
 1

NAS Technical Report, NAS-05-011, June 2005

Parallelization of Gauss-Seidel Relaxation for Real Gas Flow

Seokkwan Yoon*, Gabriele Jost** and Sherry Chang***

NASA Ames Research Center

Moffett Field, California 94035

 Methods using OpenMP directives have been studied to parallelize an inherently sequential Gauss-
Seidel algorithm on shared memory computers. Both hyperplane and pipeline parallelization
schemes have been implemented to a non-equilibrium real-gas flow simulation code. The effects of
different parallelization strategies and grid sizes on the parallel efficiency have been investigated on
SGI Origin and Altix systems.

* NASA Advanced Supercomputing Division
** Computer Sciences Corporation, Presently at Sun Microsystems
***Computer Sciences Corporation, Work supported by the NASA Advanced Supercomputing Division under Task Order A61812D
(ITOP Contract DTTS59-D-00437/TO #A61812D) with Advanced Management Technology Incorporated (AMTI)

I. Introduction

 Exploration of the solar system has revived an
interest in computational simulation of
chemically reacting flows since planetary
exploration vehicles exhibit non-equilibrium
phenomena during the atmospheric entry of a
planet or a moon as well as the reentry to the
Earth. Stability in combustion is essential for
chemical propulsion systems.

 Numerical solution of real-gas flows often
increases computational work by an order-of-
magnitude compared to perfect gas flow partly
because of the increased complexity of equations
to solve. Recently, as part of Project Columbia,
NASA has integrated a cluster of interconnected
SGI Altix systems to provide a ten-fold increase
in current supercomputing capacity that includes
an SGI Origin system. Both the new and existing
machines are based on cache coherent non-
uniform memory access architecture.

 The Lower-Upper Symmetric Gauss-Seidel
(LU-SGS) relaxation method1 has been the core
solution algorithm for both perfect and real gas
flow codes2-8 including Real-Gas Aerodynamic
Simulator (RGAS)9. However, the vectorized
RGAS code runs inefficiently on cache-based
shared-memory machines such as SGI systems.
Porting and optimization of the RGAS code to
cache based machines have been performed.
However, parallelization of a Gauss-Seidel
method is nontrivial due to its sequential nature.

 The LU-SGS method has been vectorized on
hyperplanes in the INS3D-LU code4 that has
been one of the base codes for the NAS Parallel
Benchmarks10. It is possible to parallelize a
Gauss-Seidel method by partitioning the
hyperplanes once they are formed. Another way
of parallelization is to schedule processors like a
pipeline using software11. Both hyperplane and
pipeline methods have been implemented using
OpenMP directives. The present paper reports on
the performance of the parallelized RGAS code
on SGI Origin 3800 and Altix 3700 systems.

 2

II. Numerical Methods

 Let t be time; Q the vector of conserved
variables; E, F, and G the convective flux
vectors;

v
E ,

v
F , and

v
G the flux vectors for

the viscous terms. The source term S represents
production or destruction of species due to
chemical reactions. The three-dimensional
Navier-Stokes and species transport equations in
generalized curvilinear coordinates (ξ, η, ς) can
be written as

 The governing equations are integrated in time
for both steady and unsteady flow calculations.
An unfactored implicit scheme can be obtained
from a nonlinear implicit scheme by linearizing
the flux vectors about the previous time step and
dropping terms of second and higher orders.

where

I is the identity matrix and Q! denotes the
correction. A, B, C, and H are the Jacobian
matrices of the convective flux vectors and the
source term respectively. For steady-state
solutions, ! is set to 1. Artificial dissipation
models augment a piecewise-constant cell-
centered finite-volume formulation of the right
hand side.

 Direct inversion of a large block banded matrix
becomes impractical in three dimensions because
of the rapid increase of computational work and
the large storage requirement. The LU-SGS
scheme is one of the approximate factorization
methods to alleviate the difficulties in three
dimensions. Let subscripts f and s indicate fluid
and species transport equations respectively. The
loosely-coupled method solves the Navier-
Stokes and species transport equations separately

but the solutions are updated simultaneously at
each time step.

where

!

Lf = I +"#t(D
$

%
Af

+
+ D

&

%
Bf

+
+ D

'

%
Cf

+

 % Af

% % Bf

% %Cf

%
)

Df = I +"#t(Af

+
+ Bf

+
+ Cf

+ % Af

% % Bf

% %Cf

%
)

Uf = I +"#t(D
$

+
Af

%
+ D

&

+
Bf

%
+ D

'

+
Cf

%

 + Af

+
+ Bf

+
+ Cf

+
) (6)

!

