the Distributed World

.

s 1n

Data Analys

—~
_—

N
/¢¢% R

=5

SR
s MW#

Q. Ethan McCallum & Stephen Weston

O’REILLY"

Parallel R

It's tough to argue with R as a high-quality, cross-platform, open source
statistical software product—unless you’re in the business of crunching
Big Data. This concise book introduces you to several strategies for using
R to analyze large datasets. You'll learn the basics of snow, multicore,
parallel, and some Hadoop-related tools, including how to find them,
how to use them, when they work well, and when they don’t.

With these packages, you can overcome R’s single-threaded nature by
spreading work across multiple CPUs, or offloading work to multiple
machines to address R’s memory barrier.

snow: works well in a traditional cluster environment
multicore: popular for multiprocessor and multicore computers

parallel: part of the upcoming R 2.14.0 release

R+Hadoop: provides low-level access to a popular form of cluster
computing

B RHIPE: uses Hadoop's power with R’s language and interactive
shell

B Segue: lets you use Elastic MapReduce as a backend for lapply-
style operations

Purchase the ebook edition of this O’Reilly title at oreilly.com and get
free updates for the life of the edition. Our ebooks are optimized for
several electronic formats, including PDF, EPUB, Mobi, APK, and
DAISY—all DRM-free.

Strata is the emerging ecosystem of people,
t rata tools, and technologies that turn big data
into smart decisions. Find information and

Making Data Work | resources at oreilly.com/data.

Twitter: @oreillymedia
facebook.com/oreilly

fi Q.&E'LLY

US $21.99 CAN $23.99
ISBN: 978-1-449-30992-3

7814491309923

Parallel R

Q. Ethan McCallum and Stephen Weston

O’REILLY*

Beijing + Cambridge « Farnham - Kéln - Sebastopol « Tokyo

Parallel R
by Q. Ethan McCallum and Stephen Weston

Copyright © 2012 Q. Ethan McCallum and Stephen Weston. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette ~ Cover Designer: Karen Montgomery
Production Editor: Kristen Borg Interior Designer: David Futato
Proofreader: O’Reilly Production Services lllustrator: Robert Romano

Revision History for the First Edition:
2011-10-21 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449309923 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Parallel R, the image of a rabbit, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30992-3
[LSI]
1319202138

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449309923

Preface

1.

GettingStartedcooiiiiiniant,

Why R?
Why Not R?
The Solution: Parallel Execution
A Road Map for This Book
What We’ll Cover
Looking Forward...
What We’ll Assume You Already Know
In a Hurry?
snow
multicore
parallel
R+Hadoop
RHIPE
Segue
Summary

L] 111

Quick Look

How It Works

Setting Up

Working with It
Creating Clusters with makeCluster
Parallel K-Means
Initializing Workers
Load Balancing with clusterApplyLB
Task Chunking with parLapply
Vectorizing with clusterSplit
Load Balancing Redux

Table of Contents

Functions and Environments
Random Number Generation
snow Configuration
Installing Rmpi

Executing snow Programs on a Cluster with Rmpi
Executing snow Programs with a Batch Queueing System

Troubleshooting snow Programs
When It Works...
...And When It Doesn’t
The Wrap-up

MUIICOT vttt ettt ittt ieneneeneenreneennennees

Quick Look

How It Works

Setting Up

Working with It
The mclapply Function
The mc.cores Option
The mc.set.seed Option
Load Balancing with mclapply
The pvec Function
The parallel and collect Functions
Using collect Options
Parallel Random Number Generation
The Low-Level API

When It Works...

...And When It Doesn’t

The Wrap-up

parallelooviiiiii i i

Quick Look
How It Works
Setting Up
Working with It
Getting Started
Creating Clusters with makeCluster
Parallel Random Number Generation
Summary of Differences
When It Works...
...And When It Doesn’t
The Wrap-up

oooooooooooooooo

...............

23
25
26
29
30
32
33
35
36
36

37
37
38
38
39
39
39
40
42
42
43
44
46
47
49
49
49

51
52
52
52
53
53
54
55
57
58
58
58

iv | Table of Contents

5. APrimer on MapReduceandHadoopcccovviiniiiiiiiiiiiiiiiin... 59

Hadoop at Cruising Altitude 59
A MapReduce Primer 60
Thinking in MapReduce: Some Pseudocode Examples 61
Calculate Average Call Length for Each Date 62
Number of Calls by Each User, on Each Date 62
Run a Special Algorithm on Each Record 63
Binary and Whole-File Data: SequenceFiles 63
No Cluster? No Problem! Look to the Clouds... 64
The Wrap-up 66
6. RHHAdOOP ...cvviiiiii i i it e e e 67
Quick Look 67
How It Works 67
Setting Up 68
Working with It 68
Simple Hadoop Streaming (All Text) 69
Streaming, Redux: Indirectly Working with Binary Data 72
The Java APIL: Binary Input and Output 74
Processing Related Groups (the Full Map and Reduce Phases) 79
When It Works... 83
...And When It Doesn’t 83
The Wrap-up 84
7. RHIPE <o i i i i 85
Quick Look 85
How It Works 85
Setting Up 86
Working with It 87
Phone Call Records, Redux 87
Tweet Brevity 91
More Complex Tweet Analysis 96
When It Works... 98
...And When It Doesn’t 99
The Wrap-up 100
YT 1T PR 101
Quick Look 101
How It Works 102
Setting Up 102
Working with It 102
Model Testing: Parameter Sweep 102
When It Works... 105

Table of Contents | v

...And When It Doesn’t
The Wrap-up

9. NewandUpcomingccuvviiniiiiiiiiininninenereenenecnenaennns
doRedis
RevoScale R and RevoConnectR (RHadoop)
cloudNumbers.com

105
106

107
107
108
108

vi | Table of Contents

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

N

o This icon signifies a tip, suggestion, or general note.
qs
W og.
MY SN
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

vii

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Parallel R by Q. Ethan McCallum and
Stephen Weston (O'Reilly). Copyright 2012 Q. Ethan McCallum and Stephen Weston,
978-1-449-30992-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

Safari

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920021421
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

viii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920021421
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

There are only two names on the cover, but a host of people made this book possible.

We would like to thank the entire O’Reilly team for their efforts. They provided such
a smooth process that we were able to focus on just the writing. A special thanks goes
to our editors, Mike Loukides and Meghan Blanchette, for their guidance and support.

We would also like to thank our review team. The following people generously dedi-
cated their time and energy to read this book in its early state, and their feedback helped
shape the text into the finished product you’re reading now:

Robert Bjornson
Nicholas Carriero
Jonathan Seidman

Paul Teetor

Ramesh Venkataramaiah
Jed Wing

Any errors you find in this book belong to us, the authors.

Most of all we thank you, the reader, for your interest in this book. We set out to create
the guidebook we wish we’d had when we first tried to give R that parallel, distributed
boost. R work is research work, best done with minimal distractions. We hope these
chapters help you get up to speed quickly, so you can get R to do what you need with
minimal detour from the task at hand.

Q. Ethan McCallum

“You like math? Oh, you need to talk to Mike. Let me introduce you.” I didn’t realize
it at the time, but those words were the start of this project. Really. A chance encounter
with Mike Loukides led to emails and phone calls and, before I knew it, we’d laid the
groundwork for a new book. So first and foremost, a hearty thanks to Betsy and Laurel,
who made my connection to Mike.

Conversations with Mike led me to my co-author, Steve Weston. I'm pleased and flat-
tered that he agreed to join me on this adventure.

Thanks as well to the gang at Cafe les Deux Chats, for providing a quiet place to work.

Preface | ix

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Stephen Weston

This was my first book project, so I'd like to thank my co-author and editors for putting
up with my freshman confusion and mistakes. They were very gracious throughout the
project.

I’'m very grateful to Nick, Rob, and Jed for taking the time to read my chapters and help
me not to make a fool of myself. I also want to thank my wife Diana and daughter Erica
for proofreading material that wasn’t on their preferred reading lists.

Finally, I’d like to thank all the authors of the packages that we discuss in this book. I
had a lot of fun reading the source for all three of the packages that I wrote about. In
particular, I’ve always loved the snow source code, which I studied when first learning
to program in R.

X | Preface

CHAPTER1
Getting Started

This chapter sets the pace for the rest of the book. If you’re in a hurry, feel free to skip
to the chapter you need. (The section “In a Hurry?” on page 4 has a quick-ref look
at the various strategies and where they fit. That should help you pick a starting point.)
Just make sure you come back here to understand our choice of vocabulary, how we
chose what to cover, and so on.

Why R?

It’s tough to argue with R. Who could dislike a high-quality, cross-platform, open-
source statistical software product? It has an interactive console for exploratory work.
It can run as a scripting language to repeat a process you’ve captured. It has a lot of
statistical calculations built-in so you don’t have to reinvent the wheel. Did we mention
that R is free?

When the base toolset isn’t enough, R users have access to a rich ecosystem of add-on
packages and a gaggle of GUISs to make their lives even easier. No wonder R has become
a favorite in the age of Big Data.

Since R is perfect, then, we can end this book. Right?

Not quite. It’s precisely the Big Data age that has exposed R’s blemishes.

Why Not R?

These imperfections stem not from defects in the software itself, but from the passage
of time: quite simply, R was not built in anticipation of the Big Data revolution.

R was born in 1995. Disk space was expensive, RAM even more so, and this thing called
The Internet was just getting its legs. Notions of “large-scale data analysis” and “high-
performance computing” were reasonably rare. Outside of Wall Street firms and uni-
versity research labs, there just wasn’t that much data to crunch.

Fast-forward to the present day and hardware costs just a fraction of what it used to.
Computing power is available online for pennies. Everyone is suddenly interested in
collecting and analyzing data, and the necessary resources are well within reach.

This surge in data analysis has brought two of R’s limitations to the forefront: it’s single-
threaded and memory-bound. Allow us to explain:

It’s single-threaded
The R language has no explicit constructs for parallelism, such as threads or mu-
texes. An out-of-the-box R install cannot take advantage of multiple CPUs.

It’s memory-bound
R requires that your entire dataset’ fit in memory (RAM).T Four gigabytes of RAM
will not hold eight gigabytes of data, no matter how much you smile when you ask.

While these are certainly inconvenient, they’re hardly insurmountable.

The Solution: Parallel Execution

People have created a series of workarounds over the years. Doing a lot of matrix math?
You can build R against a multithreaded basic linear algebra subprogram (BLAS).
Churning through large datasets? Use a relational database or another manual method
to retrieve your data in smaller, more manageable pieces. And so on, and so forth.

Some big winners involve parallelism. Spreading work across multiple CPUs overcomes
R’s single-threaded nature. Offloading work to multiple machines reaps the multi-
process benefit and also addresses R’s memory barrier. In this book we’ll cover a few
strategies to give R that parallel boost, specifically those which take advantage of mod-
ern multicore hardware and cheap distributed computing.

A Road Map for This Book

Now that we’ve set the tone for why we’re here, let’s take a look at what we plan to
accomplish in the coming pages (or screens if you're reading this electronically).

* We emphasize “dataset” here, not necessarily “algorithms.”

t1t’s a big problem. Because R will often make multiple copies of the same data structure for no apparent
reason, you often need three times as much memory as the size of your dataset. And if you don’t have enough
memory, you die a slow death as your poor machine swaps and thrashes. Some people turn off virtual memory
with the swapoff command so they can die quickly.

2 | Chapter1: Getting Started

What We'll Cover

Each chapter is a look into one strategy for R parallelism, including:

e Whatitis
¢ Where to find it
e How to use it

¢ Where it works well, and where it doesn’t

First up is the snow package, followed by a tour of the multicore package. We then
provide a look at the new parallel package that’s due to arrive in R 2.14. After that,
we’ll take a brief side-tour to explain MapReduce and Hadoop. That will serve as a
foundation for the remaining chapters: R+Hadoop (Hadoop streaming and the Java
API), RHIPE, and segue.

Looking Forward...

In Chapter 9, we will briefly mention some tools that were too new for us to cover in-

depth.

There will likely be other tools we hadn’t heard about (or that didn’t exist) at the time
of writing.* Please let us know about them! You can reach us through this book’s web-
site at http://parallelrbook.com/.

What We'll Assume You Already Know

This is a book about R, yes, but we’ll expect you know the basics of how to get around.
If you’re new to R or need a refresher course, please flip through Paul Teetor’s R Cook-
book (O’Reilly), Robert Kabacoff’s R In Action (Manning), or another introductory title.
You should take particular note of the lapply() function, which plays an important
role in this book.

Some of the topics require several machines’ worth of infrastructure, in which case
you’ll need access to a talented sysadmin. You’ll also need hardware, which you can
buy and maintain yourself, or rent from a hosting provider. Cloud services, notably
Amazon Web Services (AWS), § have become a popular choice in this arena. AWS has
plenty of documentation, and you can also read Programming Amazon EC2, by Jurg
van Vliet and Flavia Paganelli (O’Reilly) as a supplement.

(Please note that using a provider still requires a degree of sysadmin knowledge. If
you’re not up to the task, you’ll want to find and bribe your skilled sysadmin friends.)

1 Try as we might, our massive Monte Carlo simulations have brought us no closer to predicting the next R
parallelism strategy. Nor any winning lottery numbers, for that matter.

§ hitp:/laws.amazon.com/

A Road Map for This Book | 3

http://parallelrbook.com/
http://oreilly.com/catalog/9780596809164
http://oreilly.com/catalog/9780596809164
http://oreilly.com/catalog/9781935182399
http://oreilly.com/catalog/0636920013228
http://aws.amazon.com/

Ina Hurry?

If you’re in a hurry, you can skip straight to the chapter you need. The list below is a
quick look at the various strategies.

show

Overview: Good for use on traditional clusters, especially if MPI is available. It sup-
ports MPI, PVM, nws, and sockets for communication, and is quite portable, running
on Linux, Mac OS X, and Windows.

Solves: Single-threaded, memory-bound.
Pros: Mature, popular package; leverages MPI’s speed without its complexity.

Cons: Can be difficult to configure.

multicore

Overview: Good for big-CPU problems when setting up a Hadoop cluster is too much
of a hassle. Lets you parallelize your R code without ever leaving the R interpreter.

Solves: Single-threaded.
Pros: Simple and efficient; easy to install; no configuration needed.

Cons: Can only use one machine; doesn’t support Windows; no built-in support for
parallel random number generation (RNG).

parallel
Overview: A merger of snow and multicore that comes built into R as of R 2.14.0.
Solves: Single-threaded, memory-bound.

Pros: No installation necessary; has great support for parallel random number
generation.

Cons: Can only use one machine on Windows; can be difficult to configure on multiple
Linux machines.

R+Hadoop

Overview: Run your R code on a Hadoop cluster.
Solves: Single-threaded, memory-bound.

Pros: You get Hadoop’s scalability.

Cons: Requires a Hadoop cluster (internal or cloud-based); breaks up a single logical
process into multiple scripts and steps (can be a hassle for exploratory work).

4 | Chapter1: Getting Started

RHIPE

Overview: Talk Hadoop without ever leaving the R interpreter.
Solves: Single-threaded, memory-bound.

Pros: Closer to a native R experience than R+Hadoop; use pure R code for your Map-
Reduce operations.

Cons: Requires a Hadoop cluster; requires extra setup on the cluster; cannot process
standard SequenceFiles (for binary data).

Seque

Overview: Seamlessly send R apply-like calculations to a remote Hadoop cluster.
Solves: Single-threaded, memory-bound.

Pros: Abstracts you from Elastic MapReduce management.

Cons: Cannot use with an internal Hadoop cluster (you're tied to Amazon’s Elastic
MapReduce).

Summary

Welcome to the beginning of your journey into parallel R. Our first stop is a look at
the popular snow package.

Summary | 5

CHAPTER 2
snow

snow (“Simple Network of Workstations™) is probably the most popular parallel pro-
gramming package available for R. It was written by Luke Tierney, A. J. Rossini, Na
Li, and H. Sevcikova, and is actively maintained by Luke Tierney. Itis a mature package,
first released on the “Comprehensive R Archive Network” (CRAN) in 2003.

Quick Look

Motivation: You want to use a Linux cluster to run an R script faster. For example,
you’re running a Monte Carlo simulation on your laptop, but you’re sick of waiting
many hours or days for it to finish.

Solution: Use snow to run your R code on your company or university’s Linux cluster.

Good because: snow fits well into a traditional cluster environment, and is able to take
advantage of high-speed communication networks, such as InfiniBand, using MPL.

How It Works

snow provides support for easily executing R functions in parallel. Most of the parallel
execution functions in snow are variations of the standard lapply() function, making
snow fairly easy to learn. To implement these parallel operations, snow uses a master/
worker architecture, where the master sends tasks to the workers, and the workers
execute the tasks and return the results to the master.

One important feature of snow is that it can be used with different transport mechanisms
to communicate between the master and workers. This allows it to be portable, but
still take advantage of high-performance communication mechanisms if available.
snow can be used with socket connections, MPI, PVM, or NetWorkSpaces. The socket
transport doesn’t require any additional packages, and is the most portable. MPI is
supported via the Rmpi package, PVM via rpvm, and NetWorkSpaces via nws. The MPI

transport is popular on Linux clusters, and the socket transport is popular on multicore
computers, particularly Windows computers.”

snow is primarily intended to run on traditional clusters and is particularly useful if MPI
is available. It is well suited to Monte Carlo simulations, bootstrapping, cross valida-
tion, ensemble machine learning algorithms, and K-Means clustering.

Good support is available for parallel random number generation, using the rsprng and
rlecuyer packages. This is very important when performing simulations, bootstrap-
ping, and machine learning, all of which can depend on random number generation.

snow doesn’t provide mechanisms for dealing with large data, such as distributing data
files to the workers. The input arguments must fit into memory when calling a snow
function, and all of the task results are kept in memory on the master until they are
returned to the caller in a list. Of course, snow can be used with high-performance
distributed file systems in order to operate on large data files, but it’s up to the user to
arrange that.

Setting Up

snow is available on CRAN, so it is installed like any other CRAN package. It is pure R
code and almost never has installation problems. There are binary packages for both
Windows and Mac OS X.

Although there are various ways to install packages from CRAN, I generally use the
install.packages() function:
install.packages("snow")

It may ask you which CRAN mirror to use, and then it will download and install the
package.

If you’re using an old version of R, you may get a message saying that snow is not
available. snowhasrequired R 2.12.1 since version 0.3-5, so you might need to download
and install snow 0.3-3 from the CRAN package archives. In your browser, search for
“CRAN snow” and it will probably bring you to snow’s download page on CRAN. Click
on the “snow archive” link, and then you can download snow 0.3-3.tar.gz. Or you
can try directly downloading it from:

http://cran.r-project.org/src/contrib/Archive/snow/snow_0.3-3.tar.gz
Once you’ve downloaded it, you can install it from the command line with:

% R CMD INSTALL snow 0.3-3.tar.gz

You may need to use the -1 option to specify a different installation directory if you
don’t have permission to install it in the default directory. For help on this command,

* The multicore package is generally preferred on multicore computers, but it isn’t supported on Windows.
See Chapter 3 for more information on the multicore package.

8 | Chapter2: snow

use the --help option. For more information on installing R packages, see the section
“Installing packages” in the “R Installation and Administration” manual, written by
the “R Development Core Team”, and available from the R Project website.

W

As a developer, T always use the most recent version of R. That makes
it easier to install packages from CRAN, since packages are only built
4+ for the most recent version of R on CRAN. They keep around older
binary distributions of packages, but they don’t build new packages or
new versions of packages for anything but the current version of R. And
if a new version of a package depends on a newer version of R, as with
snow, you can’t even build it for yourself on an older version of R. How-
ever, if you're using R for production use, you need to be much more
cautious about upgrading to the latest version of R.

To use snow with MPI, you will also need to install the Rmpi package. Unfortunately,
installing Rmpi is a frequent cause of problems because it has an external dependency
on MPI. For more information, see “Installing Rmpi” on page 29.

Fortunately, the socket transport can be used without installing any additional pack-
ages. For that reason, I suggest that you start by using the socket transport if you are
new to Snow.

Once you’ve installed snow, you should verify that you can load it:

library(snow)

If that succeeds, you are ready to start using snow.

Working with It

Creating Clusters with makeCluster

In order to execute any functions in parallel with snow, you must first create a cluster
object. The cluster object is used to interact with the cluster workers, and is passed as
the first argument to many of the snow functions. You can create different types of cluster
objects, depending on the transport mechanism that you wish to use.

The basic cluster creation function is makeCluster () which can create any type of clus-
ter. Let’s use it to create a cluster of four workers on the local machine using the socket
transport:

cl <- makeCluster(4, type="SOCK")
The first argument is the cluster specification, and the second is the cluster type. The

interpretation of the cluster specification depends on the type, but all cluster types allow
you to specify a worker count.

Working with It | 9

Socket clusters also allow you to specify the worker machines as a character vector.
The following will launch four workers on remote machines:

spec <- c("m", "n2", "n3", "na")

cl <- makeCluster(spec, type="SOCK")
The socket transport launches each of these workers via the ssh commandT unless the
name is “localhost”, in which case makeCluster() starts the worker itself. For remote
execution, you should configure ssh to use password-less login. This can be done using
public-key authentication and SSH agents, which is covered in chapter 6 of SSH, The
Secure Shell: The Definitive Guide (O’Reilly) and many websites.

makeCluster () allows you to specify addition arguments as configuration options. This
is discussed further in “snow Configuration” on page 26.

The type argument can be “SOCK”, “MPI”, “PVM” or “NWS”. To create an MPI
cluster with four workers, execute:

cl <- makeCluster(4, type="MPI")
This will start four MPI workers on the local machine unless you make special provi-

sions, as described in the section “Executing snow Programs on a Cluster with
Rmpi” on page 30.

You can also use the functions makeSOCKcluster (), makeMPIcluster (), makePVMcluster(),
and makeNWScluster () to create specific types of clusters. In fact, makeCluster () is noth-
ing more than a wrapper around these functions.
To shut down any type of cluster, use the stopCluster() function:

stopCluster(cl)
Some cluster types may be automatically stopped when the R session exits, butit’s good

practice to always call stopCluster() in snow scripts; otherwise, you risk leaking cluster
workers if the cluster type is changed, for example.

W

Creating the cluster object can fail for a number of reasons, and is there-
fore a source of problems. See the section “Troubleshooting snow Pro-
Wls: grams” on page 33 for help in solving these problems.

Parallel K-Means

We're finally ready to use snow to do some parallel computing, so let’s look at a real
example: parallel K-Means. K-Means is a clustering algorithm that partitions rows of
a dataset into k clusters.* It’s an iterative algorithm, since it starts with a guess of the

t This can be overridden via the rshemd option, but the specified command must be command line-compatible
with ssh.

1 These clusters shouldn’t be confused with cluster objects and cluster workers.

10 | Chapter2: snow

http://oreilly.com/catalog/9780596008956
http://oreilly.com/catalog/9780596008956

location for each of the cluster centers, and gradually improves the center locations
until it converges on a solution.

R includes a function for performing K-Means clustering in the stats package: the
kmeans () function. One way of using the kmeans () function is to specify the number of
cluster centers, and kmeans () will pick the starting points for the centers by randomly
selecting that number of rows from your dataset. After it iterates to a solution, it com-
putes a value called the total within-cluster sum of squares. It then selects another set
of rows for the starting points, and repeats this process in an attempt to find a solution
with a smallest total within-cluster sum of squares.

Let’s use kmeans () to generate four clusters of the “Boston” dataset, using 100 random
sets of centers:

library(MASS)
result <- kmeans(Boston, 4, nstart=100)

We’re going to take a simple approach to parallelizing kmeans () that can be used for
parallelizing many similar functions and doesn’t require changing the source code for
kmeans (). We simply call the kmeans() function on each of the workers using a smaller
value of the nstart argument. Then we combine the results by picking the result with
the smallest total within-cluster sum of squares.

But before we execute this in parallel, let’s try using this technique using the lapply()
function to make sure it works. Once that is done, it will be fairly easy to convert to
one of the snow parallel execution functions:

library(MASS)

results <- lapply(rep(25, 4), function(nstart) kmeans(Boston, 4, nstart=nstart))

i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]

We used a vector of four 25s to specify the nstart argument in order to get equivalent
results to using 100 in a single call to kmeans(). Generally, the length of this vector
should be equal to the number of workers in your cluster when running in parallel.

Now let’s parallelize this algorithm. snow includes a number of functions that we could
use, including clusterApply(), clusterApplyLB(), and parLapply(). For this example,
we’ll use clusterApply(). You call it exactly the same as lapply(), except that it takes
a snow cluster object as the first argument. We also need to load MASS on the workers,
rather than on the master, since it’s the workers that use the “Boston” dataset.

