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Introduction

This technical white paper targets developers interested in learning about parallel
programming. After introducing major concepts needed to get started writing parallel
applications, it delves into two commonly used parallel programming models: OpenMP and the
Message Passing Interface (MPI). OpenMP provides for parallelization of applications running
within a single multicore-based system. MPI provides for parallelization of applications running
across many such systems, often referred to as a compute cluster.

Fully worked examples are provided for OpenMP and MPI, as well as examples of combining
those two approaches, typically called the Hybrid model. The programming examples also
include how to use the Oracle® Solaris Studio compilers and tools, plus the Oracle Message
Passing Toolkit MPI software, providing the reader full information on both developing and
deploying parallel applications on either the Oracle Solaris operating system or Oracle
Enterprise Linux, as well as other Linux environments.

The growing interest in parallel processing is being driven by the multicore trend in today's
microprocessor designs, which has now turned even laptops into parallel computers. From a
software perspective, in order to achieve optimal application performance, developers will
need to exploit multicore parallelization going forward. In order to do so, there are several
important things to learn.

This technical white paper covers the essential topics needed to get started developing parallel
applications. Basic parallel concepts are introduced in the first three sections, followed by
discussions that delve into the OpenMP and MPI parallel programming models, including the
Hybrid model. The remainder of the paper covers additional considerations for parallel
applications, such as Amdahl's Law and parallel application speed up, as well as performance
results for a parallelized application. Examples of OpenMP and MPI are provided throughout
the paper, including their usage via the Oracle Solaris Studio and Oracle Message Passing
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Toolkit products for development and deployment of both serial and parallel applications on
Oracle’s Sun SPARC® and x86/x64 based systems.

The Oracle Solaris Studio [1] [2] software provides state-of-the-art optimizing and parallelizing
compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and
performance libraries. Also included are an extremely powerful performance analysis tool for
profiling serial and parallel applications, a thread analysis tool to detect data races and
deadlock in memory parallel programs, and an Integrated Development Environment (IDE).

The Oracle Message Passing Toolkit [3] [4] software provides the high-performance MPI
libraries and associated run-time environment needed for message passing applications that
can run on a single system or across multiple compute systems connected with high-
performance networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand, and
Myrinet.

Throughout this paper it is demonstrated how Oracle’s software can be used to develop and
deploy an application parallelized with OpenMP [5] and/or MPI [6]. In doing so, it touches upon
several additional features to assist the development and deployment of these types of parallel
applications.

Note that prior to Oracle's acquisition of Sun Microsystems in January 2010, the Oracle Solaris
Studio and Oracle Message Passing Toolkit products were known by the name Sun Studio
and Sun HPC ClusterTools respectively. These products support Oracle Solaris and Oracle
Enterprise Linux, as well as other Linux environments.

Target Audience

This paper targets programmers and developers interested in utilizing parallel programming
techniques to enhance application performance. No background in parallel computing is
assumed. The topics covered are sufficient for a good understanding of the concepts
presented, and to get started.
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Multicore Processor Technology

These days, a computer program is almost always written in a high-level language such as Fortran, C,
C++, or the Java™ programming language. Such a program consists of a symbolic description of the
operations that need to be performed. These are human readable, but cannot be executed directly by
the processor. For this, a translation to machine instructions needs to be performed. Such a translation
can be performed up front, or szatically, by a compiler, or dynamically at run time by an interpreter, as

occurs with Java. The generated instruction stream is then executed by the processor.

In Figure 1, a short fragment of such an instruction stream is listed for demonstration purposes. These
instructions were generated from the C program listed in Figure 12 on page 24, compiled with the

Oracle Solaris Studio C compiler. Shown here are some instructions from source lines 5 and 6.

805136c: addl $-1,%ecx

805136f: movl 0x24 (%esp), %edx
8051373: movl %eax, %esi
8051375: Jjns .+4 [ 0x8051379 ]
8051377: xorl %esi, %esi

8051379: cmpl $8,%esi

805137c: jl .+0x41 [ 0x80513bd ]
805137e: addl $-8,%eax

8051381: prefetcht0 0x100(%edx)
8051388: addsd (%edx) , $xmml

Figure 1. Fragment of an instruction stream

The address of the instruction is listed in the first column. The second column contains the instruction
propet. The operands for the instruction are shown in the third column. The processor executes these
instructions in sequence, but some instructions, like a branch, can move the execution flow up or

down the stream.

Note that on a processor with a superscalar architecture, multiple instructions from the same stream
can execute simultaneously. This is a very low level, but still important kind of parallel execution, often
referred to as Instruction Level Parallelism (ILP) and supported by many current processors. The
Oracle Solaris Studio compilers aggressively schedule instructions to exploit ILP and take advantage of
this level of parallelism. Since it only affects the performance of the individual threads, ILP is not

considered any further in this paper.

Until relatively recently, most processors executed one single instruction stream at any point in time.

This is often referred to as serial or sequential execution.
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In a multicore processor architecture there are multiple independent processing units available to
execute an instruction stream. Such a unit is generally referred to as a core. A processor might consist of
multiple cores, with each core capable of executing an instruction stream. Since each core can operate
independently, different instruction streams can be executed simultaneously. Nowadays all major chip
vendors offer various types of multicore processors. A block diagram of a generic multicore

architecture is shown in Figure 2.

private
ache(s) hw thread

orivale hw thread

System Interconnect Bl shared ache(s)
(Memory, VO, etc) [ cache(s)

— hw thread

chels) hw thread

Figure 2. Block diagram of a generic multicore architecture

In some architectures, each core has additional hardware support to efficiently execute multiple
independent instruction streams in an interleaved way. For example, while one instruction stream waits
for data to come from memory, another stream may be able to continue execution. This is transparent
to the application and reduces, or even entirely avoids, processor cycles being wasted while waiting. It
also adds a second level of parallelism to the architecture. Although a very important feature to
improve both the throughput and single application parallel performance, we will not make this

distinction in the remainder. It is not needed for the topics discussed here.

On the memory side, multiple levels of fast buffer memory can be found. These are generally referred
to as cache memory or cache(s) for short. More information on caches can be found in [7], [8] and [9].
Today first level caches are typically local to the core. Higher-level caches can be local, but may also be
shared across the cores. Typically at least the highest level of cache often is shared.

The instruction streams can be completely unrelated. For example, one might watch a video on a
laptop, while having an email client open at the same time. This gives rise to (at least) two instruction
streams. We say “at least” because each of these applications could be internally parallelized. If so, they
might each execute more than one instruction stream. How to achieve this is the topic of the second

part of this paper, starting with the Parallel Programming Models section.
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On a dual-core processor, one core can handle the application showing the video, while the other core
executes the email client. This type of parallel execution is often referred to as throughput computing. A

multicore architecture greatly improves throughput capacity.

In this paper, the focus is on a different use of the multiple cores available. The cores also can be used
to improve the performance of a single application. By assigning different portions of work to the
cores in the system, but still within the same application, performance can be improved. We refer to

this as parallel computing.

It is important to realize that there are significant differences between the cores found in various
architectures. These most likely have an effect on performance. For the purpose of parallel
programming, the most significant feature is that the cores provide support for parallel execution in the

hardware. This makes a single multicore processor a (small) parallel system.

In the remainder of this paper, a core is referred to as the hardware component providing the
parallelism. For ease of reference, a processor that can only execute a single stream of instructions is

often still referred to as a core.
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Basic Concepts in Parallel Programming

In this section various aspects of parallel programming are covered. This is done from a practical
perspective, informally explaining the terminology, as well as addressing important concepts one needs
to be aware of before getting started writing a parallel application, or when parallelizing an existing

program.

In the Additional Considerations Important In Parallel Applications section on page 55, additional
considerations are presented and discussed. These are however not needed to get started and might

come into the picture once the application has been parallelized.

What is a Thread?

Loosely speaking, a thread consists of a sequence of instructions. A thread is the software vehicle to
implement parallelism in an application. A thread has its own state information and can execute
independently of the other threads in an application. The creation, execution and scheduling of threads
onto the cores is the responsibility of the operating system. This is illustrated in Figure 3.

g
= Software

Threads

Scheduling

Figure 3. Software threads scheduled onto the cores

In general it is best for performance to make sure the hardware resources used are not overloaded and
do not exceed their capacity. In case a resource is overloaded, the common phrase is to say that this
resource is oversubscribed. For example, when executing more than one application on a single core, the

operating system has to switch between these programs.

This not only takes time, but information in the various caches might be flushed back to main memory
as well. In that respect, one should see the operating system itself as an application too. Its various

daemons have to run in conjunction with the user level programs. This is why it is often most efficient
to not use more software threads than cores available in the system, or perhaps even leave some room

for these daemons to execute as well.
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The exception is if a core has hardware support for multiple threads. In this case, some level of
oversubscription of a core could be beneficial for performance. The number of software threads to use
depends on the workload and the hardware implementation details. The Performance Results section

on page 64 details some performance results on this kind of heavily threaded architecture.

On current operating systems, the user can have explicit control over the placement of threads onto
the cores. Optimally assigning work to cores requires an understanding of the processor and core
topology of the system. This is fairly low-level information, but it can be very beneficial to exploit this

feature and improve the performance by carefully placing the threads.

To improve cache affinity, one can also pin the threads down onto the cores. This is called binding and
essentially bypasses the operating system scheduler. It could work well in a very controlled
environment without oversubscription, but in a time-shared environment it is often best to leave the

scheduling decisions up to the operating system.

1 core 4 cores
(20 seconds) (5 seconds)
. | — JUEL
E
= parallel
execution

\J

Figure 4. Parellelization reduces the execution time

Why Parallelization?

With serial optimization one tries to use the hardware resources available within one core more
effectively. For example by utilizing the pipelines in the core in a more efficient way, and/ot by
improving the memory access pattern in the application, resulting in a better use of the cache
subsystem. Using these techniques, the single core performance may be improved. In the worse case
little or no gain can be realized this way. For an extensive coverage of this topic and many other

aspects of application tuning, we refer to [9]

Parallelization is another optimization technique to further enhance the performance. The goal is to
reduce the total execution time proportionally to the number of cores used. If the serial execution time
is 20 seconds for example, executing the parallel version on a quad core system ideally reduces this to
20/4 = 5 seconds. This is illustrated in Figure 4.
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The execution time for a parallel program is also referred to as the elapsed time, ot wall clock time, or in
UNIX® terminology, the real time. It is essentially the time on one's watch from the moment the

program starts until it finishes.

The significant difference here is that unlike tuning for serial performance, with parallelization more
than one core is executing the program. So the goal must be to use these additional cores as efficiently
as possible to reduce the execution time. But any performance improvement is not a given. Depending
on the application characteristics, the parallel programming model selected, the implementation of the
parallelism in the application, the system software and the hardware used, one might see little or no
performance improvement when adding cores. And in some cases enabling more cores can degrade

performance when compared to single core execution.

Parallelization is therefore not only about getting the right results -- performance should be a
consideration early in the design phase as well. More information on this can be found in the

Additional Considerations Important In Parallel Applications and Performance Results sections.

What is Parallelization?

Parallelization attempts to identify those portions of work in a sequential program that can be executed
independently. At run time this work is then distributed over the cores available. These units of work

are encapsulated in threads.

The programmer relies on a programming model that will express parallelism inherent in an
application. Such a parallel programming model specifies how the parallelism is implemented, and the

parallel execution managed.

An Application Programming Interface (API) consists of a library of functions available to the
developer. POSIX Threads (or Pthreads), Java Threads, Windows Threads and the Message Passing
Interface (MPI) are all examples of programming models that rely on explicit calls to library functions

to implement parallelism.

Another approach might utilize compiler directives such as #pragma constructs in C/C++ to identify
and manage the parallel portions of an application's source code. OpenMP is probably the most well

known example of such a model.

The choice of the programming model has substantial consequences regarding the implementation,
execution and maintenance of the application. Both approaches have their pros and cons. We strongly

recommend to carefully consider these before making a choice.
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Parallel Architectures

In this section an overview of various types of parallel systems is given. These are generic descriptions
without any specific information on systems available today. For that we refer to the technical
information on the particular system of interest. Before covering several architectures, a short
introduction into cache coherence is given. This feature provides a single system shared memory view to

the user, even if the memory is physically distributed.

Cache Coherence

A cache line is the unit of transfer in a general-purpose microprocessor. A typical line size is 32 or 64
bytes. Each time a core issues a load instruction to fetch a piece of data from memory, the cache line

this data is part of, is copied into the cache hierarchy for this core.

In a parallel program it can easily happen that multiple cores simultaneously load data elements that are
part of the same cache line. As a result, multiple copies of the same line exist in the system. As long as
the lines are read only, all these copies are consistent, but what if one, or multiple cores, modifies the
line they just loaded?

At this point, an inconsistency at the hardware level arises. There is now at least one cache line that has
a different data element than the other copies. Care needs to be taken that any core issuing a load

instruction for a data element in the same line receives the correct version of the line.

Cache coherence is a hardware mechanism that keeps track of such changes and ensures that
modifications to cache lines are propagated throughout the system. To this end, a cache line is
augmented with a status field, describing the state the line is in. For example, if the line is marked as

“invalid”, its contents can no longer be used.

Cache coherence provides a single system shared memory view to the application. The program can
load and store data without the need to know where it is located. This greatly enhances ease of use

when it comes to parallel programming.

For performance reasons, cache coherence is implemented in hardware. Different algorithms and
implementations are used in the various systems available today. Since cache lines are modified very

often, an efficient design has a noticeable and positive impact on the performance.

For completeness, one comment needs to be made here. Multiple and simultaneous writes to the same
cache line is another important and different issue to be dealt with. The policy how to handle these is
part of the memory consistency model implemented. This topic is however beyond the scope of this

introductory paper. For an extensive coverage of this topic, as well as cache coherence, we refer to [7].

The Symmetric Multiprocessor (SMP) Architecture

The probably most well known parallel architecture is the Symmetric Multiprocessor (SMP). Such a
system consists of a set of processors, possibly with a multicore architecture, I/O devices, one or motre

network interfaces and main memory. In Figure 5 a block diagram of this architecture is shown.
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Shared Memory
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Inadace Cache Coherent System Interconnect subsystem
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Figure 5. Block diagram of an SMP system

The SMP system is globally cache coherent, providing a single system view. The artery of the system is

formed by the system interconnect.

There are significant architectural differences between various implementations. For example, the
topology and architecture of the interconnect, latencies, bandwidths and cache coherence protocol all

highly depend on the system specifics, and thus affect the performance of the system and applications.

The key characteristic all SMP systems have in common however is that each core has transparent
access to any memory location in the system. Moreover, the main memory access time is the same for
all processors/cores, regardless of where the data resides in memory. This is also referred to as a flat or
uniform memory access (UMA) architecture. The two main advantages of the SMP are the flat
memory and sharing of resources. Because of the single address space, even a serial application can

make use of all the memory available in the system.

Note that at the architectural level, a multicore processor is very much like an SMP.

The Non-Uniform Memory Access (NUMA) Architecture

The opposite architecture of the SMP consists of a cluster of single core nodes, connected through a
non-cache coherent network, like Ethernet or InfiniBand. A node consists of a complete system. It
could for example be a PC, workstation, laptop or a more custom designed system. Figure 6 shows a

block diagram of such a system.
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Figure 6. Block diagram of a NUMA system

In this kind of architecture, none of the hardware resources other than the network are shared. In
particular, each node in the cluster has access to its own local memory only. Remote access to another
memory is not transparent. It has to be explicitly programmed by the developer. For this reason, this
type of system is also referred to as a Distributed Memory architecture.

In comparison with local access, accessing remote memory takes longer. How much longer depends on
the interconnect characteristics, as well as the size of the packet transferred over the network, but in all
cases, the delay is noticeable. This is often described as Non-Uniform Memory Access, or NUMA for
short.

Because of the multicore trend, single core nodes become more and more rare over time. This is why

this type of architecture will over time be replaced by the Hybrid architecture.

The Hybrid Architecture

A Hybrid system consists of a cluster of SMP or multicore nodes, connected through a non-cache

coherent network. In Figure 7 a block diagram of such an architecture is shown.

Non Cache Coherent Network

Interface

Figure 7. Block diagram of a Hybrid system
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At the programming level, this kind of system can either be seen as a distributed memory architecture,
ignoring the fact that the cores within one node share their memory, or as a two level parallel system
with a distributed memory architecture at the top level and a shared memory system at the second
level. With that, one has the best of both wotlds.

This type of system is rapidly becoming the dominant architecture, because increasingly the individual
nodes have one or more multicore processors. The interconnect of choice is either Ethernet or
InfiniBand.

The Cache Coherent Non-Uniform Memory Access (cc-NUMA) Architecture

The last system in this overview is the cache coherent Non-Uniform Memory Access (cc-NUMA)
architecture. It is very similar to the Hybrid system, but there is one major difference. The top level
interconnect is cache coherent, providing the system with a single address space. In other words, an

application can access any memory location in the system, regardless of where it is physically located.

Figure 8 shows a block diagram of a cc-NUMA system.

Cache Coherent Interconnect
Shared Memory Shared Memory
Network 1o Cache Coherent System [y 50N
Interface Interconnect Interface
Cache(s) Cache(s) Cache(s) Cache(s)

|Pmoessor Processor| Processor IProoessor

Figure 8. Block diagram of a cc-NUMA system

The transparent access of memory throughout the entire system greatly enhances ease of use, but there
is still a performance penalty accessing remote data. How much of a penalty depends on the system
characteristics. For good parallel performance it is important to take this into account and ensure that
most, if not all, memory accesses are from a memory closest to the core that reads, and/or modifies
the data.

