
Lecture 4 – Parallel Performance Theory - 2

Parallel Performance Theory - 2

Parallel Computing
CIS 410/510

Department of Computer and Information Science

Lecture 4 – Parallel Performance Theory - 2

Outline
q  Scalable parallel execution
q  Parallel execution models
q  Isoefficiency
q  Parallel machine models
q  Parallel performance engineering

2 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Scalable Parallel Computing
q  Scalability in parallel architecture
❍ Processor numbers
❍ Memory architecture
❍  Interconnection network
❍ Avoid critical architecture bottlenecks

q  Scalability in computational problem
❍ Problem size
❍ Computational algorithms

◆ Computation to memory access ratio
◆ Computation to communication ratio

q  Parallel programming models and tools
q  Performance scalability

3 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Why Aren’t Parallel Applications Scalable?
q  Sequential performance
q  Critical Paths

❍  Dependencies between computations spread across processors
q  Bottlenecks

❍  One processor holds things up
q  Algorithmic overhead

❍  Some things just take more effort to do in parallel
q  Communication overhead

❍  Spending increasing proportion of time on communication
q  Load Imbalance

❍  Makes all processor wait for the “slowest” one
❍  Dynamic behavior

q  Speculative loss
❍  Do A and B in parallel, but B is ultimately not needed

4 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Critical Paths
q  Long chain of dependence
❍ Main limitation on performance
❍ Resistance to performance improvement

q  Diagnostic
❍ Performance stagnates to a (relatively) fixed value
❍ Critical path analysis

q  Solution
❍ Eliminate long chains if possible
❍ Shorten chains by removing work from critical path

5 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Bottlenecks
q  How to detect?

❍  One processor A is busy while others wait
❍  Data dependency on the result produced by A

q  Typical situations:
❍  N-to-1 reduction / computation / 1-to-N broadcast
❍  One processor assigning job in response to requests

q  Solution techniques:
❍  More efficient communication
❍  Hierarchical schemes for master slave

q  Program may not show ill effects for a long time
q  Shows up when scaling

6 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Algorithmic Overhead
q  Different sequential algorithms to solve the same problem
q  All parallel algorithms are sequential when run on 1 processor
q  All parallel algorithms introduce addition operations (Why?)

❍  Parallel overhead
q  Where should be the starting point for a parallel algorithm?

❍  Best sequential algorithm might not parallelize at all
❍  Or, it doesn’t parallelize well (e.g., not scalable)

q  What to do?
❍  Choose algorithmic variants that minimize overhead
❍  Use two level algorithms

q  Performance is the rub
❍  Are you achieving better parallel performance?
❍  Must compare with the best sequential algorithm

7 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

What is the maximum parallelism possible?
q  Depends on application, algorithm, program
❍ Data dependencies in execution

q  Remember MaxPar
❍ Analyzes the earliest

possible “time” any data can
be computed

❍ Assumes a simple model for
time it takes to execute
instruction or go to memory

❍ Result is the maximum
parallelism available

q  Parallelism varies!

512-‐point	 FFT	

parallel
signature

8 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Embarrassingly Parallel Computations
r  No or very little communication between processes
r  Each process can do its tasks without any interaction

with other processes

r  Examples

¦ Numerical integration
¦ Mandelbrot set
¦ Monte Carlo methods

Processes

Input	 Data	

Results

. . .

9 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Calculating π with Monte Carlo
q  Consider a circle of unit radius
q  Place circle inside a square box with side of 2 in

q  The ratio of the circle area to the square area is:

422
11 ππ
=

∗

∗∗

2	 in	

10 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Monte Carlo Calculation of π
q  Randomly choose a number of points in the square
q  For each point p, determine if p is inside the circle
q  The ratio of points in the circle to points in the

square will give an approximation of π/4

11 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Performance Metrics and Formulas
q  T1 is the execution time on a single processor
q  Tp is the execution time on a p processor system
q  S(p) (Sp) is the speedup

q  E(p) (Ep) is the efficiency

q  Cost(p) (Cp) is the cost

q  Parallel algorithm is cost-optimal
❍ Parallel time = sequential time (Cp = T1 , Ep = 100%)