Assuming that snow is loaded and that we have a cluster object named c1, here’s the
parallel version:

ignore <- clusterEvalQ(cl, {library(MASS); NULL})

results <- clusterApply(cl, rep(25, 4), function(nstart) kmeans(Boston, 4,
nstart=nstart))

i <- sapply(results, function(result) result$tot.withinss)

result <- results[[which.min(i)]]

Working withIt | 11

clusterEvalQ() takes two arguments: the cluster object, and an expression that is eval-
uated on each of the workers. It returns the result from each of the workers in a list,
which we don’t use here. I use a compound expression to load MASS and return NULL to
avoid sending unnecessary data back to the master process. That isn’t a serious issue
in this case, but it can be, so I often return NULL to be safe.

As you can see, the snow version isn’t that much different than the lapply() version.
Most of the work was done in converting it to use lapply(). Usually the biggest problem
in converting from lapply() to one of the parallel operations is handling the data prop-
erly and efficiently. In this case, the dataset was in a package, so all we had to do was
load the package on the workers.

W

AN The kmeans() function uses the sample.int() function to choose the
"‘:\ starting cluster centers, which depend on the random number genera-
T Gl tor. In order to get different solutions, the cluster workers need to use

different streams of random numbers. Since the workers are randomly
seeded when they first start generating random numbers,$ this example
will work, but it is good practice to use a parallel random number gen-
erator. See “Random Number Generation” on page 25 for more
information.

Initializing Workers

In the last section we used the clusterEvalQ() function to initialize the cluster workers
by loading a package on each of them. clusterEvalQ() is very handy, especially for
interactive use, but it isn’t very general. It’s great for executing a simple expression on
the cluster workers, but it doesn’t allow you to pass any kind of parameters to the
expression, for example. Also, although you can use it to execute a function, it won’t
send that function to the worker first,l as clusterApply() does.

My favorite snow function for initializing the cluster workers is clusterCall(). The ar-
guments are pretty simple: it takes a snow cluster object, a worker function, and any
number of arguments to pass to the function. It simply calls the function with the
specified arguments on each of the cluster workers, and returns the results as a list. It’s
like clusterApply() without the x argument, so it executes once for each worker, like
clusterEvalQ(), rather than once for each element in x.

§ All R sessions are randomly seeded when they first generate random numbers, unless they were
restored from a previous R session that generated random numbers. snow workers never restore
previously saved data, so they are always randomly seeded.

[How exactly snow sends functions to the workers is a bit complex, raising issues of execution context and
environment. See “Functions and Environments” on page 23 for more information.

12 | Chapter2: snow

clusterCall() can do anything that clusterEvalQ() does and more.# For example,
here’s how we could use clusterCall() to load the MASS package on the cluster workers:

clusterCall(cl, function() { library(MASS); NULL })

This defines a simple function that loads the MASS package and returns NULL." Returning
NULL guarantees that we don’t accidentally send unnecessary data transfer back to the
master.T

The following will load several packages specified by a character vector:

worker.init <- function(packages) {
for (p in packages) {
library(p, character.only=TRUE)

NULL
clusterCall(cl, worker.init, c('MASS', 'boot'))

Setting the character.only argument to TRUE makes library() interpret the argument
as a character variable. If we didn’t do that, library() would attempt to load a package
named p repeatedly.

Although it’s not as commonly used as clusterCall(), the clusterApply() function is
also useful for initializing the cluster workers since it can send different data to the
initialization function for each worker. The following creates a global variable on each
of the cluster workers that can be used as a unique worker ID:

clusterApply(cl, seq(along=cl), function(id) WORKER.ID <<- id)

Load Balancing with clusterApplyLB

We introduced the clusterApply() function in the parallel K-Means example. The next
parallel execution function that T’ll discuss is clusterApplylB(). It’s very similar to
clusterApply(), but instead of scheduling tasks in a round-robin fashion, it sends new
tasks to the cluster workers as they complete their previous task. By round-robin, 1
mean that clusterApply() distributes the elements of x to the cluster workers one at
a time, in the same way that cards are dealt to players in a card game. In a sense,
clusterApply() (politely) pushes tasks to the workers, while clusterApplyLB() lets the
workers pull tasks as needed. That can be more efficient if some tasks take longer than
others, or if some cluster workers are slower.

#This is guaranteed since clusterEvalQ() is implemented using clusterCall().

* Defining anonymous functions like this is very useful, but can be a source of performance problems due to
R’s scoping rules and the way it serializes functions. See “Functions and Environments” on page 23 for
more information.

T The return value from library() isn’t big, but if the initialization function was assigning a large matrix to a
variable, you could inadvertently send a lot of data back to the master, significantly hurting the performance
of your program.

Working withIt | 13

To demonstrate clusterApplyLB(), we’ll execute Sys.sleep() on the workers, giving us
complete control over the task lengths. Since our real interest in using cluster
ApplyLB() is to improve performance, we’ll use snow.time() to gather timing informa-
tion about the overall execution.* We will also use snow. time()’s plotting capability to
visualize the task execution on the workers:

set.seed(7777442)

sleeptime <- abs(rnorm(10, 10, 10))

tm <- snow.time(clusterApplyLB(cl, sleeptime, Sys.sleep))
plot(tm)

Cluster Usage

MNode
2
|

Elapsed Time

Ideally there would be solid horizontal bars for nodes 1 through 4 in the plot, indicating
that the cluster workers were always busy, and therefore running efficiently. cluster
ApplyLB() did pretty well, although there was some wasted time at the end.

Now let’s try the same problem with clusterApply():$

set.seed(7777442)

sleeptime <- abs(rnorm(10, 10, 10))

tm <- snow.time(clusterApply(cl, sleeptime, Sys.sleep))
plot(tm)

1t snow.time() is available in snow as of version 0.3-5.

§ ’'m setting the RNG seed so we get the same value of sleeptime as in the previous example.

14 | Chapter2: snow

Cluster Usage

Node
2
1

0 10 20 30 40 50

Elapsad Time

As you can see, clusterApply() is much less efficient than clusterApplyLB() in this
example: it took 53.7 seconds, versus 28.5 seconds for clusterApplylLB(). The plot
shows how much time was wasted due to the round-robin scheduling.

But don’t give up on clusterApply(): it has its uses. It worked fine in the parallel K-
Means example because we had the same number of tasks as workers. It is also used
to implement the very useful parLapply() function, which we will discuss next.|

Task Chunking with parLapply

Now that we’ve discussed and compared clusterApply() and clusterApplylLB(), let’s
consider parLapply(), a third parallel lapply() function that has the same arguments
and basic behavior as clusterApply() and clusterApplyLB(). But there is an important
difference that makes it perhaps the most generally useful of the three.

[l Te’s also possible that the extra overhead in clusterApplyLB() to determine which worker is ready for the next
task could make clusterApply() more efficient in some case, but I'm skeptical.

Working withIt | 15

parLapply() is a high-level snow function, that is actually a deceptively simple function
wrapping an invocation of clusterApply():

> parLapply

function (cl, x, fun, ...)

docall(c, clusterApply(cl, splitList(x, length(cl)), lapply, fun, ...))
<environment: namespace:snow>

Basically, parLapply() splits up x into a list of subvectors, and processes those subvec-
tors on the cluster workers using lapply(). In effect, it is prescheduling the work by
dividing the tasks into as many chunks as there are workers in the cluster. This is
functionally equivalent to using clusterApply() directly, but it can be much more ef-
ficient, since there are fewer I/O operations between the master and the workers. If the
length of x is already equal to the number of workers, then parLapply() has no advant-
age. But if you’re parallelizing an R script that already uses lapply(), the length of x is
often very large, and at any rate is completely unrelated to the number of workers in
your cluster. In that case, parLapply() is a better parallel version of lapply() than
clusterApply().

One way to think about it is that parLapply() interprets the x argument differently than
clusterApply(). clusterApply() is low-level, and treats x as a specification of the tasks
to execute on the cluster workers using fun. parLapply() treats x as a source of disjoint
input arguments to execute on the cluster workers using lapply() and fun. cluster
Apply() gives you more control over what gets sent to who, while parLapply() provides
a convenient way to efficiently divide the work among the cluster workers.

An interesting consequence of parLapply()’s work scheduling is that it is much more
efficient than clusterApply() if you have many more tasks than workers, and one or
more large, additional arguments to pass to parLapply(). In that case, the additional
arguments are sent to each worker only once, rather than possibly many times. Let’s
try doing that, using a slightly altered parallel sleep function that takes a matrix as an
argument:

bigsleep <- function(sleeptime, mat) Sys.sleep(sleeptime)

bigmatrix <- matrix(o, 2000, 2000)

sleeptime <- rep(1, 100)
[defined the sleeptimes to be small, many, and equally sized. This will accentuate the
performance differences between clusterApply() and parLapply():

tm <- snow.time(clusterApply(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)

16 | Chapter2: snow

Cluster Usage

- ———I—T—I-l-l-F-l-l—I-l-r - rl-r-l-l - -
o - r+ -Fm-

Elapsad Time

This doesn’t look very efficient: you can see that there are many sends and receives
between the master and the workers, resulting in relatively big gaps between the com-
pute operations on the cluster workers. The gaps aren’t due to load imbalance as we
saw before: they’re due to I/O time. We’re now spending a significant fraction of the
elapsed time sending data to the workers, so instead of the ideal elapsed time of 25
seconds,* it’s taking 77.9 seconds.

Now let’s do the same thing using parLapply():

tm <- snow.time(parLapply(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)

#The ideal elapsed time is sum(sleeptime) / length(cl).

Working with It | 17

Cluster Usage

Node
2
1

I 1 1 ‘

T T T T T T
0 5 10 15 20 25

Elapsad Time

The difference is dramatic, both visually and in elapsed time: it took only 27.2 seconds,
beating clusterApply() by 50.7 seconds.

Keep in mind that this particular use of clusterApply() is bad: it is needlessly sending
the matrix to the worker with every task. There are various ways to fix that, and using
parLapply() happens to work well in this case. On the other hand, if you’re sending
huge objects in x, then there’s not much you can do, and parlLapply() isn’t going to
help. My point is that parLapply() schedules work in a useful and efficient way, making
it probably the single most useful parallel execution function in snow. When in doubt,
use parLapply().

Vectorizing with clusterSplit

In the previous section I showed you how parLapply() uses clusterApply() to imple-
ment a parallel operation that solves a certain class of parallel program quite nicely.
Recall that parLapply() executes a user-supplied function for each element of x just like
clusterApply(). But what if we want the function to operate on subvectors of x? That’s
similar to what parLapply() does, but is a bit easier to implement, since it doesn’t need
to use lapply() to call the user’s function.

18 | Chapter2: snow

We could use the splitList() function, like parLapply() does, but thatis a snow internal
function. Instead, we’ll use the clusterSplit() function which is very similar, and
slightly more convenient. Let’s try splitting the sequence from 1 to 30 for our cluster
using clusterSplit():

> clusterSplit(cl, 1:30)

[[1]]
[1]12345678

[[2]]

[1] 9 10 11 12 13 14 15

[[3]]
[1] 16 17 18 19 20 21 22

[[4]]
[1] 23 24 25 26 27 28 29 30

Since our cluster has four workers, it splits the sequence into a list of four nearly equal
length vectors, which is just what we need.

Now let’s define parVapply() to split x using clusterSplit(), execute the user function
on each of the pieces using clusterApply(), and combine the results using do.call()

and c():

parVapply <- function(cl, x, fun, ...) {
do.call("c", clusterApply(cl, clusterSplit(cl, x), fun, ...))
}

Like parLapply(), parVapply() always issues the same number of tasks as workers. But

unlike parLapply(), the user-supplied function is only executed once per worker. Let’s

use parVapply() to compute the cube root of numbers from 1 to 10 using the * function:
> parVapply(cl, 1:10, "~", 1/3)

[1] 1.000000 1.259921 1.442250 1.587401 1.709976 1.817121 1.912931 2.000000
[9] 2.080084 2.154435

This works because the » function takes a vector as its first argument and returns a
vector of the same length.”

\

W

This technique can be a useful for executing vector functions in parallel.

It may also be more efficient than using parLapply(), for example, but

W for any function worth executing in parallel, the difference in efficiency

" islikely to be small. And remember that most, if not all, vector functions
execute so quickly that it is never worth it to execute them in parallel
with snow. Such fine-grained problems fall much more into the domain
of multithreaded computing.

* Normally the second argument to » can have the same length as the first, but it must be length one in this
example because parVapply() only splits the first argument.

Working with It | 19

Load Balancing Redux

We've talked about the advantages of parLapply() over clusterApply() at some length.
In particular, when there are many more tasks than cluster workers and the task objects
sent to the workers are large, there can be serious performance problems with cluster
Apply() that are solved by parLapply(). But what if the task execution has significant
variation so that we need load balancing? clusterApplyLB() does load balancing, but
would have the same performance problems as clusterApply(). We would like a load
balancing equivalent to parLapply(), but there isn’t one—so let’s write it.T

In order to achieve dynamic load balancing, it helps to have a number of tasks that is
atleasta small integer multiple of the number of workers. That way, a long task assigned
to one worker can be offset by many shorter tasks being done by other workers. If that
is not the case, then the other workers will sit idle while the one worker completes the
long task. parLapply() creates exactly one task per worker, which is not what we want
in this case. Instead, we’ll first send the function and the fixed arguments to the cluster
workers using clusterCall(), which saves them in the global environment, and then
send the varying argument values using clusterApplyLB(), specifying a function that
will execute the user-supplied function along with the full collection of arguments.

Here are the function definitions for parLapplyLB() and the two functions that it exe-
cutes on the cluster workers:

parLapplylB <- function(cl, x, fun, ...) {
clusterCall(cl, LB.init, fun, ...)
r <- clusterApplylB(cl, x, LB.worker)
clusterkvalQ(cl, rm('.LB.fun', '.LB.args', pos=globalenv()))
r

LB.init <- function(fun, ...) {
assign('.LB.fun', fun, pos=globalenv())
assign('.LB.args', list(...), pos=globalenv())
NULL

}

LB.worker <- function(x) {
do.call('.LB.fun', c(list(x), .LB.args))
}

parLapplyLB() initializes the workers using clusterCall(), executes the tasks with
clusterApplylLB(), cleans up the global environment of the cluster workers with
clusterEvalQ(), and finally returns the task results.

T A future release of snow could optimize clusterApplyLB() by not sending the function and constant arguments
to the workers in every task. At that point, this example will lose any practical value that it may have.

20 | Chapter2: snow

That’s all there is to implementing a simple and efficient load balancing parallel exe-
cution function. Let’s compare clusterApplyLB() to parLapplyLB() using the same test
function that we used to compare clusterApply() and parLapply(), starting with
clusterApplyLB():

bigsleep <- function(sleeptime, mat) Sys.sleep(sleeptime)

bigmatrix <- matrix(o, 2000, 2000)

sleeptime <- rep(1, 100)

tm <- snow.time(clusterApplyLB(cl, sleeptime, bigsleep, bigmatrix))

plot(tm)

Cluster Usage

~ TR AT

MNode
2
|
——H
o

T T T T T T
0 10 20 30 40 50

Elapsed Time

There are lots of gaps in the execution bars due to high I/O time: the master is barely
able to supply the workers with tasks. Obviously this problem isn’t going to scale to
many more workers.

Now let’s try our new parLapplyLB() function:

tm <- snow.time(parLapplylLB(cl, sleeptime, bigsleep, bigmatrix))
plot(tm)

Working with It | 21

Cluster Usage

|

Node
2
1
|

0 5 10 15 20 25

Elapsad Time

That took only 28.4 seconds versus 53.2 seconds for clusterApplyLB().

Notice that the first task on each worker has a short execution time, but a long task
send time, as seen by the slope of the first four lines between the master (node 0) and
the workers (nodes 1-4). Those are the worker initialization tasks executed by cluster
Call() that send the large matrix to the workers. The tasks executed via
clusterApplylLB() were more efficient, as seen by the vertical communication lines and
the solid horizontal bars.

By using short tasks, [was able to demonstrate a pretty noticeable dif-
ference in performance, but with longer tasks, the difference becomes
s less significant. In other words, we can realize decent efficiency when-
" ever the time to compute a task significantly exceeds the time needed
to send the inputs to and return the outputs from the worker evaluating
the task.

22 | Chapter2: snow

Functions and Environments

B
o)

This section discusses a number of rather subtle points. An understand-
ing of these is not essential for basic snow use, but could be invaluable
ols" when trying to debug more complicated usage scenarios. The reader
" may want to skim through this on a first reading, but remember to return
to it if a seemingly obscure problem crops up.

Most of the parallel execution functions in snow take a function object as an argument,
which I call the worker function, since it is sent to the cluster workers, and subsequently
executed by them. In order to send it to the workers, the worker function must be
serialized into a stream of bytes using the serialize() function.t That stream of bytes
is converted into a copy of the original object using the unserialize() function.

In addition to a list of formal arguments and a body, the worker function includes a
pointer to the environment in which it was created. This environment becomes the
parent of the evaluation environment when the worker function is executed, giving the
worker function access to non-local variables. Obviously, this environment must be
serialized along with the rest of the worker function in order for the function to work
properly after being unserialized.

However, environments are serialized in a special way in R. In general, the contents are
included when an environment is serialized, but not always. Name space environments
are serialized by name, not by value. That is, the name of the package is written to the
resulting stream of bytes, not the symbols and objects contained in the environment.
When a name space is unserialized, it is reconstructed by finding and loading the cor-
responding package. If the package cannot be loaded, then the stream of bytes cannot
be unserialized. The global environment is also serialized by name, and when it is un-
serialized, the resulting object is simply a reference to the existing, unmodified global
environment.

So what does this mean to you as a snow programmer? Basically, you must ensure that
all the variables needed to execute the worker function are available after it has been
unserialized on the cluster workers. If the worker function’s environment is the global
environment and the worker function needs to access any variables in it, you need to
send those variables to the workers explicitly. This can be done, for example, by using
the clusterExport() function. But if the worker function was created by another func-
tion, its environment is the evaluation environment of the creator function when the
worker function was created. All the variables in this environment will be serialized
along with the worker function, and accessible to it when it is executed by the cluster
workers. This can be a handy way of making variables available to the worker function,

T Actually, if you specify the worker function by name, rather than by providing the definition of the function,
most of the parallel execution functions (parLapply() is currently an exception) will use that name to look
up that function in the worker processes, thus avoiding function serialization.

Working withIt | 23

but if you’re not careful, you could accidentally serialize large, unneeded objects along
with the worker function, causing performance to suffer. Also, if you want the worker
function to use any of the creator function’s arguments, you need to evaluate those
arguments before calling parLapply() or clusterApplyLB(); otherwise, you may not be
able to evaluate them successfully on the workers due to R’s lazy argument evaluation.

Let’s look at a few examples to illustrate some of these issues. We’'ll start with a script
that multiplies a vector x by a sequence of numbers:

a<- 1:4

x <- rnorm(4)

clusterExport(cl, "x")

mult <- function(s) s * x

parLapply(cl, a, mult)

In this script, the function mult() is defined at the top level, so its environment is the
global environment.$ Thus, x isn’t serialized along with mult(), so we need to send it
to the cluster workers using the clusterExport() function. Of course, a more natural
solution in this case would be to include x as an explicit argument to mult(), and then
parLapply() would send it to the workers for us. However, using clusterExport () could
be more efficient if we were going to reuse x by calling mult() many times with
parLapply().

Now let’s turn part of this script into a function. Although this change may seem trivial,
it actually changes the way mult() is serialized in parLapply():
pmult <- function(cl) {
a<- 1:4
X <- rnorm(4)
mult <- function(s) s * x
parLapply(cl, a, mult)

pmult(cl)

Sincemult() is created by pmult(), all of pmult()’s local variables will be accessible when
mult() is executed by the cluster workers, including x. Thus, we no longer call cluster
Export().

Pmult() would be more useful if the values to be multiplied weren’t hardcoded, so let’s
improve it by passing a and x in as arguments:
pmult <- function(cl, a, x) {
x # force x
mult <- function(s) s * x
parLapply(cl, a, mult)

scalars <- 1:4

dat <- rnorm(4)
pmult(cl, scalars, dat)

§ You can verify this with the command environment(mult).

24 | Chapter2: snow

At this point, you may be wondering why x is on a line by itself with the cryptic comment
“force x”. Although it may look like it does nothing, this operation forces x to be eval-
uated by looking up the value of the variable dat (the actual argument corresponding
to x that is passed to the function when pmult() is invoked) in the caller’s execution
environment. R uses lazy argument evaluation, and since x is now an argument, we
have to force its evaluation before calling parLapply(); otherwise, the workers will re-
port that dat wasn’t found, since they don’t have access to the environment where
dat is defined. Note that they wouldn’t say x wasn’t found: they would find x, but
wouldn’t be able to evaluate it because they don’t have access to dat. By evaluating x
before calling parLapply(), mult()’s environment will be serialized with x set to the
value of dat, rather than the symbol dat.

Notice in this last example that, in addition to x, a and c1 are also serialized along with
mult(). mult() doesn’t need to access them, but since they are defined in pmult’s eval-
uation environment, they will be serialized along with mult(). To prevent that, we
can reset the environment of mult() to the global environment and pass x to mult()
explicitly:
pmult <- function(cl, a, x) {

mult <- function(s, x) s * x

environment(mult) <- .GlobalEnv

parLapply(cl, a, mult, x)

scalars <- 1:4
dat <- rnorm(4)
pmult(cl, scalars, dat)

Of course, another way to achieve the same result is to create mult() at the top level of
the script so that mult() is associated with the global environment in the first place.

Unfortunately, you run into some tricky issues when sending function objects over the
network. You may conclude that you don’t want to use the worker function’s envi-
ronment to send data to your cluster workers, and that’s a perfectly reasonable position.
But hopefully you now understand the issues well enough to figure out what methods
work best for you.

Random Number Generation

As I mentioned previously, snow is very useful for performing Monte Carlo simulations,
bootstrapping, and other operations that depend on the use of random numbers. When
running such operations in parallel, it’s important that the cluster workers generate
different random numbers; otherwise, the workers may all replicate each other’s results,
defeating the purpose of executing in parallel. Rather than using ad-hoc schemes for
seeding the workers differently, it is better to use a parallel random number generator
package. snow provides support for the rlecuyer and rsprng packages, both of which
are available on CRAN. With one of these packages installed on all the nodes of your
cluster, you can configure your cluster workers to use it via the clusterSetupRNG()

Working withIt | 25

function. The type argument specifies which generator to use. To use rlecuyer, set
type to RNGstream:

clusterSetupRNG(cl, type='RNGstream')

To use rsprng, set type to SPRNG:
clusterSetupRNG(cl, type='SPRNG")

You can specify a seed using the seed argument. rsprng uses a single integer for the
seed, while rlecuyer uses a vector of six integers:

clusterSetupRNG(cl, type='RNGstream', seed=c(1,22,333,444,55,6))

W

When using rsprng, a random seed is used by default, but not with
rlecuyer. If you want to use a random seed with rlecuyer, you’ll have
s to specify it explicitly using the seed argument.

Now the standard random number functions will use the specified parallel random
number generator:

> unlist(clusterEvalQ(cl, rnorm(1)))
[1] -1.0452398 -0.3579839 -0.5549331 0.7823642

If you reinitialize the cluster workers using the same seed, you will get the same random
number from each of the workers.

We can also get reproducible results using clusterApply(), but not with clusterAp
plyLB() because clusterApply() always uses the same task scheduling, while cluster
ApplyLB() does not.!

snow Configuration

snow includes a number of configuration options for controlling the way the cluster is
created. These options can be specified as named arguments to the cluster creation
function (makeCluster(), makeSOCKcluster(), makeMPIcluster(), etc.). For example,
here is the way to specify an alternate hostname for the master:

cl <- makeCluster(3, type="SOCK", master="192.168.1.100")

B
)

The default value of master is computed as Sys.info()[['nodename']].
However, there’s no guarantee that the workers will all be able to resolve
s that name to an IP address. By setting master to an appropriate dot-
separated IP address, you can often avoid hostname resolution
problems.

[I' Actually, you can achieve reproducibility with clusterApplyLB() by setting the seed to a task specific value.
This can be done by adding the operation to the beginning of the worker function, or if using a function from
a library, wrapping that function in a new function that sets the seed and then calls the library function.

26 | Chapter2: snow

You can also use the setDefaultClusterOptions() function to change a default config-
uration option during an R session. By default, the outfile option is set to /dev/null,
which causes all worker output to be redirected to the null device (the proverbial bit
bucket). To prevent output from being redirected, you can change the default value of
outfile to the empty string:

setDefaultClusterOptions(outfile="")

This is a useful debugging technique which we will discuss more in “Troubleshooting
snow Programs” on page 33.

