
Parameter Estimation and Inverse Problems

Second Edition

Instructor Solutions Manual

Richard C. Aster

Brian Borchers

Clifford H. Thurber

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2013 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our
website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or
ideas contained in the material herein.

ISBN: 978-0-12-385048-5

For information on all Academic Press publications, visit our website: www.elsevierdirect.com

ii

Preface

This instructor’s guide has been prepared to help instructors who are teaching
from the second edition of “Parameter Estimation and Inverse Problems.” In
addition to solutions for all of the exercises in the book, this guide contains
summary suggestions to the instructor about how to approach each chapter,
suggested homework assignments, and common student questions.

In addition to assigning homework sets, we have found it valuable for each
student in the course to give an approximately 20 minute in-class presentation
and prepare an associated concise term paper on some subject related to the
course. Example presentation topics (see class website below for additional ex-
amples) reflect the wide range of interests in our classes, and have included such
topics as “Solving L1 Regression Problems by Interior Methods”, “Calculation
of Electromagnetic Sensitivities by the Adjoint Method”, “Inversion of Free Sur-
face Reflection Data”, “Validation of a Distributed Parameter Watershed Model
to Observations of Soil Moisture Using Inverse Methods”, “Borehole Tempera-
ture Inversion”, and “Limitations of the ForWARD Algorithm in Reconstructing
Interferometric Images.”

As with the text itself, we would greatly appreciate comments, corrections,
or suggestions on this solutions manual.

Rick Aster, Brian Borchers, and Cli↵ Thurber

aster@ees.nmt.edu
borchers@nmt.edu
thurber@geology.wisc.edu

http://www.ees.nmt.edu/outside/Geop/Classes/GEOP529_class.html

http://www.ees.nmt.edu/outside/Geop/Classes/GEOP529_book.html

January, 2012

iii

iv PREFACE

Contents

Preface iii

1 Introduction 1-1

1.1 Discussion of the Chapter . 1-1

1.2 Exercises . 1-2

1.3 Solutions . 1-3

2 Linear Regression 2-1

2.1 Discussion of the Chapter . 2-1

2.2 Exercises . 2-2

2.3 Solutions . 2-6

3 Rank Deficiency and Ill–Conditioning 3-1

3.1 Discussion of the Chapter . 3-1

3.2 Exercises . 3-2

3.3 Solutions . 3-5

4 Tikhonov Regularization 4-1

4.1 Discussion of the Chapter . 4-1

4.2 Exercises . 4-2

4.3 Solutions . 4-4

5 Discretizing Inverse Problems Using Basis Functions 5-1

5.1 Discussion of the Chapter . 5-1

5.2 Exercises . 5-2

5.3 Solutions . 5-3

6 Iterative Methods 6-1

6.1 Discussion of the Chapter . 6-1

6.2 Exercises . 6-2

6.3 Solutions . 6-4

v

vi CONTENTS

7 Additional Regularization Techniques 7-1

7.1 Discussion of the Chapter . 7-1
7.2 Exercises . 7-2
7.3 Solutions . 7-3

8 Fourier Techniques 8-1

8.1 Discussion of the Chapter . 8-1
8.2 Exercises . 8-1
8.3 Solutions . 8-3

9 Nonlinear Regression 9-1

9.1 Discussion of the Chapter . 9-1
9.2 Exercises . 9-1
9.3 Solutions . 9-5

10 Nonlinear Inverse Problems 10-1

10.1 Discussion of the Chapter . 10-1
10.2 Exercises . 10-1
10.3 Solutions . 10-2

11 Bayesian Methods 11-1

11.1 Discussion of the Chapter . 11-1
11.2 Exercises . 11-1
11.3 Solutions . 11-3

A Review of Linear Algebra A-1

A.1 Discussion of the Appendix . A-1
A.2 Exercises . A-1
A.3 Solutions . A-4

B Review of Probability and Statistics B-1

B.1 Discussion of the Appendix . B-1
B.2 Exercises . B-1
B.3 Solutions . B-3

C Review of Vector Calculus C-1

C.1 Discussion of the Appendix . C-1
C.2 Exercises . C-1
C.3 Solutions . C-3

Chapter 1

Introduction

1.1 Discussion of the Chapter

The main purpose of this chapter is to introduce some of the basic concepts
and terminology associated with inverse problems. In the authors’ experience,
students who are “shopping around” for a course can read the first chapter
and attend our lectures to get a good idea of what the course will be about. By
discussing the material in this chapter with students we also get the opportunity
to learn some details about their mathematical background.

A second purpose of this chapter is to introduce the students to several
specific examples that will be used and re-used throughout the course. Thus it
would be wise to cover all of these examples.

The technical level of the material in Chapter 1 is fairly low, so the ma-
terial can be presented relatively quickly. We typically take about three one
hour lectures to cover Chapter 1. After Chapter 1, we move on to a review of
mathematical topics in appendices A, B, and C.

Section 1.5 is somewhat more mathematically technical than the other sec-
tions in this chapter. The point of this section is to introduce the ideas of
existence, uniqueness, and stability of solutions to inverse problems. These
ideas are central to an understanding of inverse problems, and the material in
this section is designed to make it clear to students that inverse problems can
be extremely hard if not impossible to solve.

Exercise 1.1 is a theoretical exercise that helps to introduce the concept of
linearity and make the connection between linear problems and matrix–vector
formulation of a forward problem. This exercise can be surprisingly challenging,
even for students who have done well in a typical introductory course in linear
algebra. An important point here is that the matrix vector product Ax can be
written as

Ax = x1A·,1 + . . .+ xnA·,n.

Exercise 1.2 is a basic thought experiment exercise to better illustrate incon-
sistency of linear equations. Exercise 1.3 is a practical exercise that illustrates

1-1

1-2 CHAPTER 1. INTRODUCTION

discretization of a continuous problem and ill-posedness. Exercise 1.4 is a good
way to connect the material in this course to student’s research interests. The
course as taught at NMT includes a final term paper, which might be based on
the paper that the student identifies in this exercise.

1.2 Exercises

1. Consider a mathematical model of the form G(m) = d, where m is a
vector of length n, and d is a vector of length m. Suppose that the model
obeys the superposition and scaling laws and is thus linear. Show that
G(m) can be written in the form

G(m) = �m (1.1)

where � is anm by nmatrix. What are the elements of �? Hint: Consider
the standard basis, and write m as a linear combination of the vectors in
the standard basis. Apply the superposition and scaling laws. Finally,
recall the definition of matrix–vector multiplication.

2. Can (1.14) be inconsistent, even with only m = 3 data points? How
about just m = 2 data points? If the system can be inconsistent, give an
example. If not, explain why not.

3. Consider the borehole vertical seismic profile problem of Examples 1.3
and 1.9 for n = 100 equally spaced seismic sensors located at depths of
z = 0.2, 0.4, . . . , 20 m, and for a model m describing n corresponding
equal length seismic slowness values for 0.2 m intervals having midpoints
at z � 0.1 m.

(a) Calculate the appropriate system matrix, G for discretizing the in-
tegral equation (1.21) using the midpoint rule.

(b) For a linear seismic velocity depth gradient model specified by

v = v0 + kz (1.2)

where the velocity at z = 0 is v0 = 1 km/s and the gradient is k = 40
m/s per m, calcuate the true slowness values at the midpoints of the n
intervals, mtrue. Additionally, integrate the corresponding slowness
function for (1.2) using (1.21) to calculate a noiseless synthetic data
vector, d, of predicted seismic travel times at the sensor depths.

(c) Solve for the slowness, m, as a function of depth using your G matrix
and analytically calculated noiseless travel times using the MATLAB
backslash operator. Compare your result graphically with mtrue.

(d) Generate a noisy travel time vector where independent normally dis-
tributed noise with a standard deviation of 0.05 ms is added to the
elements of d. Resolve the system for m and again compare your
result graphically with mtrue. How has the model changed?

1.3. SOLUTIONS 1-3

(e) Repeat the problem, but for just n = 4 sensor depths and corre-
sponding equal length slowness intervals. Is the recovery of the true
model improved? Explain in terms of the condition numbers of your
G matrices.

4. Find a journal article that discusses the solution of an inverse problem
in a discipline of special interest to you. What are the data? Are the
data discrete or continuous? Have the authors discussed possible sources
of noise in the data? What is the model? Is the model continuous or
discrete? What physical laws determine the forward operator G? Is G

linear or nonlinear? Do the authors discuss any issues associated with
existence, uniqueness, or instability of solutions?

1.3 Solutions

1. Following the hint, we use the standard basis in R
n, (e1, e2, . . . , en), along

with superposition and scaling to write

G(m) = G(m1e1 +m2e2 + . . .+mnen)

G(m) = m1G(e1) +m2G(e2) + . . .+mnG(en) .

Let the ith column of � be

�·,i = G(ei) .

Then

G(m) = m1G(e1) +m2G(e2) + . . .+mnG(en)

= m1�·,1 +m2�·,2 + . . .+mn�·,n

= �m .

2. The system of equations is
2

666666664

1 t1 �(1/2)t21
1 t2 �(1/2)t22
1 t3 �(1/2)t23
. . .

. . .

. . .

1 tm �(1/2)t2m

3

777777775

2

4
m1

m2

m3

3

5 =

2

666666664

y1

y2

y3

.

.

.

ym .

3

777777775

.

A straightforward way to make this system inconsistent is to require that
the ballistic body be in two places at the same time, e.g., t1 = t2 and y1 6=
y2. This is a physically impossible situation that the parabolic trajectory
law can never satisfy, and the mathematical result is an inconsistent set
of equations.

1-4 CHAPTER 1. INTRODUCTION

If the ti are distinct, then it can be shown, by examining the reduced
row echelon form of the augmented matrix, that there are always exact
solutions for m = 2 and m = 3.

For the m = 2 case we have

RREF

1 t1 � 1

2 t
2
1 y1

1 t2 � 1
2 t

2
2 y2

�
=

2

4 1 0 � 1
2

⇣
t
2
1 �

t1(t
2

1
�t2

2
)

t2�t1

⌘
y1 � t1(y2�y1)

t2�t1

0 1 � 1
2
t2
2
�t2

1

t2�t1
y2�y1

t2�t1

3

5 . (1.3)

If the ti are distinct, we can always solve form1 andm2 in terms of the free
parameter m3, and there are infinitely many solutions that fit the data.
This shows that there are an infinite number of t-symmetric parabolas
that fit through any two points in the t � y plane, provided the ti are
distinct.

For m = 3, the corresponding expression is

RREF

2

4
1 t1 � 1

2 t
2
1 y1

1 t2 � 1
2 t

2
2 y2

1 t3 � 1
2 t

2
3 y3

3

5

=

2

4
1 0 0 D�1

�
y1(t3t

2
2 � t2t

2
3) + y2(t

2
3t1 � t21t3) + y3(t

2
1t2 � t22t1)

�

0 1 0 D�1
�
y1(t

2
3 � t22) + y2(t

2
1 � t23) + y3(t

2
2 � t21)

�

0 0 1 2D�1 (y1(t3 � t2) + y2(t1 � t3) + y3(t2 � t1))

3

5 .

where
D = t

2
1(t2 � t3) + t

2
2(t3 � t1) + t

2
3(t1 � t2) .

If the ti are distinct, there is always a unique solution. This shows that
there is always a unique t-symmetric parabola through any three points
in the t� y plane, provided that the ti are distinct.

3. The G matrix is just an upper-triangular matrix with nonzero entries of
the data discretization interval (0.2). The data vector, d, is analytically
calculated from the definite interval from zero to z of the slowness func-
tions, so that

d(zi) = (1/g)(ln(v0 + kzi) = ln(v0) . (1.4)

The following MATLAB code produces plots of theoretical travel times,
noise-free solutions, and noisy solutions. The condition number of the
n = 100 system is approximately 128, but for n = 4 it is only about
5.4. The coarser discretization thus produces a much more stable solution
method, but at a cost of brutally discretizing the model so that any fine-
scale detail of the slowness structure with depth will not be recovered.
This is a demonstration of regularization by discretization, such as is also
demonstrated in Example 3.3.

1.3. SOLUTIONS 1-5

0 5 10 15 200

0.005

0.01

0.015

Depth (m)

Tr
av

el
 T

im
e

(s
)

Analytical
Discretized

Figure 1.1: Analytical and discretized travel time calculations, n = 100.

0 5 10 15 20
4

6

8

10

12

14 x 10−4

Depth (m)

Sl
ow

ne
ss

 (m
/s

)

Noise−free Solution

mtrue
m

Figure 1.2: True and recovered models for noise-free data, n = 100.

1-6 CHAPTER 1. INTRODUCTION

0 5 10 15 200

0.5

1

1.5

2 x 10−3

Depth (m)

Sl
ow

ne
ss

 (m
/s

)

Noisy Solution

mtrue
m

Figure 1.3: True and recovered models for noisy (� = 0.05 ms) data, n = 100.