S(p)	 =	
T1	
Tp	

Efficiency	 =	
Sp	
p	

Cost	 =	 p	 ×	 Tp	

12 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Analytical / Theoretical Techniques
q  Involves simple algebraic formulas and ratios
❍ Typical variables are:

◆ data size (N), number of processors (P), machine constants

❍ Want to model performance of individual operations,
components, algorithms in terms of the above
◆ be careful to characterize variations across processors
◆ model them with max operators

❍ Constants are important in practice
◆ Use asymptotic analysis carefully

q  Scalability analysis
❍  Isoefficiency (Kumar)

13 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

problem
	 size	

processors	

Equal	 efficiency	 curves	

Isoefficiency
q  Goal is to quantify scalability
q  How much increase in problem size is needed to retain

the same efficiency on a larger machine?
q  Efficiency

❍  T1 / (p * Tp)
❍  Tp = computation + communication + idle

q  Isoefficiency
❍  Equation for equal-efficiency curves
❍  If no solution

◆ problem is not scalable in the
sense defined by isoefficiency

q  See original paper by Kumar on webpage
14 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Scalability of Adding n Numbers
q  Scalability of a parallel system is a

measure of its capacity to increase
speedup with more processors

q  Adding n numbers on p processors
with strip partition:

ppn
n

p
SEfficiency

p
p
n

n

p
p
n

nSpeedup

p
p
nTpar

log2

log2

log21

1

log21

+
==

+
≈

+−

−
=

+−=

15 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Problem Size and Overhead
q  Informally, problem size is expressed as a

parameter of the input size
q  A consistent definition of the size of the problem is

the total number of basic operations (Tseq)
❍ Also refer to problem size as “work (W = Tseq)

q  Overhead of a parallel system is defined as the part
of the cost not in the best serial algorithm

q  Denoted by TO, it is a function of W and p
 TO(W,p) = pTpar - W (pTpar includes overhead)
 TO(W,p) + W = pTpar

16 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Isoefficiency Function
q  With a fixed efficiency, W is as a function of p

W
pWTpWTW

W
p
SEfficiency

pWTW
Wp

T
WSpeedup

p
pWTWT

OO

Opar

O
par

),(1

1
),(

),(

),(

+
=

+
==

+
==

+
=

),(),(
1

1),(
),(1

1

pWKTpWT
E
EW

E
E

W
pWT

W
pWTE

OO

O

O

=
−

=

−
=→

+
=

Isoefficiency Function

W	 =	 Tseq	

17 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Isoefficiency Function of Adding n Numbers
q  Overhead function:
❍ TO(W,p) = pTpar – W = 2plog(p)

q  Isoefficiency function:
❍ W=K*2plog(p)

q  If p doubles, W needs also to be doubled to roughly
maintain the same efficiency

q  Isoefficiency functions can be more difficult to
express for more complex algorithms

…	

…	

.	

.	

.	

18 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

More Complex Isoefficiency Functions
q  A typical overhead function TO can have several

distinct terms of different orders of magnitude with
respect to both p and W

q  We can balance W against each term of TO and
compute the respective isoefficiency functions for
individual terms
❍ Keep only the term that requires the highest grow rate

with respect to p
❍ This is the asymptotic isoefficiency function

19 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

4/34/32/3 WppTO +=

2/3KpW =

34

4/34/1

4/34/3

pKW
KpW

WKpW

=

=

=

Isoefficiency
q  Consider a parallel system with an overhead function

q  Using only the first term

q  Using only the second term

q  K4p3 is the overall asymptotic isoefficiency function

20 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Computation (Machine) Models
q  PRAM (parallel RAM)
❍ Basic parallel machine

q  BSP (Bulk Synchronous Parallel)
❍  Isolates regions of computation from communication

q  LogP
❍ Used for studying distribute memory systems
❍ Focuses on the interconnection network

q  Roofline
❍ Based in analyzing “feeds” and “speeds”

21 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

PRAM
q  Parallel Random Access Machine (PRAM)
q  Shared-memory multiprocessor model
q  Unlimited number of processors