Increasingly, microprocessor designs move away from a centralized memory architecture. Instead, each
processor has its own memory controller, connecting to a part of the total memory available. The
advantage is that memory bandwidth scales with the number of processors and each (multicore)
processor has fast access to its local memory. Thanks to cache coherence, access to a remote memory
is supported transparent to the application, but it takes longer to get to the data. In other words, such
systems have a cc-NUMA architecture and these days they are more and more common. This trend
also implies that the individual nodes in Hybrid architecture have a cc-NUMA architecture as well,

further complicating the memory hierarchy in such systems.
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Parallel Programming Models

There are many choices when it comes to selecting a programming model for a parallel system. In this
section the focus is on the more commonly used models. After a global overview of some popular
parallel programming models, we zoom in on two-shared memory models (Automatic Parallelization
and OpenMP), followed by the Message Passing Interface (MPI) model for distributed memory and

hybrid systems. We conclude with some remarks on the Hybrid programming model.

An Overview of Common Parallel Programming Models

Numerous choices are available to program a parallel computer. In this section some of the more
commonly used programming models are briefly covered. In the remainder of this paper, the focus is
on Automatic Parallelization, OpenMP, MPI, as well as the combination of MPI and OpenMP. The
latter is an example of a Hybrid programming model, combining a shared memory and distributed

memory model.

The Shared Memory Model

These are common ways to develop and deploy a parallel program for a system with a single address

space, that is, a shared memory architecture as found in multicore, SMP, and cc-NUMA systems.

Automatic Parallelization

Here, the compiler performs the dependence analysis to determine if a specific part of the program can
be executed in parallel. If it can prove this is safe to do, it generates the underlying infrastructure,
typically a series of calls to a multitasking library. The user activates this feature through a compiler
option. The source(s) compiled with this option are analyzed and where possible, parallel code is
generated. The analysis is loop oriented. This could be a single level or nested loop. In case a loop is
parallelized, the work associated with the loop iterations is split into disjoint chunks. These chunks of

iterations are assigned to the threads.
Several factors affect success or failure of Automatic Parallelization:

+ The programming language. A language like Fortran is easier to analyze at compile time than
C++ for example. Due to the higher abstraction level in the latter, it can be harder for the compiler
to identify independent portions of work.

 The application area. Certain algorithms are inherently parallel, whereas in other cases the

parallelism is more indirect, or worse, non-existent.

+ Coding style. To achieve the maximum benefit from the analysis, the compiler needs to extract as
much information as possible from the application. Depending on the coding style, this can be a

challenge, or not.

+ The compiler. Identifying the parallelism at compile time can be quite complicated. This requires a

serious investment in compiler technology.



Oracle White Paper—Parallel Programming with Oracle Developer Tools

The Oracle Solaris Studio compilers support Automatic Parallelization. It is simply enabled by adding
the -xautopar option to the options already used for serial optimization. Additionally one can add the
-xreduction option to allow the compiler to parallelize a specific class of operations. More
information can be found in the Automatic Parallelization Using The Oracle Solaris Studio C Compiler

section on page 25. There also an example is presented and discussed.

Explicit Parallelization Using the OpenMP Programming Model

This is a directive based model. By inserting compiler directives in the source program, the user defines

what part(s) can be executed in parallel. The compiler then translates this into a parallel program.

OpenMP supports an extensive set of features to specify the parallelism, control the workload
distribution, and synchronize the threads. Although not required, it turns out that current OpenMP
implementations are built on top of a native threading model. The Oracle Solaris Studio compilers
support a combination of Automatic Parallelization and OpenMP. This minimizes the effort, since the
compiler can first be used to parallelize the application. Those parts that are too complicated for the

compiler to handle can then subsequently be parallelized with OpenMP.

A more extensive coverage of OpenMP can be found in The OpenMP Parallel Programming Model
section on page 16. A fully worked example is given in Parallelizing The Example Using OpenMP on
page 28.

A Native Threading Model

Examples are POSIX Threads, Solaris Threads, Java Threads, or Windows Threads. Through an API,
the developer has access to a set of specific functions that can be used to implement and control the

parallelism. For example, function calls to create the threads and synchronize their activities.

Such a programming model provides a powerful, yet fairly low level of functionality and control.
Higher level features need to be built using the lower level function calls. This type of programming
model has been available for a relatively long time and successfully used to parallelize various types of
applications. These days, higher-level alternatives like OpenMP, but also other programming models
not discussed here, are available. If possible, such a model might be preferred, since it can reduce the

development cycle and reduce maintenance cost.

The Distributed Memory Model

For a cluster of systems with a non-cache-coherent network, a distributed memory parallel
programming model can be utilized to communicate between the nodes in the network. In this model,
memory is not shared. Each process has only access to its own, local, memory. That is, a process can
only read from or write data to this local memory. In case data has to be made accessible to another
process, the owner of this data has to send it explicitly to the process(es) that need it. And, the
process(es) that need the data have to issue an explicit receive request. Also in this case, several choices

are available.
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+ Network socket programming. This is not really a programming model, but a network protocol to
send and receive network packets across a cluster. It is very low level and quite far away from what

the typical application developer requires to parallelize a program.

+ Parallel Virtual Machine (PVM). This was the first successful effort to provide a de-facto standard
for parallel programming targeting a cluster of systems. PVM not only provided an API to send and
receive messages between processes running on the various nodes of the cluster, but also for
example functionality to synchronize processes across the entire system. Implementations for many
systems were available. Typically these were built on top of network sockets, but in some cases an
implementation would take advantage of a more efficient communication between processes

running on the same (shared memory) node.

+ The Message Passing Interface (MPI). This is today's most popular programming model to
program a cluster of nodes. Several shortcomings in PVM were addressed and especially with the
introduction of MPI-2, more extensive functionality than PVM was provided. This is why MPI

eventually superseded PVM and is today's standard to program a distributed memory system.

Outside of the basic functions to create the processes, as well as send and receive messages, MPI
provides a very rich API through an extensive set of additional functions, including various ways to
handle I/O. We strongly recommend to check the specifications before implementing one's own
more complicated case. Most likely, the MPI API already provides for what is needed. Examples are
the MPI_Bcast () function to broadcast the same message to all processes, the MPI_Reduce( )
function to gather a message from all processes on one process and apply a basic arithmetic operator

to it, and the MPI_TIsend()/MPI_Irecv() functions to communicate messages asynchronously.

In The Message Passing Interface (MPI) Parallel Programming Model section on page 18, a more
extensive coverage of MPI can be found. Parallelizing The Example Using MPI on page 39 contains

a fully worked example.

+ Partitioned Global Address Space (PGAS). This type of programming model has been around for
quite some time. Through language extensions and/or directives, parallel programming is simplified
by avoiding the developer has to handle many of the low level details that typically come with other
distributed memory programming models, like explicit send and receive operations. Relatively recent
examples are Unified Parallel C (UPC) and Co-Array Fortran.

Automatic Parallelization

Automatic Parallelization is a feature supported by the Oracle Solaris Studio compilers. Through the
-xautopar compiler option, the user requests the compiler to parallelize the source code for the
shared memory model. In other words, such a parallel program can be run on a multicore, SMP, or cc-
NUMA type of system.

Automatic Parallelization is based on parallelizing loops. In a nested loop, the compiler may first re-
order the loops to achieve optimal serial performance. The resulting loop nest is then considered for
parallelization. For efficiency reasons, the compiler first tries to parallelize the outermost loop. If this is

not possible, it will consider the next loop, etc.
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In order to guarantee correctness of the results, the compiler needs to determine whether the iterations
of the loop under consideration can be executed independently. To this end, a dependence analysis is
performed. If the analysis shows it is safe to parallelize the loop, the corresponding parallel
infrastructure is generated. In case of doubt, or if there is a clear dependence, the loop will not be

parallelized.

In the Automatic Parallelization Using The Oracle Solaris Studio C Compiler section on page 25, an

example of automatic parallelization is given.

The OpenMP Parallel Programming Model

In this section we briefly touch upon this programming model. For the full specifications and more
information, we refer to [5], [10], [11], and [12]. In the Parallelizing The Example Using OpenMP

section on page 28, a complete OpenMP example program is presented and discussed extensively.

A Brief Overview Of OpenMP

OpenMP uses a directive based model. The developer adds directives to the source to specify and
control parallel execution. For example, all that is needed to parallelize a for-loop in C is to insert a
#pragma omp parallel for pragma line above the loop. In Fortran, the syntax to parallelize a do-

loop is !$omp parallel do.

It is however important to note that OpenMP is much richer than simply parallelizing loops. Several
flexible and powerful constructs are available to parallelize non-loop code in an application. For
example, the tasking model allows arbitrary blocks of code to be executed in parallel. In the tasking
model, the developer uses pragmas to define the chunks of work, called tasks. There is the implied
assumption that all tasks can execute concurrently. Getting this right is the responsibility of the

developer. The compiler and run time system handle the details to generate and execute the tasks.

In addition to the directives, a run time library is available. These routines can be used to query and
change the settings as the program executes. A commonly used routine is omp_get_num_threads().
It returns the number of threads in the parallel region. The routine omp_get_thread_num() returns a
unique thread identifier, starting with 0. It is also possible to change the number of threads while the

program executes by calling the omp_set_num_threads () routine.

There are many more routines available. In the An Example Program Parallelized Using Various
Models section and Appendix A it is shown how some of these routines can be used. For a complete
overview and more details we refer to the OpenMP specifications [10]. Through a set of environment
variables the user can specify certain settings prior to executing the program. An example is the
OMP_NUM_THREADS variable to specify the number of threads to be used. In the example in the
Parallelizing The Example Using OpenMP section on page 28, several of these features are shown and

discussed in detail.

An OpenMP program can be seen as an extension of the serial version of the program, because the

directives provide a portable mechanism to implement the parallelism. All current OpenMP compliant
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compilers use a specific option to get the compiler to recognize the directives. If the source is compiled

without this option, the directives are ignored, resulting in serial code to be generated.

The OpenMP run time routines require special care though. If such a routine is used in the source,
compilation in serial mode causes the routine to not be recognized. Luckily there is an easy solution for
this. Through the #ifdef construct in C/C++ and the conditional compilation OpenMP feature
available in Fortran [10] [11] one can avoid that the OpenMP run time routines give rise to unresolved
references at link time. This is illustrated in the example in the Parallelizing The Example Using

OpenMP section on page 28.

The OpenMP Execution And Memory Model
An OpenMP program uses the fork-join execution model. It is shown in Figure 9.

Initially, the program starts in serial mode. Only the initial, master, thread is running. When a parallel

region is encountered, the additional threads are activated and assigned work.

The parallel region forms the backbone of OpenMP. This is where activities take place concurrently.
The details of what needs to be done depend on the constructs used within the parallel region and are
specified by the developer. In C/C++ the #pragma omp parallel directive is used to define the

parallel region. In Fortran the ! $omp parallel directive needs to be used for this.

Master Thread

OpenMP Worker
Parallel Region Threads

Synchronization

OpenMP Worker
Parallel Region Threads

v.Vv vy V.9

Synchronization

Figure 9. The fork-join execution model in OpenMP

Within the parallel region, the master thread behaves like one of the worker threads and participates in
the activities to be performed. At the end of the parallel region all threads wait until the last one arrives.

At this point, the master thread continues by itself until the next parallel region is encountered.

The memory model defines two types of memory: private and shared. Each thread has exclusive access

to variables in its private memory. Any change made to such a variable is only seen by the thread that
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made the modification. In OpenMP, private variables are undefined on entry to and exit of the parallel

region, but this can be changed through the firstprivate and lastprivate clause respectively.

A shared variable behaves very differently. It is accessible by all of the threads. Essentially, there is only
one copy of this variable and it is visible to all threads. The initial value is inherited from the master.
Any thread can read and/or write a shared variable and it is up to the developer to make sute this
happens in a correct way. An example of using private and shared variables can be found in the
Parallelizing The Example Using OpenMP and Parallelizing The Example Using The Hybrid Model

sections.

A subtle issue is determining at what point in time a change made to a shared variable is visible to all
other threads. The OpenMP memory model allows threads to have a (potentially) different temporary
view of a shared variable, but at certain execution points, a consistent view is guaranteed (e.g. after a
barrier). By using the £1ush directive, the programmer can also enforce consistency. Although not
required for OpenMP compliance, support for cache coherence makes this feature relatively easy to

implement.

The Message Passing Interface (MPI) Parallel Programming Model

In this section this distributed memory-programming model is briefly covered. For the full
specifications and more information, refer to [6], [13] and [14]. In the Parallelizing The Example Using

MPI section on page 39, a complete MPI example program is presented and discussed extensively.

A Brief Overview Of MPI

An MPI program consists of a set of processes, running on one, or multiple, nodes of a cluster. Each
process is a full operating system process. Communication between the processes has to be put in by
the developer. If a process needs some data that is in the memory of another process, the process that
owns this data needs to explicitly make it available to the process interested in it. The most common
way to do this is for the owner to execute the MPI_Send() function, specifying the receiver as the
destination. On the receiving side, the process that needs the data then has to execute the MPI_Recv ()
function to receive this data. In MPI terminology, such a data packet is called a message. Since multiple
messages can be sent to a single receiver, the receiver needs to have a way to distinguish the various

messages. This can be achieved by using a unique label, or message tag, in the send and receive call.

As stated in [13], only 6 functions are needed to write a message passing application, but a much richer

environment is provided, including asynchronous and global operations.

For example, the commonly used MPI_Send () function returns when the message is considered to be
sent and the user may do anything to the buffer, but it actually may have been queued up in a list to be
sent out. There is no guarantee if or when the message has arrived. On the other hand, the
MPI_Ssend() function only returns when the receiver has actually received the message. This can
however cause the sender to be idle (block) while waiting for the message to arrive. In such cases, the
asynchronous send and receive functions (MPI_Isend() and MPI_Irecv()) are very useful to allow
communication and computation to overlap. This can be very beneficial for the performance. For

example, the MPI_Isend() function is guaranteed not to block due to progress in the message
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delivery not happening. Functions to test or wait for arrival of a message are available and needed

when using this feature.

An important concept in MPI is the communicator. This refers to a set of MPI processes. Many MPI
functions require the communicator to be specified. When the MPI_Init () function is called to
initialize the MPI environment, the overall MPI_COMM_WORLD communicator is created (along with
MPI_COMM_SELF, the communicator consisting of the process itself). This communicator is therefore
always present and includes all processes in the MPI job. Each process is assigned a unique rank to the

MPI_COMM_WORLD communicator, which is a consecutive integer number starting from zero.

This single communicator is sufficient for many MPI applications. Through the MPI_Comm_create()
function it is however possible to create a subset of this global communicator and then restrict
communication to this subset only by specifying the appropriate communicator in the MPI function
call. The subset can for example be used to restrict a global operation, e.g. MPI_Bcast (), to all

processes in the subset only.

Multiple communicators can be created and used. For example, two communicators can be used to

define a compute set of processes, as well as a visualization set of processes. Communication can then
be restricted to either one of these sets. If MPI_COMM_WORLD is used, a process can send to any of the
other processes in the entire MPI job. Additional functionality to manage communicators is supported

through various MPI functions.

Note that one can use the MPI_Comm_dup () function to make a copy of MPI_COMM_WORLD and
essentially have two communicators with the same abilities of connections. This can for example be

useful to separate control messages from data messages that need to go to any of the processes.

Another important type of communication is the global (or colfective in MPI terminology) operations.
These are very convenient and frequently used to perform the same type of communication, like a send
or receive, but across all of the processes in the communicator. The convenience is that only a single
function call needs to be used for this. They can also be optimized by MPI implementations for
networks used, node sizes, communicator sizes and data sizes. Through the MPI_Bcast () function for

example, one can send the same message to all processes.

The MPI_Gather () function performs the opposite operation. It collects a message from all
processes. Through the MPI_Reduce () function one can perform a gather operation, while also
applying a basic or user-defined arithmetic operation on the incoming data. Such a function is ideally

suited to collect and sum up partial sums for example.

A very advanced feature is the one-sided communication. With this, a process can use the MPI_Get ()
and MPI_Put () functions to respectively independently read or write a memory section in another
process. In other words, no matching send or receive operation is required. The developer needs to
take care this happens in the correct way. With sufficient support by the implementation it provides an
efficient, but low level, way to transfer a message. Note that when using this feature, more than these
two MPI functions are needed.

MPI also comes with its own set of I/O functions. This part of the specification is usually referred to

as MPI-IO and provides functionality to handle vatrious I/O scenatios in an MPI application.
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Figure 10.The MPI execution model

The MPI Execution and Memory Model
The MPI execution model is shown in Figure 10.

Through a command that is specific to the MPI implementation (e.g. mpirun for the Oracle Message
Passing Toolkit), the user starts the program, specifying how many processes need to be started and
which node(s) to use. Using options and/or configuration settings, one can for example also control
what specific nodes of the cluster to use, how many processes should be run on each node, and if
desired, on which core(s) of the node(s). Upon a successful launch, all processes start running
independently. When an MPI function is executed, e.g. an MPI_Send() call to send a message to

another process, the underlying MPI library and run time system perform the action requested.