5 10 15 204

6

8

10

12

14 x 10−4

Depth (m)

Sl
ow

ne
ss

 (m
/s

)

Noisy Solution

mtrue
m

Figure 1.4: True and recovered models for noisy (� = 0.05 ms) data, n = 4.

1.3. SOLUTIONS 1-7

%Solution to borehole discretization Exercise 1.3
clear
%number and location of seismometer depths (change n to 4 for the part (e)).
n=100;
%n=4;
z=linspace(0,20,n+1)’;
z=z(2:end);
Deltaz=z(2)-z(1);
%velocity gradient
g=40;
%velocity at z=0;
v0=1000;
%true velocity at midpoints
v=v0+(z-Deltaz/2)*g;
%true slowness
s=1./v;
%perfect data (analytic solution)
t=(1/g)*(log(v0+z*g)-log(v0));
%G matrix
G=tril(ones(n,n))*Deltaz;

figure(1)
bookfonts
plot(z,t,’k’,z,G*s,’r-.’)
xlabel(’Depth (m)’)
ylabel(’Travel Time (s)’)
legend(’Analytical’,’Discretized’,’location’,’southeast’)

figure(2)
bookfonts
plot(z,s,’k’,z,G\t,’r-.’)
xlabel(’Depth (m)’)
ylabel(’Slowness (m/s)’)
legend(’m_{true}’,’m’)
title(’Noise-free Solution’)

%add noise to the travel time data vector
tn=t+0.00005*randn(size(t));
figure(3)
bookfonts
plot(z,s,’k’,z,G\tn,’r-.’)
xlabel(’Depth (m)’)
ylabel(’Slowness (m/s)’)
legend(’m_{true}’,’m’)
title(’Noisy Solution’)

4. Answers to this question will vary tremendously depending on the choice
of topic and specific paper.

1-8 CHAPTER 1. INTRODUCTION

Chapter 2

Linear Regression

2.1 Discussion of the Chapter

The main point of Chapter 2 is to summarize the solution of well conditioned
discrete linear inverse problems (linear regression problems). This class of pa-
rameter estimation problems can easily be solved and statistically analyzed.
Linear regression problems are introduced in Section 2.1. The statistical as-
pects of least squares linear regression problems are discussed in Section 2.2.
In Section 2.3 we further explore the 95% confidence ellipsoid for least-squares
problems. In some cases measurement standard deviations are not available.
A methodology for dealing with this situation is described in Section 2.4. In
Section 2.5 we discuss methods for linear regression that are robust in the face
of incorrect data points by introducing L1 residual vector norm minimization
as a robust regression technique and show how to solve such problems with it-
eratively reweighted least squares. Monte Carlo methods for propagating data
uncertainties into uncertainties in estimated model parameters are covered in
Section 2.6.

Exercise 2.1 is an extended case study in that uses linear regression tech-
niques to analyze a simple seismic profiling experiment. The problem is solved
using both least squares and L1 residual vector norm minimization. Exercise
2.2 is a theoretical exercise in which students work out how to formulate and
solve a linear regression problem with correlated data errors. Exercise 2.3 is a
simulation where students will observe the statistical properties of parameter
estimates under assumptions that the data noise is known or unknown. Exercise
2.4 is a theoretical exercise to demonstrate that p-values in a linear regression
problem are uniformly distributed. Exercise 2.5 demonstrates that some seem-
ingly easy linear regression problems can be extremely poorly conditioned in
practice. It turns out that this problem can be solved easily after switching to
a more appropriate basis. This problem reappears in Exercise 5.5.

This is the first really “technical” chapter in the book, and students tend
to find this material more challenging, both conceptually and in terms of pro-

2-1

2-2 CHAPTER 2. LINEAR REGRESSION

gramming, than the material in Chapter 1 and the appendices. Most of the
MATLAB programming can be gleaned from the Example scripts for beginning
programmers. We typically cover the material in this chapter in about four
one-hour lectures.

2.2 Exercises

1. A seismic profiling experiment is performed where the first arrival times
of seismic energy from a mid–crustal refractor are observed at distances
(in kilometers) of

x =

2

6666664

6.0000
10.1333
14.2667
18.4000
22.5333
26.6667

3

7777775
(2.1)

from the source, and are found to be (in seconds after the source origin
time)

t =

2

6666664

3.4935
4.2853
5.1374
5.8181
6.8632
8.1841

3

7777775
. (2.2)

These vectors can also be found in the MATLAB data file profile.mat.
A two–layer flat Earth structure gives the mathematical model

ti = t0 + s2xi (2.3)

where the intercept time, t0 depends on the thickness and slowness of
the upper layer, and s2 is the slowness of the lower layer. The estimated
noise in the first arrival time measurements is believed to be independent
and normally distributed with expected value 0 and standard deviation
� = 0.1 s.

(a) Find the least squares solution for the model parameters t0 and s2.
Plot the data, the fitted model, and the residuals.

(b) Calculate and comment on the model parameter correlation matrix
(e.g., 2.43). How are the correlations manifested in the general ap-
pearance of the error ellipsoid in (t0, s2) space?

(c) Plot the error ellipsoid in the (t0, s2) plane and calculate conservative
95% confidence intervals for t0 and s2 for the appropriate value of �2.
Hint: The following MATLAB function will plot a two–dimensional

2.2. EXERCISES 2-3

covariance ellipse about the model parameters, where C is the co-
variance matrix, DELTA2 is �2, and m is the 2–vector of model
parameters.

%set the number of points on the ellipse to generate and plot

function plot_ellipse(DELTA2,C,m)

n=100;

%construct a vector of n equally-spaced angles from (0,2*pi)

theta=linspace(0,2*pi,n)’;

%corresponding unit vector

xhat=[cos(theta),sin(theta)];

Cinv=inv(C);

%preallocate output array

r=zeros(n,2);

for i=1:n

%store each (x,y) pair on the confidence ellipse

%in the corresponding row of r

r(i,:)=sqrt(DELTA2/(xhat(i,:)*Cinv*xhat(i,:)’))*xhat(i,:);

end

plot(m(1)+r(:,1), m(2)+r(:,2));

axis equal

(d) Evaluate the p–value for this model. You may find the library func-
tion chi2cdf to be useful here.

(e) Evaluate the value of �2 for 1000 Monte Carlo simulations using the
data prediction from your model perturbed by noise that is consistent
with the data assumptions. Compare a histogram of these �

2 values
with the theoretical �2 distribution for the correct number of degrees
of freedom. You may find the library function chi2pdf to be useful
here.

(f) Are your p–value and Monte Carlo �
2 distribution consistent with

the theoretical modeling and the data set? If not, explain what is
wrong.

(g) Use IRLS to find 1–norm estimates for t0 and s2. Plot the data
predictions from your model relative to the true data and compare
with (a).

(h) Use Monte Carlo error propagation and IRLS to estimate symmetric
95% confidence intervals on the 1–norm solution for t0 and s2.

(i) Examining the contributions from each of the data points to the 1–
norm misfit measure, can you make a case that any of the data points
are statistical outliers?

2. In this chapter we have largely assumed that the data errors are inde-
pendent. Suppose instead that the data errors have an MVN distribution
with expected value 0 and a covariance matrix CD. It can be shown that

2-4 CHAPTER 2. LINEAR REGRESSION

the likelihood function is then

L(m|d) = 1

(2⇡)m/2

1p
det(CD)

e
�(Gm�d)TC�1

D (Gm�d)/2
. (2.4)

(a) Show that the maximum likelihood estimate can be obtained by solv-
ing the minimization problem

min (Gm� d)TC�1
D (Gm� d) . (2.5)

(b) Show that (2.5) can be solved using the system of equations

G
T
C

�1
D Gm = G

T
C

�1
D d . (2.6)

(c) Show that (2.5) is equivalent to the linear least squares problem

min kC�1/2
D Gm�C

�1/2
D dk2 (2.7)

where C
�1/2
D is the matrix square root of C�1

D .

(d) The Cholesky factorization of C�1
D can also be used instead of the

matrix square root. Show that (2.5) is equivalent to the linear least
squares problem

min kRGm�Rdk2 (2.8)

where R is the Cholesky factor of C�1
D .

3. Use MATLAB to generate 10,000 realizations of a data set of m = 5
points d = a+ bx+ ⌘, where x = [1, 2, 3, 4, 5]T , the n = 2 true model
parameters are a = b = 1, and ⌘ is an m-element vector of independent
N(0, 1) noise.

(a) Assuming that the noise standard deviation is known a priori to
be 1, solve for the parameters a and b using least squares for each
realization and histogram them in 100 bins.

(b) Calculate the parameter covariance matrix, C = �
2(GT

G)�1, as-
suming independent N(0, 1) data errors, and give standard devia-
tions, �a and �b, for your estimates of a and b estimated from C,

(c) Calculate standardized parameter estimates

a
0 =

a� 1p
C1,1

(2.9)

and

b
0 =

b� 1p
C2,2

(2.10)

for your solutions for a and b. Demonstrate using a Q–Q plot (Ap-
pendix B) that your estimates for a0 and b

0 are distributed as N(0, 1).

2.2. EXERCISES 2-5

(d) Show using a Q–Q plot that the squared residual lengths

krk22 = kd�Gmk22 (2.11)

for your solutions in (a) are distributed as �
2 with m � n = ⌫ = 3

degrees of freedom.

(e) Assume that the noise standard deviation for the synthetic data set
is not known, and instead estimate it for each realization, k, as

sk =

vuut 1

n�m

mX

i=1

r
2
i . (2.12)

Histogram your standardized solutions

a
0 =

a� āq
C

0
1,1

(2.13)

and

b
0 =

b� b̄q
C

0
2,2

(2.14)

where C
0 = s

2
k(G

T
G)�1 is the covariance matrix estimation for the

k
th realization.

(f) Demonstrate using a Q–Q plot that your estimates for a0 and b
0 are

distributed as the Student’s t distribution with ⌫ = 3 degrees of
freedom.

4. Suppose that we analyze a large number of data sets d in a linear regres-
sion problem and compute p–values for each data set. The �

2
obs

values
should be distributed according to a �

2 distribution with m � n degrees
of freedom. Show that the corresponding p–values will be uniformly dis-
tributed between 0 and 1.

5. Use linear regression to fit a polynomial of the form

yi = a0 + a1xi + a2x
2
i + . . .+ a19x

19
i (2.15)

to the noise–free data points

(xi, yi) = (�0.95, � 0.95), (�0.85, � 0.85), . . . , (0.95, 0.95) . (2.16)

Use the normal equations to solve the least squares problem.

Plot the data and your fitted model, and list the parameters, ai obtained
in your regression. Clearly, the correct solution has a1 = 1, and all other
ai = 0. Explain why your answer di↵ers.

2-6 CHAPTER 2. LINEAR REGRESSION

2.3 Solutions

1. (a) The least squares model is easily found, using either the normal equa-
tions or the MATLAB backslash operator, to bemL2

= [2.0323, 0.2203].
Figure 2.1 shows the fit of the predicted data from this model rel-
ative to the actual data and standard errors. The fit isn’t too bad,
although the last data point is perhaps a bit suspicious.

(b) Figure 2.2 shows the appropriate error ellipsoid for 95% confidence
(2.45�) appropriate for two joint parameters in n = 2 dimensions.
The associated covariance matrix is

C = �
2(GT

G)�1 =

0.01058966 �0.00054631

�0.00054630 0.00003345

�
.

The error ellipsoid gives the axes for the MVN distribution that de-
scribe the parameter uncertainty. Parameter standard errors are
given by the square roots of the diagonal elements of C. For sin-
gle parameters, which will be normally distributed for least-squares
problems with normal data noise, the 95% confidence intervals are
defined by ±1.96�. However, for an MVN distribution in 2 dimen-
sions, the more conservative approach is to go out to about ±2.45�
along the error ellipsoid principal axes to encompass 95% of the joint
probability within the 2-dimensional MVN distribution. This gives

�1,2.45 = 2.45
p

C1,1 ⇡ 0.2521

and
�2,2.45 = 2.45

p
C2,2 ⇡ 0.0142 ,

which give parameter ranges of

t0 ⇡ [1.78022, 2.28446]

and
s2 ⇡ [0.20611, 0.23445] .

(c) The correlation matrix is

1.0000 �0.9179
�0.9179 1.0000

�
,

consistent with the error ellipsoid being tilted negatively in the (m1,m2)
plane (Figure 2.2) and demonstrating a strong tradeo↵ between in-
creasing/decreasing s2 and decreasing/increasing t0.

(d) The p value is about 8.7⇥ 10�4, which isn’t outrageously small, but
shows that a realization of the data with this relatively large value of
�
2 (18.75) for 4 degrees of freedom would only occur less than 1% of

the time if our data were really drawn from a linear model and had
the advertised standard errors.