❍  Unlimited local memory
❍  Each processor knows its ID

q  Unlimited shared memory
q  Inputs/outputs are placed in shared memory
q  Memory cells can store an arbitrarily large integer
q  Each instruction takes unit time
q  Instructions are sychronized across processors (SIMD)

22 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

PRAM Complexity Measures
q  For each individual processor
❍ Time: number of instructions executed
❍ Space: number of memory cells accessed

q  PRAM machine
❍ Time: time taken by the longest running processor
❍ Hardware: maximum number of active processors

q  Technical issues
❍ How processors are activated
❍ How shared memory is accessed

23 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Processor Activation
q  P0 places the number of processors (p) in the

designated shared-memory cell
❍ Each active Pi, where i < p, starts executing
❍ O(1) time to activate
❍ All processors halt when P0 halts

q  Active processors explicitly activate additional
processors via FORK instructions
❍ Tree-like activation
❍ O(log p) time to activate

24 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

PRAM is a Theoretical (Unfeasible) Model
q  Interconnection network between processors and

memory would require a very large amount of area
q  The message-routing on the interconnection network

would require time proportional to network size
q  Algorithm’s designers can forget the communication

problems and focus their attention on the parallel
computation only

q  There exist algorithms simulating any PRAM
algorithm on bounded degree networks

q  Design general algorithms for the PRAM model and
simulate them on a feasible network

25 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Classification of PRAM Models
q  EREW (Exclusive Read Exclusive Write)
❍ No concurrent read/writes to the same memory location

q  CREW (Concurrent Read Exclusive Write)
❍ Multiple processors may read from the same global

memory location in the same instruction step
q  ERCW (Exclusive Read Concurrent Write)
❍ Concurrent writes allowed

q  CRCW (Concurrent Read Concurrent Write)
❍ Concurrent reads and writes allowed

q  CRCW > (ERCW,CREW) > EREW
26 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

CRCW PRAM Models
q  COMMON: all processors concurrently writing into

the same address must be writing the same value
q  ARBITRARY: if multiple processors concurrently

write to the address, one of the competing processors
is randomly chosen and its value is written into the
register

q  PRIORITY: if multiple processors concurrently write
to the address, the processor with the highest priority
succeeds in writing its value to the memory location

q  COMBINING: the value stored is some combination
of the values written, e.g., sum, min, or max

q  COMMON-CRCW model most often used
27 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Complexity of PRAM Algorithms

EREW CRCW

Search O(log n) O(1)

List Ranking O(log n) O(log n)

Prefix O(log n) O(log n)

Tree Ranking O(log n) O(log n)

Finding
Minimum O(log n) O(1)

Problem	

Model	

28 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

BSP Overview
q  Bulk Synchronous Parallelism
q  A parallel programming model
q  Invented by Leslie Valiant at Harvard
q  Enables performance prediction
q  SPMD (Single Program Multiple Data) style
q  Supports both direct memory access and message

passing semantics
q  BSPlib is a BSP library implemented at Oxford

29 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Components of BSP Computer
q  A set of processor-memory pairs
q  A communication point-to-point network
q  A mechanism for efficient barrier synchronization

of all processors

Communication Network

Memory

Processor

Memory

Processor

Memory

Processor

. . .

. . .

30 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

BSP Supersteps
q  A BSP computation

consists of a sequence of
supersteps

q  In each superstep,
processes execute
computations using locally
available data, and issue
communication requests

q  Processes synchronized at
the end of the superstep, at
which all communications
issued have been
completed

p0 p1 p2 p3 p4

Barrier
Synchronization

Superstep

31 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

BSP Performance Model Parameters
q  p = number of processors
q  l = barrier latency, cost of achieving barrier

synchronization
q  g = communication cost per word
q  s = processor speed
q  l, g, and s are measured in FLOPS
q  Any processor sends and receives at most h messages

in a single superstep (called h-relation
communication)

q  Time for a superstep = max number of local operations
performed by any one processor + g*h + l

32 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

The LogP Model (Culler, Berkeley)
q  Processing
❍ Powerful microprocessor, large DRAM, cache => P

q  Communication
❍ Significant latency (100's of cycles) => L
❍ Limited bandwidth (1 – 5% of memory) => g
❍ Significant overhead (10's – 100's of cycles) => o