The first and mandatory function to be executed prior to any other MPI function, is MPI_Init() to
initialize the run time environment. After the completion of all MPI communications in the program,
the MPI_Finalize() function should be called. After this, no MPI functions can be executed any
longer. It is typically called just before the program finishes.

The horizontal arrows in Figure 10 indicate MPI communication. The process number starts with 0
and is numbered consecutively. Communication is between processes. On which node, or core, the
process runs is determined by the configuration set up and options specified when executing the

program with the mpirun command.

Unless one-sided communication is used, the memory model of MPI is very simple and explicit. Each
process has access to its local memory only. Even when executed on a shared memory system, there is
no sharing of data at the MPI level. If or when a process needs some data from another process, the

owner of that data has to send it. The advantage of this model is that the behavior is consistent with a

serial application and does not require additional attention. The downside is that any data that needs to
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be shared, even if it is read only data, has to be copied and communicated over the network to all

processes that need it.

Note that an MPI implementation can take advantage of shared memory under the hood though.
Instead of using a network protocol for the communication, it can more efficiently communicate

messages via shared memory. This is one of the features of the Oracle Message Passing Toolkit.

The Hybrid Parallel Programming Model

In a Hybrid parallel application, distributed and shared memory programming models are combined to
parallelize an application at two levels. Typically, MPI is used for the distributed memory component,
spreading the work over the nodes in a cluster. The process(es) running within one node are then
further parallelized using a shared memory model, these days usually OpenMP. The Hybrid model is a
very natural fit for a cluster consisting of multicore nodes. Clearly one can run an MPI application
across all of the nodes and cores in the system, but what if is there is finer grained parallel work that
would be hard to parallelize efficiently with MPI?

Another reason to consider the Hybrid model is that the memory within one node is used more
economically by exploiting shared data through OpenMP and avoid the need to replicate data. In such
cases, this combined model is very suitable. It is often relatively easy to use OpenMP to implement the

second level parallelism.

Hybrid applications using MPI and OpenMP are best compiled and linked using the Oracle Message
Passing Toolkit compiler drivers (e.g. mpicc) with the -xopenmp option added. Although not
required, compiling with the -xloopinfo and -g options is highly recommended. The first option
causes feedback on the parallelization to be printed on the screen. The second option is needed to get
the compiler to annotate the object file(s) with very useful diagnostics on the serial optimizations and
parallelization performed. This information can be extracted from the object file through the er_src

command covered in the The Oracle Solaris Studio Compiler Commentary section on page 33.

Since this is a special case of an MPI application, the mpirun command should be used to execute the
program. Prior to running the program, environment variable OMP_NUM_THREADS should be set to the
desired number of OpenMP threads. Unless the application itself sets the number of OpenMP threads
at run time. When running the application on a cluster, the —x option needs to be used to export
environment variables like OMP_NUM_THREADS to the other nodes. Below is an example of the

commands used to compile, link and execute a Hybrid application:

$ mpicc -fast -g -xopenmp -xloopinfo hybrid program.c -o hybrid.exe
$ export OMP_NUM THREADS=4

$ mpirun -np 8 -x OMP_NUM_THREADS ./hybrid.exe

When running this program, 8 MPI processes are created and executed on the system(s). Each MPI
process uses four OpenMP threads. In the Parallelizing The Example Using The Hybrid Model section
on page 50, an example of a Hybrid application written in C is given. Appendix C lists the Fortran

equivalent of this example.
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An Example Program Parallelized Using Various Models

In this section an example program is presented and discussed in great detail. The main function
computes the average of a set of (double precision) numbers. We show how to design and implement

the parallelism. Some performance results are given in the Performance Results section on page 64.

We begin by showing how to use the Oracle Solaris Studio C compiler to automatically parallelize the
source code of the function implementing the computation of the average. Next, OpenMP is used to
explicitly parallelize this computation. The same is then demonstrated using MPI. In the last section
the Hybrid model is applied to create a two level parallel version. Although the example is written in C,
there are only very small syntactical differences with Fortran regarding OpenMP and MPI. In
Appendix C the Fortran source of the Hybrid version is listed. A Hybrid Fortran Implementation Of

The Example Program on page 53 shows how to compile, link and run this program.

The Example Program

Before introducing the function that computes the average of a set of double precision numbers, the
main driver program is presented and discussed. The source code is listed in Figure 11. This main
program is fairly straightforward. Four additional non-system functions are used. They are highlighted
in bold. In Appendix A the sources of these functions are listed and briefly explained. In Figure 11:

+ Lines 1-14 contain the declarations and definitions found in a typical C program.
+ Atline 16 the user is prompted for the size of the array. This value is stored in variable n.

+ Atline 19 function setup_data() is called. This function allocates the memory for array data,
initializes it and returns the exact result. The main program stores this value in variable ref_result

and uses it later on to check for correctness of the computed result.

« Atline 21 function get_num_threads () is called. It returns the number of threads used. This value

is printed to verify the number of threads is according to what it is expected to be.
+ Atline 23 the timer is started by calling get_wall_time(). It returns the absolute time in seconds.

+ Atline 25 function average () is called. This function performs the computational work. The result

is returned in variable avg.

+ Atline 27 the timer function is called again. By subtracting the new value from the old one, the

elapsed time of the call to function average () is measured.

+ Atline 29 the computed result is compared against the reference result. As explained in Appendix A,
the function check_numerical_result() that performs this task, takes differences caused by
round off into account. If the test for correctness fails, diagnostic information regarding the
numerical results is printed. Depending on the return value of this function, the main program either
prints the final result and the elapsed time (line 32), or gives an error message (line 35). In other
wortds, if the average is printed, it is implied the result meets the correctness criteria as checked for in

this function.
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#include <stdio.h>

#include <stdlib.h>

double average(int n, double *data);
double setup_data(int n, double **pdata);
double get_wall time();

int check numerical_result(double avg, double ref result);

0w N4 o0 s W N

int get _num threads();

o

10 int main()
11 {
12 double avg, ref result, *data;

13 double t_start, t_end;

14 int n, ret_code = 0;
15
16 printf("Please give the number of data points: ");

17 scanf("%d",&n);

18

19 ref result = setup_data(n, &data);

20

21 printf("Number of threads used: %d\n",get_num_threads());
22

23 t_start = get_wall_time();

24

25 avg = average(n,data);

26

27 t_end = get_wall_time() - t_start;

28

29 ret_code = check_numerical_result(avg, ref_result);

30

31 if ( ret_code == 0 ) {

32 printf("n = %d average = %.2f (took %.3f seconds)\n",
33 n,avg,t_end);

34 else {

35 printf("ERROR: COMPUTED RESULT IS WRONG\n");
36 ret_code = -2;
37}

38 free(data);
39 return(ret_code);

40 }

Figure 11.Main driver program to get the user input, set up the data, execute function “average”, and check the result
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The function listed in Figure 12 computes the average of a set of n double precision numbers, stored in

array data.

1 double average(int n, double datal[])
2 |
3 double sum = 0.0;
4
5 for (int i=0; i<n; i++)
sum += data[i];
7
8 return(sum/n);
9 1}

T

Figure 12.Source of function “average” to compute the average of “n” double-precision numbers

The loop starting at line 5 accumulates the sum of the array elements into variable sum. The average is
obtained by dividing this number by n, the total number of elements. This value is returned by the
function (line 8).

The program is compiled and linked using the Oracle Solaris Studio C compiler:

cc -c¢ -fast -g main.c

cc -c -fast -g check_numerical_ result.c
cc -c -fast -g -xopenmp get_num_ threads.c
cc -c -fast -g -xopenmp get_wall time.c
cc -c -fast -g setup_data.c

cc -c -fast -g average.c

“v» v »n »n »n W W

cc -o main.exe main.o check_numerical result.o get num threads.o

get_wall time.o setup data.o average.o -fast -g -xopenmp

The -fast option is used to have the compiler optimize the program. This option is a convenience
macro that includes a set of performance related options. It is highly recommended to use, since it is an

easy way to obtain good performance with a single option.
y way g gle op

There is much more that can be said about the -fast option, as well as some additional options to
further improve the performance. We refer to [9], [15] and the Oracle Solaris Studio documentation

[16] for more details.

The -g option is not only used to generate the information for the debugger, it also causes compiler-
generated information on the optimization and parallelization to be stored in the object file. This is a
unique feature of the Oracle Solaris Studio compilers and is called “The Compiler Commentary”. More

information on this can be found in The Oracle Solaris Studio Compiler Commentary on page 33.
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Since functions get_num_threads () and get_wall_time() use OpenMP to determine the number
of threads and elapsed time respectively, the ~xopenmp option is added when compiling this source.
The Parallelizing The Example Using OpenMP section on page 28 contains more information on this
option. To avoid unresolved references to the underlying OpenMP run time support library, the

-xopenmp option is also used on the link command.

The binary can now be run for any value of n (assuming the number is not so big as to exceed the
capacity of the int data type). Below the result for n = 100,000,000.

$ ./main.exe

Please give the number of data points: 100000000

Number of threads used: 1

n = 100000000 average = 50000000.50 (took 1.238 seconds)
$

It took about 1.24 seconds to perform the computation and the computed result is equal to the exact
result. Note that this also illustrates the point made at the end of the Parallel Computing, Floating-
Point Numbers And Numerical Results section on page 55. There it is shown that already for a much
smaller value of n, round off errors affect the numerical result in case single precision numbers are
used to perform this kind of computation. The difference is that in this example program double

precision numbers are used instead. This greatly increases the relative precision.

Automatic Parallelization Using The Oracle Solaris Studio C Compiler

The computation of the average of a set of numbers is an example of a scalar reduction operation. This
type of operation returns a single number as the result of an associative and commutative binary
operator on a higher dimensional data structure [17]. Examples are the summation of the elements of
an array (or as in this case, the related computation of the average) and determining the maximum or

minimum value of a set of numbers.

A reduction operation can be parallelized. This is discussed in more detail in the Parallelization Strategy
section on page 27. The Parallelizing The Example Using OpenMP, Parallelizing The Example Using
MPI, and Parallelizing The Example Using The Hybrid Model sections show in what way this
computation can be explicitly parallelized with OpenMP, MPI and the Hybrid model respectively. In
this section it is demonstrated that the Oracle Solaris Studio C compiler can actually do all the work for

us.

The source file listed in Figure 12 has been compiled using the Oracle Solaris Studio C compiler. The

options added to the serial options are marked in bold.

$ cc -c -fast -g -xautopar -xreduction -xloopinfo average.c
"average.c", line 5: PARALLELIZED, reduction, and serial version generated

$
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The -xautopar option invokes the automatic parallelization feature of the compiler. In this case this
is not sufficient however. By default, reduction operations are not parallelized by the Oracle Solaris

Studio compilers. This is why the -xreduction option has been included as well.

The -xloopinfo option, when used with the -xautopar option and/or the ~xopenmp option, issues
helpful diagnostic messages on the compilet's parallelization. It provides for an easy way to check

which part(s) of the program the compiler has parallelized.

The Compiler Commentary provides more detailed diagnostics on the parallelization by the compiler.
For more information on this feature we refer to The Oracle Solaris Studio Compiler Commentary

section on page 33.

In this case the compiler has successfully identified the parallelism in the loop at line 5. This means that
each thread gets assigned a subset of the total number of iterations to be executed. For example, if this

loop has 1,000 iterations and two threads are used, each thread works on a subset of 500 iterations.

Note that the number of threads to be used at run time should be explicitly set with the
OMP_NUM_THREADS environment variable. This needs to be done prior to running the program. By

default, the number of threads is set to 1.

We also see the message “and serial version generated”. This means that the compiler generated both a
parallel, as well as a serial version of this loop. If, for example, there are only a few loop iterations, the
additional parallel overhead may outweigh the performance benefit and the loop could actually run
slower using multiple threads. A run-time check decides which version to execute in order to realize
the best performance under all circumstances. For more information on compiler options specific to

parallelization with Oracle Solaris Studio refer to [15].

The other source files are compiled using the same options as were used for the serial version. This is
also true for the link command. This is how the automatically parallelized version has been compiled
and linked.

cc -c¢ -fast -g main.c

cc -c -fast -g check_numerical_ result.c
cc -c -fast -g -xopenmp get_num_ threads.c
cc -c -fast -g -xopenmp get_wall time.c

cc -c -fast -g setup_data.c

v v »n »n »n W»n

cc -c -fast -g -xautopar -xreduction -xloopinfo average.c
"average.c", line 5: PARALLELIZED, reduction, and serial version generated

$ cc -o main_apar.exe main.o check_numerical result.o get num threads.o

get_wall time.o setup data.o average.o -fast -g —xopenmp

$

There is no need to use the ~xautopar option when linking, since the -xopenmp option is already

used. Both cause the OpenMP run time support library to be linked in.
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The parallel version of this program can be executed using any number of threads. Below is the output

when running the program using 1, 2 and 4 threads:

$ export OMP_NUM_THREADS=1

$ ./main_apar.exe

Please give the number of data points: 100000000
Number of threads used: 1

n = 100000000 average = 50000000.50 (took 1.220 seconds)
$ export OMP_NUM_THREADS=2

$ ./main_apar.exe

Please give the number of data points: 100000000
Number of threads used: 2

n = 100000000 average = 50000000.50 (took 0.610 seconds)
$ export OMP_NUM_THREADS=4

$ ./main_apar.exe

Please give the number of data points: 100000000
Number of threads used: 4

n = 100000000 average = 50000000.50 (took 0.305 seconds)
$

The numerical result is identical for the three runs and equals the exact result. Clearly, automatic
patallelization works really well for this computation. The parallel speed up is 1.220/0.610 = 2.00 using
2 threads, and on 4 threads the speed up is 1.220/0.305 = 4.00. In other words, in both cases a linear
speed up is realized. For a definition and more information on the parallel speed up we refer to the

Parallel Speed Up And Parallel Efficiency section on page 60.

The single thread time is even a little less than for the serial version but it is quite common to see some
small variations in execution time and since the difference is only 1.4% we can ignore it. Additional

performance results are given and discussed in the Performance Results section on page 64.

Parallelization Strategy

In the previous section it was shown that the Oracle Solaris Studio C compiler is able to detect the
parallelism for us. In the remainder of this section it is explained how to do it ourselves using
OpenMP, MPI and the Hybrid model. Before turning to the implementation, the parallelization
strategy needs to be defined by formulating the steps to be taken to parallelize this computation.

The key observation to make is that summing up the elements of an array can be broken into pieces.
Each thread can compute the sum of a subset of the array. These partial sums then need to be

accumulated into the total sum and divided by the number of elements in the array.

The steps to be considered for a parallel version are outlined below. Note that although the word

thread is used here, these steps are generic and not yet specific to a particular programming model.
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1. Define for each thread a part of the data to work on

2. Make sure the thread has access to the part of the data it needs

3. Each thread computes the partial sum of its part of the data

4. This partial sum is accumulated into the total sum

5. One thread computes the final result by dividing the total sum by the number of elements

Depending on the programming model selected, some of these steps may not be needed, but it is good

practice to design the algorithm before implementing it in a specific parallel programming model.

Parallelizing The Example Using OpenMP

In this section it is demonstrated how OpenMP can be used to parallelize the serial version of the
algorithm. Using the steps given in the Parallelization Strategy section on page 27, the design of the
algorithm is outlined. Most of these steps are easy to map onto an OpenMP version, but one in
particular requires more attention. In the section following, the source code with the implementation is

presented and discussed.

The Design Of The OpenMP Algorithm

Most of the steps outlined in the Parallelization Strategy section are very straightforward to implement
using OpenMP. Access to data is very easily facilitated by making it shared. This allows every thread to
read and, if needed, modify the data. Step 4 requires some more care though. When accumulating the
final sum, each thread needs to add its contribution to it. This needs to be done in such a way that only
one thread at a time can do so. Luckily, the OpenMP critical section construct provides for a
very easy way to do this. It is explained in more detail in The Implementation Of The OpenMP
Algorithm section on page 29.

This leads to the following OpenMP algorithm to parallelize the computations performed in the

example program:

1. Use the default work allocation schedule of OpenMP to assign work to threads

2. Make array data shared, allowing all threads to access their part of the data

3. Each thread computes the partial sum of its part of the data and stores it in a private variable
4. Use the OpenMP critical section construct to add all partial sums to the total sum

5. The master thread divides the total sum by the number of elements to obtain the final result

It should be noted that this type of reduction operation can actually be very easily and conveniently
handled through the reduction clause in OpenMP, which eliminates the need for an explicit critical
section, and lets the compiler handle the details for us. We won't be using the reduction clause here
because we want to demonstrate the use of a critical section in this example, a construct commonly

used in OpenMP applications.
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The Implementation Of The OpenMP Algorithm

The source code of the OpenMP version of function average is listed in Figure 13. The OpenMP
specific parts are highlighted in bold. The first OpenMP specific part is at lines 4-8. OpenMP provides
run time routines to query the parallel environment and change certain settings. For these routines to

be known to the compiler, header file omp.h needs to be included.

One of the features of OpenMP is that, when care is taken, a program that uses OpenMP can still be
compiled, all or in part, without the specific option on the compiler to recognize and translate the
directives (like -xopenmp for the Oracle Solaris Studio compilers). This means the program runs

sequentially for those parts compiled without the option.