2.3. SOLUTIONS 2-7

(e) See Figure 2.3.

(f) Figure 2.3 demonstrates that the Monte Carlo values do indeed look
like they are drawn from the theoretical PDF (this could be checked
more thoroughly with a Q-Q plot). The p-value is way out on the tail
of the distribution for this data set, and thus the modeling and/or
data should be regarded with some suspicion. Possibilities include a
data outlier or outliers (or equivalently, underestimation of the true
data noise), or the data could be generated by some other model than
a linear relationship between x and t. For example, we might have
used the travel time for a phase from some unmodeled seismic ray
path.

(g) The 1-norm solution is mL1
= [2.1786, 0.2079], which has a smaller

x vs t slope (lesser slowness,or higher velocity) than for the 2-norm
solution. The biggest di↵erence in comparing the data fit is that the
last data point looks even more like an outlier due to its large misfit
(Figure 2.4)

(h) Sorting the 1-norm Monte Carlo parameter solutions and finding
symmetric intervals where 95% of them are contained gives individual
parameter confidence intervals of

[±0.26188, ± 0.014698]

for parameters t0 and s2, which are larger than the corresponding
individual parameter 2-norm values of

±1.96
p
diag(C) = [±0.2017, ± 0.0113] .

The corresponding 1-norm 95% confidence intervals are (1.9168, 2.4405)
and (0.1932, 0.2226).

A conservative estimate of the 95% confidence intervals for the IRLS
solution using the same approach as the 2.45� bounds for the mL2

solution involves finding the necessary scaling factor, k, for the error
ellipsoid defined by the empirical covariance matrix

Cemp = (mL1 � m̄L1)
T(mL1 � m̄L1) ,

(where mL1 is a 1000⇥ 2 matrix of Monte Carlo IRLS solutions) so
that about 950 (95%) of the models are enclosed. The easiest way
to do this is to work in the principal coordinate system of the error
ellipsoid, defined by the eigenvectors and eigenvalues of Cemp

Cemp = U⇤U
T

.

Rotating the IRLS Monte Carlo models into the ellipsoid principal
coordinate system

m
0
L1

= mL1U

2-8 CHAPTER 2. LINEAR REGRESSION

and counting the models where

m
02
L1(i,1)

⇤1,1
+

m
02
L1(i,2)

⇤2,2
 k

2

gives the confidence level for including points in an ellipsoid extending

to ±k⇤1/2
i,i in its principal directions. For this problem, about 950

of the models are included for k ⇡ 2.5, which gives a range of IRLS
1-norm solutions

t0 ⇡ [1.8734, 2.4839]

and
s2 ⇡ [0.1911, 0.2247] .

(i) The 1-norm residual contributions are the absolute value of the mis-
fits normalized by �

rL1,i =

����
(d�Gm)(i)

�

���� =

2

6666664

0.0675
0.0000
0.0072
0.1858
0.0000
0.4616

3

7777775

and the 2-norm residual contributions are the squared misfits nor-
malized by �

rL2,i =

✓
(d�Gm)(i)

�

◆2

=

2

6666664

0.1395
0.0208
0.0376
0.2674
0.1328
0.2776

3

7777775

2.3. SOLUTIONS 2-9

5 10 15 20 25 303

4

5

6

7

8

9

x (km)

t (
s)

Figure 2.1: Fitted model.

1.95 2 2.05 2.1
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t0 (s)

s 2 (s
/k

m
)

Figure 2.2: Error Ellipsoid.

2-10 CHAPTER 2. LINEAR REGRESSION

0 5 10 15 20 25
0

50

100

150

200

250

χ2
obs

N

Figure 3: Histogram of 1000 Monte−Carlo χ2
obs values

0 5 10 15 20
0

0.05

0.1

0.15

χ2 (ν
=4

, x
) P

D
F

x

Figure 2.3: Histogram of observed �
2 values compared to the �

2 distribution
for ⌫=4.

5 10 15 20 25 303

4

5

6

7

8

9

x (km)

t (
s)

Figure 2.4: Data and fitted model.

2.3. SOLUTIONS 2-11

%Solution to seismic profile Exercise 2.1
clear
%generate a linear trend from a refraction line from
%a two-layer model
d0=2;
v1=3;
v2=5;
%critical angle
thetac=asin(v1/v2);
%horizontal offset to critical refraction
x0=d0/tan(thetac);
%start of refraction
xstart=2*x0;

%end of refraction
xmax=5*xstart;
%x intercept
%t offset
%true parameters
t0=2*sqrt(d0^2+x0^2)/v1;
s2=1/v2;

%number of data points
M=6;

x=linspace(ceil(xstart),xmax,M)’;

%solve the least squares regression
%generate a data set

G=[ones(M,1),x];

dof=M-2;

sig=0.1;

%data noise vector
noise=sig*ones(M,1);

%generate a new data vector
%t=t0+x/v2+noise.*randn(M,1);
%add an outlier
%t(M)=t(M)+0.8;

%load canned data (for HW)
t=[3.4935 ; 4.2853 ; 5.1374 ; 5.8181 ; 6.8632 ; 8.1841];

%weight the system
for i=1:M
Gw(i,:)=G(i,:)/noise(i);
end
tw=t./noise;

%a) find the 2-norm solution
disp(’2-norm solution:’)
m2=Gw\tw
pause
figure(1)
bookfonts
%plot the data predictions and data for the 2-norm solution
errorbar(x,t,noise,’*’)
hold on
plot(x,m2(1)+x*m2(2),’r’)
xlabel(’x (km)’)
ylabel(’t (s)’)
hold off
print -deps2 figure1.eps
pause

%b Generate the covariance and correlation matrices; plot the error ellipsoid
disp(’covariance matrix:’)
covm = sig^2*inv(G’*G)
disp(’correlation matrix:’)
s=sqrt(diag(covm));
rhom = covm./(s*s’)
pause

figure(2)
bookfonts
[u,lam]=eig(covm);
theta=(0:.01:2*pi)’;
%x component of the ellipsoid
r(:,1)=2.45*sqrt(lam(1,1))*u(1,1)*cos(theta)+sqrt(lam(2,2))*u(1,2)*sin(theta);
%y component of the ellipsoid
r(:,2)=2.45*sqrt(lam(1,1))*u(2,1)*cos(theta)+sqrt(lam(2,2))*u(2,2)*sin(theta);
plot(m2(1)+r(:,1),m2(2)+r(:,2))
axis tight
axis equal
xlabel([’t_0 (s)’])
ylabel([’s_2 (s/km)’])
print -deps2 figure2.eps

2-12 CHAPTER 2. LINEAR REGRESSION

pause

%c do the chi-square calculations
disp(’chi-square value:’)
chi2=norm((G*m2-t)./noise)^2
disp(’chi-square p value:’)
p = 1 - chi2cdf(chi2,dof)
pause

%d Monte Carlo Calculations

%The baseline data set generated by the 2-norm model
disp(’2-norm model predicted data:’)
db=G*m2;

%number of realizations for Monte Carlo
NR=1000;

for i=1:NR
%generate the data vector for the ith Monte Carlo data set
dr=db+noise.*randn(M,1);
%calculate the weighted data vector
dw=dr./noise;
%find the 2-norm model for the ith Monte Carlo data set, stored as a column of mr2
mr2(:,i)=Gw\dw;
%calculate the chi-square value for the ith Monte Carlo data set
chi2r(i)=norm((G*mr2(:,i)-dr)./noise)^2;
end

%histogram the chi2 values for the Monte Carlo realizations
%and compare them with the chi2 PDF
figure(3)
bookfonts
NBIN=20;
%get the population of each of the NBIN bins for scaling the chi2pdf plot
subplot(2,1,1)
hist(chi2r,NBIN);
xlabel(’\chi^2_{obs}’)
ylabel(’N’)

hold on
xx=0:.1:20;
subplot(2,1,2)
chitheo=chi2pdf(xx,dof);
plot(xx,chitheo)
ylabel(’\chi^2(\nu=4, x) PDF’)
xlabel(’x’)
axis([0 20 0 max(chitheo)]);
hold off
print -deps figure3.eps
pause

%solve and plot the L-1 solution
disp(’1-norm solution:’)
m1=irls(Gw,tw,1.0e-8,1.0e-6,1,100)
pause

figure(4)
bookfonts
%plot the data predictions and data for the 1-norm solution
errorbar(x,t,noise,’*’)
hold on
plot(x,m1(1)+x*m1(2),’r’)
xlabel(’x (km)’)
ylabel(’t (s)’)

hold off
print -deps figure4.eps

for i=1:NR
%data vector for the ith Monte Carlo data set
dr=db+noise.*randn(M,1);
%weighted data vector
dw=dr./noise;
%2-norm model for the ith Monte Carlo data set, stored as a column of mr
mr1(:,i)=irls(Gw,dw,1.0e-8,1.0e-6,1,100);
end

%estimate L1 confidence intervals
%mean model
mrmean1=mean(mr1’);
%find a range where 95% of the Monte Carlo models are found
%relative to the mean
m1sort=sort(abs(mr1(1,:)-mrmean1(1)));
m2sort=sort(abs(mr1(2,:)-mrmean1(2)));
m11conf=m1sort(round(0.95*NR));
m12conf=m2sort(round(0.95*NR));

disp([’m1 Monte Carlo modeling 95% confidence width (indiv. parameters): (’, ...
num2str(m11conf),’, ’,num2str(m12conf),’)’])
m11range = [m1(1) - m11conf , m1(1) , m1(1) + m11conf]

2.3. SOLUTIONS 2-13

m12range = [m1(2) - m12conf , m1(2) , m1(2) + m12conf]

%Next we will evaluate the 95% joint confidence intervals
%Evaluate the empirical covariance matrix
covmemp=mr1’-[(mean(mr1(1,:))*ones(NR,1)),(mean(mr1(2,:))*ones(NR,1))];
covmemp=(covmemp’*covmemp)/NR;
%and diagonalize it
[u,lam]=eig(covmemp);
%rotate the model estimates into the ellipsoid principal coordinate system
mr1rot=mr1’*u;
%subtract the residual rotated parameter mean
mr1rotmean=mean(mr1rot);
mr1rot=mr1rot-[mr1rotmean(1)*ones(NR,1), mr1rotmean(2)*ones(NR,1)];
count=0;
%count the number of points out to some k*sigma
k=2.5;
for i=1:NR
if (mr1rot(i,1)^2/lam(1,1)+mr1rot(i,2)^2/lam(2,2) < k^2)
%count=count+1 if the NRth model is in the ellipsoid
count=count+1;
end
end
disp([num2str(k),’ sigma confidence interval inclusion:’])
count/NR
sig11=sqrt(covmemp(1,1));
sig12=sqrt(covmemp(2,2));
m11conf=k*sig11;
m12conf=k*sig12;

disp([’m1 Monte Carlo modeling 95% confidence width (joint parameters): (’, ...
num2str(m11conf),’, ’,num2str(m12conf),’)’])
m11range = [m1(1) - m11conf , m1(1) , m1(1) + m11conf]
m12range = [m1(2) - m12conf , m1(2) , m1(2) + m12conf]
pause

%estimate L2 confidence intervals for comparison
%mean model
mrmean2=mean(mr2’)’’;
%find a range where 95% of the Monte Carlo models are found
%relative to the mean
m1sort=sort(abs(mr2(1,:)-mrmean2(1)));
m2sort=sort(abs(mr2(2,:)-mrmean2(2)));
m21conf=m1sort(round(0.95*NR));
m22conf=m2sort(round(0.95*NR));

disp([’m2 Monte Carlo modeling 95% confidence widths (indiv. parameters): (’, ...
num2str(m21conf),’, ’,num2str(m22conf),’)’])
m21range= [m2(1) - m21conf , m2(1) , m2(1) + m21conf]
m22range= [m2(2) - m22conf , m2(2) , m2(2) + m22conf]

disp([’m2 Monte Carlo modeling 95% confidence widths (joint parameters): (’, ...
num2str(m21conf),’, ’,num2str(m22conf),’)’])
m21range= [m2(1)-m21conf , m2(1) , m2(1)+m21conf]
m22range= [m2(2)-m22conf , m2(2) , m2(2)+m22conf]

disp(’m2 covariance-derived 95% confidence (indiv. parameters)’)
m21range = [m2(1)-1.96*sqrt(covm(1,1)) , m2(1) , m2(1)+1.96*sqrt(covm(1,1))]
m22range = [m2(2)-1.96*sqrt(covm(2,2)) , m2(2) , m2(2)+1.96*sqrt(covm(2,2))]

disp(’m2 covariance-derived 95% confidence (joint parameters)’)
m21range = [m2(1)-2.45*sqrt(covm(1,1)), m2(1), m2(1)+2.45*sqrt(covm(1,1))]
m22range = [m2(2)-2.45*sqrt(covm(2,2)), m2(2), m2(2)+2.45*sqrt(covm(2,2))]

%examine the 1-norm residuals
disp(’1-norm residuals terms’)
abs(G*m1-t)
disp(’2-norm residual (squared) terms’)
abs(G*m2-t)

2. (a) To maximize the likelihood, we need to maximize the exponent. This
is equivalent (as can be seen by inspection) to minimizing

f(m) = (Gm� d)TC�1
D (Gm� d) .