◆ on both ends
◆ no consensus on topology
◆ should not exploit structure

❍ Limited capacity
q  No consensus on programming model
❍ Should not enforce one

33 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

LogP

Interconnection Network

M P M P M P
° ° °

P (processors)

Limited Volume
(L/ g to or from

 a processor)

o (overhead)

L (latency)

o
g (gap)

q  Latency in sending a (small) mesage between modules
q  overhead felt by the processor on sending or receiving message
q  gap between successive sends or receives (1/BW)
q  Processors

34 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

LogP ”Philosophy"
q  Think about:
❍ Mapping of N words onto P processors
❍ Computation within a processor

◆ its cost and balance
❍ Communication between processors

◆ its cost and balance

q  Characterize processor and network performance
q  Do not think about what happens in the network
q  This should be enough

35 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Typical Values for g and l

p g l

Multiprocessor Sun 2-4 3 50-100

SGI Origin 2000 2-8 10-15 1000-4000

IBM-SP2 2-8 10 2000-5000

NOW (Network
of Workstations)

2-8 40 5000-20000

36 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Programming
q  To use a scalable parallel computer, you must be

able to write parallel programs
q  You must understand the programming model and

the programming languages, libraries, and systems
software used to implement it

q  Unfortunately, parallel programming is not easy

37 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Programming: Are we having fun yet?

38 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Programming Models
q  Two general models of parallel program
❍ Task parallel

◆ problem is broken down into tasks to be performed
◆ individual tasks are created and communicate to coordinate

operations

❍ Data parallel
◆ problem is viewed as operations of parallel data
◆ data distributed across processes and computed locally

q  Characteristics of scalable parallel programs
❍ Data domain decomposition to improve data locality
❍ Communication and latency do not grow significantly

39 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Shared Memory Parallel Programming
q  Shared memory address space
q  (Typically) easier to program
❍  Implicit communication via (shared) data
❍ Explicit synchronization to access data

q  Programming methodology
❍ Manual

◆ multi-threading using standard thread libraries
❍ Automatic

◆ parallelizing compilers
◆ OpenMP parallelism directives

❍ Explicit threading (e.g. POSIX threads)

40 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Distributed Memory Parallel Programming
q  Distributed memory address space
q  (Relatively) harder to program
❍ Explicit data distribution
❍ Explicit communication via messages
❍ Explicit synchronization via messages

q  Programming methodology
❍ Message passing

◆ plenty of libraries to chose from (MPI dominates)
◆ send-receive, one-sided, active messages

❍ Data parallelism

41 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Programming: Still a Problem?

Source: Bernd Mohr

42 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

q  Scalability in parallel architecture
❍  Processor numbers
❍  Memory architecture
❍  Interconnection network
❍  Avoid critical architecture bottlenecks

q  Scalability in computational problem
❍  Problem size
❍  Computational algorithms

◆ computation to memory access ratio
◆ computation to communication ratio

q  Parallel programming models and tools
q  Performance scalability

Parallel Computing and Scalability

43 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Performance and Complexity
q  To use a scalable parallel computer well, you must

write high-performance parallel programs
q  To get high-performance parallel programs, you must

understand and optimize performance for the
combination of programming
model, algorithm, language,
platform, …

q  Unfortunately, parallel
performance measurement,
analysis and optimization can be
an easy process

q  Parallel performance is complex
44 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Performance Evaluation
q  Study of performance in parallel systems
❍ Models and behaviors
❍ Evaluative techniques

q  Evaluation methodologies
❍ Analytical modeling and statistical modeling
❍ Simulation-based modeling
❍ Empirical measurement, analysis, and modeling

q  Purposes
❍ Planning
❍ Diagnosis
❍ Tuning

45 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

q  Scalable, optimized applications deliver HPC promise
q  Optimization through performance engineering process

❍  Understand performance complexity and inefficiencies
❍  Tune application to run optimally on high-end machines

q  How to make the process more effective and productive?
q  What performance technology should be used?