L
s
= I +"#t(D

$

%
A
s

+
+ D

&

%
B
s

+
+ D

'

%
C
s

+

 % A
s

% % B
s

% %C
s

% %H)

D
s
= I +"#t(A

s

+
+ B

s

+
+ C

s

+ % A
s

% % B
s

% %C
s

%
)

U
s
= I +"#t(D

$

+
A
s

%
+ D

&

+
B
s

%
+ D

'

+
C
s

%

 + A
s

+
+ B

s

+
+ C

s

+
) (8)

The loosely-coupled partially-implicit scheme
includes the source Jacobian term H only in the
Ls factor. Solving the equations in a loosely-
coupled manner ignores such terms in the
Jacobian matrix A, for example, as sf QE !! /

and fs QE !! / .

III. Parallelization methods

 The original vector code ran inefficiently on
cache-based systems. First, manual optimization
that included array changes for better cache and
Translation Lookaside Buffer utilization

!

RHS = "#t[D$ (E " Ev) + D%(F " Fv)

+D& (G "Gv) " S] (3)

!

LD
"1
U#Q = RHS (4)

!

[I +"#t(D$A + D%B + D&C 'H)]#Q

= RHS (2)

!

"
t
Q+ "# (E $ E

v
) + "%(F $ F

v
)

+"& (G $G
v
) = S (1)

!

Lf Df

"1
Uf#Qf = RHSf (5)

!

L
s
D
s

"1
U

s
#Q

s
= RHS

s
 (7)

 3

enhanced the performance of the serial code by a
factor of two on the Origin 3800 system. The
parallelization on shared memory systems is
easier than distributed memory machines
because of the globally addressable space. The
user does not have to worry about distributing
and communicating data in separate address
spaces.

 The LU-SGS scheme in the code was vectorized
on hyperplanes where i+j+k=const where i,j,
and k denote indices for three space dimensions.
Figure 1 illustrates a two-dimensional example
with j+k=const hyperlines. Circles indicate grid
cells to be solved while bullets are grid cells
where the solutions are already updated.
Calculations for the circles can be performed
independently since the data for each circle have
no dependencies. The key element was the
conversion of three-dimensional indices (i,j,k) to
two-dimensional ones (ipoint, iplane)4. Once the
hyperplanes are formed, it is possible to
parallelize the algorithm by partitioning the
planes. The method has the limitation that
parallelism is restricted to points within one
hyperplane.

 In order to improve memory access, the code
has been converted manually to use a canonical
ordering. The restructured code improves the
serial performance by a factor of two, already a
significant speed-up on its own. Then the
processors are scheduled like a pipeline on the
outermost loop level12. Sequential operations in
each processor are performed in the cache. This
approach exploits partial parallelism in loops that
carry dependencies. Figure 2 illustrates an
example for pipeline parallelization. A parallel
region is placed around the outermost loop in k-
dimension. The work is distributed in j-
dimension. For each k, all threads execute a slice
of j-index. The first processor starts from the
lower-left corner and works on one slice of data
for the first k-index. Other processors are waiting
for data to be available. Once the first processor
finishes its job, the second processor can start
working on its slice for the same k-index. In the
meantime, the first processor moves onto the
next k-index. This process continues until all the
processors become active. Then they all work
concurrently to the opposite end. The efficiency
of pipelining may be limited due to the wait in
startup and finishing.

 Both hyperplane and pipeline codes are
parallelized using the Computer-Aided

Parallelizer and Optimizer (CAPO)13
parallelization tool for the OpenMP
parallelization. The CAPO tool automates the
insertion of compiler directives to facilitate
parallel processing on shared memory machines.
Due to the broad support of the OpenMP
standard, the generated OpenMP codes can be
run on a wide range of shared memory
computers. The CAPO tool generates compiler
directives in three stages: identification of
parallel loops in the outer-most level,
construction and optimization of parallel regions
around parallel loops, and insertion of directives
with a proper list of private, reduction and shared
variables.

This task would have been very time consuming
when performed manually, particularly in view
of the fact that the code requires sophisticated
parallelization techniques such as pipelined
thread execution, which is not available via
automatic parallelization of the vendor-supplied
commercial compiler. The rapid tool based
parallelization allows for the comparison of
different strategies and to choose the most
efficient implementation.