(b) Multiplying out the expression gives

f(m) = m
T
G

T
C

�1
D Gm�m

T
G

T
C

�1
D d� d

T
C

�1
D Gm+ d

T
C

�1
D d .

Because f(m) is a scalar function, the second and third terms (which
are transposes of each other) are equal, so that

f(m) = m
T
G

T
C

�1
D Gm� 2dT

C
�1
D Gm+ d

T
C

�1
D d .

2-14 CHAPTER 2. LINEAR REGRESSION

Taking the gradient (applying Theorem C.2 to the first term, and
noting that the last term is a constant) gives

rf(m) = 2GT
C

�1
D Gm� 2GT

C
�1
D d .

Setting rf(m) = 0, we obtain the desired result

G
T
C

�1
D Gm = G

T
C

�1
D d .

(c) Minimizing kC�1/2
D Gm�C

�1/2
D dk2 is equivalent to minimizing

f(m) = kC�1/2
D Gm�C

�1/2
D dk22

f(m) = (C�1/2
D Gm�C

�1/2
D d)T (C�1/2

D Gm�C
�1/2
D d)

Distributing the transpose and multiplying out the terms gives

f(m) = m
T
G

T
C

�1
D Gm�m

T
G

T
C

�1
D d� d

T
C

�1
D Gm+ d

T
C

�1
D d

which is the same as the expression in part (b).

(d) Minimizing kRGm�Rdk2 is equivalent to minimizing

f(m) = kRGm�Rdk22

f(m) = (RGm�Rd)T (RGm�Rd)

Distributing the transpose and using C
�1
D = R

T
R gives

f(m) = m
T
G

T
C

�1
D Gm�m

T
G

T
C

�1
D d� d

T
C

�1
D Gm+ d

T
C

�1
D d

which is the same as the expression in part (b).

3. (a) Figure 2.5 shows the histograms of the model parameters.

(b) The covariance matrix is

C =

1.1000 �0.3000

�0.3000 0.1000

�

and the corresponding model standard deviations are given by the
square roots of the diagonals

(�a, �b) = (1.0488, 0.3162) .

(c) The appropriate Q-Q plots are shown in Figure 2.6.

(d) See Figure 2.7.

(e) See Figures 2.9 and 2.10 (below).

(f) The appropriate plot is Figure 2.8. Figures 2.9 and 2.10 also show his-
tograms of the standardized solutions plotted relative to the N(0, 1)
and t(⌫ = 3) distributions (the t distributions are wider) .

2.3. SOLUTIONS 2-15

−3 −2 −1 0 1 2 3 4 5
0

50

100

150

200

250

300

350

m1

N

Figure 5

−0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

m2

N

Figure 2.5: Histogram of the model parameters.

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

X Quantiles

Y
Q

ua
nt

ile
s

Figure 6a: Q−Q plot for aprime vs N(0, 1)

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

X Quantiles

Y
Q

ua
nt

ile
s

Figure 6b: Q−Q plot for bprime vs N(0, 1)

Figure 2.6: Q-Q plots.

2-16 CHAPTER 2. LINEAR REGRESSION

0 5 10 15 20 25
0

5

10

15

20

25

X Quantiles

Y
Q

ua
nt

ile
s

Figure 7: Q−Q plot for squared residual vs χ2

Figure 2.7: �2 Q-Q plot.

−30 −20 −10 0 10 20 30
−40

−20

0

20

40

60

X Quantiles

Y
Q

ua
nt

ile
s

Figure 8a: Q−Q plot for aprime vs t(x, 3)

−30 −20 −10 0 10 20 30
−6

−4

−2

0

2

4

X Quantiles

Y
Q

ua
nt

ile
s

Figure 8b: Q−Q plot for bprime vs t(x, 3)

Figure 2.8: t distribution Q-Q plots.

2.3. SOLUTIONS 2-17

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Figure 9: Observed, normal, and t distributions for parameter a

Figure 2.9: Histogram of solutions versus a N(0,1) distribution.

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Figure 10: Observed, normal, and t distributions for parameter b

Figure 2.10: Histogram of solutions versus a t distribution with ⌫ = 3.

2-18 CHAPTER 2. LINEAR REGRESSION

%Solution to Exercise 2.3
%Test t, Chi2, and normal distributions
%using a simple linear regression example
%note that qqplot, chi-square and t distribution calls utilize the MATLAB
%statistics toolbox
clear

%true intercept
a=1;
%true slope
b=1;

%data standard deviation
sigma=1.;

%set number of realizations
nreal=10000;

%NDATA, NDOF
ndata=5;
dof=ndata-2;

x=linspace(1,ndata,ndata)’;
G=[ones(ndata,1),linspace(1,ndata,ndata)’];

%covariance
disp(’covariance matrix:’)
covm=inv(G’*G)

disp(’parameter standard deviations:’)
sigm1=sigma*sqrt(covm(1,1))
sigm2=sigma*sqrt(covm(2,2))

%generate the synthetic data sets
for NR=1:nreal

d=a+b*x+sigma*randn(ndata,1);

%least-squares solution for realization NR.
m(:,NR)=G\d;

%least-squares solution residual for realization NR.
r=G*m(:,NR)-d;
residsq(NR)=norm(r)^2/sigma^2;

%standard deviation estimate for this realization NR.
s=std(r)*sqrt((ndata-1)/(ndata-2));
sest(NR)=s;

end

%Histograms of the 2-norm models
figure(5)
subplot(2,1,1)
hist(m(1,:),100)
xlabel(’m_1’);
ylabel(’N’);
title(’Figure 5’)
subplot(2,1,2)
hist(m(2,:),100)
xlabel(’m_2’);
ylabel(’N’);
print -deps figure5.eps

%Q-Q plots for standard errors
figure(6)
aprime=(m(1,:)-mean(m(1,:)))/sigm1;
bprime=(m(2,:)-mean(m(2,:)))/sigm2;
x= norminv(((1:NR)-0.5)/NR);
y=sort(aprime);
subplot(2,1,1)
qqplot(x,y)
title(’Figure 6a: Q-Q plot for aprime vs N(0, 1)’)
subplot(2,1,2)
y=sort(bprime);
qqplot(x,y)
title(’Figure 6b: Q-Q plot for bprime vs N(0, 1)’)
print -deps figure6.eps

%Q-Q plot for chi-square
figure(7)
y = sort(residsq);
pp=((1:NR)-0.5)/NR;
%loop here in case non-vectorized chi2inv function is being used
for i=1:length(pp)
x(i) = chi2inv(pp(i),dof);
end
plot(x,y,’*’);
title(’Figure 7: Q-Q plot for squared residual vs \chi^2’)
print -deps figure7.eps

2.3. SOLUTIONS 2-19

%estimated standard deviation Q-Q plots
figure(8)
aprime=(m(1,:)-mean(m(1,:)))./sest*sqrt(covm(1,1));
bprime=(m(2,:)-mean(m(2,:)))./sest*sqrt(covm(2,2));
pp=((1:NR)-0.5)/NR;
%loop here in case non-vectorized chi2inv function is being used
for i=1:length(pp)
x(i) = tinv(pp(i),dof);
end
y=sort(aprime);
subplot(2,1,1)
qqplot(x,y)
title(’Figure 8a: Q-Q plot for aprime vs t(x, 3)’)
subplot(2,1,2)
y=sort(bprime);
plot(x,y,’*’)
title(’Figure 8b: Q-Q plot for bprime vs t(x, 3)’)
print -deps figure8.eps

%
% Examine the distribution of estimates for intercept (a).
%
figure(9)
%
% Use the following bins for histograms.
%
bins=-10:0.35:10.0;
[Nh,xh]=hist((m(1,:)-ones(size(m(1,:))))./(sest*sigm1),bins);
sp=xh(2)-xh(1);
clf
hold on
for j=1:length(xh),
plot([xh(j)-sp/2 xh(j)-sp/2 xh(j)+sp/2 xh(j)+sp/2],...

[0 Nh(j)/(sp*sum(Nh)) Nh(j)/(sp*sum(Nh)) 0]);
end;

xd=linspace(min(xh),max(xh),100);
tp=tpdf(xd,dof);
plot(xd,tp,’r’)
np= normpdf(xd,0,1);
plot(xd,np,’g’)
hold off
title(’Figure 9: Observed, normal, and t distributions’,...

’ for parameter a’);
print -deps figure9.eps
%
% Examine the distribution of estimates for slope (b).
%
figure(10)
%
% Use the following bins for histograms.
%
bins=-10:0.25:10.0;
[Nh,xh]=hist((m(2,:)-ones(size(m(2,:))))./(sest*sigm2),bins);
sp=xh(2)-xh(1);
clf
hold on
for j=1:length(xh),
plot([xh(j)-sp/2 xh(j)-sp/2 xh(j)+sp/2 xh(j)+sp/2],...

[0 Nh(j)/(sp*sum(Nh)) Nh(j)/(sp*sum(Nh)) 0]);
end;

xd=linspace(min(xh),max(xh),100);
tp=tpdf(xd,dof);
plot(xd,tp,’r’)
np= normpdf(xd,0,1);
plot(xd,np,’g’)
hold off
title(’Figure 10: Observed, normal, and t distributions’,...

’ for parameter b’);
print -deps figure10.eps

4. Let F (x) be the �
2 CDF for m� n degrees of freedom. For 0 a 1,

P (p a) = P (

Z 1

�2

obs

f�2(x)dx a).

P (p a) = P (1� F (�2
obs

) a).

P (p a) = P (�F (�2
obs

) a� 1).

P (p a) = P (F (�2
obs

) � 1� a).

2-20 CHAPTER 2. LINEAR REGRESSION

Since F is monotone increasing,

P (p a) = P (�2
obs

� F
�1(1� a)).

P (p a) = 1� P (�2
obs

 F
�1(1� a)).

P (p a) = 1� F (F�1(1� a)).

P (p a) = 1� (1� a).

P (p a) = a.

Thus p is uniformly distributed between 0 and 1!

5. There are a couple of interesting numerical problems here. First, theGT
G

matrix is extremely ill-conditioned (with a condition number greater than
5 ⇥ 1017). As a result, the solution to the normal equations is extremely
inaccurate and the straightforward solution method produces a wildly in-
accurate result.

Note that the condition number of G by itself is about 5⇥ 108, so that by
using the QR factorization or SVD to solve the least squares problem we
could obtain a much better estimate of the fitted parameters.

The fitted coe�cients and relevant condition number are:

yfit =

Columns 1 through 7

0.0000 1.0000 -0.0000 0.0000 0.0000 0.0003 -0.0000

Columns 8 through 14

-0.0274 0.0006 -0.0935 -0.0031 -0.2789 0.0094 -2.5239

Columns 15 through 20

-0.0138 -2.2797 0.0041 0.9930 -0.0027 0.1201

cond(G’*G) is

ans =

5.6876e+17

Second, the obvious way to evaluate the fitted polynomial leads to even
more roundo↵ error. A more sophisticated (well-posed) approach is used
by the MATLAB polyval function, which produces a more reasonable
(but still imperfect) result.

2.3. SOLUTIONS 2-21

Figure 2.11 shows the results plotted using a straightforward evaluation of
the polynomial coe�cients using the normal equations. The true solution
has a1 = 1 and the rest of the coe�cients equal to zero. However, the
obtained solution has significant higher-degree polynomial coe�cients that
lead to a very poor result for the regression. Figure 2.12 shows the results
obtained using polyval, which uses a much better posed formulation.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

20

x

y

Figure 2.11: Fitted polynomial using straight forward evaluation.

