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Outline 
q  Scalable parallel execution 
q  Parallel execution models 
q  Isoefficiency 
q  Parallel machine models 
q  Parallel performance engineering 
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Scalable Parallel Computing 
q  Scalability in parallel architecture 
❍ Processor numbers 
❍ Memory architecture 
❍  Interconnection network 
❍ Avoid critical architecture bottlenecks 

q  Scalability in computational problem 
❍ Problem size 
❍ Computational algorithms 

◆ Computation to memory access ratio 
◆ Computation to communication ratio 

q  Parallel programming models and tools 
q  Performance scalability 
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Why Aren’t Parallel Applications Scalable? 
q  Sequential performance 
q  Critical Paths  

❍  Dependencies between computations spread across processors 
q  Bottlenecks 

❍  One processor holds things up 
q  Algorithmic overhead 

❍  Some things just take more effort to do in parallel 
q  Communication overhead 

❍  Spending increasing proportion of time on communication 
q  Load Imbalance 

❍  Makes all processor wait for the “slowest” one 
❍  Dynamic behavior 

q  Speculative loss 
❍  Do A and B in parallel, but B is ultimately not needed 
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Critical Paths 
q  Long chain of dependence  
❍ Main limitation on performance 
❍ Resistance to performance improvement 

q  Diagnostic 
❍ Performance stagnates to a (relatively) fixed value 
❍ Critical path analysis 

q  Solution 
❍ Eliminate long chains if possible 
❍ Shorten chains by removing work from critical path 
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Bottlenecks 
q  How to detect? 

❍  One processor A is busy while others wait 
❍  Data dependency on the result produced by A 

q  Typical situations: 
❍  N-to-1 reduction / computation / 1-to-N broadcast 
❍  One processor assigning job in response to requests 

q  Solution techniques: 
❍  More efficient communication 
❍  Hierarchical schemes for master slave 

q  Program may not show ill effects for a long time 
q  Shows up when scaling 
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Algorithmic Overhead 
q  Different sequential algorithms to solve the same problem 
q  All parallel algorithms are sequential when run on 1 processor 
q  All parallel algorithms introduce addition operations (Why?) 

❍  Parallel overhead 
q  Where should be the starting point for a parallel algorithm? 

❍  Best sequential algorithm might not parallelize at all 
❍  Or, it doesn’t parallelize well (e.g., not scalable) 

q  What to do? 
❍  Choose algorithmic variants that minimize overhead 
❍  Use two level algorithms 

q  Performance is the rub 
❍  Are you achieving better parallel performance? 
❍  Must compare with the best sequential algorithm 
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What is the maximum parallelism possible? 
q  Depends on application, algorithm, program 
❍ Data dependencies in execution 

q  Remember MaxPar 
❍ Analyzes the earliest 

possible “time” any data can 
be computed 

❍ Assumes a simple model for 
time it takes to execute 
instruction or go to memory 

❍ Result is the maximum 
parallelism available 

q  Parallelism varies! 

512-‐point	  FFT	  

parallel 
signature 
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Embarrassingly Parallel Computations 
r  No or very little communication between processes 
r  Each process can do its tasks without any interaction 

with other processes 

 
r  Examples 

¦ Numerical integration 
¦ Mandelbrot set 
¦ Monte Carlo methods 

Processes 

Input	  Data	  

Results 

. . . 
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Calculating  π with Monte Carlo 
q  Consider a circle of unit radius 
q  Place circle inside a square box with side of 2 in 

 
q  The ratio of the circle area to the square area is:  

422
11 ππ
=

∗

∗∗

2	  in	  
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Monte Carlo Calculation of π 
q  Randomly choose a number of points in the square 
q  For each point p, determine if p is inside the circle 
q  The ratio of points in the circle to points in the 

square will give an approximation of π/4 
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Performance Metrics and Formulas 
q  T1 is the execution time on a single processor 
q  Tp is the execution time on a p processor system 
q  S(p) (Sp) is the speedup 

 
q  E(p) (Ep) is the efficiency 

 
q  Cost(p) (Cp) is the cost 

q  Parallel algorithm is cost-optimal 
❍ Parallel time = sequential time (Cp = T1 , Ep = 100%) 