Here is a summary of all of the snow configuration options:

Table 2-1. snow configuration options

Name Type Description Default value
port Integer Port that the master listens on 10187
timeout Integer Socket timeout in seconds 31536000 (one year in seconds)
master String Master’s hostname that workers con- Sys.info()["nodename"]
nect to
homogeneous Logical Are workers homogeneous? TRUE if R_SNOW_LIB set, else FALSE
type String Type of cluster makeCluster should cre- ~ NULL, which is handled specially
ate
outfile String Worker log file “/dev/null” “nul:" on Windows
rhome String Home of Rinstallation, used to locate R~ SR_HOME
executable
user String User for remote execution Sys.info()["user"]
rshcmd String Remote execution command “ssh”
rlibs String Location of R packages SR_LIBS
scriptdir String Location of snow worker scripts snow installation directory
rprog String Path of R executable SR_HOME/bin/R
snowlib String Path of “library” where snowisinstalled directory in which snow is installed
rscript String Path of Rscript command $R_HOME/bin/Rscript SR_HOME/bin/
Rscript.exe on Windows
useRscript Logical Should workers be started using Rscript ~ TRUE if file specified by Rscript exists
command?
manual Logical Should workers be started manually? FALSE

[t is possible, although a bit tricky, to configure different workers differently. I've done
this when running a snow program in parallel on an ad-hoc collection of workstations.
In fact, there are two mechanisms available for that with the socket transport. The first
approach works for all the transports. You set the homogeneous option to FALSE, which
causes snow to use a special startup script to launch the workers. This alternate script

Working with It | 27

doesn’t assume that the worker nodes are set up the same as the master node, but can
look for R or Rscript in the user’s PATH, for example. It also supports the use of envi-
ronment variables to configure the workers, such as R _SNOW RSCRIPT CMD and
R_SNOW_LIB to specify the path of the Rscript command and the snow installation di-
rectory. These environment variables can be set to appropriate values in the user’s
environment on each worker machine using the shell’s start up scripts.

The second approach to heterogeneous configuration only works with the socket and
nws transports. When you call makeSOCKcluster(), you specify the worker machines as
a list of lists. In this case, the hostname of the worker is specified by the host element
of each sublist. The other elements of the sublists are used to override the corresponding
option for that worker.

Let’s say we want to create a cluster with two workers: nl and n2, but we need to log
in as a different user on machine n2:

> workerList <- list(list(host = "n1"), list(host = "n2", user = "steve"))
> ¢l <- makeSOCKcluster(workerlList)

> clusterEvalQ(cl, Sys.info()[["user"]])

[[1]]

[1] "weston"

[[2]]

[1] "steve"
> stopCluster(cl)

It can also be useful to set the outfile option differently to avoid file conflicts between
workers:

> workerList <- list(list(host = "n1", outfile = "ni1.log", user = "weston"),
+ list(host = "n2", outfile = "n2-1.log"),
+ list(host = "n2", outfile = "n2-2.1log"))
> cl <- makeSOCKcluster(workerList, user = "steve")

> clusterkvalQ(cl, Sys.glob("*.1log"))

[[1]]

[1] "n1.log"

1

[[2
[1] "n2-1.1o0g" "n2-2.log"

[[3]]
[1]

"n2-1.log

non

n2-2.log"
> stopCluster(cl)

This also demonstrates that different methods for setting options can be used together.
The machine-specific option values always take precedence.

28 | Chapter2: snow

W

o I prefer to use my ssh config file to specify a different user for different
"‘:\ hosts, but obviously that doesn’t help with setting outfile.
Nl s
15

Installing Rmpi

As I mentioned previously, installing Rmpi can be problematic because it depends on
MPI being previously installed. Also, there are multiple MPI distributions, and some
of the older distributions have compatibility problems with Rmpi. In general, Open MPI
is the preferred MPI distribution. Fortunately, Open MP1is readily available for modern
Linux systems. The website for the Open MPI Project is hitp://www.open-mpi.org/.

Another problem is that there isn’t a binary distribution of Rmpi available for Windows.
Thus, even if you have MPI installed on a Windows machine, you will also need to
install Rmpi from the source distribution, which requires additional tools that may also
need to be installed. For more information on installing Rmpi on Windows, see the
documentation in the Rmpi package. That’s beyond the scope of this book.

Installation of Rmpi on the Mac was quite simple on Mac OS X 10.5 and 10.6, both of
which came with Open MPI, but unfortunately, Apple stopped distributing it in Mac
OS X 10.7. If you’re using 10.5 or 10.6, you can (hopefully) install Rmpi quite easily:#

install.packages("Rmpi")

If you’re using Mac OS X 10.7, you’ll have to install Open MPI first, and then you’ll
probably have to build Rmpi from the source distribution since the binary distribution
probably won’t be compatible with your installation of Open MPI. I'll discuss installing
Rmpi from the source distribution shortly, but not Open MPL.

On Debian/Ubuntu, Rmpi is available in the “r-cran-rmpi” Debian package, and can be
installed with apt-get. That’s the most foolproof way to install Rmpi on Ubuntu, for
example, since apt-get will automatically install a compatible version of MPI, if nec-
essary.

For non-Debian based systems, I reccommend that you install Open MPI with your local
packaging tool, and then try to use install.packages() to install Rmpi. This will fail if
the configuration script can’t find the MPI installation. In that case you will have to
download the source distribution, and install it using a command such as:

% R CMD INSTALL --configure-args="--with-mpi=$MPI_PATH" Rmpi_0.5-9.tar.gz

#1t’s possible that newer versions of Rmpi won’t be built for the Mac on CRAN because it won’t work on Mac
0OS X 10.7, but it’s still available as I’'m writing this in September 2011.

Working with It | 29

http://www.open-mpi.org/

where the value of MPI_PATH is the directory containing the Open MPI 1lib and
include directories.” Notice that this example uses the --configure-args argument to
pass the --with-mpi argument to Rmpi’s configure script. Another important configure
argument is - -with-Rmpi-type, which may need to be set to “OPENMPI”, for example.

As T’ve said, installing Rmpi from source can be difficult. If you run into problems and
don’t want to switch to Debian/Ubuntu, your best bet is to post a question on the R
project’s “R-sig-hpc” mailing list. You can find it by clicking on the “Mailing Lists” link
on the R project’s home page.

Executing snow Programs on a Cluster with Rmpi

Throughout this chapter I've been using the socket transport because it doesn’t require
any additional software to install, making it the most portable snow transport. However,
the MPI transport is probably the most popular, at least on clusters. Of course, most
of what we’ve discussed is independent of the transport. The difference is mostly in
how the cluster object is created and how the snow script is executed.

To create an MPI cluster object, set the type argument of makeCluster() to MPI or use
the makeMPIcluster() function. If you’re running interactively, you can create an MPI
cluster object with four workers as follows:

cl <- makeCluster(4, type="MPI")
This is equivalent to:
cl <- makeMPIcluster(4)

This creates a spawned cluster, since the workers are all started by snow for you via the
mpi.comm.spawn() function.

Notice that we don’t specify which machines to use, only the number of workers. For
that reason, I like to compute the worker count using thempi.universe.size() function,
which returns the size of the initial runtime environment.t Since the master process is
included in that size, the worker count would be computed as mpi.universe.size() -
1.¥

We shut down an MPI cluster the same as any cluster:
stopCluster(cl)

* 1 use the command locate include/mpi.h to find this directory. On my machine, this returns /usr/lib/
openmpi/include/mpi.h, so I set MPI_PATH to /usr/1ib/openmpi.

t mpi.universe.size() had a bug in older versions of Rmpi, so you may need to upgrade to Rmpi 0.5-9.

tIdon’t use mpi.universe.size() when creating an MPI cluster in an interactive session, since in that context,
mpi.universe.size() returns 1, which would give an illegal worker count of zero.

30 | Chapter2: snow

As you can see, there isn’t much to creating an MPI cluster object. You can specify
configuration options, just as with a socket cluster, but basically it is very simple.
However, you should be aware that the cluster workers are launched differently de-
pending on how the R script was executed. If you’re running interactively, for example,
the workers will always be started on the local machine. The only way that I know of
to start the workers on remote machines is to execute the R interpreter using a command
such as mpirun, mpiexec, or in the case of Open MPI, orterun.

As I noted previously, you can’t specify the machines on which to execute the workers
with makeMPIcluster(). That is done with a separate program that comes with your
MPI distribution. Open MPI comes with three utilities for executing MPI programs:
orterun, mpirun, and mpiexec, but they all work in exactly the same way,$ so I will refer
to orterun for the rest of this discussion.

orterun doesn’t know anything about R or R scripts, so we need to use orterun to
execute the R interpreter, which in turn executes the R script. Let’s start by creating an
R script (Example 2-1), which T'll call mpi.R.

Example 2-1. mpi.R

library(snow)

library(Rmpi)

cl <- makeMPIcluster(mpi.universe.size() - 1)
r <- clusterkvalQ(cl, R.version.string)
print(unlist(r))

stopCluster(cl)

mpi.quit()

This is very similar to our very first example, except that it loads the Rmpi package, calls
makeMPIcluster() rather than makeSOCKcluster(), and calls mpi.quit() at the end.
Loading Rmpi isn’t strictly necessary, since calling makeMPIcluster() will automatically
load Rmpi, but I like to do it explicitly. makeMPIcluster() creates the MPI cluster object,
as discussed in the previous section. mpi.quit() terminates the MPI execution envi-
ronment, detaches the Rmpi package, and quits R, so it should always go at the end of
your script. This is often left out, but I believe it is good practice to call it.I 've gotten
very stern warning messages from orterun in some cases when I failed to call mpi. quit().

To execute mpi.R using the local machine as the master, and n1, n2, n3 and n4 as the
workers, we can use the command:#

% orterun -H localhost,n1,n2,n3,n4 -n 1 R --slave -f mpi.R

§ orterun, mpirun, and mpiexec are in fact the same program in Open MPI.
[l ' You can use mpi.finalize() instead, which doesn’t quit R.

#The orterun command in Open MPI accepts several different arguments to specify the host list and the
number of workers. It does this to be compatible with previous MPI distributions, so don’t be confused if
you’re used to different argument names.

Working withIt | 31

The -H option specifies the list of machines available for execution. By using -n 1,
orterun will only execute the commandR --slave -f mpi.R on the first machine in the
list, which is localhost in this example. This process is the master, equivalent to the
interactive R session in our previous snow examples. When the master executes make
MPIcluster(mpi.universe.size() - 1), four workers will be spawned. orterun will ex-
ecute these workers on machines nl, n2, n3 and n4, since they are next in line to receive
a process.

Those are the basics, but there are a few other issues to bear in mind. First, the master
and the worker processes have their working directory set to the working directory of
the process executing orterun. That’s no problem for the master in our example, since
the master runs on the same machine as orterun. But if there isn’t a directory with the
same path on any of the worker machines, you will get an error. For that reason, it is
useful to work from a directory thatis shared across the cluster via a network file system.
That isn’t necessary, however. If you specify the full path to the R script, you could use
the orterun -wdir option to set the working directory to /tmp:

% orterun -wdir /tmp -H localhost,ni,n2,n3,n4 -n 1 R --slave -f ~/mpi.R

This example still assumes that R is in your search path on localhost. If it isn’t, you can
specify the full path of the R interpreter on localhost.

That can solve some of the orterun related problems, but snow still makes a number of
assumptions about where to find things on the workers as well. See “snow Configura-
tion” on page 26 for more information.

Executing snow Programs with a Batch Queueing System

Many cluster administrators require that all parallel programs be executed via a batch
queueing system. There are different ways that this can be done, and different batch
queueing systems, but I will describe a method that has been commonly used for a long
time, and is supported by many batch queueing systems, such as PBS/TORQUE, SGE
and LSF.

Basically you submit a shell script, and the shell script executes your R script using
orterun as we described in the section “Executing snow Programs on a Cluster with
Rmpi” on page 30. When you submit the shell script, you tell the batch queueing system
how many nodes you want using the appropriate argument to the submit command.
The shell script may need to read an environment variable to learn what nodes it can
execute on, and then pass that information on to the orterun command via an argument
such as -hostfile or -H.

Of course the details vary depending on the batch queueing system, MPI distribution,
and cluster configuration. As an example, I'll describe how this can be done using PBS/
TORQUE and Open MPI.

32 | Chapter2: snow

It’s actually very simple to use PBS/TORQUE with Open MPI, since Open MPI auto-
matically gets the list of hosts using the environment variables set by PBS/TORQUE."
The code in Example 2-2 simplifies the orterun command used in the script.

Example 2-2. batchmpi.sh

#1/bin/sh

#PBS -N SNOWMPI

#PBS -j oe

cd $PBS_0 WORKDIR

orterun -n 1 /usr/bin/R --slave -f mpi.R > mpi-$PBS JOBID.out 2>&1

This script uses PBS directives to specify the name of the job, and to merge the job’s
standard output and standard error. It then cd’s to the directory from which you sub-
mitted the job, which is helpful for finding the mpi.R script. Finally it uses orterun to
execute mpi.R.

We submit batchmpi. sh using the PBS/TORQUE gsub command:
% qsub -q devel -1 nodes=2:ppn=4 batchmpi.sh

This submits the shell script to the devel queue, requesting two nodes with four pro-
cessors per node. The -1 option is used to specify the resources needed by the job. The
resource specifications vary from cluster to cluster, so talk to your cluster administrator
to find out how you should specify the number of nodes and processors.

If you’re using LSF or SGE, you will probably need to specify the hosts via the orterun -
hostfile or -H option. For LSF, use the bsub -n option to specify the number of cores,
and the LSB_HOSTS environment variable to get the allocated hosts. With SGE, use the
qsub -pe option and the PE_HOSTFILE environment variable. The details are different,
but the basic idea is the same.

Troubleshooting snow Programs

Unfortunately, a lot of things can go wrong when using snow. That’s not really snow’s
fault: there’s just a lot of things that have to be set up properly, and if the different
cluster nodes are configured differently, snow may have trouble launching the cluster
workers. It’s possible to configure snow to deal with heterogeneous clusters.t Fortu-
nately, if your cluster is already used for parallel computing, there’s a good chance it is
already setup in a clean, consistent fashion, and you won’t run into any problems when
using snow.

Obviously you need to have R and snow installed on all of the machines that you’re
attempting to use for your cluster object. You also need to have ssh servers running on
all of the cluster workers if using the socket transport, for instance.

* Actually, it’s possible to configure Open MPI without support for PBS/TORQUE, in which case you’ll have
to include the arguments -hostfile $PBS_NODEFILE when executing orterun.

T We discuss heterogeneous configuration in “snow Configuration” on page 26.

Working withIt | 33

There are several techniques available for finding out more information about what is
going wrong.

When using the socket transport, the single most useful method of troubleshooting is
manual mode. In manual mode, you start the workers yourself, rather than having
snow start them for you. That allows you to run snow jobs on a cluster that doesn’t have
ssh servers, for example. But there are also a few other advantages to manual mode.
For one thing, it makes it easier to see error messages. Rather than searching for them
in log files, they can be displayed right in your terminal session.

To enable manual mode, set the manual option to TRUE when creating the socket cluster
object. I also recommend specifying outfile="", which prevents output from being
redirected:

cl <- makeCluster(2, type="SOCK", manual=TRUE, outfile="")

makeCluster () will display the command to start each of the workers. For each com-
mand, [open a new terminal window, ssh to the specified machine,f and cut and paste
the specified command into the shell.

In many cases, you'll get an error message as soon as you execute one of these com-
mands, and the R session will exit. In that case, you need to figure out what caused the
error, and solve the problem. That may not be simple, but at least you have something
better to search for than “makeCluster hangs.” But very often, the error is pretty obvi-
ous, like R or snow isn’t installed. Also, snow may not guess the right hostname for the
workers to use to connect back to the master process. In this case, R starts up and
snow runs, but nothing happens. You can use your terminal window to use various
network tools (nslookup, ping) to diagnose this problem.

Let’s create a socket cluster using manual mode and examine the output:

> cl <- makeCluster(c('ni', 'n2"), type="SOCK", manual=TRUE, outfile="")
Manually start worker on ni with

/usr/lib/R/bin/Rscript /usr/lib/R/site-library/snow/RSOCKnode.R
MASTER=beard PORT=10187 OUT= SNOWLIB=/usr/lib/R/site-library

The argument MASTER=beard indicates that the value of the master option is “beard.”
You can now use the ping command from your terminal window on n1 to see if the
master is reachable from n1 by that name. Here’s the kind of output that you should see:

n1% ping beard

PING beard (192.168.1.109) 56(84) bytes of data.

64 bytes from beard (192.168.1.109): icmp_req=1 ttl=64 time=0.020 ms

$If ssh fails at this point, you may have found your problem.

34 | Chapter2: snow

This demonstrates that n1 is able to resolve the name “beard,” knows a network route
to that IP address, can get past any firewall, and is able to get a reply from the master
machine.8

But if ping issues the error message “ping: unknown host beard”, then you have a
hostname resolution problem. Setting the master option to a different value when cre-
ating the cluster might fix the problem. Other errors may indicate a networking problem
that can be fixed by your sysadmin.

If the value of master seems good, you should execute the command displayed by
makeCluster() in hopes of getting a useful error message. Note that many of these
problems could occur using any snow transport, so running a simple snow test code using
the socket transport and manual mode can be an effective means to ensure a good setup
even if you later intend to use a different transport.

The outfile option in itself is also useful for troubleshooting. It allows you to redirect
debug and error messages to a specified file. By default, output is redirected to /dev/
null. I often use an empty string ("") to prevent any redirection, as we described
previously.

Here are some additional troubleshooting tips:

* Start by running on only one machine to make sure that works
* Manually ssh to all of the workers from the master machine

* Set the master option to a value that all workers can resolve, possibly using a dot-
separated IP address

* Run your job from a directory that is available on all machines

* Check if there are any firewalls that might interfere

When It Works...

snow is a fairly high-level package, since it doesn’t focus on low-level communication
operations, but on execution. It provides a useful variety of functions that support
embarrassingly parallel computation.

§ Of course, just because ping can get past a firewall doesn’t mean that snow can. As you can see from the
manual mode output, the master process is listening on port 10187, so you may have to configure your firewall
to allow connections on that port. You could try the command telnet beard 10187 as a further test.

When It Works... | 35

...And When It Doesn't

Communications difficulties: snow doesn’t provide functions for explicitly commu-
nicating between the master and workers, and in fact, the workers never communicate
between themselves. In order to communicate between workers, you would have to
use functions in the underlying communication package. Of course, that would make
your program less portable, and more complicated. A package that needed to do that
would probably not use snow, but use a package like nws or Rmpi directly.

The Wrap-up

In this chapter, you got a crash course on the snow package, including some advanced
topics such as running snow programs via a batch queueing system. snow is a powerful
package, able to run on clusters with hundreds of nodes. But if you’re more interested
in running on a quad-core laptop than a supercomputer, the next chapter on the
multicore package will be of particular interest to you.

36 | Chapter2: snow

CHAPTER 3
multicore

multicore is a popular parallel programming package for use on multiprocessor and
multicore computers. It was written by Simon Urbanek, and first released on CRAN
in 2009. It immediately became popular because its clever use of the fork() system call
allows it to implement a parallel lapply () operation that is even easier to use than snow’s
parLapply().

Unfortunately, because fork() is a Posix system call, multicore can’t really be used on
Windows machines.” Fork() can also cause problems for functions that use resources
that were allocated or initialized exclusively for the master, or parent process. This is
particularly a problem with graphics functions, so it isn’t generally recommended to
use multicore with an R GULT Nevertheless, multicore works perfectly for most R
functions on Posix systems, such as Linux and Mac OS X, and its use of fork() makes
it very efficient and convenient, as we’ll see in this chapter.

Quick Look

Motivation: You have an R script that spends an hour executing a function using
lapply() on your laptop.

Solution: Replace lapply() with the mclapply() function from the multicore package.

Good because: It’s easy to install, easy to use, and makes use of hardware that you
probably already own.

* An experimental attempt was made to support Windows in multicore 0.1-4 using the Windows N'T/2000
Native API, but it only partially works on Windows 2000 and XP, and not at all on Vista and Windows 7.

T multicore 0.1-4 attempts to disable the event loop in forked processes on Mac OS X in order to support the
Mac GUI for R.

37

How It Works

multicore is intended to run on Posix-based multiprocessor and multicore systems.
This includes almost all modern Mac OS X and Linux desktop and laptop computers.
It can also be used on single nodes of a Linux cluster, for example, but it doesn’t support
the use of multiple cluster nodes, like snow.

Since multicore is rather efficient, it can handle somewhat finer-grained parallel prob-
lems than snow, but it is still intended for coarse-grained, embarrassingly parallel
applications. It cannot compete with multithreaded programming for performing fine-
grained parallelism, such as vector operations, for example.

Since multicore runs on a single computer, it doesn’t give you access to greater aggre-
gate memory, like snow. However, since fork() only copies data when it is modified,
multicore often makes more efficient use of memory on a single computer than snow
can on a single computer.

Setting Up
multicore is available on CRAN, so it is installed like any other CRAN package. Much
of it is written in C, but it doesn’t depend on any external libraries, so building it from
source is fairly easy on Posix-based systems.
Here’s how I usually install multicore:

install.packages("multicore")

It may ask you which CRAN mirror to use, and then it will download and install the
package.

There is no Windows binary distribution available for multicore on CRAN, so if you’re
using Windows 2000 or XP, and want to try the experimental Windows support, you’ll
have to build it from the source distribution. This requires additional software to be
installed, and is beyond the scope of this book.

Once you’ve installed multicore, you should verify that you can load it:

library(multicore)

If that succeeds, you are ready to start using multicore.

38 | Chapter3: multicore

Working with It

The mclapply Function

The most important and commonly used function in the multicore package is mcl
apply(), which is basically a drop-in replacement for lapply(). It is one of the high-
level functions in multicore, the others being pvec(), parallel(), and collect(), which
we will discuss later.

Although mclapply() takes some additional arguments (all prefixed with “mc.”), it is
essentially the same as 1apply(). If you have an R script that spends a lot of time calling
lapply(), it’s very possible that all you will have to do to parallelize it is to load the
multicore package and replace lapply() with mclapply().

For example, let’s write a parallel K-Means using multicore:

library(multicore)

library(MASS)

results <- mclapply(rep(25, 4), function(nstart) kmeans(Boston, 4, nstart=nstart))
i <- sapply(results, function(result) result$tot.withinss)

result <- results[[which.min(i)]]

This is nearly identical to the sequential, lapply() version of K-Means from the snow
chapter, except that we loaded the multicore package and replaced lapply() with
mclapply(). In particular, we didn’t have to create a cluster object, and we didn’t have
to initialize the workers by loading the MASS package on each of them. This is because
mclapply() automatically starts the workers using fork(). These workers inherit the
functions, variables and environment of the master process, making explicit worker
initialization unnecessary.

It may surprise you that mclapply() creates worker processes every time it is called.
snow doesn’t do that since starting workers on a cluster is often rather time consuming.
However, fork() is relatively fast, especially since it doesn’t copy process data until it
needs to, a technique called copy-on-write which takes advantage of the operating sys-
tem’s virtual memory system. In addition, forking the workers every time mclapply()
is called gives each of them a virtual copy of the master’s environment right at the point
that mclapply() is executed, so worker data is in sync with the master. Thus, you don’t
need to recreate the master’s data and environment in the workers, as in snow, since
fork() does that automatically and efficiently.

The mc.cores Option

The mclapply() function takes a number of optional arguments that modify its behav-
iour. One of the most important of these is the mc.cores argument which controls the
number of workers that are created, which is often set equal to the number of cores on
the computer. By default, mclapply() uses the value of getOption("cores"), which can

Working with It | 39

be set using the standard options() function. If this option isn’t set, mclapply() will
detect and use the number of cores on the computer.
Let’s tell mclapply() to start two workers using mc. cores:

> unique(unlist(mclapply(1:100, function(i) Sys.getpid(), mc.cores = 2)))
[1] 4953 4954

As you can see, there are only two unique PIDs in the results, indicating that exactly
two processes executed all 100 tasks.

Cores or Workers?

The mc. cores argument may sound like it specifies the number of cores to use, but it
actually specifies the number of workers to start. If mc. cores is set equal to the number
of cores and the resulting workers are the only compute intensive processes on the
machine, then they will probably each get a core to themselves, but that’s up to your
operating system’s scheduler. It is possible to influence the Linux scheduler through
the sched_setaffinity() system call for example, but none of the functions in multi
core do that.