%Ill-posed regression Exercise 2.5
%Set up the problem.
%
x=(-0.95:0.1:0.95)’;
ytrue=x;
%
% Construct the G matrix.
%
G=zeros(20,20);
for i=0:19,

G(:,i+1)=x.^i;
end;
%
% Find the least squares solution.
%
yfit=inv(G’*G)*G’*ytrue;
yfit’
disp(’cond(G’’*G) is ’);
cond(G’*G)
disp(’cond(G) is ’);
cond(G)
%
% Plot out the results.
%
figure(1);
xdetailed=(-0.95:0.005:0.95)’;
yfitval=zeros(size(xdetailed));
for i=1:length(xdetailed),

for j=1:20,
yfitval(i)=yfitval(i)+xdetailed(i)^(i-1);

end;
end;
plot(xdetailed,yfitval,’k’);
hold on
plot(x,ytrue,’ko’);
xlabel(’x’);

2-22 CHAPTER 2. LINEAR REGRESSION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 2.12: Fitted polynomial using polyval.

ylabel(’y’);
print -deps prob5a.eps
%
% Use a better-posed scheme for computing the values of the
% polynomial.
%
figure(2);
yfitp=flipud(yfit);
plot(xdetailed,polyval(yfitp,xdetailed),’k’);
hold on
plot(x,ytrue,’ko’);
xlabel(’x’);
ylabel(’y’);
print -deps prob5b.eps

Chapter 3

Rank Deficiency and
Ill–Conditioning

3.1 Discussion of the Chapter

In this chapter we begin to analyze poorly conditioned linear parameter estima-
tion problems. The basic analysis tool used in this chapter is the singular value
decomposition (SVD). In Section 3.1, we introduce the SVD and the associated
Moore-Penrose pseudoinverse, describing its relationship to least squares and
minimum length solutions. In Section 3.2 we discuss the covariance of the pseu-
doinverse solution and introduce the concepts of model and data resolution. In
Section 3.3 we consider the instability issues that can arise in the inverse solu-
tion and show how the presence of small singular values can make the solution
extremely unstable. The SVD is applied to representative rank deficient to-
mography problems in Section 3.4 and to discrete ill–posed problems in Section
3.5.

The mathematical level of this chapter is somewhat higher than in Chapters
1 and 2. We begin to make extensive use of operations from linear algebra
(reviewed in Appendix A). In particular, we make extensive use of the properties
of orthogonal matrices and other aspects of algebraic matrix operations. In
lecturing on this material, we have found that it is sometimes necessary to go
through the derivations step by step and/or illustrate them with MATLAB. We
typically spend five lectures on the material in this chapter.

Exercise 3.1 is a theoretical exercise that develops some of the properties of
the Moore–Penrose pseudoinverse. Exercise 3.2 is a computational exercise in
which students build upon one of the examples in the chapter and consider the
resolution of the solution that was obtained. Exercise 3.3 is an extended case
study in which students develop data for over determining, exactly determining
and under determining the same system. Exercise 3.4 is an extended case study
of a rank deficient problem. This exercise can be very time consuming, but
students gain a lot from solving such a problem from start to finish. Exercise

3-1

3-2 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

3.5 is a computational exercise in which the methods of Chapter 3 are applied
to problems that have previously been examined in earlier chapters.

3.2 Exercises

1. The pseudoinverse of a matrix G was originally defined by Moore and
Penrose as the unique matrix G

† with the properties

(a) GG
†
G = G.

(b) G
†
GG

† = G
†.

(c) (GG
†)T = GG

†.

(d) (G†
G)T = G

†
G.

Show that G† as given by (3.20) satisfies these four properties.

2. Another resolution test commonly performed in tomography studies is a
checkerboard test, which consists of using a test model composed of
alternating positive and negative perturbations. Perform a checkerboard
test on the tomography problem in Example 3.1 using the test model

mtrue =

2

4
�1 1 �1
1 �1 1

�1 1 �1

3

5 . (3.1)

Evaluate the di↵erence between the true (checkerboard) model and the
recovered model in your test, and interpret the pattern of di↵erences. Are
any block values recovered exactly? If so, does this imply perfect resolution
for these model parameters?

3. Using the parameter estimation problem described in Example 1.1 for
determining the three parameters defining a ballistic trajectory, construct
synthetic examples that demonstrate the following four cases using the
SVD. In each case, display and interpret the SVD components U, V, and
S in terms of the rank, p, of your forward problem G matrix. Display and
interpret any model and data null space vector(s) and calculate model and
data space resolution matrices.

(a) Three data points that are exactly fit by a unique model. Plot your
data points and the predicted data for your model.

(b) Two data points that are exactly fit by an infinite suite of parabolas.
Plot your data points and the predicted data for a suite of these
models.

(c) Four data points that are only approximately fit by a parabola. Plot
your data points and the predicted data for the least squares model.

3.2. EXERCISES 3-3

(d) Two data points that are only approximately fit by any parabola, and
for which there are an infinite number of least squares solutions. Plot
your data points and the predicted data for a suite of least squares
models.

4. A large north-south by east-west oriented, nearly square plan view, sand-
stone quarry block (16 m by 16 m) with a bulk compressional wave seis-
mic velocity of approximately 3000 m/s is suspected of harboring higher-
velocity dinosaur remains. An ultrasonic tomography scan is performed in
a horizontal plane bisecting the boulder, producing a data set consisting
of 16 E!W, 16 N!S, 31 NE!SW, and 31 NW!SE travel times. See
Figure 3.1. The travel time data (units of s) have statistically independent
errors and the travel time contribution for a uniform background model
(with a velocity of 3000 m/s) has been subtracted from each travel time
measurement.

11

21

31

12 13

22 23

32 33

0

16 (m)

0 16 (m)

N

E

...

...

...

a

b

c

d

...

...

... ...

Figure 3.1: Tomography exercise, showing block discretization, block numbering
convention, and representative ray paths going east-west (a), north-south (b),
southwest-northeast (c), and northwest-southeast (d).

The MATLAB travel time data files that you will need to load are: rows-

can.mat, colscan.mat, diag1scan.mat, and diag2scan.mat. The stan-
dard deviations of all data measurements are 1.5 ⇥ 10�5 s. Because the
travel time contributions for a uniform background model (with a velocity
of 3000 m/s) have been subtracted from each travel time measurement,
you will be solving for slowness and velocity perturbations relative to a
uniform slowness model of 1/3000 s/m. Use a row–by–row mapping be-
tween the slowness grid and the model vector (e.g., Example 1.12). The
row format of each data file is (x1, y1, x2, y2, t) where the starting point
coordinate of each source is (x1, y1), the end point coordinate is (x2, y2),

3-4 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

and the travel time along a ray path between the source and receiver points
is a path integral (in seconds).

Parameterize the slowness structure in the plane of the survey by dividing
the boulder into a 16 by 16 grid of 256 1-m-square, N by E blocks and
construct a linear system for the forward problem (Figure 3.3.1). Assume
that the ray paths through each homogeneous block can be represented
by straight lines, so that the travel time expression is

t =

Z

`
s(x) d` (3.2)

=
X

blocks

sblock ·�lblock (3.3)

where �lblock is 1 m for the row and column scans and
p
2 m for the

diagonal scans.

Use the SVD to find a minimum-length/least squares solution, m†, for the
256 block slowness perturbations that fit the data as exactly as possible.
Perform two inversions in this manner:

(A) Using the row and column scans only, and

(B) Using the complete data set.

For each inversion:

(a) Note the rank of your G matrix relating the data and model.

(b) State and discuss the general solution and/or data fit significance
of the elements and dimensions of the data and model null spaces.
Plot and interpret an element of each space and contour or otherwise
display a nonzero model that fits the trivial data set Gm = d = 0

exactly.

(c) Note whether there are any model parameters that have perfect res-
olution.

(d) Produce a 16 by 16 element contour or other plot of your slowness
perturbation model, displaying the maximum and minimum slow-
ness perturbations in the title of each plot. Interpret any internal
structures geometrically and in terms of seismic velocity (in m/s).

(e) Show the model resolution by contouring or otherwise displaying the
256 diagonal elements of the model resolution matrix, reshaped into
an appropriate 16 by 16 grid.

(f) Describe how one could use solutions to Gm = d = 0 to demonstrate
that very rough models exist that will fit any data set just as well as
a generalized inverse model. Show one such wild model.

5. Consider the data in Table 3.1 (also found in the file ifk.mat).

3.3. SOLUTIONS 3-5

y 0.0250 0.0750 0.1250 0.1750 0.2250
d(y) 0.2388 0.2319 0.2252 0.2188 0.2126

y 0.2750 0.3250 0.3750 0.4250 0.4750
d(y) 0.2066 0.2008 0.1952 0.1898 0.1846

y 0.5250 0.5750 0.6250 0.6750 0.7250
d(y) 0.1795 0.1746 0.1699 0.1654 0.1610

y 0.7750 0.8250 0.8750 0.9250 0.9750
d(y) 0.1567 0.1526 0.1486 0.1447 0.1410

Table 3.1: Data for Exercise 3.5.

The function d(y), 0 y 1, is related to an unknown function m(x),
0 x 1, by the mathematical model

d(y) =

Z 1

0
xe

�xy
m(x) dx . (3.4)

(a) Using the data provided, discretize the integral equation using simple
collocation to create a squareGmatrix and solve the resulting system
of equations.

(b) What is the condition number for this system of equations? Given
that the data d(y) are only accurate to about 4 digits, what does this
tell you about the accuracy of your solution?

(c) Use the TSVD to compute a solution to this problem. You may find
a plot of the Picard ratios UT

.,id/si to be especially useful in deciding
how many singular values to include.

3.3 Solutions

1. The key to this problem is utilizing that UT
p Up = I, VT

p Vp = I, and the

formulas for G and G
† in terms of the compact form of the SVD.

GG
†
G = UpSpV

T
p VpS

�1
p U

T
p UpSpV

T
p

= UpSpS
�1
p U

T
p UpSpV

T
p

= UpU
T
p UpSpV

T
p

= UpSpV
T
p

= G .

3-6 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

G
†
GG

† = VpS
�1
p U

T
p UpSpV

T
p VpS

�1
p U

T
p

= VpS
�1
p SpV

T
p VpS

�1
p U

T
p

= VpV
T
p VpS

�1
p U

T
p

= VpS
�1
p U

T
p

= G
†
.

(GG
†)T = (UpSpV

T
p VpS

�1
p U

T
p)

T

= (UpSpS
�1
p U

T
p)

T

= (UpU
T
p)

T

= UpU
T
p

= UpSpS
�1
p U

T
p

= UpSpV
T
p VpS

�1
p U

T
p

= GG
†
.

Note that we could have stopped where we had UpU
T
p , because this ex-

pression is obviously symmetric.

(G†
G)T = (VpS

�1
p U

T
p UpSpV

T
p)

T

= VpSpU
T
p UpS

�1
p V

T
p

= VpSpS
�1
p V

T
p

= VpV
T
p

= VpS
�1
p SpV

T
p

= VpS
�1
p U

T
p UpSpV

T
p

= G
†
G .

Note that we could have stopped where we had VpV
T
p , because this ex-

pression is obviously symmetric.

2. We set up the problem using the G matrix of (3.93). The generalized
inverse model is given by the product of the resolution matrix and the
true model (3.60).

For a checkerboard model,

mcheck = [�1, 1, � 1, 1, � 1, 1, � 1, 1, � 1]T ,

the generalized inverse model is thus

m† = Rmmcheck

= G
†
Gmcheck

⇡ [�1.67, 1, � 0.33, 1, � 0.33, 0.33, � 0.33, 0.33, � 1]T .

3.3. SOLUTIONS 3-7

The di↵erence between the true and recovered models is

mcheck �m† ⇡ [�0.67, 0, 0.67, 0, 0.67, � 0.67, 0.67, � 0.67, 0]T

which is depicted in Figure 2. The pattern of di↵erences between the

j

i

M_recov − M_true

1 2 3

1

2

3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.2: Di↵erence between the generalized inverse solution and the true
solution, checkerboard test.

generalized inverse model and the true model is insightful in the sense
that it has zero sum along all of the ray paths in the problem. This
must occur because the generalized inverse model fits the predicted data
dcheck = Gmcheck exactly. Because there is a nontrivial null space to this
problem, however, the solution is nonunique. As shown in section 3.1,
the generalized inverse solution is the smallest norm solution that fits the
data in the least squares sense. Because the checkerboard model is not
the smallest norm model that fits the data, it is not exactly recovered by
the pseudoinverse matrix operating on the data. In fact, the checkerboard
model is recovered exactly for only three of the model blocks in this case,
and the slowness anomalies for the rest of the blocks are either over- or
under-estimated.

In the case of a general model, only the (uniquely determined) m9 = s3,3

block will always be recovered exactly for noise-free data given this ray
path geometry (you can show this by experimenting with random models,
or by simply noting that the two null space models, V·,8 and V·,9 both
have zero values for the element m9). The correlation matrix (Figure
3.3) shows that the strongest (largest absolute value) correlations, 0.5755,

3-8 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

arise between elements m8 and m6, and between elements m3 and m5.
The weakest (smallest absolute value) correlations (-0.1039) occur between
elements m2 and m3, and between elements m3 and m6. Correlations are
measures of the tendencies of model elements to trade o↵ against each
other for a solution arising from a general data set that includes noise.

j

i

Correlation Matrix

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Correlation matrix for the generalized inverse solution.