S(	  p)	  =	  
T1	  
Tp	  

Efficiency	  =	  
Sp	  
p	  

Cost	  =	  p	  ×	  Tp	  
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Analytical / Theoretical Techniques 
q  Involves simple algebraic formulas and ratios 
❍ Typical variables are:  

◆ data size (N), number of processors (P), machine constants 

❍ Want to model performance of individual operations, 
components, algorithms in terms of the above 
◆ be careful to characterize variations across processors 
◆ model them with max operators 

❍ Constants are important in practice 
◆ Use asymptotic analysis carefully 

q  Scalability analysis 
❍  Isoefficiency (Kumar) 
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problem
	  size	  

processors	  

Equal	  efficiency	  curves	  

Isoefficiency 
q  Goal is to quantify scalability 
q  How much increase in problem size is needed to retain 

the same efficiency on a larger machine? 
q  Efficiency 

❍  T1 / (p * Tp) 
❍  Tp = computation + communication  + idle 

q  Isoefficiency 
❍  Equation for equal-efficiency curves 
❍  If no solution 

◆ problem is not scalable in the 
sense defined by isoefficiency 

q  See original paper by Kumar on webpage 
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Scalability of Adding n Numbers 
q  Scalability of a parallel system is a 

measure of its capacity to increase 
speedup with more processors 

q  Adding n numbers on p processors 
with strip partition: 
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Problem Size and Overhead 
q  Informally, problem size is expressed as a 

parameter of the input size 
q  A consistent definition of the size of the problem is 

the total number of basic operations (Tseq ) 
❍ Also refer to problem size as “work (W = Tseq ) 

q  Overhead of a parallel system is defined as the part 
of the cost not in the best serial algorithm 

q  Denoted by TO, it is a function of W and p 
  TO(W,p) = pTpar - W      (pTpar includes overhead) 
  TO(W,p) + W = pTpar 
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Isoefficiency Function 
q  With a fixed efficiency, W is as a function of p 
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W	  =	  Tseq	  
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Isoefficiency Function of Adding n Numbers 
q  Overhead function: 
❍ TO(W,p) = pTpar – W = 2plog(p) 

q  Isoefficiency function: 
❍ W=K*2plog(p) 

q  If p doubles, W needs also to be doubled to roughly 
maintain the same efficiency 

q  Isoefficiency functions can be more difficult to 
express for more complex algorithms 

…	  

…	  

.	  

.	  

.	  
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More Complex Isoefficiency Functions 
q  A typical overhead function TO can have several 

distinct terms of different orders of magnitude with 
respect to both p and W 

q  We can balance W against each term of TO and 
compute the respective isoefficiency functions for 
individual terms 
❍ Keep only the term that requires the highest grow rate 

with respect to p 
❍ This is the asymptotic isoefficiency function 
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4/34/32/3 WppTO +=

2/3KpW =

34

4/34/1

4/34/3

pKW
KpW

WKpW

=

=

=

Isoefficiency 
q  Consider a parallel system with an overhead function 

q  Using only the first term 

q  Using only the second term 

q  K4p3 is the overall asymptotic isoefficiency function 
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Parallel Computation (Machine) Models 
q  PRAM (parallel RAM)  
❍ Basic parallel machine 

q  BSP (Bulk Synchronous Parallel) 
❍  Isolates regions of computation from communication 

q  LogP 
❍ Used for studying distribute memory systems 
❍ Focuses on the interconnection network 

q  Roofline 
❍ Based in analyzing “feeds” and “speeds” 
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PRAM 
q  Parallel Random Access Machine (PRAM) 
q  Shared-memory multiprocessor model 
q  Unlimited number of processors 

❍  Unlimited local memory 
❍  Each processor knows its ID 

q  Unlimited shared memory 
q  Inputs/outputs are placed in shared memory 
q  Memory cells can store an arbitrarily large integer 
q  Each instruction takes unit time 
q  Instructions are sychronized across processors (SIMD) 
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PRAM Complexity Measures 
q  For each individual processor 
❍ Time: number of instructions executed 
❍ Space: number of memory cells accessed 

q  PRAM machine 
❍ Time: time taken by the longest running processor 
❍ Hardware: maximum number of active processors 

q  Technical issues 
❍ How processors are activated 
❍ How shared memory is accessed 
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Processor Activation 
q  P0 places the number of processors (p) in the 