 The parallelization is non-trivial, since the
implementation gives rise to a number of
conservative and actual data dependencies. The
CAPO tool uses the extensive dependency
analysis module of the ParaWise14 system, and,
based on the information resulting from the
analysis, inserts OpenMP directives into the
source code. The following features of the
CAPO tool, which are not available via
automatic compiler parallelization, are essential
for the efficiency of the parallel code. The CAPO
tool provides an extensive set of browsers to
allow user interaction for improvements of the
generated code. This makes it possible to
interactively declare the scope of certain
variables as either shared or private and thereby
removing conservatively assumed dependencies,
which would inhibit parallelization for the
compiler. The CAPO tool optimizes the parallel
code by merging the parallelized loops within a
routine into a large parallel region. This reduces
time spent in overhead to fork and join at the
beginning and end of parallel loops.

IV. Results

 The SGI Origin 3800 and Altix 3700 shared-
memory systems are based on 0.6 GHz RISC
and 1.5 GHz Intel Itanium-2 processors

 4

respectively. Timings for the serial and the
parallel executions were obtained using the -O2
optimization compiler flag during compilation.

 In order to investigate the performance of
parallel Gauss-Seidel methods for reacting flow,
a scramjet problem has been used as a test case.
The air-breathing rocket propulsion systems,
which consume oxygen in the air, offer clear
advantages by making vehicles lighter and more
efficient. Fuel-air mixing and rapid combustion
are of crucial importance for the success of
scramjet engines since the spreading rate of the
supersonic mixing layer decreases as the Mach
number increases. In our test case, hydrogen fuel
is injected transversely to incoming supersonic
flow of air. The incoming air speed, pressure and
temperature are assumed to be Mach 2, 1 atm
and 1,000° K. Gaseous hydrogen is injected at
the sonic speed through a hole at the bottom
whose non-catalytic wall is cooled at 600° K.
The length of combustion chamber is 40 times
the diameter of injector. The Reynolds number
based on the length is approximately 105. A 257
x 257 x 257 structured grid (approximately 17
million points) has been used with symmetric
boundary conditions at the top and side walls.
Supersonic flow boundary conditions are
imposed at the inlet and outlet planes.

 Figure 3 shows the speedup factors of the
hyperplane method on an SGI Origin 3800
system. The code consists of Left Hand Side
(LHS) and Right Hand Side (RHS) of the
equation. The LHS represents the Gauss-Seidel
algorithm while the RHS includes residual
calculation routines. The parallel performance of
the code worsens when the number of processors
increases to 128. This problem appears to be due
to complicated memory access of the hyperplane
method as indicated by the LHS performance.
Figure 4 shows the speedup factors of the
pipeline method on the SGI Origin system. No
performance degradation is observed since the
pipeline improves memory access. However, the
speedup factor of the RHS does not appear to
increase as the number of processors increases
from 64 to 128. Figure 5 shows clearly that the
pipeline method outperforms the hyperplane
method as the number of processors increases.
Figure 6 shows relative speedup factors of the
pipeline method over the hyperplane method.
Even on single processor, the pipeline method is
4.58 times faster than the hyperplane method as
shown by the LHS graph. Excluding the 128

processor case, the relative speedup for the LHS
ranges from 4.58 to 6.08.

 Figure 7 shows the speedup factors of the
pipeline method on an SGI Altix 3700 system. It
should be noted that the performance increases
from 64 to 128 processors unlike with the Origin
system in Fig. 4. Figure 8 compares the speedup
factors for components of the RHS. The
performance problems of residual calculation
routines should be a subject of future
investigations. Figure 9 shows the relative
speedup of the Altix over the Origin. The relative
speedup is the ratio of the Origin time and the
Altix time on a given number of processors. It is
not surprising that the Altix is two to three times
faster than the Origin considering the speed of
Altix chip is 2.5 times faster than the Origin’s.
What is interesting is that the best performance
of the Altix seems to be at 128 processors.
Finally, Figure 10 shows the effect of grid size
on the speedup. The performance on the Altix
improves as the grid size increases.

 When compared to a 0.8 GHz Cray X1, the code
on single processor of the Altix requires 1.54
times more time than a vectorized version on
X1’s single stream processor. However, the code
on 4 Altix processors requires only 85 percent of
the time on X1’s 4 single stream processors (1
multi stream processor).