%Exercise 3.2 Checkerboard Resolution Test
clear
t=sqrt(2);
%load the system matrix for the appropriate ray paths
G = [1,0,0,1,0,0,1,0,0;

0,1,0,0,1,0,0,1,0;
0,0,1,0,0,1,0,0,1;
1,1,1,0,0,0,0,0,0;
0,0,0,1,1,1,0,0,0;
0,0,0,0,0,0,1,1,1;
t,0,0,0,t,0,0,0,t;
0,0,0,0,0,0,0,0,t];

[m,n]=size(G);

%get the svd of the system matrix
[U,s,V] = svd(G);

%checkerboard test model
mcheck=[-1 1 -1 1 -1 1 -1 1 -1]’;
disp(’Checkerboard Model’)
mcheckmat=reshape(mcheck,3,3)

figure(1)
bookfonts;
colormap(’gray’)
imagesc(mcheckmat,[-2 2])
colorbar;
set(gca,’xtick’,[1,2,3]);
set(gca,’ytick’,[1,2,3]);
xlabel(’j’)
ylabel(’i’)
title (’Checkerboard Test Model’)

3.3. SOLUTIONS 3-9

% calculate the recovered model for the checkerboard
% data using the model resolution matrix
r=rank(G);
Vp=V(:,1:r);
Rm=Vp*Vp’;
mrecov=Rm*mcheck;
mrecovmat=reshape(mrecov,3,3);

figure(2)
bookfonts;
colormap(’gray’)
imagesc(mrecovmat,[-2 2])
colorbar;
set(gca,’xtick’,[1,2,3]);
set(gca,’ytick’,[1,2,3]);
xlabel(’j’)
ylabel(’i’)
title (’Recovered Checkerboard Test Model’)

figure(3)
bookfonts;
colormap(’gray’)
imagesc(Rm,[-2 2])
colorbar;
set(gca,’xtick’,[1,2,3,4,5,6,7,8,9]);
set(gca,’ytick’,[1,2,3,4,5,6,7,8,9]);
xlabel(’j’)
ylabel(’i’)
title (’Resolution Matrix’)

Rmdiag=reshape(diag(Rm),3,3);

figure(4)
colormap(’gray’)
bookfonts;
imagesc(Rmdiag,[-2 2])
colorbar;
set(gca,’xtick’,[1,2,3]);
set(gca,’ytick’,[1,2,3]);
xlabel(’j’)
ylabel(’i’)
title (’Resolution Matrix Diagonal Elements’)

% calculate the covariance matrix (unit standard
% deviation assumed for the generalized inverse
% solution)
C = zeros(n,n);
for i=1:r
C=C+V(:,i)*V(:,i)’/s(i,i);
end

%calculate the correlation matrix

for i=1:n
for j=1:n
Cor(i,j)=C(i,j)/sqrt(C(i,i)*C(j,j));
end
end
disp(’Correlation Matrix:’)
Cor

figure(5)
bookfonts;
colormap(’gray’)
imagesc(Cor,[-1 1])
colorbar;
set(gca,’xtick’,[1,2,3,4,5,6,7,8,9]);
set(gca,’ytick’,[1,2,3,4,5,6,7,8,9]);
xlabel(’j’)
ylabel(’i’)
title (’Correlation Matrix’)

%Compare the results in a plot

disp(’Difference between recovered and checkerboard model’)
mdiffmat=mrecovmat-mcheckmat
figure(6)
colormap(’gray’)
bookfonts;
%imagesc(mdiffmat,[-2 2])
colorbar;
set(gca,’xtick’,[1,2,3]);
set(gca,’ytick’,[1,2,3]);
xlabel(’j’)
ylabel(’i’)
title (’M_{recov} - M_{true}’)

3. This problem first involves setting up synthetic problems with varying

3-10 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

data or model null spaces. The number of parameters is n = 3, and the
number of data points will be m = 2, 3, or 4. Numerical results will vary
depending on how the synthetic examples are chosen.

For part (a), one can simply generate a forward G matrix for a three-
point parameter fitting problem. Here we chose the true model to be
[m1,m2,m3]T = [10, 20, 9.8]T and generated altitude data at times t = 1,
2, and 3. The SVD pseudoinverse solution for the parameters given the
data and Gmatrix (Figure 3.4) is a single solution that fits the data points
exactly.

0.5 1 1.5 2 2.5 3 3.5
24

25

26

27

28

29

30

31

Time (s)

H
ei

gh
t (

m
)

Three data points; a unique exact solution

Figure 3.4: Parabola fit linear regression solution that exactly fits three data
points. Both the model and data null spaces are trivial.

For part (b), the desired result can be obtained by generating a data set
and G matrix to solve for the three parameters using only data points
acquired at t = 1 and t = 2. The rank of the G matrix (the value of
p for the SVD) is only 2, so there is a nontrivial null space vector V.,3

which is equal to [�0.4851, 0.7276, 0.4851]T for the sample problem as set
up in part (a). Adding ↵V.,3 to the pseudoinverse solution for any scalar
↵ will not change the fit to the data when the model is used in the forward
problem. A representative suite of models is plotted in Figure 3.5.

In part (c), one needs to generate four data points (here we used points
at t = 1, 2, 2.1, 3) that do not fit any parabola. The pseudoinverse
solution is a least squares solution that is unique (because the model
null space is trivial). The forward problem can never exactly fit a data
set with a nonzero projection onto the data null space vector U.,4 =
[0.0319,�0.7026, 0.7097,�0.0390]. The component of the data vector pro-

3.3. SOLUTIONS 3-11

0.5 1 1.5 2 2.5 3 3.5
24

26

28

30

32

34

36

Time (s)

H
ei

gh
t (

m
)

Two data points; infinite number of exact solutions

Figure 3.5: Parabola fit linear regression solutions that exactly fit two data
points. The model null space is nontrivial, and a suite of equally well-fitting
models is constructed by adding scaled null space vectors to the pseudoinverse
solution.

jected onto ↵U.,4 cannot be fit by any parabola. The least squares solution
is plotted in Figure 3.6.

In part (d), one needs to construct an example that is both impossible to
fit with any parabola, yet has a nontrivial model null space, and is thus
nonunique. For two data points, the solution is to fit parabolas to two
distinct elevation measurements that occur at the same time. The SVD
value of p is only one in this case (Figure 3.7).

3-12 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

0.5 1 1.5 2 2.5 3 3.5
24

25

26

27

28

29

30

31

32

Time (s)

H
ei

gh
t (

m
)

Four data points; one least−squares (approximate) solution

Figure 3.6: Parabola fit linear regression solution that best fits four data points
in the least squares sense. The data null space is nontrivial, resulting in a
nonzero residual.

0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

Time (s)

H
ei

gh
t (

m
)

Two data points; infinite number of least−squares (approximate) solutions

Figure 3.7: Parabola fit linear regression solution that is both least squares and
nonunique.

3.3. SOLUTIONS 3-13

%Exercise 3.3 exploration of SVD spaces and solutions using parabola fits
%to sets of points
%
clear

%true parameters (m1, m2, m3) in the form of Example 1.1
m_true=[10;20;9.8]

%t vector for subsequent plots
t_vec=linspace(0.9,3.1,100);

%forward problem matrix for full, consistent data set, three data points

%independent variable
t1=[1;2;3];
G1=[ones(size(t1)),t1,-0.5*t1.^2];

%noise free predicted data
y_true=G1*m_true;

[U1,S1,V1]=svd(G1);

%solution
m_recov1=(V1*inv(S1)*U1’)*y_true

disp(’Plotting case (a); three data points that are exactly fit by a unique parabola’)
figure(1)
plot(t1,y_true,’o’,t_vec,m_recov1(1)+m_recov1(2)*t_vec-0.5*m_recov1(3)*t_vec.^2,’r’);
xlabel(’Time (s)’)
ylabel(’Height (m)’)
title(’Three data points; a unique exact solution’)

%nonunique case, two data points (nontrivial model null space)

%independent variable
t2=[1;2];
G2=[ones(size(t2)),t2,-0.5*t2.^2];
%noise free predicted data
y_true=G2*m_true;
[U2,S2,V2]=svd(G2);
%solution
p=rank(G2);
m_recov2=(V2(:,1:p)*inv(S2(1:p,1:p))*U2(:,1:p)’)*y_true

disp(’Plotting case (b); two data points that are exactly fit by an infinite number of parabolas’)
figure(2)
hold on
%add in scaled null space vectors here to show nonuniqueness
for alpha=-5:5

m=m_recov2+alpha*V2(:,3);
plot(t2,y_true,’o’,t_vec,m(1)+m(2)*t_vec-0.5*m(3)*t_vec.^2,’r’);
mnorm(alpha+6,1)=norm(m);
resid(alpha+6,1)=norm(G2*m-y_true);
end
hold off
xlabel(’Time (s)’)
ylabel(’Height (m)’)
title(’Two data points; infinite number of exact solutions’)
disp([’p = ’,num2str(p),’; model null space vector:’])
null_m=V2(:,3)

%inconsistent case (nontrivial data null space)

%independent variable
t3=[1;2;2.1;3];
G3=[ones(size(t3)),t3,-0.5*t3.^2];
%noise free predicted data
y_true=G3*m_true;
y_true(2)=y_true(2)+1;
y_true(3)=y_true(3)-1;
[U3,S3,V3]=svd(G3);
%solution
p=rank(G3);
m_recov3=(V3(:,1:p)*inv(S3(1:p,1:p))*U3(:,1:p)’)*y_true

disp(’Plotting case (c); Four data points; least-squares (approximate) solution’)

figure(3)
plot(t3,y_true,’o’,t_vec,m_recov3(1)+m_recov3(2)*t_vec-0.5*m_recov3(3)*t_vec.^2,’r’);
xlabel(’Time (s)’)
ylabel(’Height (m)’)
title(’Four data points; one least-squares (approximate) solution’)

disp([’p = ’,num2str(p)])
disp(’data null space vector:’)
null_d=U3(:,4)

%both null spaces nontrivial

%independent variable

3-14 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

t4=[2;2];
G4=[ones(size(t4)),t4,-0.5*t4.^2];
%noise free predicted data
y_true=G4*m_true;
y_true(1)=y_true(1)+1;
y_true(2)=y_true(2)-1;
[U4,S4,V4]=svd(G4);
%solution
p=rank(G4);
m_recov4=(V4(:,1:p)*inv(S4(1:p,1:p))*U4(:,1:p)’)*y_true

disp(’Plotting case (d); Two data points; infinite number of least-squares (approximate) solution’)
figure(4)
hold on
%add in scaled null space vectors here to produce a suite of equally good models and this
%show nonuniqueness of the least-squares solution.
for alpha=-5:5

m=m_recov4+alpha*(10*V4(:,2)+V4(:,3));
plot(t4,y_true,’o’,t_vec,m(1)+m(2)*t_vec-0.5*m(3)*t_vec.^2,’r’);
mnorm(alpha+6,1)=norm(m);
resid(alpha+6,1)=norm(G2*m-y_true);
end
hold off
xlabel(’Time (s)’)
ylabel(’Height (m)’)
title(’Two data points; infinite number of least-squares (approximate) solutions’)

%display p and the model space null vectors

disp([’p = ’,num2str(p)])
disp(’data null space vector:’)
null_d=U3(:,4)
disp(’model null space vectors:’)
null_m_1=V3(:,2)
null_m_2=V3(:,3)

3.3. SOLUTIONS 3-15

4. This problem is a more complex and interesting version of the straight-line
tomography Example 3.1. The initial challenge is to properly set up the G
matrix. This is most easily done by recognizing the systematic patterns of
mapping the column/row and diagonal ray paths into the 256 parameter
model vector. Basic results are:

Part A: Inverting using only the row and column scan travel times (CR):
the rank of the G matrix is: 31
the dimension of the data space is: 32
the dimension of the P space is: 31
the dimension of the data null space is: 1
the dimension of the model null space is: 225
the rank of the generalized inverse matrix is: 31
the smallest and largest nonzero singular values are: 4 5.6569

Part B: Inverting using all available data (CRD):
the rank of the system matrix G is:87
the dimension of the data space is: 94
the dimension of the P space is: 87
the dimension of the data null space is: 7
the dimension of the model null space is: 169
the rank of the generalized inverse matrix is:87
smallest and largest nonzero singular values are: 1.3574 8.7055

For the row/column scan data set of 32 travel time measurements, the
pseudoinverse solution is shown in Figure 3.8.

a) The rank of G is 31, and the 32 by 256 element G is thus rank deficient.
The nonzero singular values range between approximately 4 and 5.66.

b) The data null space is 1-dimensional, so there is only one vector in U,
U.,32, that is not in the column space of the (32 by 256) G matrix. This
data null space vector has a simple form (Figure 3.9) that reflects that, for
this ray path geometry, no slowness model can jointly fit travel time data
that describe uniform positive/negative slowness variation on the N-S axis
coupled with uniform negative/positive slowness variation along the E-W
axis. To fit such data, the slowness structure would need to be anisotropic
(slowness within a block would have to depend on ray direction), which is
a property that is not considered in the physics of the problem.

