 1987

References - Tridiagonal Systems

- A. Krechel, H.-J. Plum, and K. Stüben, Parallelization and vectorization aspects of the solution of tridiagonal linear systems, Parallel Computing 14:31-49, 1990
- V. Mehrmann, Divide and conquer methods for block tridiagonal systems, Parallel Computing 19:257-280, 1993
- E. E. Santos, Optimal and efficient parallel tridiagonal solvers using direct methods, J. Supercomputing 30:97-115, 2004
- X.-H. Sun and W. Zhang, A parallel two-level hybrid method for tridiagonal systems and its application to fast Poisson solvers, IEEE Trans. Parallel Distrib. Sys., 15:97-106, 2004

References - Multifrontal Methods

- I. S. Duff, Parallel implementation of multifrontal schemes, Parallel Computing 3:193-204, 1986
- A. Gupta, Parallel sparse direct methods: a short tutorial, IBM Research Report RC 25076, November 2010
- J. Liu, The multifrontal method for sparse matrix solution: theory and practice, SIAM Review 34:82-109, 1992
- J. A. Scott, Parallel frontal solvers for large sparse linear systems, ACM Trans. Math. Software 29:395-417, 2003

References - Scalability

- A. George, J. Lui, and E. Ng, Communication results for parallel sparse Cholesky factorization on a hypercube, Parallel Computing 10:287-298, 1989
- A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization, IEEE Trans. Parallel Distrib. Systems 8:502-520, 1997
- T. Rauber, G. Runger, and C. Scholtes, Scalability of sparse Cholesky factorization, Internat. J. High Speed Computing 10:19-52, 1999
- R. Schreiber, Scalability of sparse direct solvers, A. George, J. R. Gilbert, and J. Liu, eds., Graph Theory and Sparse Matrix Computation, pp. 191-209, Springer-Verlag, 1993

References - Nonsymmetric Sparse Systems

- I. S. Duff and J. A. Scott, A parallel direct solver for large sparse highly unsymmetric linear systems, ACM Trans. Math. Software 30:95-117, 2004
- A. Gupta, A shared- and distributed-memory parallel general sparse direct solver, Appl. Algebra Engrg. Commun. Comput., 18(3):263-277, 2007
- X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software 29:110-140, 2003
- K. Shen, T. Yang, and X. Jiao, S+: Efficient 2D sparse LU factorization on parallel machines, SIAM J. Matrix Anal. Appl. 22:282-305, 2000