Now let’s use options() to specify three workers:

> options(cores = 3)

> unique(unlist(mclapply(1:100, function(i) Sys.getpid())))

[1] 4955 4956 4957
This will also control the number of workers started by the pvec() function, which we
will discuss later.

The mc.set.seed Option

Another important mclapply() option is mc.set.seed. When mc. set. seed is set to TRUE,
mclapply() will seed each of the workers to a different value after they have been created,
which ismclapply()’s default behaviour. If mc. set. seed is set to FALSE, mclapply () won’t
do anything with respect to the random number generator.

In general, I would recommend that you leave mc. set.seed set to TRUE unless you have
a good reason to turn it off. The problem with setting mc. set.seed to FALSE is that the
worker processes will inherit the state of the master’s random number generator if it is
set.

Let’s experiment with setting mc.set.seed to FALSE. First, we’ll generate some random
numbers on the workers using mclapply() when the master’s state is clean:

> mclapply(2:3, function(i) rnorm(3), mc.cores = 3, mc.set.seed = FALSE)

[[1]]
[1] -1.268046 0.262834 2.415977

40 | Chapter3: multicore

[[2]]
[1] -0.1817228 0.6496526 -0.7741212

[[31]
[1] -0.7378100 0.1080590 -0.5902874

All the values are different, so everything looks fine. But watch what happens if we
generate a random number on the master, and then call mclapply() again:

> rnorm(1)

[1] 1.847741

> mclapply(1:3, function(i) rnorm(3), mc.cores = 3, mc.set.seed = FALSE)

[[1]]
[1] 0.6995516 -0.2436397 -0.6131929

[[2]]
[1] 0.6995516 -0.2436397 -0.6131929

[[31]
[1] 0.6995516 -0.2436397 -0.6131929

Now the workers all produce identical random numbers, and they will produce the
same numbers if I were to call mclapply() again!

This happens because generating any random numbers or calling set.seed() creates a
variable called .Random. seed in the global environment, and its value is used to generate
subsequent random numbers. Therefore, if that variable exists on the master when
mclapply() is executed, all the worker processes will inherit it and produce the same
stream of random numbers unless something is done to reseed each of the workers.

When mc.set.seed is TRUE, mclapply() will explicitly set the seed differently in each of
the workers before calling the user’s function. Let’s try that after setting the seed in the
master to make sure the workers do indeed produce different random numbers:

> set.seed(7777442)
> mclapply(1:3, function(i) rnorm(3), mc.cores = 3, mc.set.seed = TRUE)

[[1]]
[1] -1.0757472 -0.7850815 -0.1700620

[[2]]
[1] -0.63224810 -0.04542427 1.46662809

[[31]
[1] -0.2067085 0.7669072 0.4032044

As of multicore 0.1-5, setting mc.set.seed to TRUE will cause mclapply() to execute
set.seed(Sys.getpid()) in each of the workers. Thus, not only are the workers seeded
differently from each other, but they are also seeded differently from the workers cre-
ated by previous calls to mclapply().*

1 Of course, Unix process IDs usually only go up to about 32767, so they will wrap around eventually, but I'll
ignore that issue.

Working withIt | 41

Load Balancing with mclapply

What if you want load balancing with multicore? By default, mclapply() will work like
snow’s parLapply() function. That is, it preschedules the work by dividing it into as
many tasks as there are cores. Sometimes that works well, even if the tasks have very
different lengths. But to best balance the work performed by each of the workers, pre-
scheduling can be turned off by setting mc.preschedule to FALSE. This makes
mclapply() work more like snow’s clusterApplyLB() function.

Let’s use the parallel sleep example to see what difference prescheduling can make:

> set.seed(93564990)
> sleeptime <- abs(rnorm(10, 10, 10))
> system.time(mclapply(sleeptime, Sys.sleep, mc.cores = 4))
user system elapsed
0.012 0.008 64.763
> system.time(mclapply(sleeptime, Sys.sleep, mc.cores = 4, mc.preschedule = FALSE))
user system elapsed
0.032 0.028 57.347

Unfortunately we can’t easily generate performance plots, as with snow, but the elapsed
times demonstrate that it can help to turn off prescheduling if the times to execute the
aggregated tasks are different. The difference isn’t as great as we demonstrated between
clusterApply() and clusterApplyLB(), since prescheduling tends to smooth out the
differences in the length of individual tasks, but it can still be significant.

Keep in mind that a new worker is forked for every element of the vector passed to
mclapply() when prescheduling is turned off. That means that the performance could
suffer if each call to the function is relatively short. In other words, you should probably
only set mc.preschedule to FALSE if the tasks are both long and varying in length. Oth-
erwise, it’s probably a safer bet to leave prescheduling turned on.

The pvec Function

The pvec() function was introduced in multicore 0.1-4.Itis a high-level function used
to execute vector functions in parallel. Let’s use it to take the cube root of a vector:
> x <- 1:10
> pvec(x, """, 1/3)
[1] 1.000000 1.259921 1.442250 1.587401 1.709976 1.817121 1.912931 2.000000
[9] 2.080084 2.154435

This is like the parVapply() function that we developed in the snow chapter. In both
cases, the worker function is executed on subvectors of the input vector, rather than
on each element of it, making it potentially more efficient and convenient than mcl
apply() for this case.

pvec() takes the same additional arguments as mclapply() (all prefixed with “mc.”
except for mc.preschedule, which isn’t appropriate for pvec().

42 | Chapter3: multicore

Many vector functions, including *, are not compute intensive enough
to make the use of pvec() worthwhile. This example runs slower on my
* Qlsr computers than the equivalent sequential version, regardless of the vec-
" tor length.

The parallel and collect Functions

The parallel() and collect() functions are the last of the high-level functions in
multicore, and are used together. The parallel() function creates a new process using
fork() to evaluate an expression in parallel with the calling process. It returns a
parallelJob object which is passed to the collect() function to retrieve the result of
the computation. collect() can be called with either a single parallelJob object, or a
list of parallelJob objects. It returns the corresponding results in a list, in the same
order that the jobs were specified to collect() (but only ifwait is TRUE, as we’ll see later).

Normally, you would call parallel() multiple times, and then use collect() to retrieve
all of the results. This can be useful if you want to execute several different functions
in parallel, or start a job running in the background and then do something else before
waiting for it to complete.

Let’s use parallel() and collect() to execute three different functions in parallel. For
demonstration purposes, I'll define very contrived functions that each sleep for a dif-
ferent period of time and then return a number that identifies them:

library(multicore)

fun1 <- function() {Sys.sleep(10); 1}

fun2 <- function() {Sys.sleep(5); 2}
fun3 <- function() {Sys.sleep(1); 3}

Let’s start each of them executing using parallel(), and then wait for the results using
collect():

> f1 <- parallel(funi())

> f2 <- parallel(fun2())

> 3 <- parallel(fun3())

> collect(list(f1, f2, f3))

$°4862°

[1] 1

$°4863°
[1] 2

As you can see, the results are returned in the same order that they were specified to
collect().

That is the basic way of using parallel() and collect(). You can think of parallel()
as a submit operation, and collect() as a wait operation, similar to batch queueing
commands.

Working withIt | 43

Using collect Options

The collect() function has two options that give you more control over how it waits
forjobs started via parallel(): wait and timeout. Ifwait is set to TRUE (the default value),
then collect() waits for all of the specified jobs to finish, regardless of the value of
timeout, and returns the results in a list in the same order that the jobs were specified
to collect(). But if wait is set to FALSE, then collect() waits for up to timeout seconds
for at least one of the jobs to finish or a process to exit, and returns the results in a list
in arbitrary order, using a NULL to indicate that a process exited. If no jobs finish in that
time, collect() returns a NULL.

To check for results without waiting at all, you call collect() with wait set to FALSE,
and timeout set to its default value of 0. Let’s do that several times, pausing after the
first collect() to wait for some results:

> f1 <- parallel(funi())

> f2 <- parallel(fun2())

> 3 <- parallel(fun3())

> collect(list(f1, f2, f3), wait=FALSE)
NULL @

> Sys.sleep(15)

> collect(list(f1, f2, f3), wait=FALSE)
[[1]] ©

[1] 3

]

]
2

— N

[l
[1
3]
]

[g——

[l
[1
> collect(list(f1, f2, f3), wait=FALSE)

[[1]] ©
NULL

[[2]]
NULL

[[3]]
NULL

> collect(list(f1, f2, f3), wait=FALSE)
NULL @

Here’s what each of the four values returned by collect() indicate:
@ No results are available and no processes have exited

@ fun3(), fun2(), and fun1() have completed

© All three of the processes have exited

O All results have been returned and all processes have exited

44 | Chapter3: multicore

The timeout argument allows you to wait a specified number of seconds for at least one
result to complete or one process to exit (assuming wait is set to TRUE). Let’s do that
repeatedly in order to collect all of the results:

> f1 <- parallel(funi())

> f2 <- parallel(fun2())

> f3 <- parallel(fun3())

> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)

[[1]]
[1]3 @

> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)

[[1]]
NULL ©

> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)

[[1]]
[1] 2 ©

> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)

[[1]]
NULL @

> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)
[[1]]

1] 10O
> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)

[[1]]
NULL @

> collect(list(f1, f2, f3), wait=FALSE, timeout=1000000)
NULL @

Here’s what each of the seven values returned by collect() indicate:
@ fun3() has completed

@ The process that executed fun3() has exited

© fun2() has completed

O the process that executed fun2() has exited

© fun1() has completed

O The process that executed fun1() has exited

@ All results have been returned and all processes exited

Note that if we had used a shorter timeout, such a 2, collect() would have returned
some NULLs, indicating that the timeout had expired before any jobs completed or pro-
cesses exited.

Working withIt | 45

Parallel Random Number Generation

Unfortunately, there is no support built into the multicore package for any of the par-
allel random number generation packages, such as rlecuyer or rsprng.S Itisn’t too hard
to use them directly, but since the high-level functions fork the workers each time they
are called, you can’t initialize the workers once and then use them repeatedly, as in
snow. You might need to generate a new seed every time you do a parallel operation, or
perhaps have the workers return their state along with the result so that the next set of
workers can pick up where the previous set left off.

Here’s the idea: initialize each of the workers to use parallel random numbers at the
start of the task. We can even use the initSprngNode() function which is defined in
snow to do that:

> library(snow)

> nw <- 3

> seed <- 7777442

> kind <- 0

> para <- 0

> f1 <- parallel({

+ initSprngNode(0, nw, seed, kind, para)
+ rnorm(1)

+1)

> f2 <- parallel({

+ initSprngNode(1, nw, seed, kind, para)
+ rnorm(1)

+1)

>

¥

¥

¥

>

[1

f3 <- parallel({
initSprngNode(2, nw, seed, kind, para)
rnorm(1)

)
unlist(collect(list(f1, f2, f3)), use.names = FALSE)

] -0.1447636 1.0686927 -0.4137106

Since parallel() takes an expression, it is easy to prepend a call to initSprngNode to
the expression using curly braces. We could do something similar with mclapply()
using a wrapper function, except having an additional varying argument might require
a bit of work. Being able to easily specify a different first argument to initSprngNode for
each worker can make parallel() easier to use.

Notice that we get the same results using snow:

> cl <- makeCluster(3, type = "SOCK")

> seed <- 7777442

> clusterSetupSPRNG(cl, seed = seed)

> unlist(clusterEvalQ(cl, rnorm(1)), use.names = FALSE)
[1] -0.1447636 1.0686927 -0.4137106

> stopCluster(cl)

§ This is one of the problems solved by the new parallel package.

46 | Chapter3: multicore

The same basic approach can be used with the rlecuyer package. See the source for
clusterSetupRNGstream() in snow to figure out how.

The Low-Level API

So far, we’ve only discussed multicore’s high-level APIL. There is also a low-level API
which includes functions such as fork(), selectChildren(), readChild(), sendMaster(),
and exit(). Those are the basic functions used to implement mclapply(), and to dem-
onstrate how they can be used, I will implement a stripped down version of
mclapply(), which I call mclapply.init. To make it more interesting, I will include an
option called mc.init that can be used to initialize the worker processes. The value of
mc.init should be a function that takes two arguments: id and cores. This function
will be called in each of the child/worker processes before executing the worker
function.

Here is the definition of mclapply.init using multicore’s low-level API:

mclapply.init <- function(X, FUN, ..., mc.cores=4, mc.init=NULL) {
cores <- max(min(mc.cores, length(X)), 1)
ix <- lapply(1:cores, function(i) seq(i, length(X), by=cores))
forkloop <- function(core) {
proc <- fork()
if (inherits(proc, "masterProcess")) {
sendMaster (tryCatch({
suppressWarnings(rm(".Random.seed", pos=.GlobalEnv))
if (is.function(mc.init))
mc.init(core, cores)
lapply(X[ix[[core]]], FUN, ...)

e;ror=function(e) {
lapply(ix[[core]], function(i) e)
))

exit(0)
}
proc$pid

pids <- sapply(1:cores, forkloop)
results <- vector("list", length(X))
while (! is.null(ready <- selectChildren(pids, 1))) {
if (is.integer(ready)) {
for (pid in ready) {
data <- readChild(pid)
if (is.raw(data)) {
core <- which(pid == pids)
results[ix[[core]]] <- unserialize(data)

}
}

names (results) <- names(X)
results

}

Working with It | 47

If you’re familiar with Unix system programming, this should look pretty familiar. The
master process calls fork() to start each worker process. Fork() returns a process object
which will be a childProcess object in the parent process and a masterProcess object
in the child process. The code immediately after fork() uses this process object to
determine its own identity. If the object is a masterProcess, then it is the child; other-
wise, it is the parent/master. The master simply returns the child’s process ID contained
in the childProcess object. The child executes the worker function on its portion of the
input vector, and sends the result to the master process via the sendMaster () function.
Meanwhile, the master calls selectChildren() to wait for the children to do something.
selectChildren() returns an integer vector of process IDs of the children that have
either sent data to the master or exited. The master then calls readChild() for each of
those process IDs. If readChild() returns a raw vector, the master unserializes it and
saves the results in a list; otherwise, it ignores the value which indicates that the child
has exited.

However, I glossed over a couple of important things that the child process does before
executing the worker function. First, it removes the .Random.seed variable from the
global environment, in order to avoid inheriting the state of the master’s random num-
ber generator. Then it calls the function specified by the mc.init argument, passing it
the values of core and cores. This function can be used to initialize the worker, and the
two argument values may be helpful in doing that.

Let’s say that we would like the worker function to tag each of the result values with
its own ID. It can do that by passing a function to mc.init that assigns the value of id
to a variable in the global environment:

> set.worker.id <- function(id, cores) {

+ assign(".MC.WORKER.ID", id, pos = .GlobalEnv)
+

> mclapply.init(11:13, function(i) c(i, .MC.WORKER.ID), mc.cores = 2,
+ mc.init = set.worker.id)

[[1]]

[1] 12 1

[[2]]

[1] 12 2

[[31]

[1] 13 1

Now the producer of each of the results can be identified.

Another possible use of mc.init is to initialize the random number generator. To make
mclapply.init() work like mclapply() with mc.set.seed set to TRUE, we can specify the
following mc.init function:

> set.worker.seed <- function(id, cores) {

+ set.seed(Sys.getpid())

+}

> mclapply.init(1:3, function(i) rnorm(1), mc.init = set.worker.seed)

48 | Chapter3: multicore

[[1]]
[1] 0.1699496

[[2]]
[1] 0.1616656

[[31]
[1] -0.3883378

We could also initialize the workers to use a parallel random number generator pack-
age, but I'll leave that as an exercise for the reader.

When It Works...

The best feature in multicore is its drop-in replacement for lapply(): mclapply ().l It’s
about as close as it comes to something that “Just Works” in the world of Parallel R.#

...And When It Doesn't

The biggest gotchas in multicore are not supporting Windows and weak support for
parallel random number generation.

The Wrap-up

You now know how to run your R scripts in parallel on the multicore computer that
you probably use to read your email every day. You’ve also seen how running on a
single machine bypasses many of the difficulties associated with running on multiple
machines. So why don’t more R packages take advantage of multicore to run in parallel?
The next chapter discusses a new parallel programming package that will come built
into R, starting with R 2.14.0, which might encourage more R developers to parallelize
their packages. And it will be easy for you to learn, since it uses much of the code from
the snow and multicore packages, so almost everything that you’ve learned so far will
work in the new parallel package.

I If you’re using lapply() with a function that modifies a variable outside of its local scope, then mclapply()
probably won’t work the same way as lapply(). However, that hasn’t been a problem in my experience.
Programmers tend to use for-loops for that sort of code.

#And did I mention that multicore is easy to install?

The Wrap-up | 49

CHAPTER 4
parallel

A new parallel programming package named parallel will be included in R 2.14.0,
tentatively scheduled for release on October 31, 2011. It is derived from the snow and
multicore packages, providing many of the same functions as those packages. Some of
the functions derived from multicore have been renamed by adding the prefix “mc.”,
and some of the arguments to mclapply() have been changed a bit, but if you have read
the snow and multicore chapters of this book, you will have very little difficulty learning
to use parallel.

This is an exciting development, since it makes parallel computing in R more main-
stream. Hopefully the parallel package will be used from other standard packages,
giving many more users the benefit of parallel computing, perhaps without knowing
that they’re using it."

An important feature of parallel is its integration with the new L’Ecuyer-CMRG ran-
dom number generator (RNG), also new in R 2.14.0. The seed of this generator can be
easily advanced a given number of steps, making it very useful as a parallel RNG. This
is accomplished using the same concepts used in the rlecuyer package, but it is a com-
pletely new implementation, so parallel has no dependency on the rlecuyer package
itself.

In particular, the multicore derived functions in parallel now have true parallel RNG
support, solving the biggest “gotcha” in the multicore package.

This chapter was written using an experimental version of the paral
% lel package using the development version of R 2.14.0. Officially, any-
thing in the package can change or be removed without notice until
October 2011, which is just after the “all-in” date for this book. How-

ever, this is such an important package for parallel computing with R
that I really wanted to include it in this book.

* This has already been done to a degree with multithreaded math libraries, but this takes another important
step forward.

51

Quick Look

Motivation: You have an R script that spends two days executing a function using
lapply() on your laptop.

Solution: Replace lapply() with the mclapply() function from the multicore package,
and consider using parLapply() if you have a cluster handy.

Good because: It comes built it as of R 2.14.0, and there isn’t much to learn if you’ve
used snow or multicore before.

How It Works

W
- Since the parallel package has so much in common with the snow and
ﬁ:\ multicore packages, I don’t want to repeat all of the material that I just
T+ Wa covered in the last two chapters. Instead, I assume that you've either

" read the snow and multicore chapters of this book, or are already rea-
sonably familiar with those packages.

parallel can be used to run on Posix-based multicore systems using functions such
as mclapply() and mcparallel() that were derived from the multicore package. But
parallel can also be used with a “PSOCK?” cluster and functions such as parLapply()
and clusterApplylB() to execute on multicore Windows systems, as well as Linux
clusters. It can also be used with cluster objects that were created using snow, making
it possible to use parallel with MPI as the transport.

In other words, it addresses essentially everything addressed by the snow and
multicore packages.

Setting Up

This is the real beauty of parallel. If you’re using R 2.14.0 or later, it’s already installed:
youdon’t need to install any additional packages unless you want to use the MPI, PVM,
or NetWorkSpaces transports.

If you have any doubts, you can try loading it:
library(parallel)
If this fails, you should check the version of R that you’re using with:

R.version.string

You need to have R 2.14.0 or better to use parallel.

52 | Chapter4: parallel

Working with It

Getting Started

If you’re using a Posix-based system, such as Linux or Mac OS X, you can use the
multicore derived functions, such as mclapply(). Mclapply is basically the same as the
version in the multicore package, except that a couple of the arguments work slightly
differently. For example, the mc. cores argument doesn’t automatically detect the num-
ber of cores in the machine. However, the parallel package does include a function to
do that, called detectCores().T

Here’s the parallel K-Means example for the parallel package using mclapply(). It is
very similar to the version in the multicore chapter, except that it loads parallel, uses
detectCores() to specify the value of the mc. cores argument, and uses the parallel RNG
as a bonus:
library(parallel)
library(MASS)
RNGkind("L'Ecuyer-CMRG")
mc.cores <- detectCores()
results <- mclapply(rep(25, 4),
function(nstart) kmeans(Boston, 4, nstart=nstart),
mc.cores=mc. cores)

i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]

We’ll discuss the use of RNGkind("L"'Ecuyer-CMRG") in “Parallel Random Number Gen-
eration” on page 55.

The default value of the mc.cores argument is getOption("mc.cores", 2L),* so you
might want to add the following line to the beginning of your scripts when converting
from multicore to parallel:

options(mc.cores=detectCores())
Then mclapply() and pvec() will work more like that do in multicore.

If you’re using Windows, you need to use the snow derived API in parallel. The fol-
lowing parallel K-Means example works on any platform supported by the parallel
package:

library(parallel)

cl <- makeCluster(detectCores())

clusterSetRNGStream(cl)

clusterEvalQ(cl, library(MASS))

results <- clusterApply(cl, rep(25, 4), function(nstart) kmeans(Boston, 4,
nstart=nstart))

t The detectCores() function is in the multicore package, but as of version 0.1-5, is not exported.

1 The multicore version of mclapply() uses the option cores. This is another case where parallel adds the
“mc.” prefix.

Working withIt | 53

i <- sapply(results, function(result) result$tot.withinss)
result <- results[[which.min(i)]]
stopCluster(cl)

This is very similar to the K-Means example in the snow chapter. The difference is in
loading parallel, creating the cluster object, and enabling parallel random number
generation. As with snow, we use the makeCluster() function, but in parallel, the
type argument doesn’t need to be specified. We'll discuss the parallel version of
makeCluster() in more depth in the next section, and parallel random number gener-
ation in “Parallel Random Number Generation” on page 55.

Creating Clusters with makeCluster

If you’re running on Windows or a Linux cluster, you can’t use multicore derived
functions such as mclapply() and pvec(). Instead you’ll need to use snow derived func-
tions such as parLapply() and clusterApplylLB(). The first argument to these functions
is a cluster object, so before you can use one of these functions, you’ll have to create a
cluster object.

The parallel package comes with two transports: “PSOCK” and “FORK”. The
“PSOCK?” transport is a streamlined version of snow’s “SOCK” transport. It starts
workers using the Rscript command, and communicates between the master and
workers using socket connections.

As in snow, the makeCluster () function creates a cluster object. The default value of the
type argument is “PSOCK?”, so we can create a “PSOCK?” cluster with four local workers
using the command:

cl <- makeCluster(4)

It’s often useful to specify the cluster size using the detectCores() function:
cl <- makeCluster(detectCores())

If you have ssh installed, you can specify a list of machines for the first argument:

cl <- makeCluster(c("n1", "n2", "n3", "n4"))

Note that this is nearly identical to the way that socket clusters are created in snow,

except that we never need to specify the type argument.

The “FORK?” transport starts workers using the mcfork() function, and communicates
between the master and workers using socket connections.

To create a “FORK?” cluster, use makeCluster() with type set to “FORK”:

cl <- makeCluster(4, type="FORK")
You cannot start workers on remote machines with a “FORK?” cluster, since mcfork()
is built on the fork() system call, which only creates processes on the local machine.

Also, “FORK?” clusters are only supported on Posix-based systems, not Windows, since
fork() is a Posix system call.

54 | Chapter4: parallel

An interesting feature of “FORK” clusters is that the workers inherit the data and en-
vironment of the master process. This is like the workers that are automatically started
by mclapply(), but unlike the workers started in a “PSOCK?” cluster. That can be useful,
but it’s important to remember that a “FORK” cluster is persistent, like a “PSOCK”
cluster, and unlike the workers started by mclapply(). Thus, variables created on the
master after creating the “FORK?” cluster will not magically appear on the workers, as
in mclapply(). You would have to always create a new “FORK” cluster immediately
before calling parLapply(), for example, to emulate the behaviour of mclapply(). But
since that won’t work with any other type of cluster object, you should probably just
use mclapply().

Since “FORK” clusters can be created quickly, they can be useful when parallelizing
lapply() operations that are deep in some package, but you don’t want to use a global
variable or add an argument to dozens of functions in order to pass the cluster object
to the appropriate function. In that case, you can just create the cluster object right
where you need it, and shut it down afterwards. Here’s one way that you could create
and use a one shot cluster object with parallel that would be about as fast as using
mclapply() on a Posix-based system, but would also work on Windows:

type <- if (exists("mcfork", mode="function")) "FORK" else "PSOCK"

cores <- getOption("mc.cores", detectCores())

cl <- makeCluster(cores, type=type)

results <- parLapply(cl, 1:100, sqrt)
stopCluster(cl)

Of course, you could also use mclapply() instead of a “FORK?” cluster if you prefer.