The issue that remains is the run time system, because the OpenMP specific routines are then not
known to the system either. Since an OpenMP compliant compiler is guaranteed to set the _ OPENMP
macro, this is tested for in the #ifdef construct (lines 4-8). In case the macro is set, file omp.b is
included at line 5 to define the omp_get_thread_num() routine. Otherwise this function is explicitly
defined at line 7 to return a value of zero. This is consistent with the value returned for an OpenMP

program executed using one thread only. The OpenMP parallel region spans lines 14-27.

Two additional clauses are used on the directive (pragma) for the parallel region. The default (none)
clause informs the compiler to not apply the default data-sharing attributes. It forces one to explicitly
specify whether variables are private or shared. At first sight this may seem unnecessary, as one could
rely on the default rules OpenMP defines for this. We strongly recommend not to do so though. Some
of the rules are rather subtle and it is easy to make a mistake. It is also good practice to think about the

variables and decide whether they should be stored in the private or shared memory.

Since this distinction is a new element compared to serial programming and part of the learning curve
for OpenMP, the Oracle Solaris Studio compilers support the unique autoscoping feature. With this,
the compiler assists with the assignment of the correct data-sharing attribute(s). An example of this

feature can be found in the Autoscoping In OpenMP section on page 37.
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1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #ifdef _OPENMP

5 #include <omp.h>

6 #else

7 #define omp_get_thread_num() 1

8 #endif

9

10 double average(int n, double datal[])
11 {

12 double sum = 0.0;
13

14 #pragma omp parallel default(none) \

15 shared(n,sum,data)

16 {

17 double Lsum = 0.0;

18 #pragma omp for

19 for (int i=0; i<n; i++)

20 Lsum += data[i];

21

22 printf("\tThread %d: has computed its local sum: %.2f\n",
23 omp_get_thread_num(), Lsum);
24

25 #pragma omp critical

26 {sum += Lsum;}

27 } // End of parallel region
28
29 return(sum/n);

30 }

Figure 13. OpenMP implementation of the computation of the average of a set of numbers

The list of shared variables is given at line 15. Although two private variables are used in the parallel
region, they do not need to be specified here, since they are local to the code block and therefore
automatically privatized. While this seems to violate the recommendation just given about explicit
scoping, since the default scoping rules are straightforward and intuitively clear for this case, we can

live with this one exception, and rely on the defaults.

When computing its part of the summation, each thread needs to be able read all (in case one thread is

used), or a portion of array data. This is achieved by declaring the variable data to be shared. Since all
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threads need to add their partial sum to the final result value sum, this variable needs to be accessible

by all threads. It is also needed outside the parallel region. This is why it is also made shared.

For n, the number of elements in the array, there is a choice. Making it shared is easiest and most
efficient in this case, but the firstprivate clause in OpenMP provides an alternative. With this
attribute, each thread has a local copy of this variable, pre-initialized with the value prior to the parallel

region.

All threads execute the declaration and assignment at line 17. From that point on they all have a private

copy of variable Lsum, initialized to zero.

The pragma omp for directive at line 18 informs the compiler that the loop iterations of the for-loop
at line 19 can be executed in parallel. When this loop is executed, the OpenMP run time system assigns
a subset of the iterations to each thread. Each thread then computes its partial sum and stores it in its

private copy of variable Lsum (lines 19-20).

For example, if there are 100 iterations to be executed and two threads are used, one thread might sum
up the first 50 values, whereas the second thread would do this for the remaining 50 values. We say
might, because the distribution of work is left to the compiler to decide upon. Through the schedule
clause one has explicit control how this should be done, but in this case the default policy, as selected
by the compiler, is used. After the for-loop has been executed, each thread has a private copy of Lsum
containing the partial sum as computed by the thread. This completes step 3 from The Design Of The
OpenMP Algorithm section on page 28.

For diagnostic purposes, each thread then prints its unique thread number (as returned by the

omp_get_thread_num() routine) and the value of Lsum (lines 22-23).

The next thing to do is to perform step 4 from The Design Of The OpenMP Algorithm section, to

accumulate the partial sums into the final result.

The statement at line 26 performs this computation, but care needs to be taken to do this in the correct
way. Since this statement is inside the parallel region, all threads execute it. Without precaution, it
might happen that multiple threads simultaneously try to add their contribution stored in Lsum to the

same (shared) variable sum.

This is an example of a data race. A data race occurs in case multiple threads update the same (and
therefore shared) address in memory at (potentially) the same time. The behavior is then undefined and

leads to silent data corruption, in this case resulting in a wrong value for sum.

The Oracle Solaris Studio Thread Analyzer [1] [16] can be used to detect this kind of error, as well as
deadlock. To avoid this data race problem, the update needs to be performed such that all threads
perform the update at line 26, but only one thread at a time should be allowed to add its value of Lsum

to variable sum.

This is conveniently achieved through the #pragma omp critical directive at line 25. The code block
enclosed, in this case one statement only, is executed by all threads, but it is guaranteed by the run-time
system that only one thread at a time can do so. This is called a eritical section and is commonly used in

shared memory parallel programming to correctly update a shared data structure.

31



Oracle White Paper—Parallel Programming with Oracle Developer Tools

The parallel region ends at line 27. Until the next parallel region is encountered, only the master thread
is active. This means that it computes the return value, the average in this case, and exits the function
at line 29. Note that a comment string is used at line 27 to mark the end of the parallel region at the
curly brace. This is obviously optional, but for readability we highly recommend using a comment here

to mark the end of the parallel execution.

Run Time Results For The OpenMP Implementation

The function has been compiled using the Oracle Solaris Studio C compiler:

$ cc -c -fast -g -xopenmp -xloopinfo average.c
"average.c", line 19: PARALLELIZED, user pragma used
$

The -xopenmp option is used to enable recognition of the OpenMP directives within the compiler.

This has the effect that the compiler recognizes the specific pragma(s) (otherwise they are ignored) and
generates the underlying infrastructure to parallelize the specific construct. In this case a parallel region
including a parallel for-loop and a critical region. The diagnostic message from the compiler confirms it

recognizes the OpenMP pragma above the for-loop at line 19 and parallelizes the loop.

The other sources are compiled using the same options as before. The link command is also identical:

cc -c¢ -fast -g main.c

cc -c -fast -g check_numerical_ result.c
cc -c -fast -g -xopenmp get_num_ threads.c
cc -c -fast -g -xopenmp get_wall time.c

cc -c -fast -g setup_data.c

“v» »vn» »n »n v W

cc -c -fast -g -xopenmp -xloopinfo average.c
"average.c", line 19: PARALLELIZED, user pragma used

$ cc -o main_omp.exe main.o check numerical_ result.o get_num threads.o

get_wall time.o setup data.o average.o -fast -g -xopenmp

This program can now be executed in parallel. All one needs to do is to set the OpenMP environment
variable OMP_NUM_THREADS to the desired number of threads. Below is the output when using one,
two and four threads.
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$ export OMP_NUM_THREADS=1

$ ./main_omp.exe

Please give the number of data points: 100000000

Number of threads used: 1

Thread 0: has computed its local sum: 5000000050000000.00
n = 100000000 average = 50000000.50 (took 1.220 seconds)
$ export OMP_NUM_THREADS=2

$ ./main_omp.exe

Please give the number of data points: 100000000

Number of threads used: 2

Thread 0: has computed its local sum: 1250000025000000.00
Thread 1: has computed its local sum: 3750000025000000.00
n = 100000000 average = 50000000.50 (took 0.610 seconds)
$ export OMP_NUM_THREADS=4

$ ./main_omp.exe

Please give the number of data points: 100000000

Number of threads used: 4

Thread 3: has computed its local sum: 2187500012500000.00
Thread 2: has computed its local sum: 1562500012500000.00
Thread 0: has computed its local sum: 312500012500000.00
Thread 1: has computed its local sum: 937500012500000.00
n = 100000000 average = 50000000.50 (took 0.305 seconds)
$

The numerical result is identical for the three runs and equals the exact result.

The local sums are increasing as a function of the thread number. This is because the default work
allocation schedule on the Oracle Solaris Studio compilers is the static type as defined by the
OpenMP specifications. With this schedule, the iterations are equally distributed over the threads, with
the first contiguous set of iterations assigned to thread 0, the next set to thread 1, etc. Since the

numbers in array data increase monotonically, the partial sums are increasing monotonically as well.

The performance is identical to what was measured for the automatically parallelized version. In both
cases, a linear speed up is observed. Additional performance results are given in the Performance

Results section on page 64.

The Oracle Solaris Studio Compiler Commentary

One of the features of Oracle Solaris Studio is the Compiler Commentary. By using the —g option (-g0 for
C++), the compiler adds optimization and parallelization information to the object file. This
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information is very useful when tuning an application or if one wants to check what kind of

optimization(s) the compiler has performed.

The Oracle Solaris Studio Performance Analyzer [18] shows this information by default, but there is
also a convenient command line tool called er_src to extract the compiler information from the

object file and display the annotated source.

Below, the commentary for routine average, compiled for automatic parallelization, is shown. The

command and the messages specific to the parallelization are highlighted in bold:

$ er_src average_apar.o

1. double average(int n, double datal[])

2. {

<Function: average>

3. double sum = 0.0;

4.
Source loop below has tag Ll
L1l multi-versioned for parallelization. Specialized version is L2
L2 autoparallelized

L2 parallel loop-body code placed in function _$dl1A5.average along with 0 inner

loops
L1l scheduled with steady-state cycle count = 5
L1l unrolled 4 times

Ll has 1 loads, 0 stores, 1 prefetches, 1 FPadds, 0 FPmuls, and 0 Fpdivs per

iteration

Ll has 0 int-loads, 0 int-stores, 3 alu-ops, 0 muls, 0 int-divs and 0 shifts per

iteration
L2 scheduled with steady-state cycle count = 5
L2 unrolled 4 times

L2 has 1 loads, 0 stores, 1 prefetches, 1 FPadds, 0 FPmuls, and 0 Fpdivs per

iteration

L2 has 0 int-loads, 0 int-stores, 3 alu-ops, 0 muls, 0 int-divs and 0 shifts per

iteration
5. for (int i=0; i<n; i++)
6. sum += data[i];
7.
8. return(sum/n);
9. }
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The loops, one only in this case, are labeled or agged. The first message indicates the for-loop at line 5

has been given label L1.

As explained in the Automatic Parallelization Using The Oracle Solaris Studio C Compiler section on
page 25, the compiler generates a parallel, as well as a serial version. At run time it is decided which one
to execute. This is an example of the compiler generating multiple versions of a loop and is referred to

as multi-versioned in the second message. The parallel version of the loop has label L2.

The next message refers to a compiler generated function called _$d1A5.average. The compiler
extracts the body of the parallelized loop, places it in a function, and replaces the loop with a call to a
run-time library routine. This process is called outlining. This function is then executed in parallel. This

is implemented in such a way that each thread works on a subset of the original set of iterations.

The remaining commentary refers to the serial, instruction level, optimizations the compiler has
performed. This feature is supported for SPARC processors. Important characteristics regarding the
number of load and store instructions, as well as several key floating-point and integer instructions are
given. The most important information at this level is contained in the steady-state cycle count. In this
case the value is 5. This means that each loop iteration takes five CPU cycles to complete, assuming
there are no pipeline stalls. Given the operations performed here, and the architecture of the processor

used, this is the optimal number of cycles.

The Compiler Commentary supports OpenMP as well. Through the -scc option, the er_src
command supports filters to select certain types of messages. This feature has been used to select the

parallelization messages only.

Below the output for the OpenMP source listed in Figure 13. The command as well as the OpenMP
specific compiler information has been highlighted in bold.

$ er_src —scc parallel average_omp.o
1. #include <stdlib.h>

2. #include <stdio.h>

3.
4. #ifdef _OPENMP
#include <omp.h>
6. #else
7. #define omp_get thread num() 1
8. #endif
9.

10. double average(int n, double data[])
11. {
<Function: average>
12. double sum = 0.0;
13.
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Source OpenMP region below has tag Rl
Private variables in R1l: Lsum, i
Shared variables in R1l: data, n, sum

14. #pragma omp parallel default(none) \

15. shared(n, sum,data)
16. {
17. double Lsum = 0.0;

Source OpenMP region below has tag R2

Private variables in R2: i

18. #pragma omp for

Source loop below has tag Ll

L1 parallelized by explicit user directive

L1l parallel loop-body code placed in function _$d1Al8.average

along with O inner loops

19. for (int i=0; i<n; i++)

20. Lsum += data[i];

21.

22. printf("\tThread %d: has computed its local sum: %.2f\n",
23. omp_get_thread num(), Lsum);
24.

25. #pragma omp critical

26. {sum += Lsum;}

27. } // End of parallel region

28.

29. return(sum/n);

30. }

Just as with loops, the relevant OpenMP parallel constructs are labeled too. In the first commentary
block it is seen that the compiler recognized the pragma defining the parallel region and created parallel

region R1. The data-sharing attributes are listed as well.

Since the shared variables have been explicitly listed on the shared clause, this should be consistent
with what was specified, but the messages also confirm that variables i and Lsum are automatically

made private.

When using the unique autoscoping feature in Oracle Solaris Studio (see also the Autoscoping In
OpenMP section), this kind of diagnostic information is also very helpful to check the compiler and

understand the decisions it has made regarding the data-sharing attributes.

The next block of commentary shows that the #pragma omp for directive has been labeled R2. The

messages above the for-loop at line 19 confirm the directive was recognized and parallel code for the
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loop has been generated using the same outlining technique as used for the automatically parallelized

version.

Autoscoping In OpenMP

An important aspect of learning OpenMP is to understand what data-sharing attributes (e.g. private or
shared) to assign to the variables in the parallel region. This is something one did not have to think

about in the serial version of the program.

Luckily, the Oracle Solaris Studio compilers support a unique extension to OpenMP called antoscoping.
When using the default(__auto) clause, the compiler is requested to perform the dependence
analysis and determine the data-sharing attributes of those variables not explicitly specified. The result

of this analysis is listed as part of the Compiler Commentary.

The autoscoping feature is demonstrated using the OpenMP version of function average. The
relevant source code fragment is shown in Figure 14. The only modification, highlighted in bold, is the
use of the default(__auto) clause on the pragma that defines the parallel region. Note the absence

of any data-sharing attributes.

#pragma omp parallel default(__auto)
{
double Lsum = 0.0;
#pragma omp for
for (int i=0; i<n; i++)

Lsum += data[i];

printf("\tThread %d: has computed its local sum: %.2f\n",

omp_get_thread num(), Lsum);

#pragma omp critical
{sum += Lsum;}

} // End of parallel region

Figure 14.An example of the autoscoping feature in the Oracle Solaris Studio compilers
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The corresponding part of the commentary is shown below. The information related to the data-
sharing attributes is highlighted in bold.

Source OpenMP region below has tag Rl

Variables autoscoped as SHARED in R1l: n, data, sum
Variables autoscoped as PRIVATE in R1l: Lsum, i
Private variables in R1l: i, Lsum

Shared variables in R1l: sum, n, data

14. #pragma omp parallel default(__auto)
15. {

16. double Lsum = 0.0;

Source OpenMP region below has tag R2
Private variables in R2: i

17. #pragma omp for

L1 parallelized by explicit user directive
L1 parallel loop-body code placed in function _$d1Al7.average

along with 0 inner loops

18. for (int i=0; i<n; i++)

19. Lsum += data[i];

20.

21. printf("\tThread %d: has computed its local sum: %.2f\n",
22. omp_get_thread num(), Lsum);

23.

24. #pragma omp critical

25. {sum += Lsum;}

26. } // End of parallel region

This output from the er_src command confirms the compiler was able to perform the analysis and

successfully assign the correct data-sharing attribute to the variables.

The compiler is not always able to assign the data-sharing attributes automatically. It is not always
possible to decide from the context what the correct assignment should be, or the analysis is not
powerful enough to make a decision. In case this happens, a message is issued and serial code is

generated. The message includes the name(s) of the variable(s) that need to be specified explicitly.
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Parallelizing The Example Using MPI

In this section, the MPI version of the example is given. First, the steps outlined in the Parallelization
Strategy are used to design the MPI version of this algorithm. Several of these steps require special

care. After this, the implementation is presented and discussed.

The Design Of The MPI Algorithm

Although not required, it often works easiest to designate one rank to be in charge of the overall
execution. If so, rank 0 should be chosen, since it is always guaranteed to be there, even if only one
MPI process is launched.

In our case, this approach has been chosen. Rank 0 performs all the set up tasks and assigns work to
the other ranks. After the computations have finished, it gathers the partial results and computes the

average.

This leads to the following MPI algorithm to parallelize the computations performed in the example

program:

1. Rank 0 performs all the set up tasks and defines what chunk of data the other ranks should work

on
2. Rank 0 sends to each process the chunk of data to work on, as well the block of data needed
3. Each process receives this information and computes its partial sum
4. Rank 0 gathers all partial sums and adds them to the total sum
5. Rank 0 divides the total sum by the number of elements to obtain the final result

Just as with the OpenMP design in The Design Of The OpenMP Algorithm section, this is not
necessarily the most efficient approach, but it allows us to demonstrate various major features very
often used in an MPI application.

The Implementation Of The MPI Algorithm

In this section, the MPI version of the computation of the average of a set of numbers is presented
and discussed. The steps outlined in the previous section are closely followed, but quite some
important details need to be added, causing the source to be rather lengthy. This is why it is discussed

in separate blocks, highlighting the most relevant parts in bold. The full source is given in Appendix B.