The model null space is large in the sense that 256 - 31 = 225 out of
the 256 basis vectors that one would need to construct a general model
reside in the null space. All models in this null space have N-S and E-
W raypath slowness integrals that equal zero. c) The model resolution
matrix diagonal is constant and has diagonal elements that are equal to
about 0.12, implying that all model elements are imperfectly resolved.
This uniformity reflects the geometric similarity between all of the ray
path/block geometries; all blocks have just two ray paths going through
them at right angles.

3-16 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

d) The row/column scan solution (Figure 3.8) shows that there is clearly
some high velocity (low slowness) body located symmetrically near the
interior of the slab. The central slowness anomaly is around �2.9⇥ 10�5

s/m, which, incorporating the background velocity of 3000 m/s, corre-
sponds to a velocity of approximately (1/3000 � 2.9 ⇥ 10�5)�1 ⇡ 3286
m/s. The limited resolution arising from the symmetry of the raypaths
does not allow for distinguishing N-S or E-W reflected central structures,
however.

e) An imagesc-generated plot of the diagonal of the model resolution ma-
trix (Figure 3.10) simply shows that it is constant, with Ri,i ⇡ 0.12.

f) We can create a wild model simply by superimposing scaled basis vectors
from the model null space onto our generalized inverse solution. We used
100 times the first basis vector from the model null space to add to (e) to
generate a model (Figure 3.11) with outrageous slowness values that fits
the data equally as well as the reasonable solution shown in Figure 3.8.

m

m

CR scan: slowness solution (δ S
max

=8.9707e−06, δ S
min

=−2.8779e−05)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

−25

−20

−15

−10

−5

0

5

x 10
−6

Figure 3.8: SVD solution for the row/column scan data.

3.3. SOLUTIONS 3-17

0 5 10 15 20 25 30 35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
CR scan: Basis vector 32 of the data null space

Figure 3.9: Data null space vector U.,32.

CR scan: diagonal resolution matrix (R
max

=0.12109, R
min

=0.12109)

m

m

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 3.10: Model diagonal resolution matrix elements for the row/column
scan data. All blocks have equal values for this ray path geometry.

3-18 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

m

m

CR scan: Wild slowness solution (δ S
max

=58.5849, δ S
min

=−60.6672)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
−60

−40

−20

0

20

40

Figure 3.11: A wild model constructed by adding a scaled vector (100V.,32)
from the model null space to the solution shown in Figure 3.8.

For the full row/column/diagonal scan data set of 94 travel time measure-
ments, the pseudoinverse solution is shown in Figure 3.12.

a) The rank of G is 87, and the 94 by 256 element G is thus still rank
deficient. The nonzero singular values range between about 1.36 and 8.70.

b) The data null space has dimension 7. There are thus 7 orthogonal
vectors (e.g., Figure 3.13) that specify projections of the data that cannot
be fit by any model. The addition of 62 additional ray paths relative
to the row/column scan data set increases the number of ways in which
perturbations to block slownesses can lead to inconsistent equations in
Gm = d.

The dimension of the model null space is 256 - 87 = 169. All models in
this null space have N-S and E-W raypath slowness integrals that equal
zero.

c) The model resolution matrix diagonal is now spatially variable due
to the more complex set of ray paths. An imagesc plot of the diagonal
elements show that the resolution is perfect (one) for the corner blocks
but is imperfect (less than one) everywhere else, reaching a minimum of
approximately 0.26 near the center of the image.

d) The solution (Figure 3.12) shows that there is a diagonally-oriented high
velocity body near the interior of the slab with a slowness perturbation of
around �9.8⇥10�5 s/m, or a velocity estimate of approximately (1/3000�
9.8⇥ 10�5)�1 ⇡ 4250 m/s.

3.3. SOLUTIONS 3-19

e) An imagesc plot of the diagonal of the model resolution matrix is shown,
note that this is what we might intuitively expect for our ability to sort
out information in the interior of the slab, given the raypath geometry.

f) Following the same procedure as before, adding 100 times the first
element in the model null space to the pseudoinverse solution (Figure
3.12) creates a wild model with totally non-physical slowness perturbation
values.

The true slowness perturbation model used to generate the data sets is
shown in Figure 3.16. The true bone velocity was set to 5.0 km/s, which
corresponds to a slowness perturbation with respect to a 3.0 km/s back-
ground velocity of 1.3 ⇥ 10�4. Note that both of our models gave peak
slowness perturbation decreases that were less than this. This underes-
timation is characteristic of limited resolution problems. Note that the
smearing was more dramatic when we used only the row and column scan
data, in which case we could not even discriminate between models re-
flected through the diagonals. As a result, the pseudoinverse solution
“splits the di↵erence” to give a smeared superposition of both possibili-
ties for the 45-degree canted bone (and a lesser estimate of the degree of
central slowness decrease relative to the complete data set inversion). The
resolution is much improved for the complete data set which includes the
diagonal scans, although the true model is clearly still smeared out, and
the maximum slowness perturbation is under-recovered.

m

m

CRD scan: slowness solution (δ S
max

=2.7086e−05, δ S
min

=−9.8225e−05)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

−8

−6

−4

−2

0

2

x 10
−5

Figure 3.12: SVD solution for the row/column/diagonal scan data.

%dinosaur tomography problem solved as a 16x16 grid of blocks

3-20 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

0 10 20 30 40 50 60 70 80 90 100
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Data Vector Element

CRD scan: vector 88 of the data null space

Figure 3.13: Representative data null space vector U.,88.

m

m

CRD scan: diagonal resolution matrix (R
max

=1, R
min

=0.26428)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.14: Model diagonal resolution matrix elements for the
row/column/diagonal scan data.

3.3. SOLUTIONS 3-21

m

m

CR scan: Wild slowness solution (δ S
max

=58.5849, δ S
min

=−60.6672)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
−60

−40

−20

0

20

40

Figure 3.15: A wild model constructed by adding a scaled vector (100V.,88)
from the model null space to the solution shown in Figure 3.8).

m

m

True model (δ S
max

=0, δ S
min

=−0.00013333)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

−12

−10

−8

−6

−4

−2

0
x 10

−5

Figure 3.16: The true model.

3-22 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

%initialize the workspace
clear

%initialize the graphics
clf
axis(’square’)

%load the data files
load diag1scan.mat
load diag2scan.mat
load colscan.mat
load rowscan.mat

%stated standard deviation of travel time estimates
%not used in this problem
load std.mat;

%extract the travel time measurements
dinp(1:16) = colscan(1:16,5);
dinp(17:32) = rowscan(1:16,5);
d=dinp’;

%initialize the design matrix
G = zeros(32,256);

%number of model parameters in the problem
m = 256;

%parameter indices increase going down each column
%m(1) is in the NW corner, m(16) is in the SW corner
%m(241) in the NE corner, and m(256) is in the SE corner

%design matrix entries for the column scan
%ones where each ray hits a block, zeros otherwise
for i=1:16
for j=(i-1)*16+1:i*16
G(i,j) = 1.;
end
end

%design matrix for the row scan
%ones where each ray hits a block, zeros otherwise
for i=1:16
for j=i:16:240+i
G(i+16,j) = 1.;
end
end

%inverting using the row and column scans only
disp(’Part A: Inverting using only the row and column scan travel times (CR):’)

%get the rank of G
disp([’the rank of the G matrix is: ’,num2str(rank(G))]);

%evaluate the svd of G
[u,lam,v] = svd(G);

%partition the P and null spaces from u, lam and v
p = rank(lam);

%number of data values in the problem
n = length(d);

disp([’the dimension of the data space is: ’,num2str(n)])
disp([’the dimension of the P space is: ’,num2str(p)])
disp([’the dimension of the data null space is: ’,num2str(n-p)])
disp([’the dimension of the model null space is: ’,num2str(m-p)])

lamp = lam(1:p,1:p);
up = u(:,1:p);
vp = v(:,1:p);

%evaluate the generalized inverse
Ginv = vp*inv(lamp)*up’;
disp([’the rank of the generalized inverse matrix is: ’,...
num2str(rank(Ginv))]);
disp([’the smallest and largest nonzero singular values are: ’,...
num2str(min(diag(lamp))),’ ’,num2str(max(diag(lamp)))])

%evaluate the generalized inverse solution
mg = Ginv*d;

sol = reshape(mg,16,16);
%convert the slownesses in the solution to a grid of slowness

%get the maximim and minimum slowness for the solution
maxs = max(max(sol));

3.3. SOLUTIONS 3-23

mins = min(min(sol));

figure(1)
imagesc(sol);
colorbar;
colormap(’bone’);
title([’CR scan: slowness solution (\delta S_{max}=’,num2str(maxs),...
’, \delta S_{min}=’,num2str(mins),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig1rc.eps
pause

%get the resolution matrix (rounded)
res = round(reshape(diag(vp*vp’),16,16)*100000)/100000;
%get the maximim and minimum values for the resolution
maxr = max(max(res));
minr = min(min(res));
figure(2)
imagesc(res);
colormap(’bone’);
title([’CR scan: diagonal resolution matrix (R_{max}=’,num2str(maxr),...
’, R_{min}=’,num2str(minr),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig2rc.eps
pause

%evaluate the model standard deviations (rounded)

%show an element of the model null space
figure(3)
imagesc(reshape(v(:,p+1),16,16));
colorbar;
colormap(’bone’)
title([’CR scan: An element of the row and column scan model null space’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig3rc.eps
pause

%show an exampl3 wild model
figure(4)
wsol=sol+100*reshape(v(:,p+1),16,16);
maxs = max(max(wsol));
mins = min(min(wsol));
imagesc(wsol);
colorbar;
colormap(’bone’);
title([’CR scan: Wild slowness solution (\delta S_{max}=’,num2str(maxs),...
’, \delta S_{min}=’,num2str(mins),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig4rc.eps
pause

%show the first 10 elements of the model (solution) space
for i=1:10
figure(5)
imagesc(reshape(v(:,i),16,16))
colorbar;
colormap(’bone’);
title([’CR scan: Basis vector ’,num2str(i),’ of the model space’])
pause
end

%show some basis vectors of the model null space
for i=p+1:p+11
figure(6)
imagesc(reshape(v(:,i),16,16))
colorbar;
colormap(’bone’);
title([’CR scan: Basis vector ’,num2str(i),’ of the model null space’])
pause
end

%show the basis vector of the data null space
figure(7)
plot(reshape(u(:,32),1,32))
title([’CR scan: Basis vector 32 of the data null space’])
print -depsc2 fig7rc.eps
pause

%part B...
%inverting using the entire data set
%including the diagonal scan data
dinp(33:63) = diag1scan(1:31,5);
dinp(64:94) = diag2scan(1:31,5);

d=dinp’;

%enlarge the G design matrix to accommodate the diagonal scans

%G matrix for the SW to NE diagonal scan, upper part
%because we’re now going through blocks on the diagonal, we

3-24 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

%have entries of sqrt(2) where we intersect a block
for i=1:16
for j=0:i-1
G(i+32,i+j*15) = sqrt(2.);
end
end

%g matrix for the SW to NE diagonal scan, lower part
for i=1:15
for j=0:15-i
G(i+48,(i+1)*16+j*15) = sqrt(2.);
end
end

%g matrix for the NW to SE diagonal scan, lower part
for i=1:16
for j=0:i-1
G(i+63,17-i+17*j) = sqrt(2.);
end
end

%g matrix for the NW to SE diagonal scan, upper part
for i=1:15
for j=0:15-i
G(i+79,(i*16)+1+17*j) = sqrt(2.);
end
end

disp(’Part B: Inverting using all available data (CRD):’)

%get the rank of G
disp([’the rank of the system matrix G is:’,num2str(rank(G))]);

%svd again
[u,lam,v] = svd(G);
p = rank(lam);

n = length(d);

disp([’the dimension of the data space is: ’,num2str(n)])
disp([’the dimension of the P space is: ’,num2str(p)])
disp([’the dimension of the data null space is: ’,num2str(n-p)])
disp([’the dimension of the model null space is: ’,num2str(m-p)])

lamp = lam(1:p,1:p);
up = u(:,1:p);
vp = v(:,1:p);

Ginv = vp*inv(lamp)*up’;
disp([’the rank of the generalized inverse matrix is:’,...
num2str(rank(Ginv))]);
disp([’smallest and largest nonzero singular values are: ’,...
num2str(min(diag(lamp))),’ ’,num2str(max(diag(lamp)))])
mg = Ginv*d;

rescrd = reshape(diag(vp*vp’),16,16);
sol = reshape(mg,16,16);
maxs = max(max(sol));
mins = min(min(sol));

%solution
figure(8)
imagesc(sol);
colorbar;
colormap(’bone’);
title([’CRD scan: slowness solution (\delta S_{max}=’,num2str(maxs),’, \delta S_{min}=’,...
num2str(mins),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig8rcd.eps
pause
maxr = max(max(rescrd));
minr = min(min(rescrd));