Parallel Random Number Generation

The parallel random number generation support is perhaps the most interesting and
important feature of parallel. It uses the ideas of the rlecuyer package, but not the
code.

To use this new support in the multicore derived functions, simply set the random
number generator to "L’Ecuyer-CMRG" using the RNGkind() function, and leave
mc.set.seed to TRUE:

RNGkind("L'Ecuyer-CMRG")
mclapply(1:2, function(i) rnorm(1))

The first time that one of the multicore derived, high-level functions is called, the par-
allel random number generator is initialized. Each worker that is started by any high-
level function will get a new random number stream. If the mc. reset. stream() function
is called, the parallel random number generator is reinitialized using the current seed
on the master.

Working withIt | 55

At the time of this writing, during the development of parallel,
% mc.reset.stream() does not reset the state of the RNG to the same state

as the first time that a high-level function is called. That may change by
the time R 2.14.0 is released.

Here’s one way to use mc.reset.stream() to get reproducible random numbers from
two calls to mclapply():S
> RNGkind("L'Ecuyer-CMRG")
> set.seed(7777442)
> mc.reset.stream()
> unlist(mclapply(1:2, function(i) rnorm(1)))
[1] -2.0043112 0.9315424
> set.seed(7777442)
> mc.reset.stream()
> unlist(mclapply(1:2, function(i) rnorm(1)))
[1] -2.0043112 0.9315424

Note that the second call to set.seed() is not technically necessary in this case, since
the state of the master’s RNG hasn’t changed. It would be necessary if any random
numbers were generated on the master between the two calls to mc.reset.stream().

If RNGkind("L'Ecuyer-CMRG") isn’t called on the master and mc.set.seed is TRUE, the
workers will be randomly seeded after they are started since .Random.seed will be re-
moved from the global environment if it exists. Thus, as long as you don’t set
mc.set.seed to FALSE, your workers should generate different random numbers, but
using L’ Ecuyer-CMRG for true parallel RNG support is recommended.

As with multicore, I wouldn’t recommend setting mc. set.seed to FALSE unless you’re
sure you know what you’re doing.

To use the new parallel RNG support in the snow derived functions, use the new clus
terSetRNGStream() function. This replaces the clusterSetupRNGstream() function in
snow:

> cl <- makeCluster(4, type = "FORK")

> clusterSetRNGStream(cl, 7777442)

> unlist(clusterEvalQ(cl, rnorm(1)))

[1] -0.9360073 -2.0043112 0.9315424 -0.8751129
> clusterSetRNGStream(cl, 7777442)

> unlist(clusterEvalQ(cl, rnorm(1)))

[1] -0.9360073 -2.0043112 0.9315424 -0.8751129
> stopCluster(cl)

Here the seed is specified as an argument to clusterSetRNGStream(), not using
set.seed().

§ Note that mc.reset.stream() is called before both calls tomclapply(). That was necessary in the development
version of R leading up to R 2.14.0, because mclapply() moves to the next RNG stream if the RNG is already
initialized. If the first mc.reset.stream() was skipped, the second mclapply() would use a different set of
streams than the first. That may be changed in R 2.14.0, but this example will probably still work.

56 | Chapter4: parallel

The parallel package also includes utility functions to easily advance the seed. The
nextRNGStream() function advances a seed to the next stream of 2127 random numbers,
and the nextRNGSubStream() function advances it to the next sub-stream of 27¢ random
numbers.

To advance the L’Ecuyer-CMRG RNG to the next sub-stream, simply reassign the .Ran
dom. seed variable in the global environment using nextRNGStream():
.Random.seed <<- nextRNGSubStream(.Random.seed)

This will fail if RNGkind("L'Ecuyer-CMRG") hasn’t been called, since nextRNGSub
Stream() requires a L’Ecuyer-CMRG seed.

How long before a worker runs out of random numbers?

Each worker gets a stream of 2!27 random numbers. That’s a lot. In my tests, generating
22% random numbers with runif () took about 43 seconds. That means that if the worker
did nothing but generate random numbers, it would take 0.86 septillion years before it
started stealing random numbers from somebody else’s stream.

And if you’re concerned about running out of streams, you can probably stop worrying.
Since the period of the L’ Ecuyer-CMRG RNG is approximately 2191, that will provide one
stream of random numbers for about 2% workers.

Summary of Differences

As of 9/26/2011, here is a summary of the differences between parallel and
multicore or snow:

Differences from multicore

¢ fork() function renamed to mcfork()
e exit() function renamed to mcexit()
¢ kill() function renamed to mckill()

* parallel() function renamed to mcparallel(), but the name “parallel” is still ex-
ported for compatibility

* collect() function renamed tomccollect(), but the name “collect” is still exported
for compatibility

* Different default value of mc.cores argument

* New mc.allow.recursive argument can prevent recursive calls to mclapply()
* mc.set.seed argument reimplemented using a real parallel RNG

¢ New mc.reset.stream() function

* cores option renamed to mc.cores

Summary of Differences | 57

Differences from snow

* New function clusterSetRNGStream() initializes parallel RNG

* setDefaultClusterOptions() not exported

* The namespace doesn’t export every defined function in the package
* makeCluster() supports additional types “FORK” and “PSOCK”

* New cluster options methods and renice when creating a cluster (although renice
doesn’t currently work on my Linux machine as of 9/26/2011).

* Cluster option type defaults to “PSOCK”

* Cluster option port can be set via the environment variable “R_PARAL-
LEL_PORT”

¢ snow.time() function not included
* Timeout implemented using new socketConnection() timeout argument, which
resolves obscure problem in snow

New functions useful in both sets of functions

* detectCores() function now exported
* Additional functions for parallel RNG: nextRNGStream(), nextRNGSubStream()

When It Works...

Since it includes the best features of both snow and multicore, parallel is a very versatile
package. Its main limitation is in dealing with huge numbers of tasks and very large
datasets.

...And When It Doesn't

parallel has basically the same gotchas as the snow and multicore packages, except
that it does include support for parallel random number generation in the multicore-
derived API, and allows recursive calls to mclapply() to be prevented.

The Wrap-up

The parallel package is an exciting new development in the world of Parallel R. Tra-
ditional parallel computing is finally becoming mainstream. But there are other new
packages becoming available for R that use a newer parallel programming paradigm:
MapReduce. The rest of this book will show you how to take advantage of many of
those packages.

58 | Chapter4: parallel

CHAPTER 5
A Primer on MapReduce and Hadoop

Hadoop is an open-source framework for large-scale data storage and distributed com-
puting, built on the MapReduce model. Doug Cutting initially created Hadoop as a
component of the Nutch web crawler. It became its own project in 2006, and graduated
to a top-level Apache project in 2008. During this time, Hadoop has experienced wide-
spread adoption.

One of Hadoop’s strengths is that it is a general framework, applicable to a variety of
domains and programming languages. One use case, and the common thread of the
book’s remaining chapters, is to drive large R jobs.

This chapter explains some basics of MapReduce and Hadoop. It may feel a little out
of place, asit’s not specific to R; but the content is too important to hide in an appendix.

Have no fear: T don’t dive into deep details here. There is a lot more to MapReduce and
Hadoop than I could possibly cover in this book, let alone a chapter. I'll provide just
enough guidance to set you on your way. For a more thorough exploration I encourage
you to read the Google MapReduce paper mentioned in “A MapReduce Primer”, as
well as Hadoop: The Definitive Guide by Tom White (O’Reilly).

If you already have a grasp on MapReduce and Hadoop, feel free to skip to the next
chapter.

Hadoop at Cruising Altitude

When people think “Apache Hadoop,”" they often think about churning through ter-
abytes of input across clusters made of tens or hundreds of machines, or nodes. Logfile
processing is such an oft-cited use case, in fact, that Hadoop virgins may think this is
all the tool is good for. That would be an unfortunately narrow view of Hadoop’s
capabilities.

* http://hadoop.apache.org/

59

http://oreilly.com/catalog/0636920010388
http://hadoop.apache.org/

Plain and simple, Hadoop is a framework for parallel processing: decompose a problem
into independent units of work, and Hadoop will distribute that work across a cluster
of machines. This means you get your results back much faster than if you had run each
unit of work sequentially, on a single machine. Hadoop has proven useful for extract-
transform-load (ETL) work, image processing, data analysis, and more.

While Hadoop’s parallel processing muscle is suitable for large amounts of data, it is
equally useful for problems that involve large amounts of computation (sometimes
known as “processor-intensive” or “CPU-intensive” work). Consider a program that,
based on a handful of input values, runs for some tens of minutes or even a number of
hours: if you needed to test several variations of those input values, then you would
certainly benefit from a parallel solution.

Hadoop’s parallelism is based on the MapReduce model. To understand how Hadoop
can boost your R performance, then, let’s first take a quick look at MapReduce.

A MapReduce Primer

The MapReduce model outlines a way to perform work across a cluster built of inex-
pensive, commodity machines. It was popularized by Google in a paper, “MapReduce:
Simplified Data Processing on Large Clusters” by Jeffrey Dean and Sanjay Ghema-
wat.T Google built their own implementation to churn web content, but MapReduce
has since been applied to other pursuits.

The name comes from the model’s two phases, Map and Reduce. Consider that you
start with a single mountain of input. In the Map phase, you divide thatinput and group
the pieces into smaller, independent piles of related material. Next, in the Reduce phase,
you perform some action on each pile. (This is why we describe MapReduce as a
“divide-and-conquer” model.) The piles can be Reduced in parallel because they do
not rely on one another.

A simplified version of a MapReduce job proceeds as follows:
Map Phase
1. Each cluster node takes a piece of the initial mountain of data and runs a Map task
on each record (item) of input. You supply the code for the Map task.

2. The Map tasks all run in parallel, creating a key/value pair for each record. The key
identifies the item’s pile for the reduce operation. The value can be the record itself
or some derivation thereof.

t http://labs.google.com/papers/mapreduce.html

60 | Chapter5: APrimer on MapReduce and Hadoop

http://labs.google.com/papers/mapreduce.html

The Shuffle

1. At the end of the Map phase, the machines all pool their results. Every key/value
pair is assigned to a pile, based on the key. (You don’t supply any code for the
shuffle. All of this is taken care of for you, behind the scenes.)*

Reduce Phase

1. The cluster machines then switch roles and run the Reduce task on each pile. You
supply the code for the Reduce task, which gets the entire pile (that is, all of the
key/value pairs for a given key) at once.

2. The Reduce task typically, but not necessarily, emits some output for each pile.

Figure 5-1 provides a visual representation of a MapReduce flow.§ Consider an input
for which each line is a record of format (letter)(number), and the goal is to find the
maximum value of (number) for each (letter). (The figure only shows letters A, B, and
C, but you could imagine this covers all letters A through Z.) Cell (1) depicts the raw
input. In cell (2), the MapReduce system feeds each record’s line number and content
to the Map process, which decomposes the record into a key (letter) and value
(number). The Shulffle step gathers all of the values for each letter into a common bucket,
and feeds each bucket to the Reduce step. In turn, the Reduce step plucks out the
maximum value from the bucket. The output is a set of (letter), (maximum number)
pairs.

input map | shuffle | reduce > output
0067011990... (0, 0067011990..) (1950, 0)
0043011990... (106, 0043011990..) (1950, 22)
0043011990... |---p+| (212, 0043011990..) p=--p{ (1950, -11) |- Eg‘;g‘ [0 ;[!:uizﬂ; = Ei::g‘ 1;3 ;:‘;3‘;;1
0043012650... (318, 0043012650..) (1949, 111) U e £ b
0043012650... (424, 0043012650..) (1949, 78)
1 2 3 4 5 6

Figure 5-1. MapReduce data flow

This may still feel a little abstract. A few examples should help firm this up.

Thinking in MapReduce: Some Pseudocode Examples

Sometimes the toughest part of using Hadoop is trying to express a problem in Map-
Reduce terms. Since the payoff—scalable, parallel processing across a farm of com-
modity hardware—is so great, it’s often worth the extra mental muscle to convince a
problem to fit the MapReduce model.

1 Well, you can provide code to influence the shuffle phase, under certain advanced cases. Please refer to
Hadoop: The Definitive Guide for details.

§ A hearty thanks to Tom White for letting us borrow and modify this diagram from his book.

Thinking in MapReduce: Some Pseudocode Examples | 61

http://oreilly.com/catalog/0636920010388

Let’s walk through some pseudocode for the Map and Reduce tasks, and how they
handle key/value pairs. Note that there is a special case in which you can have a Map-
only job for simple parallelization. (I'll cover real code in the next chapters, as each
Hadoop-related solution I present has its own ways of talking MapReduce.)

For these examples, I'll use a fictitious text input format in which each record is a
comma-separated line that describes a phone call:

{date},{caller num},{caller carrier},{dest num},{dest carrier},{length}

Calculate Average Call Length for Each Date

This uses the Map task to group the records by day, then calculates the mean (average)
call length in the Reduce task.

Map task

* Receives a single line of input (that is, one input record)
* Uses text manipulation to extract the {date} and {length} fields
* Emits key: {date}, value: {length}
Reduce task
* Receives key: {date}, values: {length1 .. lengthN} (thatis, each reduce task receives
all of the call lengths for a single date)

* Loops through {length1 .. lengthN} to calculate total call length, and also to note
the number of calls

* Calculates the mean (divides the total call length by the number of calls)
* Outputs the date and the mean call length

Number of Calls by Each User, on Each Date

This time, the goal is to get a breakdown of each caller for each date. The Map phase
will define the keys to group the inputs, and the Reduce task will perform the calcula-
tions. Notice that the Map task emits a dummy value (the number 1) as its value because
we use the Reduce task for a simple counting operation.

Map task
* Receives single line of input
* Uses text manipulation to extract {date}, {caller num}

* Emits key: {date}{caller num}, value: 1

62 | Chapter5: APrimer on MapReduce and Hadoop

Reduce task

* Receives key: {date}{caller num}, value: {1 .. 1}
* Loops through each item, to count total number of items (calls)

* Outputs {date}, {caller num} and the number of calls

Run a Special Algorithm on Each Record

In this last case, there’s no need to group the input records; we simply wish to run some
special function for every input record. Because the Map phase runs in parallel across
the cluster, we can leverage MapReduce to execute some (possibly long-running) code
for each input record and reap the time-saving parallel execution.

Chances are, this is how you will run a good deal of your R code through Hadoop.

Map task

* Receives single line of input
* Uses text manipulation to extract function parameters
* Passes those parameters to a potentially long-running function

* Emits key: {function output}, value: {null}
(There is no Reduce task.)

Binary and Whole-File Data: SequenceFiles

Earlier, I oversimplified Hadoop processing when I explained that input records are
lines of delimited text. If you expect that all of your input will be of this form, feel free
to skip this section. You’re in quite a different boat if you plan to use Hadoop with
binary data (sound files, image files, proprietary data formats) or if you want to treat
an entire text file (XML document) as a record.

By default, when you point Hadoop to an input file, it will assume it is a text document
and treat each line as a record. There are times when this is not what you want: maybe
you’re performing feature extraction on sound files, or you wish to perform sentiment
analysis on text documents. How do you tell Hadoop to work on the entire file, be it
binary or text?

The answer is to use a special archive called a SequenceFile.l A SequenceFile is similar
to a zip or tar file, in that it’s just a container for other files. Hadoop considers each file
in a SequenceFile to be its own record.

[l There’s another reason you want to use a SequenceFile, but it’s not really an issue for this book. The curious
among you can take a gander at Tom White’s explanation in “The Small Files Problem,” at http:/'www
.cloudera.com/blog/2009/02/the-small-files-problem/.

Binary and Whole-File Data: SequenceFiles | 63

http://www.cloudera.com/blog/2009/02/the-small-files-problem/
http://www.cloudera.com/blog/2009/02/the-small-files-problem/

To manage zip files, you use the zip command. Tar file? Use tar. SequenceFiles? Ha-
doop doesn’t ship with any tools for this, but you still have options: you can write a
Hadoop job using the Java API; or you can use the forglift command-line tool. Please
see the sidebar “Getting to Know forqlift” for details.

Getting to Know forqlift

forqlift is a command-line tool for managing SequenceFile archives. Using forqlift,
you can:

* Create a SequenceFile from files on your local disk

* Extract data from a SequenceFile back to local disk files

* List the contents of SequenceFiles

* Convert traditional zip and tar files to and from SequenceFile format
forqlift strives to be simple and straightforward. For example, to create a SequenceFile
from a set of MP3s, you would run:

forqlift create --file=/path/to/file.seq *.mp3

Then, in a Hadoop job, the Map task’s key would be an MP3’s filename and the value
would be the file’s contents.

A prototype forqlift was born of my early experiments with Hadoop and Mahout: 1
needed a way to quickly create and extract SequenceFiles without distracting myself
from the main task at hand. Over time I polished it up, and now I provide it free and
open-source to help others.

forqlift supports options and features beyond what I've mentioned here. For more
details and to download this tool, please visit http://www.forqlift.net/ .

No Cluster? No Problem! Look to the Clouds...

The techniques presented in the next three chapters all require that you have a Hadoop
cluster at your disposal. Your company may already have one, in which case you’ll want
to talk to your Hadoop admins to get connection details.

If your company doesn’t have a Hadoop cluster, or you’re working on your own, you
can build one using Amazon’s cloud computing wing, Amazon Web Services
(AWS).# Setting up a Hadoop cluster in the AWS cloud would merit a book on its own,
so we can only provide some general guidance here. Please refer to Amazon’s docu-
mentation for details.

AWS provides computing resources such as virtual servers and storage in metered (pay-
per-use) fashion. Customers benefit from fast ramp-up time, zero commitment, and no

#http:/laws.amazon.com/

64 | Chapter5: APrimer on MapReduce and Hadoop

http://www.forqlift.net/
http://aws.amazon.com/

up-front infrastructure costs compared to traditional datacenter computing. These
factors make AWS especially appealing to individuals, start-ups, and small firms.

You can hand-build your cluster using virtual servers on Elastic Compute Cloud
(EC2), or you can leverage the Hadoop-on-demand service called Elastic MapReduce
(EMR).

Building on EC2 means having your own Hadoop cluster in the cloud. You get complete
control over the node configuration and long-term storage in the form of HDFS, Ha-
doop’s distributed filesystem. This comes at the expense of doing a lot more grunt work
up-front and having to know more about systems administration on EC2. The Apache
Whirr project” provides tools to ease the burden, but there’s still no free lunch here.

By comparison, EMR is as simple and hands-off as it gets: tell AWS how many nodes
you want, what size (instance type) they should be, and you’re off to the races. EMR’s
value-add is that AWS will build the cluster for you, on-demand, and run your job. You
only pay for data storage, and for machine time while the cluster is running. The trade-
off is that, as of this writing, you don’t get to choose which machine image (AMI) to
use for the cluster nodes. Amazon deploys its own AMI, currently based on Debian 5,
Hadoop 0.20.0,and R 2.7. You have (limited) avenues for customization through EMR
“bootstrap action” scripts. While it’s possible to upgrade R and install some packages,
this gets to be a real pain because you have to do that every time you launch a cluster.

When Isay “each time,” I mean that an EMR-based cluster is designed to be ephemeral:
by default, AWS tears down the cluster as soon as your job completes. All of the cluster
nodes and resources disappear. That means you can’t leverage HDFS for long-term
storage. If you plan to run a series of jobs in short order, pass the --alive flag on cluster
creation and the cluster will stay alive until you manually shut it down. Keep in mind,
though, this works against one of EMR’s perks: you’ll continue to incur cost as long as
the cluster is running, even if you forget to turn it off.

Your circumstances will tell you whether to choose EC2 or EMR. The greater your
desire to customize the Hadoop cluster, the more you should consider building out a
cluster on EC2. This requires more up-front work and incurs greater runtime cost, but
allows you to have a true Hadoop cluster (complete with HDFS). That makes the EC2
route more suitable for a small company that has a decent budget and dedicated sy-
sadmins for cluster administration. If you lack the time, inclination, or skill to play
sysadmin, then EMR is your best bet. Sure, running bootstrap actions to update R is a
pain, but it still beats the distraction of building your own EC2 cluster.

In either case, the economics of EC2 and EMR lower Hadoop’s barrier to entry. One
perk of a cloud-based cluster is that the return-on-investment (ROI) calculations are
very different from those of a physical cluster, where you need to have a lot of Hadoop-
able “big-data” work to justify the expense. By comparison, a cloud cluster opens the
door to using Hadoop on “medium-data” problems.

* http://incubator.apache.org/whirr/

No Cluster? No Problem! Look to the Clouds... | 65

http://incubator.apache.org/whirr/

The Wrap-up

In this chapter, I've explained MapReduce and its implementation in Apache Hadoop.
Along the way, I've given you a start on building your own Hadoop cluster in the cloud.
[also oversimplified a couple of concepts so as to not drown you in detail. I'll pick up
on a couple of finer points in the next chapter, when I discuss mixing Hadoop and R:
[call it, quite simply, R+Hadoop.

66 | Chapter5: APrimer on MapReduce and Hadoop

CHAPTER 6
R-+Hadoop

Of the three Hadoop-related strategies we discuss in this book, this is the most raw:
you get to spend time up close and personal with the system. On the one hand, that
means you have to understand Hadoop. On the other hand, it gives you the most
control. I'll walk you through Hadoop programming basics and then explain how to
use it to run your R code.

If you skipped straight to this chapter, but you’re new to Hadoop, you’ll want to review
Chapter 5.

Quick Look

Motivation: You need to run the same R code many times over different parameters
or inputs. For example, you plan to test an algorithm over a series of historical data.

Solution: Use a Hadoop cluster to run your R code.

Good because: Hadoop distributes work across a cluster of machines. As such, using
Hadoop as a driver overcomes R’s single-threaded limitation as well as its memory
boundaries.

How It Works

There are several ways to submit work to a cluster, two of which are relevant to R users:
streaming and the Java API.

In streaming, you write your Map and Reduce operations as R scripts. (Well, streaming
lets you write Map and Reduce code in pretty much any scripting language; but since
this is a book about R, let’s pretend that R is all that exists.) The Hadoop framework
launches your R scripts at the appropriate times and communicates with them via
standard input and standard output.

67

By comparison, when using the Java API, your Map and Reduce operations are written
in Java. Your Java code, in turn, invokes Runtime.exec() or some equivalent to launch
your R scripts.

Which is the appropriate method depends on several factors, including your under-
standing of Java versus R, and the particular problem you’re trying to solve. Streaming
tends to win for rapid development. The Java API is useful for working with binary or
output input data such as images or sound files. (You can still use streaming for binary
data, mind you, but it requires additional programming and infrastructure overhead.
I'll explain that in detail in the code walkthroughs.)

Setting Up

You can fetch the Hadoop distribution from http://hadoop.apache.org/. So long as you
also have a Java runtime (JRE or SDK) installed, this is all you’ll need to submit work
to a Hadoop cluster. Just extract the ZIP or tar file and run the hadoop command as we
describe below.

Check with your local Hadoop admins for details on how to connect to your local
cluster. If you don’t have a Hadoop cluster, you can peek at Chapter 5 for some hints
on how to get a cluster in the cloud.

Working with It

Let’s take a walk through some examples of mixing Hadoop and R. In three cases, I'll
only use the Map phase of MapReduce for simple task parallelization. In the fourth
example, I'll use the full Map and Reduce to populate and operate on a data.frame.

The unifying theme of these examples is the need to execute a block of long-running
R code for several (hundred, or thousand, or whatever) iterations. Perhaps it is a func-
tion that will run once for each of many input values, such as an analysis over each
day’s worth of historical data or a series of Markov Chains.” Maybe you’re trying a
variety of permutations over a function’s parameter values in search of some ideal set,
such as in a timeseries modeling exercise. So long as each iteration is independent—
that is, it does not rely on the results from any previous iteration—this is an ideal
candidate for parallel execution.

Some examples will borrow the “phone records” data format mentioned in the previous
chapter.

* Please note that the need for iteration independence makes Hadoop unsuitable for running a single Markov
Chain process, since each iteration relies on the previous iteration’s results. That said, Hadoop is more than
suitable for running a set of Markov Chain processes, in which each task computes an entire Markov Chain.

T Some Hadoop literature refers to this type of work as a parameter sweep.

68 | Chapter6: R+Hadoop

http://hadoop.apache.org/

Simple Hadoop Streaming (All Text)

Situation: In this first example, the input data is several million lines of plain-text
phone call records. Each CSV input line is of the format:

{date},{caller num},{caller carrier},{dest num},{dest carrier},{length}

The plan is to analyze each call record separately, so there’s no need to sort and group
the data. In turn, we won’t need the full MapReduce cycle but can use a Map-only job
to distribute the work throughout the cluster.