designated shared-memory cell 
❍ Each active Pi, where i < p, starts executing 
❍ O(1) time to activate 
❍ All processors halt when P0 halts 

q  Active processors explicitly activate additional 
processors via FORK instructions 
❍ Tree-like activation 
❍ O(log p) time to activate 
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PRAM is a Theoretical (Unfeasible) Model 
q  Interconnection network between processors and 

memory would require a very large amount of area 
q  The message-routing on the interconnection network 

would require time proportional  to network size 
q  Algorithm’s designers can forget the communication 

problems and focus their attention on the parallel 
computation only 

q  There exist algorithms simulating any PRAM 
algorithm on bounded degree networks 

q  Design general algorithms for the PRAM model and 
simulate them on a feasible network 
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Classification of PRAM Models 
q  EREW (Exclusive Read Exclusive Write) 
❍ No concurrent read/writes to the same memory location 

q  CREW (Concurrent Read Exclusive Write) 
❍ Multiple processors may read from the same global 

memory location in the same instruction step 
q  ERCW (Exclusive Read Concurrent Write) 
❍ Concurrent writes allowed 

q  CRCW (Concurrent Read Concurrent Write) 
❍ Concurrent reads and writes allowed 

q  CRCW > (ERCW,CREW) > EREW 
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CRCW PRAM Models 
q  COMMON: all processors concurrently writing into 

the same address must be writing the same value 
q  ARBITRARY: if multiple processors concurrently 

write to the address, one of the competing processors 
is randomly chosen and its value is written into the 
register 

q  PRIORITY: if multiple processors concurrently write 
to the address, the processor with the highest priority 
succeeds in writing its value to the memory location 

q  COMBINING: the value stored is some combination 
of the values written, e.g., sum, min, or max 

q  COMMON-CRCW model most often used 
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Complexity of PRAM Algorithms 

EREW CRCW 

Search O(log n) O(1) 

List Ranking O(log n) O(log n) 

Prefix O(log n) O(log n) 

Tree Ranking O(log n) O(log n) 

Finding 
Minimum O(log n) O(1) 

Problem	  

Model	  

28 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 4 – Parallel Performance Theory - 2 

BSP Overview  
q  Bulk Synchronous Parallelism 
q  A parallel programming model 
q  Invented by Leslie Valiant at Harvard 
q  Enables performance prediction 
q  SPMD (Single Program Multiple Data) style 
q  Supports both direct memory access and message 

passing semantics 
q  BSPlib is a BSP library implemented at Oxford 

29 Introduction to Parallel Computing, University of Oregon, IPCC 



Lecture 4 – Parallel Performance Theory - 2 

Components of BSP Computer 
q  A set of processor-memory pairs 
q  A communication point-to-point network 
q  A mechanism for efficient barrier synchronization 

of all processors 

Communication Network 

Memory 

Processor 

Memory 

Processor 

Memory 

Processor 

. . .  

. . .  
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BSP Supersteps 
q  A BSP computation 

consists of a sequence of 
supersteps 

q  In each superstep,  
processes execute 
computations using locally 
available data, and issue 
communication requests 

q  Processes synchronized at 
the end of the superstep, at 
which all communications 
issued have been 
completed 

p0 p1 p2 p3 p4 

Barrier 
Synchronization 

Superstep 
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BSP Performance Model Parameters 
q  p = number of processors  
q  l = barrier latency, cost of achieving barrier 

synchronization 
q  g = communication cost per word  
q  s = processor speed 
q  l, g, and s are measured in FLOPS 
q  Any processor sends and receives at most h messages 

in a single superstep ( called h-relation 
communication) 

q  Time for a superstep = max number of local operations 
performed by any one processor + g*h + l 
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The LogP Model (Culler, Berkeley) 
q  Processing 
❍ Powerful microprocessor, large DRAM, cache  => P 

q  Communication 
❍ Significant latency (100's of cycles)  => L 
❍ Limited bandwidth (1 – 5% of memory)  => g 
❍ Significant overhead (10's – 100's of cycles)  => o 

◆ on both ends 
◆ no consensus on topology 
◆ should not exploit structure 

❍ Limited capacity 
q  No consensus on programming model 
❍ Should not enforce one 
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LogP 

Interconnection Network 

M P M P M P 
° ° ° 

P  ( processors ) 