The first 18 lines are listed in Figure 15. They contain the typical definitions and declarations found in
a C program. The inclusion of file pi.h at line 4 is mandatory for any MPI program. For Fortran MPI
programs this file is called mpzf.h.
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1 #include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

o U W N

double setup_data(int n, double **pdata);

7 int check_numerical_result(double avg, double ref result);

9 int main (int argc, char **argv)

10 {

11

12 double avg, sum, Lsum, ref result, *data;

13 double t_start, t_end, t_comp_avg, t_mpi;

14 int n, irem, nchunk, istart, iend, vlen, ret code = 0;
15

16 int ier;

17 int me, nproc;

18 int master = 0, msg_tagl = 1117, msg_tag2 = 2010;

Figure 15.Declarations and definitions of the MPI implementation

This program separately measures the time spent in the computational part and the MPI functions.
The timings are stored in variables t_comp_avg and t_mpi respectively (line 13). Although not
covered here, the Oracle Solaris Studio Performance Analyzer [18] is a highly recommended tool that
provides very detailed timing information for any application. For this simple example it is feasible to
implement the timing ourselves, but we strongly encourage using this tool for more comprehensive

applications.

The variables highlighted at line 14 are used by rank 0 to determine the workload distribution for all
ranks. The variables declared at lines 16-18 are used in the MPI communication functions. To
differentiate rank 0 from the other ranks, it is referred to as the master (rank) in the source and in the
remainder of this paper. Two variables, msg_tagl and msg_tag2, are used to contain message tags.
The code block in Figure 16 lists the typical set of MPI initialization calls.

20 if ( (ier = MPI_Init(&argc, &argv)) != 0 ) {

21 printf("Error in MPI_Init: return code is %d\n",

22 ier); return(ier);

23 }

24

25 if ( (ier = MPI_Comm_size(MPI_COMM_WORLD, &nproc)) !=0 ) {
26 printf("Error in MPI_Comm_size: return code is %d\n",
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27 ier); return(ier);

28 }

29

30 if ( (ier = MPI_Comm_rank(MPI_COMM_WORLD, &me)) !=0 ) {
31 printf("Error in MPI_Comm_rank: return code is %d\n",
32 ier); return(ier);

33 }

Figure 16.MPI initialization part

Line 20 shows the call to the MPI_Init () function. This is required for every MPI program. It is good
practice to check for the return value of the MPI function that is executed. A non-zero value indicates

an error has occurred.
At line 25 the MPI_Comm_size () function is used to determine how many processes there are.

At line 30 the MPI_Comm_rank () function is used to obtain a unique identifier within
MPI_COMM_WORLD for the process executing this call. The value for this identifier is stored in variable
me. This name is the same for all processes, but there is no risk of a conflict, as this is a distributed

memory programming model. Each process has its own storage location in memory for variable me.

The number returned is called the rank in MPI. At run time, each process is assigned a unique rank to

the MPI_COMM_WORLD communicator, which is a consecutive integer number starting from zero.

35 if ( me == master ) {

36 printf("Please give the number of data points: ");
37 fflush(stdout);

38 scanf("%d",&n);

39

40 printf("\nThere are %d MPI processes\n",nproc);
41 printf ("Number of data points: %d\n",n);

42

43 ref result = setup_data(n, &data);

44

45 t_start = MPI_Wtime();

46

47 irem = n%nproc;

48 nchunk = (n-irem)/nproc;

49 for (int p=1; p<nproc; p++)

50 {

51 if (p < irem) {

52 istart = (nchunk+l)*p;

53 iend = istart + nchunk;
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54 } else {

55 istart = nchunk*p + irem;

56 iend = istart + nchunk-1;

57 }

58 vlen = iend-istart+1l;

59

60 if ( (ier = MPI_Send(&vlen,1, MPI_INT, p, msg_tagl,
61 MPI_COMM WORLD)) != 0 ) {

62 printf("Error in MPI_Send: return code is %d\n",
63 ier); return(ier);

64 }

65 if ( (ier = MPI_Send(&data[istart], vlen,

66 MPI_DOUBLE_PRECISION, p, msg_tag2,

67 MPI_COMM WORLD)) != 0 ) {

68 printf("Error in MPI_Send: return code is %d\n",
69 ier); return(ier);

70 }

71 }

72

73 vlen = ( irem > 0 ) ? nchunk+1l : nchunk;

74

75 } else {

Figure 17.First part of the work performed by the master

At this point, all processes have performed the necessary set up steps and initial MPI calls, so the

computations can start. The first part of this, as performed by the master, is shown in Figure 17.

At line 35 there is a check for this rank to be the master. If so, the user is prompted for input, reading
in the number of elements n. At line 43 the master calls the function that allocates the memory for
array data and initializes it. This function is listed and discussed in Appendix A. The exact result is

returned by the function and stored in variable ref_result.
At line 45 the MPI wall clock timer function MPI_Wtime () is called to start the timer.

In the for-loop spanning lines 49-71, the master determines the chunk of iterations for each rank to
work on. The logic at lines 51-57 is such that the load is balanced if n is not a multiple of the number

of ranks.

The number of elements to work on is stored in variable vlen. At line 60 this value is sent first to the
ranks, so that they can allocate the memory needed to store the block of data they receive next. This

data is sent from the master through the second MPI_Send () call at line 65.

The MPI_Send() function used provides point-to-point communication with a receiving rank. It has 6

arguments .
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* When sending a message, a buffer is sent. The address of this buffer, as well as the number of
elements and the MPI specific data type need to be specified as the first three arguments
respectively. In the call at line 60, the first argument is the address of variable vlen, the second
argument is 1 because there is only one element to be sent. MPI comes with its own data types, but
the user can define application specific data types as well. Since an integer is sent, the MPI_INT data
type is used as the third parameter in this call. In the second call at line 65, a block of double
precision number is sent. The starting address in array data is controlled through variable istart
and depends on the rank the message is sent to. There are vlen number of elements to be sent and
the data type is MPI_DOUBLE_PRECISION.

* The fourth parameter specifies the rank of the destination process. In this case this is rank p, ranging

from 1 to nproc-1. In other words, the master sends the two messages to all ranks but itself.

+ It is possible to send multiple messages to the same receiver. In order for the receiver to distinguish
between the various messages, a tag (or label) is used as the fifth argument. In the call at line 60, tag

msg_tagl is used. The second call at line 65 uses a different tag, stored in variable msg_tag2.

Note that the two different tags are used for demonstration purposes only. In this case it is not really
needed to use two different tags, since message ordering is guaranteed to be preserved. By using

separate tags and wildcards on the tag, one message can over take another.

Please note that in general, the key to get good performance and to avoid congesting the underlying

message passing engine is to align the send(s) to occur very close to the receive(s).
* The last argument in this call is the default communicator, MPI_COMM_WORLD.

At line 73 the master determines its own part of the array to work on. Since it owns all of the data,

there is no need to send it.

At line 75 the else part begins. This block of code is executed by all other ranks than the master and
listed in Figure 18. Line 75 is repeated for clarity.

Each rank receives the two messages. At line 76 the number of iterations to process is received. This
number is stored in variable vlen. Once this number is known, the rank allocates sufficient memory to
store the portion of the data it needs to work on (line 83) and receives the data through the second

MPI_Recv () call at line 87.

75 } else {

76 if ( (ier = MPI_Recv(&vlen, 1, MPI_INT, master,

77 msg_tagl, MPI_COMM_WORLD,

78 MPI_STATUS IGNORE)) != 0 ) {

79 printf("Error in MPI_Recv: return code is %d\n",

80 ier); return(ier);

81 }

82

83 if ((data=(double *)malloc(vlen*sizeof(double)))==NULL){
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84 perror("Fatal error in memory allocation"); exit(-1);
85 }

86

87 if ( (ier = MPI_Recv(data, vlen, MPI_DOUBLE_PRECISION,
88 master, msg_tag2, MPI_COMM WORLD,
89 MPI_STATUS IGNORE)) != 0 ) {

90 printf("Error in MPI_Recv: return code is %d\n",

91 ier); return(ier);

92 }

93 }

Figure 18.Code to receive the number of iterations to work on, allocate memory and receive the data. This part of the program is executed by all

ranks, but the master

The MPI_Recv () function is the counterpart of the MPI_Send () function. It takes 7 arguments.

* The first argument is a pointer to a buffer that should be large enough to store the incoming
message. In this case the buffer is vlen (line 76) and at line 87 it is the starting address of array data.
Note that the names are the same as in the MPI_Send() call, but this is not required. Both buffers
reside in a different memory than the sender, so there is no risk of a conflict, even if the name is the
same. Similar to the MPI_Send () call, the second and third argument specify the number of

elements and data type of the buffer.

* The fourth argument specifies the rank that has sent the message, in this case the master rank. One
can however also use the pre-defined MPI_ANY_SOURCE variable. As suggested by the name, this
means the receiving rank accepts a matching message tag from any sender. The MPI_Status data

structure can then be queried to determine the sender.

* The fifth argument contains the message tag, but also in this case, the receive operation can be more
flexible. If the pre-defined MPI_ANY_TAG variable is used, all messages matching the source
specifications are received. The MPI_Status data structure can be used to query the system for the

details on the tag(s) of the incoming message(s).

Note that wildcards like MPI_ANY_SOURCE and MPI_ANY_ TAG should be used with care since they

can hinder performance as certain optimizations can’t be performed then.
* The sixth argument specifies the MPI communicator, MPI_COMM_WORLD in this case.

* The last argument contains the MPI status data structure, or as shown in the example, the pre-
defined variable MPI_IGNORE_STATUS. This variable is used here because there is no need to further
query the message passing system. As explained above, in certain cases one may however want to use

the status field(s) to obtain more information.
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95 if ( me == master ) {

96 t_end = MPI_Wtime();

97 t_mpi = t_end - t_start;
98

99 t_start = t_end;

100 }

101

102 Lsum = 0.0;

103 for (int i=0; i<vlen; i++)

104 Lsum += data[i];

105

106 if ( me == master ) {

107 t_comp_avg = MPI_Wtime() - t_start;
108 }

109

110 printf("MPI process %d has computed its local sum: %.2f\n",

111 me,Lsum) ;
112
113 if ( me == master ) t_start = MPI_Wtime();

Figure 19.Computation of the partial sum

After the second MPI_Recv () call at line 87, all ranks know how many loop iterations to work on and
they have access to the relevant portion of the data. The code that implements the computation, as

well as some calls to the MPI timer function, is listed in Figure 19.

The master is also in charge of the timing mechanism. At line 906, the second call to the MPI_Wtime ()
function is made. The difference between the two timing calls gives the time spent in the first part of
the MPI communication. This timing is stored in variable t_mpi. Since the computational part is timed

as well, this timer is initialized too (line 99).

Lines 102-104 implement the computation of the partial sum. These lines are virtual identical to the
original algorithm, be it that at run time, v1len is less than n (in case at least 2 processes are used) and

for any other rank than the master, array data is a subset of the original data array.

At lines 106-108 the master records the time again and determines the time its part of the computation
took (line 107). The timer for the next portion of MPI calls starts at line 113. This is also done by the

master.

This is a rather crude way to measure performance, because it could be that the other ranks need more
time to perform their communication and computation. A better approach would be to have all ranks
record their own timings and then decide on what the final two timings should be. This is however

beyond the scope of this example.

45



Oracle White Paper—Parallel Programming with Oracle Developer Tools

Now that the partial sums have been computed, the things left to do are to gather these contributions,

sum them all up, and compute the average by dividing the total sum by the number of elements.

The code that gathers the results and adds them up is listed in Figure 20.

115 if ( (ier = MPI_Reduce(&Lsum, &sum,1,MPI_DOUBLE_PRECISION,
116 MPI_SUM,master,

117 MPI_COMM WORLD)) !=0 ) {

118 printf("Error in MPI_Reduce: return code is %d\n",

119 ier); return(ier);

120 }

Figure 20.The MPI_Reduce() function is used to gather all partial sums and accumulate them into the global sum. Note that all ranks execute this

call.

The MPI_Reduce () function is called at line 115. All ranks execute this collective operation. It is a
very convenient function to gather data from all ranks and apply a basic or user-defined arithmetic

operation to it.

* The first argument is the address of the local variable, Lsum in this case, that needs to be sent to one
specific rank. This rank is called the root and specified as the sixth argument. Here it is the master

rank.

 The second argument specifies the address of the variable the final value should be stored into. With
this specific function, this value is only available to the root. With the MPI_Allreduce() function
the final value is distributed to all ranks, but that is not needed here. In our case the master has the

final value in variable sum and that is all that is needed.

* The third and fourth arguments specify the number of elements sent, only one in this case, and the
data type, which is MPI_DOUBLE_PRECISION.

+ The fifth argument specifies the type of arithmetic operation that should be performed on the
incoming data. Since the partial sums need to be summed up, the MPI_SUM operator is specified.

Several standard basic operators, as well as user-defined functions, are supported.

* The last argument specifies this collective operation should be performed across the entire
MPI_COMM_WORLD communicator.

At this point, the master has the value of the total sum and can compute the average. The code to do
this, as well as print some statistics, is listed in Figure 21. The code executed by all ranks to free up the

allocated memory and exit the MPI environment is also included.

The code block at lines 122-139 is executed by the master only. At line 123 the timing for the MPI part
is updated. This is followed by the computation of the average at line 125. At line 127, function

check _numerical_ result() is used to check correctness of the result. This function is described in
Appendix A. If the result is correct, it is printed together with the timing values. Otherwise an error

message is printed.
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The code at lines 141-148 is executed by all ranks. Each rank frees the allocated memory (line 141) and
calls MPI_Finalize() atline 143. This is a mandatory call in an MPI program. After this call, it is
illegal to execute any MPI function. This is why the call to MPI_Finalize() is often the very last

function call in an MPI application.

In case this function call returns a non-zero value, an error message is printed. This value is returned
by each rank that experiences this failure. If no error occurred in this function, but the computed result
is incorrect, the master rank returns a negative value. The other ranks return a zero value. If no errors

occurred and the result is correct, all ranks return a value of zero.

122 if ( me == master ) {

123 t_mpi += MPI_Wtime() - t_start;

124

125 avg = sum / n;

126

127 ret_code = check_numerical_result(avg, ref_result);
128

129 if ( ret_code == 0 ) {

130 printf("n = %d average = %.2f\n",n,avqg);

131 printf("Computation: %.3f (s) ",t_comp_avg);
132 printf("MPI communication: %.3f (s) ",t mpi);
133 printf("Sum: %.3f (s)\n",t_comp_avg+t mpi);
134 } else {

135 printf ("ERROR: COMPUTED RESULT IS WRONG\n");
136 ret_code = -2;

137 }

138

139 }

140

141 free(data);

142

143 if ( (ier = MPI_Finalize()) != 0 ) {

144 printf("Error in MPI_Finalize: return code is %d\n",
145 ier); return(ier);

146 } else {

147 return(ret_code);

148 }

149

150 }

Figure 21.Final part of the computation by the master and the exit phase for all ranks
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As mentioned earlier, this implementation is not necessarily the most optimal from a performance
point of view. By using the asynchronous versions to send (MPI_Isend()) and receive
(MPI_Irecv()) the performance may be improved. Another alternative is to use one-sided
communication and send the information directly from the master to the ranks. This saves a receive

operation. Both approaches are however beyond the scope of this paper.

Run Time Results For The MPI Implementation

The MPI implementation is integrated into the main program. The source file is called average_mpi.c.

The program has been compiled and linked using the following command and options:

$ mpicc -c -fast -g average mpi.c
$ mpicc -c -fast -g check_numerical result.c
$ mpicc -c -fast -g setup_data.c

$ mpicc -o main mpi.exe average_mpi.o check_numerical_result.o setup data.o -fast

-9

The mpicc compiler driver that comes with the Oracle Message Passing Toolkit product has been
used. Similar drivers for Fortran (mpi£90) and C++ (mpicCC) are available as well.

We strongly recommend using these drivers because they greatly simplify building an MPI program.
Essentially one can use the same Oracle Solaris Studio compile and link options as used in the serial
version. The driver handles using the appropriate version of the MPI include file, as well as linking the
right MPI libraries.

Similar to the serial and OpenMP version, the ~fast option on the Oracle Solaris Studio C compiler is

used. This invokes a set of powerful optimizations within the compiler.

The mpirun command has to be used to execute the MPI program. This command has many options,
including ways to specify which node(s) to use, the number of processes per node, and
memory/processor affinity. The latter can have a substantial performance benefit on cc-NUMA

architectures and is worth considering, but it is outside the scope of this introductory paper.

In this case, only the -np option to specify the number of processes has been used. The result for 1, 2

and 4 processes is shown below:

$ mpirun —np 1 ./main_mpi.exe

Please give the number of data points: 100000000

There are 1 MPI processes

Number of data points: 100000000

MPI process 0 has computed its local sum: 5000000050000000.00
n = 100000000 average = 50000000.50

Computation: 1.237 (s) MPI communication: 0.000 (s) Sum: 1.237 (s)
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$ mpirun —np 2 ./main_mpi.exe

Please give the number of data points: 100000000

There are 2 MPI processes

Number of data points: 100000000

MPI process 1 has computed its local sum: 3750000025000000.00

MPI process 0 has computed its local sum: 1250000025000000.00

n = 100000000 average = 50000000.50

Computation: 0.619 (s) MPI communication: 0.974 (s) Sum: 1.592 (s)
$ mpirun -np 4 ./main_mpi.exe

Please give the number of data points: 100000000

There are 4 MPI processes

Number of data points: 100000000

MPI process 1 has computed its local sum: 937500012500000.00

MPI process 2 has computed its local sum: 1562500012500000.00

MPI process 0 has computed its local sum: 312500012500000.00

MPI process 3 has computed its local sum: 2187500012500000.00

n = 100000000 average = 50000000.50

Computation: 0.309 (s) MPI communication: 1.314 (s) Sum: 1.624 (s)
$

In all three cases the numerical result is in perfect agreement with the exact result. It is no coincidence
that the partial sums are the same as the results for the OpenMP version. This is because the workload
distribution implemented in the MPI version (see also Figure 17) is identical to what the Oracle Solaris
Studio C compiler selects by default on a for-loop parallelized with OpenMP. Note that this default
could change in the future though.