The code: To analyze each call record, consider a function callAnalysis() that takes
all of the record’s fields as parameters:

callAnalysis(date , caller.num, caller.carrier , dest.num , dest.carrier , length)

Hadoop streaming does not invoke R functions directly. You provide an R script that
calls the functions, and Hadoop invokes your R script. Specifically, Hadoop will pass
an entire input record to the Map operation R script via standard input. It’s up to your
R script to disassemble the record into its components (here, split it by commas) and
feed it into the function (see Example 6-1).

Example 6-1. mapper.R

#! /usr/bin/env Rscript
input <- file("stdin" , "r")
while(TRUE){
currentline <- readlines(input , n=1) @

if(0 == length(currentLine)){
break
}

currentFields <- unlist(strsplit(currentline , ",")) @

result <- callAnalysis(
currentFields[1] , currentFields[2] , currentFields[3] ,
currentFields[4] , currentFields[5] , currentFields[6]

) ©
cat(result , "\n" , sep="") @
close(input)
@ Hadoop Streaming sends input records to the Mapper script via standard input. A

Map script may receive one or more input records in a single call, so we read from
standard input until there’s no more data.

@ Splitapart the comma-separated line, to address each field as an element of the vector
currentFields.

Working with It | 69

© Send all of the fields to the callAnalysis() function. In a real-world scenario, this
would have assigned each element of currentFields to a named variable. That would
make for cleaner code.

O Here, the code assumes the return value of callAnalysis() is a simple string. The
script sends this to standard output for Hadoop to collect.

This may not be the most efficient code. That’s alright. Large-scale parallelism tends
to wash away smaller code inefficiencies.

Put another way, clustered computer power is cheap compared to human thinking-
power. Save your brain for solving data-related problems and let Hadoop pick up any
slack. Your R code would have to be extremely inefficient before an extensive tuning
exercise would yield a payoff.

Prototyping A Hadoop Streaming Job

It’s a wise idea to test your job on your own workstation, using a subset of your input
data, before sending it to the cluster for the full run. Hadoop’s default “local” mode
does just this.

Additionally, for streaming jobs, you can chain the scripts with pipes to simulate a
workflow. For example:

cat input-sample.txt | ./mapper.R | sort | ./reducer.R

Chaining gives you a chance to iron out script-specific issues before you test with a
local Hadoop job.

Running the Hadoop job:

(1]

export HADOOP_VERSION="0.20.203.0"

export HADOOP_HOME="/opt/thirdparty/dist/hadoop-${HADOOP_VERSION}"

export HADOOP_COMMAND="${HADOOP_HOME}/bin/hadoop"

export HADOOP_STREAMING JAR="${HADOOP_HOME}/contrib/streaming/hadoop-streaming-
${HADOOP_VERSION}.jar"

export HADOOP_COMPRESSION CODEC="org.apache.hadoop.io.compress.GzipCodec"
export HADOOP_INPUTFORMAT="org.apache.hadoop.mapred.lib.NLineInputFormat"

${HADOOP_COMMAND} jar ${HADOOP_STREAMING_JAR} \
\

-D mapreduce.job.reduces=0 \ @

-D mapred.output.compress=true \ ©

-D mapred.output.compression.codec=${HADOOP_COMPRESSION CODEC} \
-D mapred.task.timeout=600000 \ @

\

-inputformat ${HADOOP_INPUTFORMAT} \ @

-input /tmp/call-records.csv \

-output /tmp/hadoop-out \

-mapper $PWD/mapper.R

70 | Chapter6: R+Hadoop

Thisis a pretty standard command line for Hadoop streaming: it specifies the streaming
JAR, the mapper script, and the input and output locations. Note that the “generic”
Hadoop options, which begin with -D, always come first.

There are a few points of note:
@ Set some parameters as environment variables for easy reuse.

® Hadoop accepts configuration values on the command line, passed in using -D.
(Please note that, unlike Java system properties, Hadoop expects a space between
the -D and the property name.) The code disables the Reduce phase because this job
uses Hadoop just for its Map-side parallelism.

© Compress the output. This saves space and reduces transfer time when we download
the output data from HDEFS (or S3, if you’re using Elastic MapReduce).* You can
also specify BZip2Codec for bzip2 compression.

O Hadoop will kill a task that is unresponsive; if Hadoop kills too many tasks, it will
mark the entire job as failed. A streaming job’s only sign of life is printing to standard
output, so this line tells Hadoop to give each Map task ten minutes (600,000 milli-
seconds) before declaring it a goner. You may have to increase the timeout for your
own jobs. I'd suggest you experiment a little to see how long a given task will run,
then set the timeout to double that value so you have plenty of headroom.

© By default, Hadoop tries to divide your input data into sizable chunks, known as
splits. In a typical Hadoop “big-data” scenario, this is the smart thing to do because
it limits the amount of data shipped around the cluster. For “big-CPU” or “big-
memory” jobs, in which each input record itself represents a sizable operation, this
chunking can actually work against parallelism: it’s possible that a file with several
hundred records may be divided into only two splits, such that the entire job would
be saddled on just two cluster nodes. When using NLineInputFormat, Hadoop treats
each line as a split and spreads the work evenly throughout the cluster.

(This code works for Hadoop 0.19 and 0.20. For Hadoop 0.21, use
org.apache.hadoop.mapreduce.lib.input.NLineInputFormat. Note the subtle difference
in class name!)

Resist the temptation to disable the timeout (by setting it to 0). An un-
“‘3% responsive task may be one that has truly hung on a particular input, or

is stuck in an infinite loop. If Hadoop doesn’t kill that task, how will
you ever know that it’s broken?

1 By the way, if you’re going to feed the output data back into R on your workstation, remember that R can
natively read gzip and bzip2-compressed files.

Working withIt | 71

Reviewing the output: A typical Hadoop job will create several files, one for each
Reduce operation. Since this is a Map-only job, there is just one file, called /tmp/hadoop-
out/part-0000.gz. You can use gunzip to uncompress the file and then review the
contents.

Anything the script wrote to standard output would be included this output file. That
is, Hadoop doesn’t discern between the lines you want in the output (such as the output
from the fictional callAnalysis() function) and any lingering cat() or print() calls in
your code or in the modules you load. If you find stray content in your job’s output,
you can post-process those files or suppress the output in your code. Here, “post-
process” is a fancy term for grep’ing the job output file to extract the lines of interest.
“Suppress” means you call sink() to selectively disable standard output:

sink("/dev/null") ## suppress standard output
... do the work ...
sink() ## restore standard output

cat(... your intended result ...)
. exit the script

Streaming, Redux: Indirectly Working with Binary Data

As of this writing, Hadoop Streaming can only be used for text input and output. (This
is slated to change in a future Hadoop release.) This doesn’t preclude you from working
with binary data in a streaming job; but it does preclude your Map and Reduce scripts
from accepting binary input and producing binary output. This example presents a
workaround.

Situation: Imagine that you want to analyze a series of image files. Perhaps they are
frames from a video recording, or a file full of serialized R objects, or maybe you run a
large photo-sharing site. For this example, let’s say you have R code that will perform
image feature extraction. Each image is an independent unit of work, so assuming you
have a decent number of images (and/or feature extraction takes some noticeable
amount of time), a Map-only Hadoop job is a good fit.

The code: Remember, though, that Hadoop Streaming can only handle line-by-line
text input and output so you have to get creative here. One option would be to feed
your Hadoop Streaming job an input of pointers to the data, which your R script could
then fetch and process locally. For example:

* Host the data on an internal web server, and feed Hadoop a list of URLs

¢ Ditto, but use an NFS mount

* Use scp to pull the files from a remote system

* Make a SQL call to a database system

72 | Chapter6: R+Hadoop

(Notice that I don’t mention using HDFS. Remember that HDFS doesn’t work well
with small files. I'll cover a different approach in the next example.)

For this example, let’s say the mythical imageFeatureExtraction() function accepts an
R url() connection:

#! /usr/bin/env Rscript
input <- file("stdin" , "r")
while(TRUE){
currentLine <- readLines(input , n=1)

if(0 == length(currentLine)){
break
}

pulledData <- url(currentline))

result <- imageFeatureExtraction(url(currentlLine))
cat(result , "\n" , sep="")

close(input)

Running the Hadoop job: As far as Hadoop is concerned, this example looks just like
the previous one (all the changes are in the R script), so it uses the same command line.

Reviewing the output: If your job outputs text (such as a series of numbers describing
the binary data) then you can send that to standard output, as usual.

Let’s say your job yields binary output, such as a series of charts. In that case, you can
use the same idea as you did for the input, and push the output to another system:

* Copy it to an NFS mount

e Use an HTTP POST operation to send the data to a remote web server

* Call scp to ship the data to another system

* Use SQL to push the data to an RDBMS

and so on.
Caveats: Keep in mind that this method is not perfect.

A Hadoop cluster is a robust beast. Between the software-side framework and the re-
quired hardware layout, you are protected from hard disk failures, node crashes, and
even loss of network connectivity.

To reap this benefit, though, the job must be self-contained from Hadoop’s perspective.
Everything required for the job must exist within the cluster. Map and Reduce scripts,
input data, and output must all live in HDFS (S3 if you are using Elastic MapReduce).

Once you rely on systems or services outside of the cluster, you lose in four ways:

Loss of robustness
Hadoop can’t manage a failure or crash in a remote service.

Working withIt | 73

Scaling
While the cluster may not break a sweat running your large job, that remote web
server or NFS mount may fail under the weight of a Hadoop-inflicted flood of
activity.

Overhead
Any of the methods described above—SSH, web server, NFS mount—requires
additional setup. If you are somehow able to get this one past your sysadmins (oh,
especially that NFS one), expect them to be very unhappy with you down the line.

Idempotence/risk of side effects
Hadoop may employ speculative execution. This is a fancy way of saying that, under
certain circumstances, Hadoop might run a given Map or Reduce task more than
once. Hadoop may kill a task in mid-run and launch it elsewhere (if it detects a
timeout) or it may concurrently launch a duplicate task (if the first task seems to
be taking too long to complete).

Under pure Hadoop circumstances, when all job-related activity takes place within
the cluster walls, this is not a problem because Hadoop itself takes care of retrieving
the output from only one of the multiple executions of that same Map or Reduce
task. But when you leverage data or services from outside the cluster, those are
considered side effects of a task. Hadoop doesn’t know what your Map or Reduce
code is doing; it only knows how long it takes to run, and whether it meets Ha-
doop’s criteria for success or failure. That meansit’s up to you to handle side effects
such as duplicate submissions to that remote web server.

This may sound like a long list of caveats, but whether it’s really a hurdle depends on
your circumstances. Leveraging external services and side effects will work just fine if
most of the “action” will take place inside Hadoop, or the external data is just a small
part of the process, or multiple execution is not a problem.

That said, there is another way to handle binary data in a streaming job but still keep
all the data in the cluster. It’s slightly more involved than the methods described in this
example, but the trade-off may be worth your while. In the next section, I'll show you
how to do this using the Java API instead of Streaming.

The Java API: Binary Input and Qutput

Situation: You still wish to perform feature extraction on a series of image files, but
you feel the previous solution is too fragile. You want the job to be self-contained, from
a Hadoop perspective.

The code: Recall, from the previous chapter, that if you’re processing whole-file data
(text or binary) with Hadoop, you’ll need to pack those files into a SequenceFile archive.
The streaming API cannot presently handle SequenceFiles but the Java API can. You
can use the Java API to extract data from the SequenceFile input, write it to a predictable
filename, and launch an R script that operates on that file.

74 | Chapter6: R+Hadoop

Once again, we need Hadoop for a one-stage parallel execution, so this will be a Map-
only job.

First, let’s look at the Java code in Example 6-2. Hadoop Java code is typically compiled
into a JAR that has at least two classes: the driver that configures the job and the
mapper that is run for a Map task. (Jobs that have a Reduce step will include a class for
the Reduce task.)

Example 6-2. Excerpt from the tool class, Driver.java

public class Driver extends Configured implements Tool { @

public int run(String[] args) throws Exception {
final Job job = new Job(getConf()) ;

job.setJobName("Parallel R: Chapter 5, example 3") ;
job.setMapperClass(Ch5Ex3Mapper.class) ;

FileInputFormat.addInputPath(job , new Path(args[o])) ; ©
FileOutputFormat.setOutputPath(job , new Path(args[1])) ;

job.setInputFormatClass(SequenceFileInputFormat.class) ;

~— —

job.setOutputKeyClass(Text.class) ; @
job.setOutputValueClass(Text.class) ;

job.getConfiguration().setBoolean("mapred.output.compress" , true) ; @

job.getConfiguration().setClass("mapred.output.compression.codec" ,
BZip2Codec.class , CompressionCodec.class) ;
job.getConfiguration().setInt("mapreduce.job.reduces” , 0) ; @

return(job.waitForCompletion(true) 2 0 : 1) ;

}
}

@ Driver extends the Hadoop base class Configured and implements the interface
Tool. The combined effect is that Driver gets some convenience methods for setting
up the job and Hadoop will take care of parsing Hadoop-specific options for us. For
example, when we launch the job based on Driver, it will magically understand any
-D options passed on the Hadoop command line.

@ Set the class that will be run for Map tasks. As this is a Map-only job, there is no
need to set a class for Reduce tasks. (Technically, Hadoop defaults to using its no-
op Reducer class, which simply parrots the Map phase’s output.)

© Remember when I said that using Tool and Configured would simplify command
line processing? Here, the arg[] array contains all command line elements after the
general Hadoop options. The first one is the input path, the second is the output
path.

O Per this line, Hadoop will expect all job input to be in SequenceFiles.

Working withIt | 75

© The Reduce phase also emits a series of key/value pairs. These two lines tell Hadoop
that both key and value will be plain-text.

O For streaming jobs, you set configuration properties using -D to ask Hadoop to
compress the output. You can still do that on the command line with a Java-based
job, or you can embed that in the Java code, as shown here.

@ Tell Hadoop not to run any reducers.

Example 6-3. Excerpt from the Mapper class, Ch6Ex3Mapper.java
public class Ch5Ex3Mapper extends Mapper<Text, BytesWritable , Text , Text> { (1)

private final Text outputValue ; @
private final StringBuilder _rOutputBuffer ;

public void map(Text inputKey , BytesWritable inputValue , Context context)
throws IOException , InterruptedException {

_outputValue.clear() ; ©
if(_rOutputBuffer.length() > 0){

_r0utputBuffer.delete(0 , _rOutputBuffer.length()) ;
}

BufferedReader rOutputReader = null ;
OutputStream fileWriteHandle = null ;
final File currentFile = new File(inputKey.toString()) ;

try{

// write the raw bytes to a file. (input key name is the file name)
fileWriteHandle = new FileOutputStream(currentfile) ; @
fileWriteHandle.write(inputValue.getBytes() , 0, inputValue.getlLength()) ;
closeOutputStream(fileWriteHandle) ;

final Arraylist<String> templist = new Arraylist<String>() ; @
final List<String> commandLine = new ArraylList<String>() ;
commandLine.add("/usr/bin/env") ;

commandLine.add("R") ;

commandLine.add("--vanilla") ;

commandLine.add("--slave") ;

commandLine.add("--file=helper.R") ;

commandLine.add("--args ") ;

commandLine.add(inputKey.toString()) ;

final Process runtime = new ProcessBuilder(commandLine)
.redirectErrorStream(true)
.start() ; @

final int exitCode = runtime.waitFor() ;
rOutputReader = new BufferedReader(
new InputStreamReader(runtime.getInputStream())) ;

if(0 != exitCode){
_rOutputBuffer.append("error! ") ;

76 | Chapter6: R+Hadoop

}

_rOutputBuffer.append(rOutputReader.readlLine()) ; @
_outputValue.set(_rOutputBuffer.toString()) ;

context.write(inputKey , _outputValue) ; @

Ycatch(final Exception rethrow){
throw(new IOException(rethrow)) ;
}inally{
// .. close handles and delete the image file ...
}

}

@ Per this class definition, the map() operation will expect a text string and binary data
as the input key/value pair, and will emit text for the output key/value pair. Please
note that the SequenceFile must therefore use a Text object as the key and a Byte
sWritable as the value. (If you used forqlift to create your SequenceFiles, this has
been done for you.)

® Hadoop will try to reuse a single Mapper or Reducer object several times throughout
the life of a single job. As such, it’s considered good form (read: more efficient) to
use instance variables instead of local method variables when possible. Here, the
code recycles the Text object used for the output value and also a StringBuilder that
to holds the R script’s output.

© For that same reason, the code performs some cleanup on those instance variables
each time it enters map().

O Write the binary data to a file on-disk that R can access. This code assumes the input
key is the file’s name and the value is its data.

© Build a command line to run R. Notice that the final element is the input key, which
is the name of the image file to process.

O This line launches R. The code uses ProcessBuilder, instead of Runtime.exec(), in
order to combine the R script’s standard output and standard error. That will make
it easier to collect the script’s output.

@ Collect the R script’s output. A successful run of helper.R yields a single line of
output.R+, so that’s all the code fetches. (Production-grade code would fetch all of
the output and sift through it to check for problems.)

© Package up the results to send on to the Reduce step. (Remember, the “no-op”
Reducer will simply parrot every Map task’s results.) The input key (the image file’s
name) is also the output key, in order to identify each image’s results in the job’s
output.

Working with It | 77

While this job used a SequenceFile for input, it’s just as easy to use a
SequenceFile for output.

" For example, consider a job that calls R to generate charts: you’d have
to change the Driver class to specify SequenceFile output, and also
change the Mapper’s class definition and map() method to Bytes
Writable (binary) output. Finally, you would have to use standard Java
/O to read the chart file into a byte[] array and put those bytes into the
BytesWritable.

(Note that even though you’d be using a SequenceFile for input and
output, your Mapper code only sees the Text and BytesWritable data
types that are used inside the SequenceFile.)

Hadoop’s Two Java APIs

Hadoop 0.20 is the current stable release, but some also say it’s a transition state be-
tween 0.19 and 0.21. For this reason, Hadoop 0.20 contains both the old and new Java
APIs.

The old API is technically deprecated as of 0.20, but the new API is still incomplete. 1
wrote the Java examples using the new API to future-proof the book. Hadoop 0.21 is
already under active development, and the fact that the old API has been deprecated is
a sign that the new API is the wave of the future.

Now let’s look at the R script, helper.R, which is invoked by the Java code in Exam-
ple 6-4:
dataFile <- commandArgs(trailingOnly=TRUE) @

result <- imageFeatureExtraction(dataFile) @
output.value <- paste(dataFile , result , sep="\t")

@ commandArgs () fetches the arguments passed to the R script, which in this case is the
image’s file name.

@ Here, the mythical imageFeatureExtraction() function works on the provided file.

Running the Hadoop job: Let’s say the Hadoop code is in a JAR named “launch-
R.jar” and the input images are in a SequenceFile named images-sample.seq. Assuming
the environment variables defined above, you can launch the job as follows:
${HADOOP_COMMAND} jar launch-R.jar \
-files helper.R \ (1]
/tmp/images-sample.seq \
/tmp/hadoop-out

This command line is much shorter than the streaming command lines, mostly because
several options are set in the driver class.

78 | Chapter6: R+Hadoop

This is a typical Hadoop command line for Java jobs, with one exception:

@ With a streaming job, your scripts magically appear on the cluster at runtime. When
using the Java API, you have to use Hadoop’s Distributed Cache (the -files flag) to
copy helper.R to the cluster.

If you’re testing the job on your workstation, in Hadoop’s “local” (single-workstation)
mode, you’ll want to keep two ideas in mind:

For one, Distributed Cache doesn’t really work in local mode. You’ll want to launch
the Hadoop command from the directory where helper.R lives such that the Mapper
class can find it.

Secondly, the Hadoop job will treat the current directory as its runtime directory. That
means the images extracted in the Mapper will be written to your current directory.

Reviewing the output: Let’s assume the feature extraction function yields text output,
so you would fetch and read it as explained in the previous examples. If your R code
generates binary output, such as charts, you can write that as a SequenceFile: specify
SequenceFileOutputFormat as the output, and have your Java code write the file’s data
to a BytesWritable object.

Caveats: This method keeps the entire job within Hadoop’s walls: unlike the previous
example, you're protected from machine crashes, network failures, and Hadoop’s
speculative execution. The cost is the extra overhead involved in putting all of your
input data in SequenceFiles. Even if you’re using forqlift, or you’re comfortable writ-
ing a Hadoop Java job to do this, you still need to gather the inputs. That may involve
a separate effort to copy the data from an existing service, such as an internal web server
or file server.

Processing Related Groups (the Full Map and Reduce Phases)
Situation: You want to collect related records and operate on that group as a whole.

Returning to the “phone records” example, let’s say you want to analyze every number’s
output call patterns. That would require you to first gather all of the calls made by each
number (Map phase) and then process those records together (Reduce phase).

The code: As noted above, this will require both the Map and Reduce phases.

The Map phase code will extract the caller’s phone number to use as the key, as shown
in Example 6-4.

Example 6-4. mapper.R

#! /usr/bin/env Rscript

input <- file("stdin" , "r")

while(TRUE){
currentLine <- readLines(input , n=1)
if(0 == length(currentLine)){

Working with It | 79

break

}

currentFields <- unlist(strsplit(currentlLine , ","))

result <- paste(
currentFields[1] ,
currentline ,
Sep="\t"

)

cat(result , "\n")
}
close(input)

By now, the basic structure should look familiar. Remember that the first field in the
comma-separated line is the caller’s phone number, which serves as the key output
from the Map task.

The Reducer code builds a data.frame of all calls made by each number, then passes
the data.frame to the analysis function. Something to note here is that the logic in a
Reducer script is different from that of a Map script. The flow may seem a little strange,
so I'll explain it at a high level before showing the code sample.

In a Reducer script, each input line is of the format:
{key}{tab}{value}

where {key} and {value} are a single key/value pair, as output from a Map task.

Recall that the Reducer’s job is to collect all of the values for a given key, then process
them together. Hadoop may pass a single Reducer values for multiple keys, but it will
sort them first. When the key changes, then, you know you’ve seen all of the values for
the previous key. You can process those values as a group, then move on to the next key.

With that in mind, a sample Reducer script for the call-analysis job is shown in Exam-
ple 6-5.

Example 6-5. reducer.R

#! /usr/bin/env Rscript

non

input <- file("stdin" , "r")
lastKey <- ""

tempFile <- tempfile(pattern="hadoop-mr-demo-" , fileext="csv") @
tempHandle <- file(tempFile , "w")

while(TRUE){
currentLine <- readLines(input , n=1)

if(0 == length(currentLine)){
break
}

80 | Chapter6: R+Hadoop

tuple <- unlist(strsplit(currentlLine , "\t")) @
currentKey <- tuple[1]
currentValue <- tuple[2]

if((currentKey != lastkKey)){

if(lastKey != ""){
close(tempHandle)
bucket <- read.csv(tempFile , header=FALSE) @
result <- anotherCallAnalysisFunction(bucket) @
cat(currentKey , "\t" , result , "\n")
tempHandle <- file(tempFile , "w")

}

lastKey <- currentkey ©
}

cat(currentline , "\n" , file=tempHandle) @
}

close(tempHandle) ®

bucket <- read.csv(tempFile , header=FALSE)
result <- anotherCallAnalysisFunction(bucket)
cat(currentkKey , "\t" , result , "\n")

unlink(tempFile)
close(input)

@ Store the collected input lines in a temporary file. The input is in CSV form, so the
code can call read.csv() on this temp file to build a data.frame(). (You could also
build the data.frame in memory, one row at a time. The “right” way is whichever
one works best for you.)

@ Recall that a Map task outputs lines in {key}{tab}{value} form. Here, the code splits
that line in order to address the key and value as separate variables.

© Check whether the key has changed. (The extra logic detects the initial condition of
the key being blank.) The change in key is the cue to process the CSV data that has
been accumulated into the temporary file from (1).

O Close off the temporary handle and read the file back in as a data.frame for easy
processing.

© Pass that data. frame to the mythical anotherCallAnalysisFunction(), and collect its
result.

O Write the result to standard output for Hadoop to collect. Make sure to include the
key to tie these results to a particular phone number.

@ Reopen the temp file for writing. This will zero it out, so it’s ready for the next key’s
data.

Working with It | 81

© Update the key, such that the loop detects when the key changes again.
© Push a line to the temporary file for later processing.
@ Repeat the end-of-key code, to process the data for the final key.