Limited Volume 
(  L/ g   to or from 

 a processor) 

o (overhead) 

L (latency) 

o 
g (gap) 

q  Latency in sending a (small) mesage between modules 
q  overhead felt by the processor on sending or receiving message 
q  gap between successive sends or receives (1/BW) 
q  Processors 
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LogP ”Philosophy" 
q  Think about: 
❍ Mapping of N words onto P processors 
❍ Computation within a processor 

◆ its cost and balance 
❍ Communication between processors 

◆ its cost and balance 

q  Characterize processor and network performance 
q  Do not think about what happens in the network 
q  This should be enough 
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Typical Values for g and l 

p g l 

Multiprocessor Sun 2-4 3 50-100 

SGI Origin 2000 2-8 10-15 1000-4000 

IBM-SP2 2-8 10 2000-5000 

NOW (Network  
of Workstations) 

2-8 40 5000-20000 
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Parallel Programming  
q  To use a scalable parallel computer, you must be 

able to write parallel programs 
q  You must understand the programming model and 

the programming languages, libraries, and systems 
software used to implement it 

q  Unfortunately, parallel programming is not easy 
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Parallel Programming: Are we having fun yet?  
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Parallel Programming Models 
q  Two general models of parallel program 
❍ Task parallel 

◆ problem is broken down into tasks to be performed 
◆ individual tasks are created and communicate to coordinate 

operations 

❍ Data parallel 
◆ problem is viewed as operations of parallel data 
◆ data distributed across processes and computed locally 

q  Characteristics of scalable parallel programs 
❍ Data domain decomposition to improve data locality 
❍ Communication and latency do not grow significantly 
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Shared Memory Parallel Programming 
q  Shared memory address space 
q  (Typically) easier to program 
❍  Implicit communication via (shared) data 
❍ Explicit synchronization to access data 

q  Programming methodology 
❍ Manual 

◆ multi-threading using standard thread libraries 
❍ Automatic 

◆ parallelizing compilers 
◆ OpenMP parallelism directives 

❍ Explicit threading (e.g. POSIX threads) 
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Distributed Memory Parallel Programming 
q  Distributed memory address space 
q  (Relatively) harder to program 
❍ Explicit data distribution 
❍ Explicit communication via messages 
❍ Explicit synchronization via messages 

q  Programming methodology 
❍ Message passing 

◆ plenty of libraries to chose from (MPI dominates) 
◆ send-receive, one-sided, active messages 

❍ Data parallelism 
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Parallel Programming: Still a Problem? 

Source: Bernd Mohr 
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q  Scalability in parallel architecture 
❍  Processor numbers 
❍  Memory architecture 
❍  Interconnection network 
❍  Avoid critical architecture bottlenecks 

q  Scalability in computational problem 
❍  Problem size 
❍  Computational algorithms 

◆ computation to memory access ratio 
◆ computation to communication ratio 

q  Parallel programming models and tools 
q  Performance scalability 

Parallel Computing and Scalability 
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Parallel Performance and Complexity  
q  To use a scalable parallel computer well, you must 

write high-performance parallel programs 
q  To get high-performance parallel programs, you must 

understand and optimize performance for the 
combination of programming 
model, algorithm, language, 
platform, … 

q  Unfortunately, parallel 
performance measurement, 
analysis and optimization can be 
an easy process 

q  Parallel performance is complex 
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Parallel Performance Evaluation 
q  Study of performance in parallel systems 
❍ Models and behaviors 
❍ Evaluative techniques 

q  Evaluation methodologies 
❍ Analytical modeling and statistical modeling 
❍ Simulation-based modeling 
❍ Empirical measurement, analysis, and modeling 

q  Purposes 
❍ Planning 
❍ Diagnosis 
❍ Tuning 
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q  Scalable, optimized applications deliver HPC promise 
q  Optimization through performance engineering process 

❍  Understand performance complexity and inefficiencies 
❍  Tune application to run optimally on high-end machines 

q  How to make the process more effective and productive? 
q  What performance technology should be used? 