❍  Performance technology part of larger environment
❍  Programmability, reusability, portability, robustness
❍  Application development and optimization productivity

q  Process, performance technology, and its use will change as
parallel systems evolve

q  Goal is to deliver effective performance with high
productivity value now and in the future

Parallel Performance Engineering and Productivity

46 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

q  Parallel / distributed systems are complex
❍ Four layers

◆ application
–  algorithm, data structures

◆ parallel programming interface / middleware
–  compiler, parallel libraries, communication, synchronization

◆ operating system
–  process and memory management, IO

◆ hardware
–  CPU, memory, network

q  Mapping/interaction between different layers

Motivation

47 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

q  Factors which determine a program's performance
are complex, interrelated, and sometimes hidden

q  Application related factors
❍ Algorithms dataset sizes, task granularity, memory

usage patterns, load balancing. I/O communication
patterns

q  Hardware related factors
❍ Processor architecture, memory hierarchy, I/O network

q  Software related factors
❍ Operating system, compiler/preprocessor,

communication protocols, libraries

Performance Factors

48 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

q  Resources can be under-utilized or used inefficiently
❍  Identifying these circumstances can give clues to where

performance problems exist
q  Resources may be “virtual”

❍  Not actually a physical resource (e.g., thread, process)

q  Performance analysis tools are essential to optimizing
an application's performance
❍  Can assist you in understanding what your program is

"really doing”
❍  May provide suggestions how program performance should

be improved

Utilization of Computational Resources

49 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Performance Analysis and Tuning: The Basics
q  Most important goal of performance tuning is to

reduce a program's wall clock execution time
❍  Iterative process to optimize efficiency
❍  Efficiency is a relationship of execution time

q  So, where does the time go?
q  Find your program's hot spots and eliminate the

bottlenecks in them
❍  Hot spot: an area of code within the program that uses a

disproportionately high amount of processor time
❍  Bottleneck : an area of code within the program that uses

processor resources inefficiently and therefore causes
unnecessary delays

q  Understand what, where, and how time is being spent

50 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Sequential Performance
q  Sequential performance is all about:
❍ How time is distributed
❍ What resources are used where and when

q  “Sequential” factors
❍ Computation

◆ choosing the right algorithm is important
◆ compilers can help

❍ Memory systems and cache and memory
◆ more difficult to assess and determine effects
◆ modeling can help

❍  Input / output

51 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Performance
q  Parallel performance is about sequential

performance AND parallel interactions
❍ Sequential performance is the performance within each

thread of execution
❍  “Parallel” factors lead to overheads

◆ concurrency (threading, processes)
◆ interprocess communication (message passing)
◆ synchronization (both explicit and implicit)

❍ Parallel interactions also lead to parallelism
inefficiency
◆ load imbalances

52 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Sequential Performance Tuning
q  Sequential performance tuning is a time-driven

process
q  Find the thing that takes the most time and make it

take less time (i.e., make it more efficient)
q  May lead to program restructuring

❍  Changes in data storage and structure
❍  Rearrangement of tasks and operations

q  May look for opportunities for better resource
utilization
❍  Cache management is a big one
❍  Locality, locality, locality!
❍  Virtual memory management may also pay off

q  May look for opportunities for better processor usage
53 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Parallel Performance Tuning
q  In contrast to sequential performance tuning, parallel

performance tuning might be described as conflict-
driven or interaction-driven

q  Find the points of parallel interactions and determine
the overheads associated with them

q  Overheads can be the cost of performing the
interactions
❍  Transfer of data
❍  Extra operations to implement coordination

q  Overheads also include time spent waiting
❍  Lack of work
❍  Waiting for dependency to be satisfied

54 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Interesting Performance Phenomena
q  Superlinear speedup
❍ Speedup in parallel execution is greater than linear
❍ Sp > p
❍ How can this happen?

q  Need to keep in mind the relationship of
performance and resource usage

q  Computation time (i.e., real work) is not simply a
linear distribution to parallel threads of execution

q  Resource utilization thresholds can lead to
performance inflections

55 Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 4 – Parallel Performance Theory - 2

Measurement

Analysis

Ranking

Refinement

Parallel Performance Engineering Process

Implementation

Performance
Analysis

Production

Program Tuning

Preparation

56 Introduction to Parallel Computing, University of Oregon, IPCC