As is clear from the timings, the computational part scales very well. The performance for a single
process is the same as the performance of the serial version and a linear speed up is realized using two

and four processes.

The overall performance is however dominated by the cost of executing the MPI functions. This

component also increases when adding processes.

The reason this part is dominant is because the computational work is very small relative to the
message passing related activities. If more computations would be performed on the data, the cost of

MPI would be much less dominant.
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108 Lsum = 0.0;

109 #pragma omp parallel default(none) \

110 shared(me,vlen,data,Lsum)

111 {

112 #pragma omp single

113 {printf ("MPI process %d uses %d OpenMP threads\n",
114 me,omp_get_ num_threads());}

115

116 double ThreadSum = 0.0;

117 #pragma omp for

118 for (int i=0; i<vlen; i++)

119 ThreadSum += data[i];

120

121 #pragma omp critical

122 {Lsum += ThreadSum;

123 printf("MPI process %d executes OpenMP thread %d: ",
124 me,omp_get_thread num());

125 printf("ThreadSum = %.2f\n",ThreadSum);
126 }

127

128 } // End of parallel region

Figure 22.Relevant code fragment of the Hybrid implementation using MPI and OpenMP

Parallelizing The Example Using The Hybrid Model

As mentioned in The Implementation Of The MPI Algorithm section, the computational work
performed in the MPI implementation has an identical structure as the original, serial, algorithm we
started with. But that means it can easily be parallelized further either by using Automatic
Parallelization or with OpenMP.

By far the easiest approach is to use Automatic Parallelization by adding the -xautopar, -

xreduction (and -xloopinfo) options when compiling source file average_mpi.c.

In this section we however want to demonstrate how to use OpenMP to do this explicitly. The relevant
source code fragment is listed in Figure 22. This replaces lines 102-104 in Figure 19. The number of
source lines added is actually much higher than necessary. This is because diagnostic print statements

have been added. If these were left out, there are only nine additional lines needed.
The structure of the new code is identical to the code shown in Figure 13.

The parallel region spans lines 109 to 128. Variable Lsum now has the role of variable sum in Figure 13

and is therefore a shared variable.
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The pragma omp single directive at line 112 has not been covered earlier. It defines a single processor
region and is also used in support function get_num_threads () described in Appendix A. The code
block enclosed in this region is executed by one thread only. It is typically used for I/O and
initializations.

In this case it is used to print the process number of the MPI process executing the parallel region, and

the number of OpenMP threads executing this region.

Lines 116-119 are very similar to lines 17-20 in Figure 13. The length of the for-loop is now vlen and

the local variable is called ThreadSum. This is the equivalent of variable Lsum in Figure 13.

As before, each thread computes its partial sum, now stored in Threadsum. These partial sums then
need to be accumulated into the final sum, Lsum. This is done at line 122 in the critical section, starting
at line 121 and ending at line 126. To demonstrate how this works at run time, a diagnostic message is
printed (lines 123-125).

Run Time Results For The Hybrid Implementation

The Hybrid program is compiled and linked as shown below. As can be seen, it is very easy to combine
MPI and OpenMP. All that needs to be done is to add the ~xopenmp option to the compile and link

line:

$ cc -c -fast -g check_numerical result.c

$ cc -c -fast -g setup data.c

$ mpicc -c -fast -g -xopenmp -xloopinfo average_ hybrid.c
"average_hybrid.c", line 55: not parallelized, loop has multiple exits
"average_hybrid.c", line 118: PARALLELIZED, user pragma used

$ mpicc -o main_hybrid.exe check_ numerical result.o setup_data.o average_hybrid.o

-fast —g -xopenmp

$

Executing the Hybrid program is also very straightforward. Below it is shown how to run the program
using four MPI processes and two OpenMP threads per process. Note the use of the —x option to
export environment variable OMP_NUM_THREADS to the other nodes.

$ export OMP_NUM_THREADS=2

$ mpirun -np 4 -x OMP_NUM THREADS ./main_hybrid.exe
Please give the number of data points: 100000000
There are 4 MPI processes

Number of data points: 100000000

MPI process 1 uses 2 OpenMP threads

MPI process 1 executes OpenMP thread 0: ThreadSum = 390625006250000.00

MPI process 1 executes OpenMP thread 1: ThreadSum = 546875006250000.00
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MPI process 1 has computed its local sum: 937500012500000.00

MPI process 2 uses 2 OpenMP threads

MPI process 2 executes OpenMP thread 0: ThreadSum = 703125006250000.00
MPI process 2 executes OpenMP thread 1: ThreadSum = 859375006250000.00
MPI process 2 has computed its local sum: 1562500012500000.00

MPI process uses 2 OpenMP threads
MPI process uses 2 OpenMP threads
MPI process executes OpenMP thread 0: ThreadSum = 78125006250000.00
MPI process executes OpenMP thread 1: ThreadSum = 234375006250000.00
MPI process executes OpenMP thread 0: ThreadSum = 1015625006250000.00
MPI process executes OpenMP thread 1: ThreadSum = 1171875006250000.00

MPI process

0
3
0
0
MPI process 0 has computed its local sum: 312500012500000.00
3
3
3 has computed its local sum: 2187500012500000.00
0

n = 100000000 average = 50000000.50
Computation: 0.157 (s) MPI communication: 1.323 (s) Sum: 1.480 (s)

$

Even though the timing of the computational part includes the overhead of the diagnostic print
statements and the single processor region, the performance is still very good when using a total of 4x2
= 8 threads. Compared to the timings for the OpenMP version using four threads, as well as the MPI
version using four processes, the time for the computational part is almost cut in half. In other words,

near linear scaling is achieved using four MPI processes and two OpenMP threads per process.

The hierarchy in the summation algorithm is nicely demonstrated. For each MPI process, the two
OpenMP threads each compute their partial sum. These two sums are then combined to form the
partial sum of the MPI process. The master process then collects these four partial sums and computes
the final result.

The output of the various MPI processes is not sorted by rank number, but printed in an interleaved
way. This is because the order in which the ranks write their output is not determined. If the same job

is run again, the output lines might come out in a different order.

This is why the ~output-£filename <filename> option on the mpirun command is very useful. With
this option, all output sent to stdout, stderr, and stdiag is redirected to a rank-unique version of

the specified filename. The output file for a specific rank is filename. <ranknuniber>.

For example, the mpirun command below produces two output files called avg.0 and avg.7 for a hybrid
run using two MPI processes and three OpenMP threads per process. Note that standard input is
redirected to read from file INPUT.

With this option it is much easier to verify and compare the output from each individual rank.
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$ export OMP_NUM_THREADS=3

$ mpirun -np 2 -x OMP_NUM_THREADS -output-filename avg ./main_hybrid.exe <
INPUT

$ cat avg.0

Please give the number of data points:

There are 2 MPI processes

Number of data points: 100000000

MPI process 0 uses 3 OpenMP threads

MPI process executes OpenMP thread 1: ThreadSum = 416666691666667.00
MPI process

executes OpenMP thread 2: ThreadSum = 694444430555555.00

MPI process

0
0
MPI process 0 executes OpenMP thread 0: ThreadSum = 138888902777778.00
0 has computed its local sum: 1250000025000000.00
0

n = 100000000 average = 50000000.50

Computation: 0.210 (s) MPI communication: 0.988 (s) Sum: 1.198 (s)

$ cat avg.l

MPI process 1 uses 3 OpenMP threads

MPI process 1 executes OpenMP thread 0: ThreadSum = 972222252777778.00
MPI process 1 executes OpenMP thread 2: ThreadSum = 1527777730555555.00
MPI process 1 executes OpenMP thread 1: ThreadSum = 1250000041666667.00
MPI process 1 has computed its local sum: 3750000025000000.00

$

A Hybrid Fortran Implementation Of The Example Program

In this section it is shown how to use the Oracle Solaris Studio compilers and the Oracle Message
Passing Toolkit software to compile, link and run a Hybrid Fortran program. The name of the source
file is avg_hybrid_fin.f90. Other than syntactical and some small semantic differences, this version is very

similar to the C version. The full source is listed in Appendix C.

This Hybrid Fortran program has been compiled and linked using the mpi£90 compiler driver:

$ mpif90 -c -fast -g -xopenmp -xloopinfo avg_hybrid_ftn.£f90
"avg_hybrid_ ftn.f90", line 61: not parallelized, call may be unsafe
"avg_hybrid ftn.f90", line 132: PARALLELIZED, user pragma used
"avg_hybrid_ ftn.f90", line 212: not parallelized, unsafe dependence
$ mpif90 -o main_hybrid_ftn.exe avg_hybrid_ftn.o -fast -g —xopenmp
$

Note that the compile and link options are identical to what is used for the C version.
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The same job as for the C version in the Run Time Results For The Hybrid Implementation section
has been run, using two MPI processes and three OpenMP threads per process. The —output-
filename option on the mpirun command has been used to obtain individual output files for each

rank. The results are shown below.

$ export OMP_NUM_THREADS=3

$ mpirun -np 2 -x OMP_NUM_THREADS -output-filename avg.ftn \

./main_hybrid_ftn.exe < INPUT

$ cat avg.ftn.0

Please give the number of data points:

There are

2 MPI processes

Number of data points: 100000000

MPI process
MPI process
ThreadSum =
MPI process
ThreadSum =
MPI process
ThreadSum =

MPI process

0 uses 3 OpenMP threads
0 executes OpenMP thread 1
416666691666667.00
0 executes OpenMP thread 2
694444430555555.00
0 executes OpenMP thread 0
138888902777778.00
0 has computed its local sum: 1250000025000000.00

n = 100000000 average = 50000000.50

Computation:

0.211 (s) MPI communication: 0.982 (s) Sum: 1.192 (s)

$ cat avg.ftn.1l

MPI process
MPI process
ThreadSum =
MPI process
ThreadSum =
MPI process
ThreadSum =
MPI process

$

1 uses 3 OpenMP threads
1 executes OpenMP thread 0
972222252777778.00
1 executes OpenMP thread 2
1527777730555555.0
1 executes OpenMP thread 1
1250000041666667.0
1 has computed its local sum: 3750000025000000.00

As one would expect, the numerical results are identical to same job using the C version. The timings

are about the same as well.
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Additional Considerations Important In Parallel Applications

In the Basic Concepts in Parallel Programming section starting at page 6, several key concepts one
needs to know before getting started with parallel programming were covered. In this section several
additional aspects are presented and discussed. These are mostly of relevance once the parallel

application has been designed and implemented.

Parallel Computing, Floating-Point Numbers And Numerical Results

When floating-point numbers are used in add, subtract, multiply or divide operation, round off errors
may occur. This is because not all numbers can be represented precisely within the processor and

because a finite number of bits are used to contain the numbert.

A consequence of this is that the order in which the computations on floating-point data are
performed affects the numerical result. Manual source code changes, optimizing compilers, as well as
parallelization, may all cause such a change in the way the computations are carried out. Even though
algebraically equivalent, a different order of the operations could give rise to a difference in the
numerical result. The reason for discussing this topic is that certain parallel versions of commonly used
computations can be sensitive to round off behavior. This is because the parallel version of the
algorithm changes the order in which the computations are performed. Examples are the summation

of the elements of an array, or the related computation of the dot product of two vectors.

It is important to realize this is not uniquely related to parallel programming though. Itis a
consequence of using floating-point arithmetic in a computer and a well-known phenomenon already
observed in serial applications. The serial program listed in Figure 23 actually demonstrates how a
difference in the order of operations affects the round off behavior. Two different methods are used to
sum up the elements of a single precision array called data. The numerical results are compared

against the exact result.

It should be noted upfront that for two reasons this example presents a worst-case scenario. The
relative difference between the smallest and largest number is a monotonically increasing function of n
and single precision arithmetic is used. This only gives six to seven digits of accuracy at best. If we were
to use double precision, the accuracy is 14 to 15 digits. This is why double precision is preferred for
computations on large data sets and that is also the data type used in the example in the An Example

Program Parallelized Using Various Models section.

We also would like to underline that this example is not about one method being better than another.
In general input data is itself subject to error and is usually not sorted in a worst-case order. The only
reason we know one is better than another is that we know the correct answer in this example. In a
more complicated computation one does not know this, but one can compute bounds on errors using
numerical methods. Simple, inexpensive, error bounds generally would show these two methods to be

about equally good.

At lines 10-11 the user is prompted to specify the number of array elements. This value is stored in

variable n. It is assumed n is even. This is not an essential restriction, but is imposed to ease coding.
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>

4

5 int main()

6 {

7 float suml,sum2,ref result,rel_errl,rel_err2, *data;

8 int n;

9

10 printf("Please give the value of n (must be even): ");

11 scanf("%d",&n);

12

13 if ( n%2 !'= 0 ) {

14 printf("Error: n=%d (must be even)\n",n);return(-1);

15 } else {

16 if ( (data=(float *)malloc(n*sizeof(float)))==NULL) {
17 perror("Memory allocation"); return(-1);

18 } else {

19 for (int i=0; i<n; i++) data[i] = i+1;

20 ref result = 0.5*n*(n+1);

21 }

22 }

23

24 suml = 0.0;

25 for (int i=0; i<n; i++)

26 suml += data[i];
27 rel errl = 100.0*fabs((ref result-suml)/ref result);
28

29 sum2 = 0.0;

30 for (int i=0; i<n/2; i++)

31 sum2 += data[i] + data[i+n/2];
32 rel err2 = 100.0*fabs((ref result-sum2)/ref result);
33

34 printf("exact result = %.1f\n",ref result);

35 printf("suml $.1f (%.1e%%)\n",suml,rel errl);

36 printf ("sum2 $.1f (%.1e%%)\n",sum2,rel err2);
37 free(data); return(0);

38 }

Figure 23. C program to demonstrate the difference in round off behavior
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Upon a successful allocation of the memory for array data, it is initialized at line 19. Although this is a
floating-point array, it contains integer values only. These can be represented precisely in the processor,

thereby avoiding a round off error in the initial values.

At line 20 the exact reference result is computed. Given the sequence of numbers, this is easy to
calculate since it is the well-known formula for the sum of n consecutive positive integer numbers

starting with 1. This sum equals n*(n+1)/2.

At lines 24-26 the sum is computed by accessing the array in sequence. With each pass through the
loop at line 206, the final result suml is updated with an element of the array. This is the most common
and straightforward way to compute the sum of the elements of an array. At line 27 the relative

difference with the exact result is computed.

At lines 29-31 a different method is used. With each pass through the loop, half in length compared to
the previous loop, a pair of numbers is added to the final result stored in variable sum2. The numbers
are n/2 elements apatt. Also in this case the relative difference with the exact result is computed (line
32).

At lines 34-36 the exact result, both sums, as well as the relative differences are printed.

With both methods one should expect to see differences caused by round off for n sufficiently large.
Although algebraically equivalent to the first method, the round off behavior is different for the second
method, since now a relatively small number is added to a potentially much bigger number. The
relative difference between the two numbers depends on n. The higher this value is, the bigger the

difference. For a high enough value, differences caused by round off will be noticeable.

This is illustrated below. The program has been compiled using the Oracle Solaris Studio C compiler.
To avoid compiler transformations affect the numerical results, no optimization options have been
specified. The program is executed for n = 100, 1000 and 10000. The numerical results are highlighted
in bold.

$ cc -c summation.c
$ cc -o summation.exe summation.o -1lm
Please give the value of n (must be even): 100

exact result = 5050.0

suml = 5050.0 (0.0e+00%)
sum2 = 5050.0 (0.0e+00%)
Please give the value of n (must be even): 1000

exact result = 500500.0

suml 500500.0 (0.0e+00%)

sum2 500500.0 (0.0e+00%)
Please give the value of n (must be even): 10000

exact result = 50005000.0

suml 50002896.0 (4.2e-03%)

sum2 50003808.0 (2.4e-03%)
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The results show that both methods produce the exact result for n = 100 and n = 1000, but for n =

10000 this is no longer the case. Both results are different from the exact result and also not consistent.

Cleatly, the order in which the elements are summed up affects the numerical result. As demonstrated
in the An Example Program Parallelized Using Various Models section, it is faitly easy to parallelize
this operation. In order to do this however, the order of summation changes, thereby possible affecting

the numerical result.

This is a big topic in itself. For an in-depth coverage of floating-point behavior we highly recommend
the extensive Numerical Computation Guide [19]. Included in this document is an extremely useful article

covering the basics and definitely worth reading [20].

Elapsed Time And CPU Time

Before discussing common types of parallel overhead in more detail, it is needed to elaborate on the
difference between the elapsed time and CPU time. The reason is that, compared to the serial version,

the CPU time of the parallel version might increase, while the elapsed time decreases.