❍  Performance technology part of larger environment 
❍  Programmability, reusability, portability, robustness 
❍  Application development and optimization productivity 

q  Process, performance technology, and its use will change as 
parallel systems evolve 

q  Goal is to deliver effective performance with high 
productivity value now and in the future 

Parallel Performance Engineering and Productivity   
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q  Parallel / distributed systems are complex 
❍ Four layers 

◆ application 
–  algorithm, data structures 

◆ parallel programming interface / middleware 
–  compiler, parallel libraries, communication, synchronization  

◆ operating system 
–  process and memory management, IO 

◆ hardware 
–  CPU, memory, network 

q  Mapping/interaction between different layers 

Motivation 
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q  Factors which determine a program's performance 
are complex,  interrelated, and sometimes hidden 

q  Application related factors 
❍ Algorithms dataset sizes, task granularity, memory 

usage patterns, load balancing. I/O communication 
patterns 

q  Hardware related factors 
❍ Processor architecture, memory hierarchy, I/O network 

q  Software related factors 
❍ Operating system, compiler/preprocessor, 

communication protocols, libraries 

Performance Factors 
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q  Resources can be under-utilized or used inefficiently 
❍  Identifying these circumstances can give clues to where 

performance problems exist 
q  Resources may be “virtual” 

❍  Not actually a physical resource (e.g., thread, process) 

q  Performance analysis tools are essential to optimizing 
an application's performance 
❍  Can assist you in understanding what your program is 

"really doing” 
❍  May provide suggestions how program performance should 

be improved 

Utilization of Computational Resources 
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Performance Analysis and Tuning: The Basics 
q  Most important goal of performance tuning is to 

reduce a program's wall clock execution time 
❍  Iterative process to optimize efficiency 
❍  Efficiency is a relationship of execution time 

q  So, where does the time go? 
q  Find your program's hot spots and eliminate the 

bottlenecks in them 
❍  Hot spot: an area of code within the program that uses a 

disproportionately high amount of processor time 
❍  Bottleneck : an area of code within the program that uses 

processor resources inefficiently and therefore causes 
unnecessary delays 

q  Understand what, where, and how time is being spent 
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Sequential Performance 
q  Sequential performance is all about: 
❍ How time is distributed 
❍ What resources are used where and when 

q  “Sequential” factors  
❍ Computation 

◆ choosing the right algorithm is important 
◆ compilers can help 

❍ Memory systems and cache and memory 
◆ more difficult to assess and determine effects 
◆ modeling can help 

❍  Input / output 
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Parallel Performance 
q  Parallel performance is about sequential 

performance AND parallel interactions 
❍ Sequential performance is the performance within each 

thread of execution 
❍  “Parallel” factors lead to overheads 

◆ concurrency (threading, processes) 
◆ interprocess communication (message passing) 
◆ synchronization (both explicit and implicit) 

❍ Parallel interactions also lead to parallelism 
inefficiency 
◆ load imbalances 
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Sequential Performance Tuning 
q  Sequential performance tuning is a time-driven 

process 
q  Find the thing that takes the most time and make it 

take less time (i.e., make it more efficient) 
q  May lead to program restructuring 

❍  Changes in data storage and structure 
❍  Rearrangement of tasks and operations 

q  May look for opportunities for better resource 
utilization 
❍  Cache management is a big one 
❍  Locality, locality, locality! 
❍  Virtual memory management may also pay off 

q  May look for opportunities for better processor usage 
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Parallel Performance Tuning 
q  In contrast to sequential performance tuning, parallel 

performance tuning might be described as conflict-
driven or interaction-driven 

q  Find the points of parallel interactions and determine 
the overheads associated with them 

q  Overheads can be the cost of performing the 
interactions 
❍  Transfer of data 
❍  Extra operations to implement coordination 

q  Overheads also include time spent waiting 
❍  Lack of work 
❍  Waiting for dependency to be satisfied 
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Interesting Performance Phenomena 
q  Superlinear speedup 
❍ Speedup in parallel execution is greater than linear 
❍ Sp > p 
❍ How can this happen? 

q  Need to keep in mind the relationship of 
performance and resource usage 

q  Computation time (i.e., real work) is not simply a 
linear distribution to parallel threads of execution 

q  Resource utilization thresholds can lead to 
performance inflections 
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Measurement 

Analysis 

Ranking 

Refinement 

Parallel Performance Engineering Process 

Implementation 

Performance 
Analysis 

Production 

Program Tuning 

Preparation 
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