Running the Hadoop job:
${HADOOP_COMMAND} jar ${HADOOP_STREAMING JAR} \
\

-D mapred.output.compress=true \
-D mapred.output.compression.codec=${HADOOP_COMPRESSION CODEC} \
\

-inputformat ${HADOOP_INPUTFORMAT} \
-input /tmp/call-records.csv \
-output /tmp/hadoop-out \
-mappermapper.R \

-reducer reducer.R

This is a standard Hadoop streaming command line. The only deviation from previous
streaming command lines is that this one specifies a reducer script.

Reviewing the output: By now, you know how to explore both text and binary job
output. This section is intentionally left blank.

Caveats: When you use the full Map and Reduce phases, you need to know how your
data is distributed in terms of the keys output from the Map phase. This may require
you to do some up-front exploratory data analysis before you can determine whether
the job is truly Hadoop-worthy.

Generally speaking, the Map phase is very lightweight (since it’s just used to assign keys
to each input) and the heavy lifting takes place in the Reduce operation. To take ad-
vantage of the parallelism of the Reduce stage, then, you’ll need to meet two conditions:

1. A large number of unique keys output from the Map phase

2. Each key should have a similar number of records (at least, no one key should
clearly dominate)

Why is this? Say you have ten million input records. If the Map operation yields only
two unique keys, each with five million records, then you will have two very long-
running Reduce tasks and that would not be a scalable operation.

Alternatively, let’s say the Map phase yields ten-thousand unique keys, but one of those
keys has several million records. This would yield an unbalanced Reduce phase, in
which the work for one key takes so long that it eliminates the gains from running the
remaining keys” work in parallel.

[expect the phone records example is still a good fit for Hadoop parallelization since
it is highly unlikely that one phone number made most of the calls. For your jobs,
though, this may not be such a safe assumption.

This chapter covered a lot of ground, so let’s take a step back to review when you’d
want to use R+Hadoop and when you’d want to try another method.

82 | Chapter6: R+Hadoop

When It Works...

Hadoop splits the work across a cluster, sending each unit of work to a different ma-
chine. Even though R itself is single-threaded, this simulates having one machine with
tens or hundreds of CPUs at your disposal. Under ideal conditions—that you have the
cluster to yourself for the evening—that means each execution of your R code gets all
of a machine’s RAM to itself. So you can say that R+Hadoop overcomes R’s CPU and
memory limitations.

...And When It Doesn't

Not completely spared from the memory wall: Hadoop is a compute solution, not
a memory grid. If your job is so memory-intensive that a single task (Map or Reduce
operation) outweighs the RAM on a single cluster node, Hadoop won’t be of much use.
In this case, you could try to decompose the job into even smaller pieces.

Needs infrastructure: R+Hadoop works best if you already have access to an in-house
cluster. Elastic MapReduce, the cloud-based solution, runs a close second.

Building out a new cluster is no trivial matter. Businesses prefer that a new tool will
pay for itself (in terms of increased profits, new revenue models, or reduced risk). Ask
yourself whether your proposed Hadoop-based projects would outweigh the price tag
for hardware, space, and maintenance.

Elastic MapReduce has its own pros and cons. From a business perspective, some peo-
ple may be uncomfortable with their data leaving the office network to live in Amazon’s
cloud. (Regulatory compliance may also weigh heavily in this decision.) From a tech-
nical point of view, you have to consider the time required to ferry data to the cloud
and back, as well as online storage costs.

Needs consistent cluster nodes: Hadoop executes your R scripts for you, and for
streaming jobs it will even copy the R scripts to the cluster for you. It’s otherwise up to
you to keep the runtime environment consistent across the cluster. If your job requires
a particular version of R, or specific R packages, your cluster admins will need to install
those for you on every cluster node ahead of time.

This can be quite an adjustment for those who are accustomed to running their own,
local copy of R on their workstation, where they can install any package they see fit.
The solution here is social, not technical: avoid surprises. Make sure there is a clear
path of communication between you and your cluster admins, and make sure you know
what R packages are installed on the cluster before you prototype your job on your
workstation. If you are your own cluster admin, you’ll want to invest in tools such as
Puppet, Chef, or cfengine to keep the machines consistent.

...And When It Doesn't | 83

The Wrap-up

In this chapter, you learned a few ways to mix Hadoop and R. R+Hadoop gives you
the most control and the most power, but comes at the cost of a Hadoop learning curve.
In the next two chapters, you’ll explore methods that abstract you from Hadoop, mak-
ing them a little closer to “pure R” solutions.

84 | Chapter6: R+Hadoop

CHAPTER 7
RHIPE

This chapter is a guide to Saptarshi Guha’s RHIPE package, the R and Hadoop Integrated
Processing Environment. RHIPE’s development history dates back to 2009 and it is still
actively maintained by the original author.

Compared to R+Hadoop, RHIPE abstracts you from raw Hadoop but still requires an
understanding of the MapReduce model.

Since you covered a lot of MapReduce and Hadoop details in the previous two chapters,
this chapter will have a very short route to the examples.

Quick Look

Motivation: You like the power of MapReduce, as explained in the previous chapter,
but you want something a little more R-centric.

Solution: Use the RHIPE R package as your Hadoop emissary. Even though you’ll still
have to understand MapReduce, you won’t have to directly touch Hadoop.

Good because: You get Hadoop’s power without leaving the comfy confines of R’s
language and interactive shell. (RHIPE even includes tools to work with HDFS.) This
means you can MapReduce through a mountain of data during an interactive session
of exploratory analysis.

How It Works

RHIPE sits between you and Hadoop. You write your Map and Reduce functions as R
code, and RHIPE handles the scut work of invoking Hadoop commands.

85

To give you a quick example, here’s a typical RHIPE call:

rhipe.job.def <- rhmr(
map= ... block of R code for Mapper
reduce= ... block of R code for Reducer
ifolder="/path/to/input" ,
ofolder="/path/to/output” ,
. a couple other RHIPE options

)

rhex(rhipe.job.ref)

That’s it! There’s no need to define separate scripts for the Map and Reduce stages,
and you never run the hadoop command. I'll explain the details in the walkthrough
section, but for now I just wanted to show you how easy RHIPE could be.

Setting Up

RHIPE is not yet hosted in CRAN, though the author expects that will soon change. For
now, you can grab the source bundle from the project website at http://ml.stat.purdue
.edu/rhipe/. Version 0.66 is current as of this writing. RHIPE releases are tied to specific
versions of Hadoop and Google’s ProtocolBuffers project, so pay close attention to the
file you download to ensure compatibility.

Having downloaded the appropriate RHIPE version for your environment, installation
Is a snap:

export HADOOP_BIN=/path/to/bin/hadoop
R CMD INSTALL Rhipe 0.66.tar.gz

You’ll need to install RHIPE on your local workstation as well as all cluster nodes. Be
sure to note the path where RHIPE is installed on the cluster nodes: if it’s not the same
path as on your local workstation, you’ll need add some extra statements to your code.
I'll explain while walking you through the sample code.

As of this writing, RHIPE is not compatible with Mac OS X Snow Leopard
A (10.6).

That’s it for setup. You already understand MapReduce and Hadoop concepts, thanks
to the previous two chapters, so you can dive right in to the examples.

86 | Chapter7: RHIPE

http://ml.stat.purdue.edu/rhipe/
http://ml.stat.purdue.edu/rhipe/

Working with It

Phone Call Records, Redux

Situation: For a good compare/contrast exercise with R+Hadoop, this will repeat the
first example from the previous chapter: you wish to analyze several million call records,
each represented as a line of comma-separated text. This will be a Map-only job because
you need just parallel execution but not any sort of grouping or sorting.

The code: Unlike R+Hadoop, everything you need is in a single R script, shown in
Example 7-1.

Example 7-1. R script, first example
#! /usr/bin/env Rscript

library(Rhipe)

source.data.file <- "/tmp/call-data.csv.bz2"
output.folder <- "/tmp/rhipe-out"

map.block <- expression({ @

map.function <- function(row){
currentFields <- unlist(strsplit(row , ","))

result <- callAnalysis(
currentFields[1] , currentFields[2] , currentFields[3] ,
currentFields[4] , currentFields[5] , currentFields[6]

)

map.key <- currentFields[1]
map.value <- result

rhcollect(map.key , map.value) @
rhcounter("map_task" , "handle line" , 1) ©

}

lapply(map.values , map.function)

b

config.block <- list(@
mapred.map.tasks=200 , @
mapred.reduce.tasks=0 ,
mapred.task.timeout=600000 ,
mapred.output.compress="true" ,
mapred.output.compression.codec="org.apache.hadoop.io.compress.BZip2Codec"

Working with It | 87

options.block <- rhoptions() @
options.block$runner[1] <- "/usr/local/lib/R/site-library/Rhipe/libs/imperious.so"

... continued in next code listing

Some of the code was lifted from a previous example, so I'll focus on what’s new this
time around:

@ map.block is the R code that will be run for each Map task. Similar to the Map scripts
used in Hadoop streaming, a RHIPE Map task expects to receive multiple input lines.
(This differs from Hadoop’s Java API, in which the Map operation receives a single
input record.) A few lines down, the code uses lapply() to invoke map.function()
on each line of input.

® In R+Hadoop, a Map block emits a key/value pair to standard output. In a RHIPE
job, call rhcollect() to emit a key/value pair from Map task.

© Hadoop counters serve a dual purpose. For one, they are useful for keeping track of
task execution. Two, they serve as a beacon of activity such that the cluster knows
a job is still running. (Recall, Hadoop will kill a job it determines to be inactive for
too long.) Here the rhcounter () command increments a custom counter that tracks
the number of times the Mapper successfully processes a line of input. You’ll see
several other counters throughout these examples. A little later, I'll show you how
to fetch these counters’ values.

O Even though RHIPE abstracts you from Hadoop, you can still set Hadoop options
using a standard list. (A little later in the code, another RHIPE command will accept
this list.) You’ve already seen the properties to disable the reduce phase, compress
the output, and set the task timeout. I'll discuss the new property next.

© R+Hadoop uses NLineInputFormat to split a job’s input, one line per Map task, such
that the job is balanced across the cluster. In RHIPE you explicitly set the number of
map tasks using the Hadoop configuration property mapred.map.tasks. (Here, the
number 200 was a best guess based on the size of my sample input compared to the
strength of my test cluster. In turn, you’ll need to have similar information to set
this value for your own jobs.)

O It’s entirely possible that RHIPE is not installed to the same place on your cluster
nodes as on your local workstation. For example, you may have R packages in a
personal area under /home, whereas the cluster nodes use a system-wide path un-
der /usr. To let RHIPE know this, you modify the field runner in the job’s configura-
tion options. The path may be different on your cluster. Ask your cluster admins if
you are not sure.

The R commands to build and launch a RHIPE job are included in Example 7-2. They
bear a striking resemblance to the sample RHIPE call I shared in the beginning of this
chapter.

88 | Chapter7: RHIPE

Example 7-2. R script, continued

rhinit(TRUE, TRUE,buglevel=2000) @

rhipe.job.def <- rhmr(@
jobname="RHIPE example 1" ,

map=map.block ,
mapred=config.block ,
opts=options.block ,

ifolder=source.data.file ,
ofolder=output.folder ,

inout=c("text" , "text") ©

)
rhipe.job.result <- rhex(rhipe.job.def) @

@ You must initialize RHIPE once in your R session before you prepare a job. RHIPE will
provide extra output if you pass the values TRUE, TRUE, buglevel=2000 to rhinit. I
encourage you to do this, especially during your early RHIPE experiments, because
it’s so helpful for debugging.

® The command rhmr () builds a job. It accepts all of the objects defined earlier: map is
the block of code for the Mapper; mapred is the 1ist of Hadoop configuration prop-
erties; and opts is the RHIPE configuration object. (You could also define those objects
in-line as you pass them to rhmr() but that would make for messy code.) The pa-
rameter ifolder can refer to a single HDFS input file or an HDFS directory that
contains several files. ofolder specifies the directory, also in HDFS, to store the job’s
output.

© Values of the inout vector indicate the format RHIPE will use for the job’s input and
output, respectively. text is the line-by-line plaintext format we all know and love.
lapply is helpful for certain parameter sweeps: pass N=value to rhmr () and RHIPE will
feed your Map task the numbers 1 through value as input. (In this case, you would
omit rhmr()’s ifolder parameter.) sequence uses Hadoop SequenceFiles, but with
special RHIPE data types. Check out the sidebar, “Can RHIPE Handle SequenceFiles?
Yes...and No” on page 90 for details.

O Call rhex() to launch your job on the Hadoop cluster.

Working with It | 89

Can RHIPE Handle SequenceFiles? Yes. ..and No

I described Hadoop SequenceFiles archive in Chapter 5, and I provided an example of
how to use them in Chapter 6. Those SequenceFiles used standard Hadoop data types,
Text and BytesWritable, to store text and raw binary information, respectively.

RHIPE can use SequenceFiles as storage for native R objects, such as 1list and
data.frame. The catch? RHIPE uses a custom data type called RHBytesWritable to store
that data. As of this writing, RHIPE only understands SequenceFiles it has created. This
means you cannot, say, pack a SequenceFile full of images and process them through
RHIPE.

This may limit a RHIPE SequenceFile’s potential as a general storage mechanism, but
it’s still useful as a cache or intermediate storage option between RHIPE jobs. For ex-
ample, you could define one job that converts raw data into a RHIPE-format Sequence-
File, and other RHIPE jobs could use that file as input for further processing.

Running the Hadoop job: Running a RHIPE job is a one-liner, and it’s familiar to a
great many users of R:

export HADOOP_BIN=/path/to/bin/hadoop
R --vanilla --file=example1.R

You could also run these statements from R’s shell or your preferred IDE. (In the latter
case, be sure to define the HADOOP_BIN environment variable before you launch the IDE.)

RHIPE will translate your R statements into Hadoop-speak, run the job, and return
control to your terminal so you can execute more statements.” In the next example
I'll show you how to read the job’s output back into your R session for further
manipulation.

Reviewing the output: At the start of this example, I mentioned how to use
rhcounter() to increment custom counters. When your job completes, rhex() returns
and you can print the result object to see the job’s counters. You'll see the custom
counters defined in the your code, as well as some built-in values.

Inspecting these counters is a good way to spot-check the job’s results. For example:
“do we see the expected number of input and output records for each phase?” In the
sample output below, note the map_block group and its enter counter: this is defined
in the map.block code, and increments every time RHIPE enters the block of Mapper
code. If this number is smaller than expected, there may be some number of problematic
input records (such as malformed lines).

(I've slightly reordered the output for clarity, shown in Example 7-3.)

* In this way, using RHIPE is a little like using Pig, the Hadoop data-flow language with an interactive shell. You
can visit the Pig website at http://pig.apache.org/ for details.

90 | Chapter7: RHIPE

http://pig.apache.org/

Example 7-3. Counter values from a small test-run

> rhipe.job.result$counters
$map_task
success

2689

$ Map-Reduce Framework"

Combine input records Combine output records

0 0

Map input records Map output bytes

2689 62574

Map output materialized bytes Map output records

9410 2689

Reduce input groups Reduce input records

1083 2689

Reduce output records Reduce shuffle bytes

1083 0

Spilled Records SPLIT_RAW_BYTES

5378 149

$ File Input Format Counters °

Bytes Read
588053

$ File Output Format Counters °
Bytes Written
15826

That’s a look into the job’s result status. The job’s output data is sitting in a text file in
HDFS. You can use standard Hadoop shell commands to display it on your terminal
(hadoop fs -cat) or copy it back to your workstation (hadoop fs -get). You can also
use RHIPE commands to pull data straight from HDFS into your R session. I'll explain
how to do that in the next example. Finally, you can leave the output data in HDFS to
serve as input data for another job. This way, you could use RHIPE to create a workflow
of chained Hadoop jobs for multiple stages of analysis or transformation.

Tweet Brevity
This demonstrates a RHIPE job that uses the full Map and Reduce phases.

Situation: You’ve collected some large number of tweets, and you want to calculate
each author’s average number of characters per tweet. (“Is anyone particularly brief?”
“Who brushes against that 140-character limit?”) This sounds pleasantly amenable to
MapReduce: group the tweets by the author’s name, then analyze the contents of each

group.

Working withIt | 91

Example 7-4. Tweet brevity example

#! /usr/bin/env Rscript
library(Rhipe)

source.data.file <- "/tmp/small-sample-tweets.dat.bz2"
output.folder <- "/tmp/rhipe-out"

setup.block <- list(@
map=expression({
home.R1ib <- "/path/to/your/local/R/libraries"
invisible(.libPaths(c(home.Rlib , .libPaths())))
library(RISONIO)
Do

reduce=expression({ })

)

config.block <- list(
mapred.output.compress="true" ,
mapred.output.compression.codec="org.apache.hadoop.io.compress.BZip2Codec" ,
mapred.task.timeout=600000

)

map.block <- expression({
rhcounter("map_stage" , "enter block" , 1)

map.function <- function(tweet.raw){
tryCatch({
tweet <- fromJSON(tweet.raw) @
chars.in.tweet <- nchar(tweet$text)
rhcollect(tweet$user$screen name , chars.in.tweet)
rhcounter("map_stage" , "success" , 1)
}o
error=function(error){
rhcounter("map_stage" , "error" , 1)
print(error)
h
}

lapply(map.values , map.function)
b

continues ...

@ setup.block defines code that RHIPE will execute on each node before launching the
Map and Reduce phases. If you require packages that aren’t in the system R library
paths, you’ll have to manually update the paths as shown in the call to .1lib
Paths(). Tweet streams are typically JSON data, so the Mapper setup expression
loads the RISONIO package® to parse the input.

+ By Duncan Temple Lang, http://cran.r-project.org/web/packages/R]SONIO/index.html

92 | Chapter7: RHIPE

http://cran.r-project.org/web/packages/RJSONIO/index.html

© RISONIO’s fromISON() parses the tweet into a simple R object. The author’s Twitter
screen name serves as the output key, and the tweet’s length as the output value.

Example 7-5. Tweet brevity example, continued (part 2)

reduce.block <- expression(
pre = { @
tweetCount <- 0
tweetlength <- 0
currentKey <- reduce.key
rhcounter("reduce stage" , "pre" , 1)

b

reduce = { @
tweetCount <- tweetCount + length(reduce.values)
tweetLength <- tweetlLength + sum(unlist(reduce.values))
rhcounter("reduce_stage" , "reduce" , 1)

b

post = { ©
mean.length <- as.integer(round(tweetLength/tweetCount))
rhcollect(currentKey , mean.length)
rhcounter("reduce stage" , "post" , 1)

}

)

continues ...

A RHIPE Reducer is more straightforward than its Hadoop streaming equivalent, but it
still requires a little explanation. It’s comprised of three code blocks: pre, reduce, and
post.

@ The pre block is executed once per key. You can use this space to define variables
that will be used in the reduce and post blocks. This example defines variables to
track the total number and length of tweets from this author. (Compared to Hadoop
streaming, notice that your RHIPE Reducer code doesn’t have to keep track of the
keys.)

® RHIPE hands the reduce block some values for the current key. Those appear as a
list called reduce.values. You can use the reduce block to aggregate any data across
all of the values for a given key. Here, the code uses the data in reduce.values to
update the tweet count and length.

© By the time RHIPE executes the post block, it has processed all of the values for the
current key. This is the place to wrap up any calculations based on the values you
updated or collected in the reduce block. In this example, the post block calculates
the mean tweet length based on this author’s total count and number of tweets.

You may see some RHIPE code in the wild that omits the pre and post blocks of the
Reducer, and does everything in the reduce block. In turn, you may wonder: Why does
that code work? I thought RHIPE only passed my Reducer a few values at a time?

Working withIt | 93

By default, RHIPE passes the reduce block a lot of values. The default is so large—10,000
values—that it may exceed the number of values for a given key, in which case you can
get away with using just a reduce block in your Reducer.

Just because it works doesn’t mean it’s good form. You want to develop the habit of
using pre, reduce, and post blocks in your RHIPE-related code. It may seem wasteful,
but it will spare you the future headache of debugging strange Reducer behavior: “It
works in my local dev environment (on a small sample), but not in production...” or
the slightly more insidious, “It works for some keys, but not others.”

Example 7-6. Tweet brevity example, continued (part 3)

rhinit(TRUE, TRUE,buglevel=2000)

options.block <- rhoptions()
options.block$runner[1] <- "/usr/local/lib/R/site-library/Rhipe/libs/imperious.so"

rhipe.job.def <- rhmr(@
jobname="rhipe example 2" ,

setup=setup.block ,
map=map.block ,
reduce=reduce.block ,

opts=options.block ,
mapred=config.block ,

ifolder=source.data.file ,
ofolder=output.folder ,
inout=c("text" , "text")

)

rhipe.job.result <- rhex(rhipe.job.def)
continues ...

@ Remember to pass the reduce block and the setup block to rhmr ().

Running the Hadoop job: As described in the previous example, you can run this as
an R script from the command line or as statements in R’s console.

Reviewing the output: Once rhex() completes, it returns control to your R terminal.
The job’s result data sits in HDFS right now, but you can then read that back into your
R session for further manipulation. Let’s see how that works in Example 7-7.

Example 7-7. Tweet brevity example, continued (part 4)

output.data <- rhread(paste(output.folder , "/part-*" , sep="") , type="text") @
library(plyr) @

tweet.means <- mdply(

output.data ,
function(line){

94 | Chapter7: RHIPE

line <- gsub("\r$" , "" , output.data) (3]
tuple <- unlist(strsplit(line , "\t"))

return(data.frame(tname=tuple[1] , tcount=as.integer(tuple[2])))

b
.expand=FALSE

)

@ Invoke rhread() to pull HDFS data into R. Here, rhread() accepts the path to the
job’s output directory and a glob expression that will pick up all of the data files.
(The output directory may also contain other files, such as a _SUCCESS if the job
finished without error.) If you specify type=text, rhread() will return a one-column
Matrix of string values, one row for each line of output. For SequenceFiles, specify
type=sequence and rhread() will return a list of values.

® Hadley Wickham’s plyr package?® will make it easy to transform the matrix provided
by rhread().

© plyr’smdply() accepts a matrix and applies the supplied function to each row. Rows
of the matrix output.data are of the format {key}{tab}{value}{carriage return} so
the call to gsub() removes the trailing carriage return and then splits the line by the
tab character. The inline function returns a one-row data.frame, with columns for
the tweet author’s name (tname) and average tweet length (value). mdply() combines
all of those function calls’ results into a single data.frame that is assigned to
tweet.means.

Having imported the Hadoop job’s data back into an R-friendly format, you can per-
form further processing as part of an interactive data analysis session.

rhread() is one of several HDFS commands provided by RHIPE. Please see the sidebar
“Other Useful RHIPE Commands” for the rest.

Other Useful RHIPE Commands

RHIPE isn’t just an abstraction for running Hadoop MapReduce jobs. It also includes
some commands to work with HDFS:

rhread() and rhwrite()

Read from and write to data stored in HDFS.
rhget() and rhput()

Copy HDFS files to and from your local filesystem.
rhls()

List files in HDFS.

rhdel()
Remove files in HDFS.

1 If you haven’t used plyr before, you’ll want to give it a try. Think of it as sapply() or lapply(), but less arcane.
http://plyr.had.co.nz/

Working withIt | 95

http://plyr.had.co.nz/

More Complex Tweet Analysis

Situation: You need to pass complex data types between Map and Reduce stages;
simple strings and numeric types will not suffice.

The code: In the previous example, you needed to pass just the author’s name and
tweet length from the Mappers to the Reducers. That was easy: the code just passed
the name (a string) and length (a number) to rhcollect() as output key and output
value, respectively.

A tweet is a rich data object, though, so it’s not unlikely that you’d want extract even
more information. Let’s say that, this time around, you’ve written a custom analysis
function that wants a data.frame of the tweet text, user mentions within the tweet,
number of retweets, and so on.

One option would be to call paste() to concatenate those values into a delimited string
in the Map phase, then call strsplit() to unpack that string in the Reduce phase. (This
is, in effect, what you have to do for R+Hadoop.)

You could still do that with RHIPE, but there’s no reason. Remember when I said that
RHIPE can read and write special SequenceFiles that hold native R objects? It also uses
those to transfer data between the Map and Reduce phases. In the Map task, then, you
can pass a data.frame, a list, or pretty much any other native R object to rhcol
lect(). You’ll get the same object back in a Reduce task without any translation effort
on your part.$ This is one key strength of RHIPE over R+Hadoop: you’re talking native
R the whole time.

Example 7-8 demonstrates those ideas in code.