The elapsed time is the total time the program takes from start to finish. One could measure this with a
stopwatch, but luckily it can more easily be obtained from the operating system. The /bin/time
command on UNIX based systems can for example be used to obtain this value for any command, or
application, executed. It is given as the rea/ time in the output. This command also returns the system
time and the time spent in the user part of the operating system kernel. This time is given as wuser time,
but is often also referred to as the CPU f#nze.

This CPU time is a different metric. It is based on the number of processor cycles that are executed. In
a serial program, the CPU time is equal to or less than the elapsed time. If for example, the application
petforms I/O, the processor could be inactive while waiting for the I/O operation to finish. As a
result, the cycle counter is not incremented until the processor resumes execution again. The duration
of the I/O operation does however contribute to the total execution time and therefore the elapsed
time exceeds the CPU time.

In a parallel program, the situation is more complicated. As explained below, various types of
overheads caused by the parallel execution may consume additional CPU cycles, negatively impacting

the performance. Despite this increase, the elapsed time for the parallel program might still be reduced.

This is easiest illustrated with an example. Assume the serial version of the program takes 100 CPU
seconds and that it equals the elapsed time. In the ideal case, using 4 cores, the parallel version of the
program takes 100/4 = 25 CPU seconds. In the absence of additional overheads, the elapsed time
would therefore be 25 seconds, but what if each core needs 1 CPU second longer? This could for
example be to execute library calls that have been introduced as part of the parallelization. The elapsed
time will then be 26 seconds. This is still significantly faster than the serial version, but the total CPU

time is now 100+4*1 = 104 seconds, which is higher compared to the serial version.
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Parallel Overheads

While running an application over multiple processors and threads should theoretically improve
performance compared to a single processor or thread, how things really work out in practice will

depend on several important factors that are worth considering.

To start with, be aware that the underlying framework of a parallel program is going to be different
than the original serial version. This is because there are additional activities to support the parallel
execution, and therefore more work has to be performed. A major consideration while developing an
efficient parallel program is to minimize this extra work. For example, there has to be a mechanism
that creates, executes and synchronizes the threads, and there is a cost associated with this thread
management. But there are additional factors to be considered that can negatively impact the

performance.

In most parallel applications, threads will need to exchange information, and the cost associated with

these exchanges is usually referred to as the communication overbead.

Performance can suffer if the workload over the threads is not balanced appropriately. A barrier is a
synchronization point in the program where all threads wait until the last one arrives. If not all threads
take the same amount of time to perform their work, there will be an additional delay while threads
walit in the barrier. This is called a /oad imbalance and it might have a noticeable negative impact on the

performance.

<

We say “might” here because the impact depends on various factors, such as the severity of the delay,
the details of the implementation of the bartier, the number of threads/processes, the system
interconnect characteristics, the operating system and how idle threads are handled, and the cleverness

of the compiler.

Instead of actively waiting (also called spinning), idle threads may be put to sleep and woken up when
needed again. Although this strategy reduces the number of processor cycles executed while waiting, it
is not without a cost either. Waking up the idle thread(s) again takes cycles too. The selection of the

best strategy often requires some experimentation with the various choices that might be available.

All of the above factors cost extra time compared to the serial version, and collectively they are called
the parallel overbeads.

There are some applications where the overhead costs are minimal, relative to the total execution time.
Such programs are called embarrassingly parallel because their performance tends to benefit well running
on a system with a very large number of cotes and/or configured with a low cost interconnect. This is

covered in more detail in the Parallel Speed Up And Parallel Efficiency section on page 60.

However, such extremely parallel applications are more the exception than the rule. For most
applications, the parallel overheads need to be taken into account and minimized as much as possible.
How to do this not only depends on the parallel programming model, but also on the system software
and hardware. Regarding the latter, not only the processor used, but also the characteristics of the
internal interconnect that combines the processors, memory and I/O subsystem(s) into a parallel
system, as well as the network connecting the systems in case of a distributed memory architecture,

might play a significant role.
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Although not covered here, the Oracle Solaris Studio Performance Analyzer [18] that is part of Oracle

Solaris Studio is an excellent tool to identify these kinds of overheads in an application.

Parallel Speed Up And Parallel Efficiency

How can we determine how well a parallel program will perform and what performance to expect
when increasing the number of threads? The parallel speed up S; of an application is a reasonable and

easy value to compute for any parallel program. It is defined as
Sp:=T1/Tp

Here, T denotes the elapsed time measured using “p” threads. T is the elapsed time measured using
one thread only to execute the parallel program. Defined this way, the parallel speed up measures how

the parallel overhead affects the performance when increasing the number of threads.

In the ideal case, Tp = T1/ p and S, = p. This means a perfect speed up was realized. If p is very large,
the application is said to scale very well. For embarrassingly parallel applications, the speed up will stay

very close to p, even for a high number of threads.

More typically, a perfect speed up may be hard to achieve. Even if the initial speed up is (close to)
perfect with a small number of threads, the parallel overhead could start to dominate as the number of

threads increases. While the elapsed time might continue to decrease, the speed up will be less and less.

In some cases we might even see a super-linear speed up however. This would be a nice bonus, because
in this case the parallel performance exceeds what could be expected based on the number of threads

used. For example, the elapsed time using 4 threads could be 1/5, not 1/4, of the single threaded time.

Linear
speed up
Super-linear
=X speed up
2
2 Speed up with
» parallel overheads
1 -
|

Number of threads

Figure 24.Perfect, non-perfect and super-linear speed up
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The explanation is that adding more cores to participate in the computation means typically more
cache memory can be used, and then more data might be loaded from the faster cache instead of main
memory. So, adding more hardware might improve performance not just with better CPU utilization,
but better memory utilization as well. However, often this behavior can not be sustained, because
eventually there are too many threads, the parallel overhead starts to dominate, and the super-linear

speed up is no longer realized. All three cases are illustrated in Figure 24.

Related to S;, the parallel efficiency is defined as Ep := S, / p. This metric is directly coupled to the
speed up. In the ideal case, B := S, / p = p/p = 1 = 100%. In case the speed up is not petfect, Ep will
be less than 100%. In case of a super-linear speed up it exceeds 100%.

There is one major caveat with both S, and Ep. Because they are relative metrics, they do not provide
any information on the absolute execution time. In other words, a parallel algorithm with a very good,

or even linear, speed up could still be slower compared to an alternative algorithm with a lesser speed
up.
There can be several reasons for this. In case of an iterative solver for example, the algorithm with the

lower speed up may require fewer iterations to converge to the same solution. Or the serial

performance could be higher to start with.

For example, if a certain algorithm has two different implementations, say A and B, the following
might occur. Let's assume Tt = 100 seconds for implementation A and T1 = 80 seconds for
implementation B, because it uses a more efficient approach. If T> = 55 seconds for A and Tz = 47
seconds for B, S2(A) = 100/55 = 1.82 and Sz(B) = 80/47 = 1.70. Even though the speed up for

implementation B is less than for A, the performance is still 17% higher.

In some cases, the elapsed time of the serza/ version is used for Tt in the definition of the speed up. In
the absence of parallel overhead this time is typically less than the elapsed time of the parallel version
using one thread only. As a result, the ratio T1 / Tp is lower in case the serial time is used as a

reference.

The motivation to use this value for T is that it reflects how much performance has been gained
compared to the serial version. It is meaningful to also measure this, since reducing the serial time is

after all the goal of parallel computing.

Amdahl's Law

Although derived from a very simple performance model, this law is surprisingly useful. It gives a first

order approximation of the parallel performance that can be expected when adding threads.

Amdahl's law is very simple, and makes the observation that in a running program, some of the
program's code will run serially and some in parallel. To reflect this, the single core execution time T4 is
decomposed into 2 components: T1 = T(sequential) + T(parallel). By definition, the sequential (or non-
parallel) time is the part of the application that does not benefit from parallel execution (yet). The

second component represents the execution time that could be parallelized.
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A fraction f is introduced to describe both components in terms of T1. The non-parallel part is given
by (1-f)*T1, whereas the parallel part is given by £*¥T1. Clearly, “f” can be anything between 0 and 1, in
other words: f € [0,1]. Both end points of this interval are literally corner cases. A value of f = 0 means
that none of the execution time benefits from parallelization. If f = 1, the program is embarrassingly

parallel.

« 2

Using “p” threads, the parallel version has an execution time of
T, = T(setial) + T(parallel)/p = (1-£)*T1 + £¥T1/p

Note that this is a simplification, because in reality a component describing the parallel overhead
should be added to Tp. With Amdahl's law this is not counted, although it should be.

As a result, and with the exception of supet-linear scaling, any projections made using Amdahl's law are
best case results. As we will see shortly, the implications of this law are already profound enough, even

without including the parallel overhead. The parallel speed up is then given by
Sp(f) = T1/Tp = 1/(1-f + £/p) (Amdahl's Law)

This formula also illustrates the comment made in the previous section: the speed up does not depend

on Ty and can therefore not be used to assert and compare the absolute performance.

For the two corner cases, f = 0 and f = 1, the formula for Sp(f) is rather simple: Sp(0) = 1 and Sp(1) =
p. This obviously corresponds to what one would expect. If f = 0, the program does not benefit from
parallel execution and the speed up can never be higher than 1. In case f = 1, the program is
embarrassingly parallel and a perfect, linear, speed up is always realized. In most of the cases, f will be
somewhere between 0 and 1. Unfortunately, the resulting curve is rather non-linear, as demonstrated in

Figure 25. In this chart it is assumed the system has 16 cores.

Amdahl's Law for various values of "f"

16 f=100%
14 f=99%
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0

0 2 4 6 8 10 12 14 16
Number of threads

Figure 25. Amdahl's law on a 16 core system for various values of "f". Only if a significant portion of the execution time has been parallelized, near

linear scaling is realized
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The consequences are rather dramatic. Even if f = 99%, the parallel speed up using 16 threads is not
16, but 14. This is not a bad result, but it is not a perfect speed up — despite the fact that 99% of the
original execution time benefits from parallel execution. For lower values of f, the situation is worse. If
t = 25%, the parallel speed up will never exceed 4, regardless how many threads are used. Remember

that this is the optimistic estimate, because the assumption is that there is no parallel overhead.

There is however also something encouraging. Even for a fairly low value of “f”, there is a speed up
when using a few threads only. This is also observed in practice: it is often not so hard to get a parallel
speed up using just a few threads. Amdahl's law tells us what to do in order to further improve the
speed up.

It is possible to use the formulas given above to estimate “f” for a parallel application. By rewriting the

[T R

formula for S, we can express “f” in terms of Sp and “p™
f=@1-1/8)/1-1/p)

Using this estimate for “f”, it is then possible to predict the speed up using any number of threads. All
one has to do is conduct two performance experiments. For example, assume Tt = 100 seconds and
the elapsed time T4 using 4 threads is 37 seconds. The parallel speed up is then S4 = 100/37 = 2.70.
Substituting this in the formula for “f” results in £ = (1-1/2.70)/(1-1/4) = 84%.

Using this value for “f”, the following estimate for the parallel speed up using 8 threads is obtained: Sg
=1/(1-0.84+0.84/8) = 3.77. It is also easy to estimate the expected execution time: Tg = (0.84/8+1-
0.84)*100 = 26.5 seconds.

There are two ways to view these results. A speed up of 3.77 using 8 threads may be disappointing, but
the program is still ~28% faster compared to using 4 threads. As the cost of cores decreases, inefficient
use of some cores becomes less of a problem. The time to solution is what matters and the fact that

not all 8 cores are utilized very efficiently when using 8 threads may therefore be less of a concern.

Elapsed time and speed up for f = 84%
100
90
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20

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of threads used

Figure 26.An example of Amdahl's Law. The bar chart shows the estimated elapsed time as a function of the number of threads used. The solid

line is the parallel speed up. The measured timings for 1 and 8 threads are highlighted
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This is illustrated in Figure 25. Assuming f = 84%, the estimated elapsed time and speed up are shown
for up to 16 threads. Clearly there is a diminishing benefit when adding threads. On the other hand, the

performance is improved by a factor of almost 5 over the serial performance.

Performance Results

Several performance results were given in the An Example Program Parallelized Using Various Models
section. The timings were very encouraging. In this section more performance data is presented and
discussed. The results were obtained on a Sun SPARC Enterprise® T5120 server from Oracle. The
system had a single UltraSPARC® T2 processor with 8 cores and 8 hardware threads per core.

In Figure 27 the elapsed times in seconds for the Automatically Parallelized and OpenMP
implementations are plotted as a function of the number of threads used. Since the single thread time
is the same for both versions, it is easy to compare these timings against perfect, linear, scaling. This is

the line labeled Linear Scaling in the chart. Note that a log scale is used on the vertical axis.

Performance of the Automatically Parallelized and OpenMP implementations
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0012 I I I I 1 1 I I I I 1 T T 1 1 1
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of threads

Figure 27. Performance of the Automatically Parallelized and OpenMP implementations. A curve with perfect, linear, scaling has been added for

comparison purposes. A log scale is used on the vertical axis

For up to 32 threads, both versions perform equal. For 64 threads the Automatically Parallelized
version performs about 9% faster than the OpenMP version. This is not really a surprise since in The
Design Of The OpenMP Algorithm section it was already noted that the latter is sub-optimal because
the reduction clause is not used here. If this were the case, the performance difference might be less,

but in any case the difference is not that big.

Both versions scale very well for up to 16 threads. When using 32 threads, the performance deviation
compared to linear scaling is about 30% for both. For 64 threads, the elapsed time is about twice as
high. This difference is caused by the parallel overheads increasing as more threads are used. If more

computational work was performed, this overhead would not be as dominant.
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Performance of the MP| implementation
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Figure 28. Performance of the MPI implementation. Both the timings for the computational part (solid line) as well as the time spent in the MPI

functions (bar chart) are shown

In Figure 28 the performance of the MPI implementation is plotted as a function of the number of
processes. Both the computational time (solid line) as well as the total time spent in the MPI functions

(bar chart) are shown. The total execution time for the algorithm is the sum of these two numbers.

The computational part scales linearly up to 64 threads. The elapsed time using a single thread is 1.237
seconds. On 64 threads this is reduced to 0.019 seconds, giving rise to even a slightly super linear speed
up of 1.237/0.019 = 65.1. The time spent in the MPI functions is obviously zero if only one process is

used. When using two processes it is just below one second, going up to 2.4 seconds on 64 threads.

The computational work is very small. As a result, the cost of message passing is relatively dominant
and no overall performance gain is achieved when running in parallel. If more work were performed,
this would be different. On the other hand, the two shared memory versions scale very well for up to
16 threads, while the performance using 32 threads is quite acceptable. This opens up opportunities for
the Hybrid version to deliver the best of both worlds. In Table 1 this is illustrated using 2 MPI
processes with 16 and 32 OpenMP threads. These results were obtained with a version of the Hybrid
implementation that does not have the diagnostic print statements in the OpenMP part.

TABLE 1. SOME PERFORMANCE NUMBERS FOR THE HYBRID IMPLEMENTATION

MPI PROCESSES OPENMP THREADS COMPUTATIONAL TIME (SECONDS) MPI TIME (SECONDS) SUM (SECONDS)
2 16 0.307 0.998 1.295
2 32 0.155 0.984 1.139

Although the total time is still greater than for the shared memory versions, the results for the Hybrid
implementation are encouraging. The computational time scales well and since the number of MPI

processes is fixed, the time spent in the MPI part does not increase.

65



Oracle White Paper—Parallel Programming with Oracle Developer Tools

Conclusion

The goal of parallel computing is to reduce the elapsed time of an application. To this end, multiple

processors, or cores, are used to execute the application.

The program needs to be adapted to execute in parallel and take advantage of the availability of
multiple processors. To achieve this, a single, serial, application needs to be split into independent
pieces of work that can be executed simultaneously. Threads execute the resulting independent
execution streams. A single thread executes those parts of the program that cannot be broken up for

parallel execution.

Amdahl's Law is something every developer needs to be awate of. This law can be used to predict the
parallel performance of an application. The expected speed up depends on the number of threads used,
but also on the fraction of the execution time that can be parallelized. Only if this fraction is very high,

scalable performance to a very high number of cores can be expected.

A wide range of parallel architectures is available these days. Thanks to the multicore technology, even
a modern laptop is a small parallel system. On the server side, various small to very large shared
memory systems are on the market today. For those applications that need more, systems can be

clustered through a high-speed network to form an even bigger parallel computer.

Since the software needs to be adapted to take advantage of these parallel architectures, a suitable
parallel programming model needs to be selected to implement the parallelism. Numerous choices are

available, each with their pros and cons.

Automatic Parallelization is a feature available on the Oracle Solaris Studio compilers. Through an
option, the user activates this loop-based mechanism in the compiler to identify those loops that can
be executed in parallel. In case the dependence analysis proves it is safe to do so, the compiler
generates the parallel code. All the user needs to do is to set an environment variable to specify the

number of threads prior to running the application.

OpenMP is a de-facto standard to explicitly implement parallelism. Like Automatic Parallelization, it is
suitable for multicore and bigger types of shared memory systems. It is a directive based model,
augmented with run time functions and environment variables. The Oracle Solaris Studio compilers
fully support OpenMP, as well as additional features to assist with the development of applications

using this programming model.

In case the target architecture is a cluster of systems, the Message Passing Interface, or MPI for short,
is a very suitable model to implement this type of parallelism in an application. MPI consists of an
extensive set of functions, covering a wide range of functionality. The Oracle Message Passing Toolkit

product offers a very mature and efficient MPI implementation.