Summary

 Parallelization methods have been studied for a
symmetric Gauss-Seidel relaxation algorithm in
conjunction with a loosely-coupled scheme for
chemically reacting non-equilibrium flow. Both
hyperplane and pipeline methods have been
implemented into Real-Gas Aerodynamic
Simulator code using OpenMP directives on
cache coherent non-uniform memory access
architecture. Performance of the parallelization
methods have been investigated on SGI Altix
and Origin shared memory systems. The pipeline
method outperforms the hyperplane method
partly because of the improved memory access.
The Altix shows better performance than the
Origin as the number of processors increases.

Acknowledgments

The authors thank H. Jin for helpful discussions.

 5

References

1. Yoon, S. and Jameson, A., “Lower-Upper

Symmetric Gauss-Seidel Method for the
Euler and Navier-Stokes Equations,” AIAA
Journal, Vol. 26, Sept. 1988, pp. 1025-1026.

2. Shuen, J.S. and Yoon, S., “Numerical Study
of Chemically Reacting Flows Using an LU-
SSOR Scheme,” AIAA Journal, Vol. 27,
Dec. 1989, pp. 1752-1760.

3. Park, C. and Yoon, S., “Calculation of Real-
Gas Effects on Blunt-Body Trim Angles,”
AIAA Journal, Vol. 30, Apr. 1992, pp. 999-
1007.

4. Yoon, S. and Kwak, D., “Three-
Dimensional Incompressible Navier-Stokes
Solver using Lower-Upper Symmetric
Gauss-Seidel Algorithm,” AIAA Journal,
Vol. 29, June 1991, pp. 874-875.

5. Yoon, S. and Kwak, D., “Multigrid
Convergence of an Implicit Symmetric
Relaxation Scheme,” AIAA Journal, Vol. 32,
May 1994, pp. 950-955.

6. Chen, C.L., McCroskey, W.J., and
Obayashi, S., “Numerical Solutions of
Forward-Flight Rotor Flow using an
Upwind Method,” AIAA Paper 89-1846,
June 1989.

7. Soetrisno, M., Imlay, S.T., and Roberts,
D.W., and Taflin, D.E., “Development of a
3-D Zonal Implicit Procedure for Hybrid
Structured-Unstructured Grids,” AIAA
Paper 96-0167, Jan. 1996.

8. Sharov, D. and Nakahashi, K., “Reordering
of 3-D Hybrid Unstructured Grids for
Vectorized LU-SGS Navier-Stokes
Computations,” AIAA Paper 97-2102, June
1997.

9. Yoon, S., “Calculation of Supersonic
Combustion using Implicit Schemes,” AIAA
Journal, Vol. 42, Dec. 2004, pp. 2482-2489.

10. Bailey, D., Barton, J., Lasinski, T., and
Simon, H., “The NAS Parallel
Benchmarks,” NAS TR-91-002, Jan. 1991.

11. Van der Wijngaart, R., Sarukkai, S., and
Mehra, P., “Analysis and Optimization of
Software Pipeline Performance on MIMD
Parallel Computers,” NAS TR-97-003, Feb.
1997.

12. Jin, H., Frumkin, M., and Yan, J., “The
OpenMP Implementation of NAS Parallel
Benchmarks and its Performance,” NAS
TR-99-011, Oct. 1999.

13. Jin, H., Frumkin, M., and Yan, J., “Code
parallelization with CAPO,” NAS TR-01-
008, Aug. 2001.

14. http://www.parallelsp.com/parawise.htm.

Fig. 1. Hyperplane parallelization: Shown is
a j+k=const hyperline for two dimensions
(i+j+k=const for three dimensions).

Fig. 2. Pipeline parallelization: Processors
are scheduled along k-direction. Next
processor waits for updated data from
previous processor for a given k-index.

j

k

k

j

P1

P2

P3

 6

Fig. 3. Speedup factors of the hyperplane
method on SGI Origin 3800 sytem

Fig. 4. Speedup factors of the pipeline
method on SGI Origin 3800 system

Fig. 5. Comparison of hyperplane and
pipeline methods for the Left Hand Side
(Gauss-Seidel algorithm)

Fig. 6. Relative speedup factors of the
pipeline method over the hyperplane
method

 7

Fig. 7. Speedup factors of the pipeline
method on SGI Altix 3700 system

Fig. 8. Speedup factors for components of
the Right Hand Side (Unrelated to Gauss-
Seidel algorithm)

Fig. 9. Relative speedup factors of SGI
Altix 3700 over SGI Origin 3800

Fig. 10. Effect of grid size on parallel
performance