Example 7-8. Passing complex values

setup.block and config.list are the same as in the previous example,
so we omit them here
map.block <- expression({

rhcounter("map_stage" , "enter_ block" , 1)

map.function <- function(tweet.raw){
tryCatch({
tweet <- fromJSON(tweet.raw)

reply user id <- ifelse(is.null(tweet$in_reply to user id) ,
NA , tweet$in reply to_user id)

geo <- ifelse(is.null(tweet$geo) , NA , tweet$geo)

mentions <- ifelse(is.null(tweet$user_mentions) , o,
length(is.null(tweet$user_mentions)))

§ For the sticklers, it won’t be the same “object” in the sense of “location in memory”; it will be an
equivalent object that contains the same fields with the same values.

96 | Chapter7: RHIPE

tuple <- data.frame(@
screen_name=tweet$user$screen_name ,
in_reply to=reply user_id ,
create_time=tweet$created at ,
retweet_count=tweet$retweet_count ,
user_mentions=mentions ,
location=geo ,
text=tweet$text

)

rhcollect(tweet$user$screen name , tuple) @
rhcounter("map_stage" , "success" , 1)

b
error=function(error){
rhcounter("map_stage" , "error" , 1)
print(error)
b
}

lapply(map.values , map.function)
b

continues ...

@ Collect the extracted data into a data.frame.

@ Pass that data.frame to rhcollect(), just the same as you’ve been passing simple
strings and numbers. No fuss, no muss, nothing special to do here.

Example 7-9. Passing complex values, continued (part 2)

reduce.block <- expression(

pre = {
df <- data.frame() @
currentKey <- reduce.key
rhcounter("reduce stage" , "pre" , 1)
b
reduce = {
df.tmp <- do.call(rbind , reduce.values) @
df <- rbind(df , df.tmp)
rhcounter("reduce_stage" , "reduce" , 1)
b
post = {
result <- tweetAnalysis(df) ©
rhcollect(currentKey , result)
rhcounter("reduce_stage" , "post" , 1)
}

)

rhinit(TRUE, TRUE,buglevel=2000)
continues ...

@ Start with a single, empty data.frame. Code in the reduce block will add rows.

Working with It | 97

@ The call to rbind() will append this run’s values to the data.frame defined in the
pre block.

© The custom tweetAnalysis() function accepts the data.frame, fully populated with
all of this author’s tweet data.frame+ to
Example 7-10. Passing complex values, continued (part 3)

rhipe.job.def <- rhmr(
jobname="rhipe tweet test" ,

setup=setup.block ,
map=map.block ,
reduce=reduce.block ,

opts=options.block ,
mapred=config.block ,
ifolder=source.data.file ,
ofolder=output.folder ,

inout=c("text" , "text") @
)

rhipe.job.result <- rhex(rhipe.job.def)

@ Note that the job uses use text data for input and output, even though RHIPE used a
SequenceFile behind the scenes to transfer our data. frame between the Mappers and
Reducers.

W8

Remember earlier, when I mentioned that you could save native R ob-
jects to a RHIPE SequenceFile? All you have to do is pass those objects to
s rheollect() in the Reducer. Make sure you set the second value of
" inout to sequence. That’s it.

Running the Hadoop job: You know what to do here...

Reviewing the output: The job’s output would be a typical set of tab-delimited key/
value lines, with the output of our mythical tweetAnalysis() function as the value. You
could call rhread() to pull it back into your R session, or one of rhget() or hadoop fs
-get to bring it back to your local workstation.

When It Works...

RHIPE lets you run Hadoop jobs without leaving R. That’s not just a useful abstraction,
it’s also a powerful concept: it means you can apply MapReduce to large-scale datasets
while performing interactive, exploratory data analysis. It’s like having massive cluster
compute power at your fingertips. (Exploratory analysis with R+Hadoop is not im-
possible, but more cumbersome, and certainly not of the “interactive” variety.)

98 | Chapter7: RHIPE

This is also more in-tune with an R workflow: I typically see people use Hadoop to boil
a dataset down to a more manageable size, then load those results back into R for
charting and such. RHIPE lets you skip the middle step because you never leave R.

W

If most of your RHIPE time involves basic data sorting, filtering, or trans-

formation work, and doesn’t require special R packages, you may want

%se to look into Pig. Like R, Pig is a scripting language with an interactive

" shell. Like RHIPE, Pig transforms your statements into Hadoop code on
the fly. Unlike R, Pig was built for Hadoop from the very start, and you
can install it without touching your Hadoop cluster. For more details,
please check out the Pig website at http://pig.apache.org and Program-
ming Pig by Alan F. Gates (O’Reilly).

...And When It Doesn't

Installation woes: You’ll need to install RHIPE on every cluster node, which means
you’ll need to make a small sacrifice to your cluster admins.

Those of you running a cloud-based cluster will have extra legwork to do. Building
RHIPE requires a specific version of Google’s Protocol Buffers. If your chosen image
doesn’t provide that precompiled,! you’ll have to build it yourself.

Finally, if you’re using an ephemeral cluster (such as those created by Elastic MapRe-
duce or Whirr) you’ll have to package up the install routine into something scripta-
ble.# While this hardly a show-stopper, I feel it’s worthy of mention because such
cluster maintenance duties distract you from your main purpose of data analysis.

RHIPE’s author, Saptarshi Guha, says the next version will be designed for Hadoop 0.21
and incompatible with 0.20. This is especially of interest to those in a hosted Hadoop
environment, such as Elastic MapReduce, where you are bound to a particular version
of Hadoop.

Finally, as of this writing, RHIPE is not compatible with Mac OS X Snow Leopard (10.6).

Documentation: RHIPE has plenty of documentation, available online as HTML and
offline as a PDF. That said, there’s no help in R format, so you can’t type “help(
rhinit)” or “?rhex” to get help while in the R shell. That also confounds R-enabled
editors and IDEs that show you a function’s help as you type its name.

This will be less of a problem as you grow accustomed to using RHIPE; but it can steepen
the learning curve of your early experiments.

Il For example, many Debian 5 and Ubuntu 10 AMIs ship with an older version of Protocol Buffers

#For example, I keep a copy of the RHIPE source code on a public S3 bucket. That reduces download time and
insulates me from any connectivity issues to RHIPE’s hosting.

...And When It Doesn’t | 99

http://pig.apache.org
http://oreilly.com/catalog/0636920018087
http://oreilly.com/catalog/0636920018087

No support for generic SequenceFiles: RHIPE can only understand SequenceFiles it
has created, which means it cannot (directly) work with binary input or output data.
If you’re looking to process binary data, you could try the workarounds described in
Example 6-2 in Chapter 6.

The Wrap-up

You’ve just experienced a tour of RHIPE, which gives you Hadoop power from R’s com-
mand shell. Don’t be fooled by the list of caveats above: RHIPE is very powerful and fits
into a lot of situations where those drawbacks are insignificant or even non-issues.

Now that you’ve seen R+Hadoop and RHIPE, it’s time for the book’s third and final
Hadoop-related R project: Segue.

100 | Chapter7: RHIPE

CHAPTER 8
Segue

Welcome to the last of the book’s recipes for R parallelism. This will be a short chapter,
but don’t let that fool you: Segue’s scope is intentionally narrow. This focus makes it
a particularly powerful tool.

Segue’s mission is as simple as it gets: make it easy to use Elastic MapReduce as a parallel
backend for lapply()-style operations. So easy, in fact, that it boasts of doing this in
only two lines of R code.’

This narrow focus is no accident. Segue’s creator, JD Long, wanted occasional access
to a Hadoop cluster to run his pleasantly parallel,t computationally expensive models.
Elastic MapReduce was a great fit but still a bit cumbersome for his workflow. He
created Segue to tackle the grunt work so he could focus on his higher-level modeling
tasks.

Segue is a relatively young package. Nonetheless, since its creation in 2010, it has at-
tracted a fair amount of attention.

Quick Look

Motivation: You want Hadoop power to drive some lapply() loops, perhaps for a
parameter sweep, but you want minimal Hadoop contact. You consider MapReduce
to be too much of a distraction from your work.

Solution: Use the segue package’s emrlapply() to send your calculations up to Elastic
MapReduce, the Amazon Web Services cloud-based Hadoop product.

Good because: You get to focus on your modelling work, while segue takes care of
transforming your lapply() work into a Hadoop job.

* Segue’s original slogan was a bit spicier, which is a nice way of saying that it’s not printable. JD has since
softened the message, but it’s hard not to appreciate the original slogan’s enthusiasm.

T Sometimes known as “embarrassingly parallel,” though we can’t fathom what could possibly be embarassing
about parallel computation.

101

How It Works

Segue takes care of launching the Elastic MapReduce cluster, shipping data back and
forth, and all other such housekeeping. As such, it abstracts you from having to know
much about Hadoop, and even Elastic MapReduce. Your monthly bill from Amazon

Web Services will be your only real indication that you’ve done anything beyond
standard R.

Still, there is a catch: I emphasize that Segue is designed for CPU-intensive jobs across
a large number of inputs, such as parameter sweeps. If you have data-intensive work,
or only a few inputs, Segue will not shine. Also, Segue works only with Elastic Map-
Reduce. It cannot talk to your in-house Hadoop cluster.

Setting Up

Segue requires that you have an AWS account. (Be sure to enable the Elastic
MapReduce service.) If you haven’t already done this, you’ll want to grab your preferred
credit card and head over to http://aws.amazon.com/.

I’d also suggest you run one of Amazon’s sample Elastic MapReduce jobs so you can
familiarize yourself with the AWS console. It will come in handy later, when you
double-check that your cluster has indeed shutdown. T'll discuss that part shortly. For
the remainder of this chapter, though, I'll assume you’re familiar with AWS concepts.

Next, install Segue. It isn’t available on CRAN, so grab the source bundle from the
project website at http://code.google.com/p/segue/ and run:

R CMD INSTALL {file}

from your OS command line.

B A
\
. As of this writing, Segue does not run under Windows.
LA
LONY N
T

Working with It

Model Testing: Parameter Sweep
Segue has only one use case, so I have just one example to show you.

Situation: You're doing a parameter sweep across a large number of inputs, and run-
ning it locally using lapply() just takes too long.

102 | Chapter8: Segue

http://aws.amazon.com/
http://code.google.com/p/segue/

The code: To set the stage, let’s say you have a function runModel() that takes a single
list as input. You wrap up the entire set of inputs in a parent list (that is, a list-of-lists)
called input.list. To execute runModel() on each sub-list, you could use the standard
lapply() like so:

runModel <- function(params){ ... }
input.list <- list(... each element is also a list ...)

lapply.result <- lapply(input.list , runModel)

So far, this is nothing new, and it works fine for most cases. If input.list contains
enough elements and each iteration of runModel() takes a few minutes, though, this
exercise could run for several hours on your local workstation. We’ll show you how to
transform that lapply() call into the Segue equivalent.

Segue setup:

library(segue)
setCredentials("your AWS access key", "your AWS secret key") @

emr.handle <- createCluster(@
numInstances=6 ,
ec2KeyName="...your AWS SSH key..."

)

This first R excerpt prepares your environment by loading the Segue library and launch-
ing your cluster. Of note:

@ The call to setCredentials() accepts your AWS credentials. Understandably, not
everyone wants to embed passwords in a script or type them into the R console
(where they’ll end up in your .Rhistory file). As an alternative, Segue can pull those
values from the environment variables AWSACCESSKEY and AWSSECRETKEY. Be sure to
define these variables before you launch R.

@ createCluster() connects to Amazon and builds your cluster. The numInstances
parameter specifies the number of nodes (machine instances) in the cluster. A value
of 1 means all the work will take place on a single node, a combined master and
worker. For some larger value N, there will always be N-1 worker nodes and one
master node. In other words, there’s not much difference between numInstances=1
and numInstances=2 since you’ll have just a single worker node in either case.

Why, then, would a person want numInstances=1? You could use this for testing, or
for those cases in which you just want a separate machine to do the heavy lifting.
Consider your local machine is a netbook or some other resource-constrained hard-
ware. You could use Segue to offload the big calculations to a single-node cluster, then
use your local machine for simple plots and smaller calculations.

Working with It | 103

Recall that Hadoop splits up your input to distribute work throughout
the cluster. Segue’s author recommends at least ten input items for each
st worker node. A smaller input list may lead to an imbalance, with one
" node taking on most of the work.

createCluster () will print log messages while the launch and bootstrap take place, and
return control to your R console once the cluster is ready for action. Its return value
emr.handle is a handle to the remote EMR cluster. Save this, as you’ll need it to send
work to the cluster, and also to shut it down later.

Now, you’re ready to run the lapply() loop on the cluster, Segue-style:

emr.result <- emrlapply(emr.handle , input.list , runModel, taskTimeout=10)

emrlappy() looks and acts very much like an lapply() call, doesn’t it? The only new
parameters are the cluster handle emr.handle and the task timeout taskTimeout. (I dis-
cussed Hadoop task timeouts in Chapter 6.) Here, the timeout is set to ten minutes.

Behind the scenes, Segue has packed up your data, shipped it to the cloud, run the job,
collected the output data, and brought it back to you safe and sound. As far as you can
see from your R console, though, nothing out of the ordinary has happened. Such is
the beauty of Segue.

Reviewing the output: There’s surprisingly little to explain as far as reviewing output
from emrlapply(): if you feed lapply() and emrlapply() the same input, they should
return the same values. That means emrlapply() is an almost seamless replacement for
lapply() in your typical R workflow (at least for lapply() calls that have suitably sized
inputs). We emphasize “almost” seamless, because there is one catch: emrlapply()
expects a plain list as input, whereas lapply() will attempt to munge a non-list to a
list.

W N

Because lapply() and emrlapply() are so similar, you can test your code
on a small sample set using the former, before launching a cluster to run
s the latter.

Speaking of workflows, I'd like to emphasize that you can use the same cluster handle
for many calls to emrlapply(). You don’t have to launch a new cluster for each emrl
apply() call. For example, you could use Segue to launch a cluster in the morning, call
emrlapply() several times during the day, and then shut down the cluster in the evening.
This is very important to know, since that initial call to createCluster () can take several
minutes to return. You probably don’t want to do that several times a day.

Eventually, though, you’ll run out of work to do, at which point you’ll want to shut-
down your EMR cluster. Simply call Segue’s stopCluster():

stopCluster(emr.handle)

104 | Chapter8: Segue

Keep in mind that there are only two ways to terminate the cluster:

* (Call stopCluster() from your R console
* Use AWS tools (such as the AWS web console, or the command-line Elastic Map-
Reduce toolset) to terminate the EMR job

Did you notice something missing? “Quit R” is not on this list, because closing R will not
terminate the cluster.

To spare you an unexpectedly large AWS bill, I'll even put this inside a warning box
for you:

The cluster will keep running until you actively shut it down by termi-
%@ nating the EMR job. Even if you close R, or your local workstation

crashes, your EMR cluster will keep running and Amazon will continue
to bill you for the time.

This is one reason to you familiarize yourself with the Elastic MapReduce tab of the
AWS console: should your local workstation crash, or you otherwise lose the cluster
handle returned by startCluster(), you’ll have to manually terminate the cluster.

When It Works...

Segue very much abstracts you from Hadoop, Elastic MapReduce, and even Amazon
Web Services. As such, it is the “most R” (or, if you prefer, “least Hadoop”) of the
Hadoop-related strategies presented in this book. If your goal is to run a large lap
ply()-style calculation and get on with the rest of your R work, Segue wins hands-down
compared to R+Hadoop and RHIPE.

...And When It Doesn't

Tied to Amazon’s cloud: Segue only works with Elastic MapReduce. This means it
won’t help you take advantage of your in-house Hadoop cluster, or your self-managed
cluster in the cloud.

(This is part of why Segue isn’t helpful for data-intensive work: data transformation
and transfer to and from Amazon’s cloud would counteract the benefits of making your
lapply() loop run in parallel.)

Requires extra responsibility: By default, Elastic MapReduce builds an ephemeral
cluster that lasts only as long as a job’s runtime. Segue, on the other hand, tells EMR
to leave the cluster running after the first job completes. That leaves it to you to check
and double-check that you’ve truly terminated the cluster when you’re done running
jobs.

...And When It Doesn't | 105

Granted, this is a concern when you use any cloud resources. I mention it here because
Segue shields you so well from the cluster build-out that it’s easy to forget you’ve left
anything running. Beware, then, and make a habit to regularly check your AWS ac-
count’s billing page.*

Limited scope: Segue has just one use case, and that narrow focus is its blessing as
well as its curse. If all you want is to turbo-charge your lapply() loops with little dis-
traction from your everyday R work, Segue is a great fit. If you need anything else, or
if you live to twiddle Hadoop clusters by hand, Segue will not make you very happy.

The Wrap-up

Segue is designed to do one thing, and do it well: use Amazon’s Elastic MapReduce as
a backend for lapply()-style work. It abstracts you from Hadoop and other technical
details, which makes it useful for people who find cluster management a real distraction
from their R work.

1 Iwas once bitten by cluster resources gone awry (not related to Segue) and have since made a habit of checking
the AWS Billing page on a regular basis. Amazon, if you’re listening: could you please provide an API to
check billing? Thank you.

106 | Chapter8: Segue

CHAPTER 9
New and Upcoming

A perfect world would let us stop time to research and write, since a technical book
covers a moving target. We didn’t have such a luxury, so instead we set aside some
space to pick up on some new arrivals.

This chapter mentions a few tools for which we could have provided more coverage,
had we been willing to postpone the book’s release date. Think of this as a look into
one possible future of R parallelism. Special thanks to our colleagues, reviewers, and
friends who so kindly brought these to our attention.

doRedis

The foreach() function® executes an arbitrary R expression across an input.
foreach()’s strength is that it can execute in parallel with the help of a supplied parallel
backend. The doRedis package provides such a backend, using the Redis datastore’ as
a job queue.

doRedis can work locally to take advantage of multicore systems, and also farm tasks
out to remote R instances (“workers”). It’s straightforward to add or remove workers
at runtime—even in mid-job—to adapt to changing work conditions or speed up job
processing. Similar to Hadoop, doRedis is fault-tolerant in that failed tasks are auto-
matically resubmitted to their job queue.

doRedis supports Linux, Mac OS X, and Windows systems.

* Description: http://bigcomputing.com/doRedis.html
* Source: http://github.com/bwlewis/doRedis

* http://cran.r-project.org/web/packages/foreach/
t http://redis.io/

107

http://bigcomputing.com/doRedis.html
http://github.com/bwlewis/doRedis
http://cran.r-project.org/web/packages/foreach/
http://redis.io/

RevoScale R and RevoConnectR (RHadoop)

Revolution Analytics is a company that provides R tools, support, and training. They
have two products of note.

First up is the commercial Revolution R Enterprise. The current beta release includes
RevoScaleR (RSR), which brings distributed computing to R. When you use the special
XDF data format, RSR functions know to work on that data one chunk at a time, which
addresses R’s memory limitations. (This is not unlike Hadoop+HDFS.) To address R’s
CPU limitations, RSR includes functions to run code across several local cores, or across
a cluster of machines running using MS Windows HPC Server.*

Second, and more recently, the Revolution gang released the open-source RHadoop
packages (also known as RevoConnectR) to marry Hadoop and R: rmr provides the core
MapReduce functionality; rhdfs routines let you manage data in HDFES; and rhbase
talks to HBase, the Hadoop-backed database. We’re especially interested in rmr, which
strives to be a clean, intuitive way to access Hadoop power without leaving the R com-
fort zone. RHadoop is still young, but we think it has strong potential.

Both RSR and rmr fold into your typical data analysis work: you use special functions
and constructs to get the essence of a larger dataset, then pass those results to standard
R functions for plotting and further analysis.

* Revolution R Enterprise and RevoScaleR: http://www.revolutionanalytics.com/
* RHadoop: https://github.com/RevolutionAnalyticss/RHadoop/wiki

cloudNumbers.com

cloudnumbers.com is a platform for on-demand distributed, parallel computing. It
provides out-of-the-box support for R as well as C/C++ and Python. We see cloud-
numbers.com as a cousin of Amazon’s EC2, but specialized for scientific HPC work.

That said, cloudnumbers.com is an infrastructure, not a packaged parallelism strategy.
It’s up to the researcher to choose and set up their tools—perhaps some of the topics
we cover in this book—to take advantage of the hardware. We nonetheless feel this is
worth mention because it is closely related to this book’s topic. You can find out more
at http://cloudnumbers.com/.

1 The upcoming Revolution R Enterprise 5.0 supports 64-bit Red Hat Enterprise Linux 5 in addition to various
Windows flavors. For now, though, the cluster backend must run MS Windows HPC Server. A comment in
a blog post stats the team has eyes on Linux cluster support: http://blog.revolutionanalytics.com/2011/07/fast
-logistic-regression-big-data.html.

108 | Chapter9: New and Upcoming

http://www.revolutionanalytics.com/
https://github.com/RevolutionAnalytics/RHadoop/wiki
http://cloudnumbers.com/
http://blog.revolutionanalytics.com/2011/07/fast-logistic-regression-big-data.html
http://blog.revolutionanalytics.com/2011/07/fast-logistic-regression-big-data.html

About the Authors

Q. Ethan McCallum is a consultant, writer, and technology enthusiast, though perhaps
not in that order. His work has appeared online on The O’Reilly Network and Java.net,
and also in print publications such as C/C++ Users Journal, Doctor Dobb’s Journal, and
Linux Magazine. In his professional roles, he helps companies to make smart decisions
about data and technology.

Stephen Weston has been working in high performance and parallel computing for
over 25 years. He was employed at Scientific Computing Associates in the *90s, working
on the Linda programming system invented by David Gelernter. He was also a founder
of Revolution Computing, leading the development of parallel computing packages for
R, including nws, foreach, doSNOW, and doMC. He works at Yale University as an HPC
Specialist.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Q. Ethan McCallum
	Stephen Weston

	Chapter 1. Getting Started
	Why R?
	Why Not R?
	The Solution: Parallel Execution
	A Road Map for This Book
	What We’ll Cover
	Looking Forward…
	What We’ll Assume You Already Know

	In a Hurry?
	snow
	multicore
	parallel
	R+Hadoop
	RHIPE
	Segue

	Summary

	Chapter 2. snow
	Quick Look
	How It Works
	Setting Up
	Working with It
	Creating Clusters with makeCluster
	Parallel K-Means
	Initializing Workers
	Load Balancing with clusterApplyLB
	Task Chunking with parLapply
	Vectorizing with clusterSplit
	Load Balancing Redux
	Functions and Environments
	Random Number Generation
	snow Configuration
	Installing Rmpi
	Executing snow Programs on a Cluster with Rmpi
	Executing snow Programs with a Batch Queueing System
	Troubleshooting snow Programs

	When It Works…
	…And When It Doesn’t
	The Wrap-up

	Chapter 3. multicore
	Quick Look
	How It Works
	Setting Up
	Working with It
	The mclapply Function
	The mc.cores Option
	The mc.set.seed Option
	Load Balancing with mclapply
	The pvec Function
	The parallel and collect Functions
	Using collect Options
	Parallel Random Number Generation
	The Low-Level API

	When It Works…
	…And When It Doesn’t
	The Wrap-up

	Chapter 4. parallel
	Quick Look
	How It Works
	Setting Up
	Working with It
	Getting Started
	Creating Clusters with makeCluster
	Parallel Random Number Generation

	Summary of Differences
	When It Works…
	…And When It Doesn’t
	The Wrap-up

	Chapter 5. A Primer on MapReduce and Hadoop
	Hadoop at Cruising Altitude
	A MapReduce Primer
	Thinking in MapReduce: Some Pseudocode Examples
	Calculate Average Call Length for Each Date
	Number of Calls by Each User, on Each Date
	Run a Special Algorithm on Each Record

	Binary and Whole-File Data: SequenceFiles
	No Cluster? No Problem! Look to the Clouds…
	The Wrap-up

	Chapter 6. R+Hadoop
	Quick Look
	How It Works
	Setting Up
	Working with It
	Simple Hadoop Streaming (All Text)
	Streaming, Redux: Indirectly Working with Binary Data
	The Java API: Binary Input and Output
	Processing Related Groups (the Full Map and Reduce Phases)

	When It Works…
	…And When It Doesn’t
	The Wrap-up

	Chapter 7. RHIPE
	Quick Look
	How It Works
	Setting Up
	Working with It
	Phone Call Records, Redux
	Tweet Brevity
	More Complex Tweet Analysis

	When It Works…
	…And When It Doesn’t
	The Wrap-up

	Chapter 8. Segue
	Quick Look
	How It Works
	Setting Up
	Working with It
	Model Testing: Parameter Sweep

	When It Works…
	…And When It Doesn’t
	The Wrap-up

	Chapter 9. New and Upcoming
	doRedis
	RevoScale R and RevoConnectR (RHadoop)
	cloudNumbers.com