Contemporary cluster architectures provide for two levels of parallelism as each node in the cluster
consists of a multicore system. This makes the Hybrid model a very natural choice, since it combines
MPI and a shared memory model, nowadays most often OpenMP. MPI is used to distribute the work

over the nodes, as well as handle the communication between the nodes. More fine-grained portions of
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work are then further parallelized using Automatic Parallelization and/or OpenMP. Together with the
Oracle Message Passing Toolkit, the Oracle Solaris Studio compilers can be used to develop and
deploy these kinds of applications.

After having selected a parallel programming model, the developer is still faced with several additional
challenges when considering parallelizing an application. The parallelism not only needs to be identified
in the application, but in view of parallel overheads and Amdahl's law, one has to catefully avoid
performance pitfalls. The specifics depend on the programming model chosen, and to a certain extent

also on the computer system(s) used
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Appendix A - Additional Source Codes

The focus of the example program in the An Example Program Parallelized Using Various Models
section is on the computation of the average, but in order to compile and run the test cases, several
support functions were used. In this appendix the sources of these functions are given and discussed
briefly.

The check_numerical result() function

In the Parallel Computing, Floating-Point Numbers And Numerical Results section it was shown that
the order in which the numbers are summed may impact the final result. This is true for the serial
version, but also for the various parallel versions discussed in the An Example Program Parallelized
Using Various Models section, since each thread or MPI process only sums up the elements of a subset

of array data. From a numerical point of view this is different that the original serial order.

This is why the check for correctness has a tolerance factor to take into account some loss of precision
may occur due to differences in round off behavior. The source code of the function that performs

this check is shown below.

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>

4

#include <float.h>

6 int check_numerical_ result(double avg, double ref_ result)

7 {

9 double tolerance = 100.0 * DBL_EPSILON;

10 double rel_error;

11 int ret_code = 0;

12

13 if ( fabs(ref_result) > DBL_MIN ) {

14 rel error = fabs( (avg - ref result)/ref result );

15 } else {

16 rel_error = fabs( avg - ref result );

17 }

18

19 if ( rel_error > tolerance ) {

20 printf("\nFATAL ERROR: computed result = %f\n",avg);
21 printf (" reference result = %f\n",ref result);

22 printf (" relative error = %e%%\n",100.0*rel_error);
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23 ret_code = -1;
24 1}

25

26 return(ret_code);

27 }

At line 9 the tolerance is set using the system provided relative precision value DBL_EPSILON for
double precision numbers. By multiplying this number by 100, small relative differences are still

accepted.

At lines 13-17 the relative difference is computed. If the reference value is too small, as compared to
the smallest positive double precision number, the absolute error is computed. Otherwise the relative
error is used. In case this error exceeds the tolerance value a diagnostic message is printed and a non-
zero value is returned to the calling program. In case the computed results meets the criteria, a value of

zero is returned.

The get_num_threads() Function

In the serial, automatically parallelized and OpenMP versions of the example a function called
get_num_threads() is used. It returns the number of threads currently set. The source code is

shown below.

This function is written such that it compiles without OpenMP as well. This is achieved by the #ifdef
construct at lines 1-5. In case OpenMP is enabled in the compiler, the _ OPENMP macro is set and file
omp.h needs to be included, because one of the OpenMP run time routines is used. If the macro is not

set the omp_get_num_threads () routine is defined to return 1.

The advantage of setting it up this way is that the source can now also be compiled without enabling
OpenMP in the compiler. Or in case a compiler is used that does not support OpenMP at all, but that

is very rare these days.

The OpenMP parallel region spans lines 11-15. The #pragma omp single directive has the effect
that only one thread executes the enclosed block of code. In this case it is one statement only, using
the omp_get_num_threads () routine that returns the number of threads active in the parallel region.

The value is stored in variable nthreads, which is then returned by the function.
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1 #ifdef _OPENMP

2 #include <omp.h>

3 #else

4 #define omp_get num threads() 1
5 #endif

6

7 int get_num threads()
{

9 int nthreads;

11 #pragma omp parallel

12 {
13 #pragma omp single nowait
14 {nthreads = omp_get_num_threads();}

15 } // End of parallel region

16 return(nthreads);

The get_wall_time() Function

In the serial, automatically parallelized and OpenMP versions of the example a function called
get_wall_time() is used. It returns the absolute elapsed time in seconds. The source code is shown

below.

This function uses the same #ifdef construct as function get_num_threads() to ensure the source
code also compiles in case OpenMP is not used. In this case a value of zero is returned, but that is a
placeholder only. Most likely one would like to substitute an alternate timer like gettimeofday in
such a case. At line 10 the OpenMP routine omp_get_wtime () is used to return the elapsed time

since some moment in the past.

1 #ifdef _OPENMP

2 #include <omp.h>
3 #else
4 #define omp_get_wtime() 0

5 #endif

7 double get_wall time()
8 {

9 return(omp_get wtime());
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The setup_data() Function

This function allocates the memory for array data, initializes this array and computes the exact result.

The source code is listed below.

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 double setup_data(int n, double **pdata)
5 {

6 double *data, ref result;

7
8 if ( (data=(double *) malloc(n*sizeof(double)))==NULL) {
9 perror("Fatal error in memory allocation"); exit(-1);

10 } else {

11 for (int i=0; i<n; i++)
12 data[i] = i+1;

13 ref result = 0.5*(n+1);
14 }

15

16 *pdata = data;
17
18 return(ref_result);

19 }

At line 8 a pointer to a block of memory is returned. Upon a successful allocation, the array is
initialized (lines 11-12) and the exact result is computed at line 13. This is also the return value of this
function. At line 16 the pointer is stored in pdata so that the calling function can get the address of
the memory block.
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Appendix B - Full C Source Code Of The MPI Implementation

1 #include <stdio.h>

2 #include <stdlib.h>
4 #include <mpi.h>

5
6 double setup data(int n, double **pdata);

7 int check_numerical_result(double avg, double ref result);

9 int main (int argc, char **argv)

10 {

11

12 double avg, sum, Lsum, ref result, *data;

13 double t_start, t_end, t_comp_avg, t_mpi;

14 int n, irem, nchunk, istart, iend, vlen, ret_code = 0;
15

16 int ier;

17 int me, nproc;

18 int master = 0, msg_tagl = 1117, msg_tag2 = 2009;

19

20 if ( (ier = MPI_Init(&argc, &argv)) != 0 ) {

21 printf("Error in MPI_Init: return code is %d\n",

22 ier); return(ier);

23 }

24

25 if ( (ier = MPI_Comm_size(MPI_COMM_WORLD, &nproc)) !=0 ) {
26 printf("Error in MPI_Comm_size: return code is %d\n",
27 ier); return(ier);

28 }

29

30 if ( (ier = MPI_Comm_rank(MPI_COMM_WORLD,&me)) !=0 ) {
31 printf("Error in MPI_Comm_rank: return code is %d\n",
32 ier); return(ier);

33 }

34

35 if ( me == master ) {
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36 printf("Please give the number of data points: ");
37 fflush(stdout);

38 scanf("%d",&n);

39

40 printf("\nThere are %d MPI processes\n",nproc);

41 printf ("Number of data points: %d\n",n);

42

43 ref result = setup data(n, &data);

44

45 t_start = MPI_Wtime();

46

47 irem = n%nproc;

48 nchunk = (n-irem)/nproc;

49 for (int p=1; p<nproc; p++)

50 {

51 if (p < irem) {

52 istart = (nchunk+l)*p;

53 iend = istart + nchunk;

54 } else {

55 istart = nchunk*p + irem;

56 iend = istart + nchunk-1;

57 }

58 vlen = iend-istart+1l;

59

60 if ( (ier = MPI_Send(&vlen,1, MPI_INT, p, msg_tagl,
61 MPI_COMM WORLD)) != 0 ) {
62 printf("Error in MPI_Send: return code is %d\n",
63 ier); return(ier);

64 }

65 if ( (ier = MPI_Send(&data[istart], vlen,

66 MPI_DOUBLE_PRECISION, p, msg_tag2,
67 MPI_COMM WORLD)) != 0 ) {

68 printf("Error in MPI_Send: return code is %d\n",
69 ier); return(ier);

70 }

71 }

72

73 vlen = ( irem > 0 ) ? nchunk+1l : nchunk;

74
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105
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108
109
110

112
113

} else {
if ( (ier = MPI_Recv(&vlen, 1, MPI_INT, master,
msg_tagl, MPI_COMM_WORLD,
MPI_STATUS IGNORE)) != 0 ) {
printf("Error in MPI_Recv: return code is %d\n",

ier); return(ier);

}
if ((data=(double *)malloc(vlen*sizeof(double)))==NULL){
perror("Fatal error in memory allocation"); exit(-1);
}
if ( (ier = MPI_Recv(data, vlen, MPI_DOUBLE_PRECISION,
master, msg_tag2, MPI_COMM WORLD,
MPI_STATUS IGNORE)) != 0 ) {
printf("Error in MPI_Recv: return code is %d\n",
ier); return(ier);
}
}
if ( me == master ) {
t_end = MPI_Wtime();
t_mpi = t_end - t_start;

t_start = t_end;

Lsum = 0.0;
for (int i=0; i<vlen; i++)

Lsum += data[i];

if ( me == master ) {

t_comp_avg = MPI_Wtime() - t_start;

printf("MPI process %d has computed its local sum: %.2f\n",

me,Lsum) ;

if ( me == master ) t_start = MPI_Wtime();
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115
116

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150 }

if ( (ier = MPI_Reduce(&Lsum, &sum,1,MPI_DOUBLE_PRECISION,
MPI_SUM,master,
MPI_COMM WORLD)) !=0 ) {
printf("Error in MPI_Reduce: return code is %d\n",

ier); return(ier);

if ( me == master ) {

t_mpi += MPI_Wtime() - t_start;

avg = sum / n;

ret_code = check numerical result(avg, ref_result);

if ( ret_code == 0 ) {
printf("n = %d average = %.2f\n",n,avqg);
printf("Computation: %.3f (s) ",t_comp_avg);
printf("MPI communication: %.3f (s) ",t mpi);
printf("Sum: %.3f (s)\n",t_comp_avg+t mpi);

} else {
printf("ERROR: COMPUTED RESULT IS WRONG\n");

ret_code = -2;

free(data);

if ( (ier = MPI_Finalize()) != 0 ) {
printf("Error in MPI_Finalize: return code is %d\n",
ier); return(ier);
} else {

return(ret_code);
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Appendix C - Full Fortran Source Code Of The Hybrid
Implementation

Below, the full Fortran source of the Hybrid implementation of the example program is listed. Other
than syntactical and some small semantic differences, this version is very similar to the C version
described in The Implementation Of The MPI Algorithm and Parallelizing The Example Using The
Hybrid Model sections. The MPI calls and OpenMP directives, as well as the run time functions, are
highlighted in bold.

The A Hybrid Fortran Implementation Of The Example Program section starting on page 53 covers
how to compile, link and run this program using the Oracle Solaris Studio compilers and Oracle

Message Passing Toolkit software.

program main

!'$ USE OMP_LIB

implicit none

include 'mpif.h’

interface

real(kind=8) function setup data(n, data)
integer, intent(in) t:n
real(kind=8), allocatable, intent(inout):: data(:)

end function setup data

integer function check_numerical result(avg, ref result)
real(kind=8), intent(in):: avg, ref result

end function check_numerical result

end interface

real(kind=8), allocatable:: data(:)

real(kind=8) :: avg, sum, Lsum, ref result

real(kind=8) :: ThreadSum

real(kind=8) :: t_start, t_end, t_comp_avg, t_mpi

integer :: n, irem, nchunk, istart, iend, vlen

integer :: ier, me, nproc, ret_code = 0

integer :: master = 0, msg_tagl = 1117, msg_tag2 = 2010
integer :: i, p, memstat
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call MPI_Init(ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Init: return code is ',I6)") &
ier; stop

end if

call MPI_Comm size(MPI_COMM WORLD,nproc,ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Comm_size: return code is ',I6)")
ier; stop

end if

call MPI_Comm rank(MPI_COMM WORLD,me,ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Comm_rank: return code is ',I6)")

ier; stop

end if
if ( me == master ) then
write(*,"('Please give the number of data points:')")

read(*,*) n

write (*,"(/,'There are ',I3,' MPI processes')") nproc
write (*,"( 'Number of data points: ',I10)") n
ref result = setup_data(n, data)

t_start = MPI_Wtime()

irem = mod(n,nproc)

nchunk = (n-irem)/nproc

do p = 1, nproc-1

if ( p < irem ) then

istart = (nchunk+l)*p + 1
iend = istart + nchunk
else

&

&
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istart = nchunk*p + irem + 1

iend = istart + nchunk - 1

end if

vlen = iend-istart+l

call MPI_Send(vlen, 1, MPI_INTEGER, p, msg_tagl, &
MPI_COMM_WORLD, ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Send: return code is ',I6)") &
ier; stop
end if
call MPI_Send(data(istart), vlen, MPI_DOUBLE_PRECISION, &
p, msg_tag2, MPI_COMM WORLD, ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Send: return code is ',I6)") &
ier; stop
end if

end do

if ( irem > 0 ) then
vlen = nchunk + 1
else
vlen = nchunk

end if
else
call MPI_Recv(vlen, 1, MPI_INTEGER, master, msg tagl, &
MPI_COMM_WORLD, MPI_STATUS_IGNORE, ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Recv: return code is ',I6)") &
ier; stop
end if
allocate(data(l:vlen), STAT=memstat)

if ( memstat /= 0 ) stop 'Fatal error in memory allocation'

call MPI_Recv(data, vlen, MPI_DOUBLE_PRECISION, master,
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msg_tag2, MPI_COMM_WORLD, MPI_STATUS_IGNORE, &
ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Recv: return code is ',I6)") &

ier; stop

end if

end if

if ( me == master ) then
t_end = MPI_Wtime()
t_mpi = t_end - t_start

t_start = t_end

end if

Lsum = 0.0
!$OMP PARALLEL DEFAULT(NONE) SHARED(me,vlen,data,Lsum) &

! $OMP PRIVATE (i, ThreadSum)

!SOMP SINGLE
write(*,"('MPI process ',I3,' uses ', I3, &
& ' OpenMP threads')") me, OMP_GET_NUM_THREADS()
!SOMP END SINGLE

ThreadSum = 0.0
!SOMP DO
do i =1, vlen
ThreadSum = ThreadSum + data(i)
end do

!$SOMP END DO

!$OMP CRITICAL

Lsum = Lsum + ThreadSum

write(*,"('MPI process ',I3,' excutes OpenMP thread ', &
& I3)") me, OMP_GET THREAD NUM()
write(*,"('ThreadSum = ',G23.17)") ThreadSum

!$SOMP END CRITICAL
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!$SOMP END PARALLEL

if ( me == master ) then
t_comp_avg = MPI_Wtime() - t_start
end if
write(*,"('MPI process ',I3,' has computed its local sum: ', &
G24.18)") me, Lsum
if ( me == master ) t_start = MPI_Wtime()

call MPI_Reduce(Lsum,sum,1l,MPI_DOUBLE_PRECISION,MPI_SUM, &
master,MPI_COMM WORLD, ier)
if ( ier /= 0 ) then
write(*," ('Error in MPI_Reduce: return code is ',I6)") &

ier; stop

end if
if ( me == master ) then
t mpi = t mpi + MPI_Wtime() - t_start

avg = sum / n

ret_code = check_numerical_result(avg, ref_result)

if ( ret_code == 0 ) then
write(*,"('n = ',I10,' average = ',G17.10)") n, avg
write(*,"('Computation: ', F8.3,' (s)')", &

advance='no') t_comp_avg
write(*,"(' MPI communication: ',F8.3,' (s)')", &
advance='no') t_mpi
write(*,"(' Sum: ', F8.3,"' (s)")") &
t_comp_avg+t_mpi
else
write(*," ('ERROR: COMPUTED RESULT IS WRONG')")

end if

end if
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if (allocated(data)) deallocate(data)

call MPI_Finalize(ier)

if ( ier /= 0 ) then
write(*," ('Error in MPI_Finalize: return code is ',I6)") &
ier; stop

end if

stop

end program main

real(kind=8) function setup data(n, data)

implicit none

integer t:n

real(kind=8), allocatable:: data(:)

real(kind=8):: ref result

integer :: memstat, i

allocate(data(l:n),STAT=memstat)

if ( memstat /= 0 ) then
stop 'Fatal error in memory allocation'
else
doi=1, n
data(i) = 1i
end do
ref result = 0.5*dble((n+l))

end if

setup_data = ref_ result

return

end function setup data
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integer function check_numerical result(avg, ref result)

implicit none

real(kind=8):: avg, ref result
real(kind=8):: tolerance
real(kind=8):: rel error

integer :: ret_code = 0
real(kind=8):: DBL_EPSILON, DBL_MIN

DBL_EPSILON = epsilon(ref result)

DBL_MIN = tiny(ref_result)

tolerance 100.0 * DBL_EPSILON
if ( abs(ref result) > DBL_MIN ) then

rel error = abs( (avg - ref result)/ref result )
else

rel_error = abs( avg - ref result )

end if
if ( rel_error > tolerance ) then
print *, 'FATAL ERROR: computed result = ',avg
print *,' reference result = ',ref result
print *,' relative error ="', &
100.0*rel_error,' %'
ret_code = -1;
end if

check_numerical result = ret_ code

return

end function check_numerical result
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