%resolution
figure(9)
imagesc(rescrd);
colorbar;
colormap(’bone’);
title([’CRD scan: diagonal resolution matrix (R_{max}=’,num2str(maxr),...
’, R_{min}=’,num2str(minr),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig9rcd.eps
pause;

figure(10)
%show an element of the row, column, diag scan model null space
imagesc(reshape(v(:,p+1),16,16));
xlabel(’m’),ylabel(’m’);
colorbar;
colormap(’bone’)
title(’An element of the row, column, diag scan model null space’);

3.3. SOLUTIONS 3-25

print -depsc2 fig10.eps
pause;

figure(11)
%wild model
wsol=sol+100*reshape(v(:,p+1),16,16);
maxs = max(max(wsol));
mins = min(min(wsol));
imagesc(wsol);
colorbar;
colormap(’bone’);
title([’CRD Scan: wild slowness solution (\delta S_{max}=’,num2str(maxs),’, \delta S_{min}=’,...
num2str(mins),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig11rcd.eps
pause

%plot the true model for comparison purposes
load tomo.mat
maxs = max(max(tomo));
mins = min (min (tomo));

figure(12)
imagesc(tomo);
colorbar;
colormap(’bone’);
title([’True model (\delta S_{max}=’,num2str(maxs),’, \delta S_{min}=’,num2str(mins),’)’]);
xlabel(’m’),ylabel(’m’);
print -depsc2 fig12true.eps
pause

%show the first 10 elements of the model (solution) space
for i=1:10
figure(13)
imagesc(reshape(v(:,i),16,16))
xlabel(’m’),ylabel(’m’);
colorbar;
colormap(’bone’);
title([’CRD scan: basis vector ’,num2str(i),’ of the model space’])
pause
end

%show some basis vectors of the model null space
for i=p+1:p+10
figure(14)
imagesc(reshape(v(:,i),16,16))
xlabel(’m’),ylabel(’m’);
colorbar;
colormap(’bone’);
title([’CRD scan: vector ’,num2str(i),’ of the model null space’])
pause
end

figure(15)
%show some basis vectors of the data null space (save a plot of the first one)
for i=p+1:94
plot(reshape(u(:,i),94,1))
xlabel(’Data Vector Element’)
title([’CRD scan: vector ’,num2str(i),’ of the data null space’])
if i==p+1

print -depsc2 fig15rcd.eps
end
pause
end

5. Discretizing the integral equation using simple collocation for xi = yi =
0.025, 0.075, . . . , 0.975, we create a 20 by 20 G matrix with elements

Gi,j = 0.05xje
�xjyi .

Taking the SVD of G, and plotting the singular values (Figure 3.17), we
see that the si are e↵ectively zero for i � 9. A plot of the absolute values
of the Picard ratios, UT

.,id/si (Figure 3.18) shows that the coe�cients in
the series SVD solution increase abruptly at i = 5 (to ⇡ 102) and reach
⇡ 104 by i=6.

Given that the data are stated to be accurate to 4 digits, we will con-
servatively only include the first four singular values in the TSVD solu-

3-26 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

tion. Figure 3.19 shows the TSVD solution obtained using four singular
values, and Figure 3.20 shows the actual model used to generate these
slightly noisy data. Including only one additional singular value results in
a model that bears essentially no resemblance to the true model and has
an amplitude that is approximately 20 times too large.

0 2 4 6 8 10 12 14 16 18 20
10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
Singular Values

i

s i

Figure 3.17: Singular Values.

3.3. SOLUTIONS 3-27

0 2 4 6 8 10 12 14 16 18 20
10−2

100

102

104

106

108

1010

1012

1014
Picard Ratios

i

U
T .,i

/s
i

Figure 3.18: Absolute values of the Picard ratios.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Solution Using Four Singular Values

x

m
(x

Figure 3.19: TSVD solution obtained using four singular values in the TSVD
solution.

3-28 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.20: True model.

%Exercise 3.5; TSVD problem
%
% Load the data in.
%
clear
load ifk.mat
%
%Setup vectors of the x and y collocation points.
%
x=(0.025:0.05:0.975)’;
y=x;
%
%Set up the G matrix.
%
for i=1:20, for j=1:20, G(i,j)=0.05*x(j)*exp(-x(j)*y(i)); end; end;
%
%Compute the SVD.
%
[U,S,V]=svd(G);
%
% Examine the Singular Values
%
s=diag(S);
figure(1)
semilogy(s,’o’)
title(’Singular Values’)
xlabel(’i’)
ylabel(’s_i’)
print -deps fig1sing.eps

%
% Examine the Picard Ratios
%
for i=1:20

pr(i)=U(:,i)’*d/s(i);
end

figure(2)
semilogy(abs(pr),’o’)
title(’Picard Ratios’)
xlabel(’i’)
ylabel(’U^T_{.,i}/s_i’)
print -deps fig2pic.eps

%
%Use just the first four singular values in the TSVD solution.
%
p=4;
mtsvd=zeros(20,1);
for i=1:p

3.3. SOLUTIONS 3-29

mtsvd=mtsvd+((U(:,i)’*d)/s(i))*V(:,i);
end
%
%Plot the solution.
%
figure(3);
plotconst(mtsvd,0,1);
title(’Solution Using Four Singular Values’)
xlabel(’x’)
ylabel(’m(x’)’
print -deps fig3sol.eps
%
%Plot the true model.
%
figure(4)
mtrue=exp(-10*(x-0.2).^2)+0.4*exp(-10*(x-0.9).^2)
plotconst(mtrue,0,1);
title(’True Solution’)
xlabel(’x’)
ylabel(’m(x’)’
print -deps fig4mtrue.eps

3-30 CHAPTER 3. RANK DEFICIENCY AND ILL–CONDITIONING

Chapter 4

Tikhonov Regularization

4.1 Discussion of the Chapter

In this chapter we expand the analysis of discrete ill-posed problems. The
technique of Tikhonov regularization is introduced and Tikhonov solutions are
computed using the SVD. Higher order Tikhonov regularization is introduced
in sections 4.4 and 4.5. The generalized singular value decomposition (GSVD)
is introduced in section 4.6. In teaching from the first edition we found that
many students focused on the GSVD (which is but one way of solving the
optimization problems that arise from Tikhonov regularization with a rough-
ening operator L) and missed the very important point that even in higher
order regularization we’re still solving least squares problems. This point be-
comes more clear in chapter 6 when we discuss iterative methods for computing
regularized solutions. Section 4.7 introduced generalized cross validation, an
underutilized method for determining the regularization parameter. In section
4.8 we present some bounds on the di↵erence between the regularized solution
and mtrue. These results are quite technical, but the important point here is
that without making assumptions (the so called “source conditions) about the
true model, it is impossible to bound the error.

The mathematical level of this chapter is generally similar to Chapter 3,
although sections 4.7 and 4.8 are at a distinctly higher level. This is a rather
long chapter, but Sections 4.6 through 4.8 could be made optional. We typically
spend about 7 lectures on this chapter and cover all of the sections.

In Exercise 4.1 students are asked to show an important theoretical connec-
tion between two equivalent formulations of Tikhonov regularization. Exercises
4.2 and 4.3 are computational case studies. In Exercise 4.4 Tikhonov regulariza-
tion is applied to e↵ect functional interpolation. Exercise 4.5 extends Tikhonov
regularization to operate on departures from a preferred or reference model m0.

4-1

4-2 CHAPTER 4. TIKHONOV REGULARIZATION

4.2 Exercises

1. Use the method of Lagrange Multipliers (Appendix C) to derive the damped
least squares problem (4.4) from the discrepancy principle problem (4.2),
and demonstrate that (4.4) can be written as (4.5).

2. Consider the integral equation and data set from Problem 3.5. You can
find a copy of this data set in the file ifk.mat.

(a) Discretize the problem using simple collocation.

(b) Using the data supplied, and assuming that the numbers are accurate
to four significant figures, determine a reasonable bound � for the
misfit.

(c) Use zeroth-order Tikhonov regularization to solve the problem. Use
GCV, the discrepancy principle and the L-curve criterion to pick the
regularization parameter.

(d) Use first-order Tikhonov regularization to solve the problem. Use
GCV, the discrepancy principle and the L-curve criterion to pick the
regularization parameter.

(e) Use second-order Tikhonov regularization to solve the problem. Use
GCV, the discrepancy principle and the L-curve criterion to pick the
regularization parameter.

(f) Analyze the resolution of your solutions. Are the features you see
in your inverse solutions unambiguously real? Interpret your results.
Describe the size and location of any significant features in the solu-
tion.

3. Consider the following problem in cross-well tomography. Two vertical
wells are located 1600 meters apart. A seismic source is inserted in one
well at depths of 50, 150, ..., 1550 m. A string of receivers is inserted in
the other well at depths of 50 m, 150 m, ..., 1550 m. See Figure 4.1. For
each source-receiver pair, a travel time is recorded, with a measurement
standard deviation of 0.5 ms. There are 256 ray paths and 256 corre-
sponding data points. We wish to determine the velocity structure in the
two-dimensional plane between the two wells.

Discretizing the problem into a 16 by 16 grid of 100 meter by 100 meter
blocks gives 256 model parameters. The G matrix and noisy data, d, for
this problem (assuming straight ray paths) are in the file crosswell.mat.
The order of parameter indexing from the slowness grid to the model
vector is row-by-row (e.g., Example 1.12).

(a) Use the TSVD to solve this inverse problem using an L-curve. Plot
the result.

(b) Use zeroth-order Tikhonov regularization to solve this problem and
plot your solution. Explain why it is hard to use the discrepancy

4.2. EXERCISES 4-3

0

400

800

1200

1600 (m)

0 400 800 1200 1600 (m)

S
o

u
rc

e
 B

o
re

h
o

le R
e
c
e
iv

e
r B

o
re

h
o

le

11 12 13

21

31

22

32

23

33

...

...

...

..
.

..
.

..
.

Source

Figure 4.1: Cross-well tomography problem, showing block discretization, block
numbering convention, and one set of straight source-receiver ray paths.

principle to select the regularization parameter. Use the L-curve
criterion to select your regularization parameter. Plot the L-curve as
well as your solution.

(c) Use second-order Tikhonov regularization to solve this problem and
plot your solution. Because this is a two-dimensional problem, you
will need to implement a finite-di↵erence approximation to the Lapla-
cian (second derivative in the horizontal direction plus the second
derivative in the vertical direction) in the roughening matrix. The L

matrix can be generated using the following MATLAB code:

L=zeros(14*14,256);

k=1;

for i=2:15,

for j=2:15,

M=zeros(16,16);

M(i,j)=-4;

M(i,j+1)=1;

M(i,j-1)=1;

M(i+1,j)=1;

M(i-1,j)=1;

L(k,:)=reshape(M,256,1)’;

k=k+1;

end

end

What, if any, problems did you have in using the L-curve criterion
on this problem? Plot the L-curve as well as your solution.

(d) Discuss your results. If vertical bands appeared in some of your
solutions, can you explain why?

4-4 CHAPTER 4. TIKHONOV REGULARIZATION

4. Apply second-order Tikhonov regularization to solve the problem of find-
ing a smooth curve that approximately fits a set of noisy data points.
Write a MATLAB program to find a function specified at the 191 points
x = 1, 1.1, 1.2, . . . , 20 that approximately fits the 20 data points specified
at x = 1, 2, 3, . . . , 20 given in the file interpdata.mat. Construct an ap-
propriate 20 by 191 G matrix,and use the library function get l rough

to obtain the necessary second-order roughening matrix, L. Produce so-
lutions for regularization parameter values of ↵ = 0.2, 0.4, 0.6, . . . , 10 and
show the tradeo↵ curve between 2-norm data misfit and model seminorm
on a linear-linear plot. If the data noise is independent and normally dis-
tributed with a standard deviation of 0.3, use the discrepancy principle to
find and plot an optimal interpolated curve along with the data points.
What is the �

2 value of this solution? Is it reasonable?

5. In some situations it is appropriate to bias the regularized solution towards
a particular model m0. In this case, we would solve

min kGm� dk22 + ↵
2kL(m�m0)k22 . (4.1)

Write this as an ordinary linear least squares problem. What are the
normal equations? Can you find a solution for this problem using the
GSVD?

4.3 Solutions

1. First, notice that since taking the square of kmk is a monotone increasing
transformation, (4.2) is equivalent to

min kmk22
kGm� dk22 �

2
.

Let
f(m) = kmk22

and
g(m) = kGm� dk22 � �

2
.

Then, (4.2) is shown to be equivalent to

min f(m)
g(m) 0 .

By Theorem C.5, a minimizer of this problem can only occur at a point
where

rf(m) + �rg(m) = 0

and � � 0.

4.3. SOLUTIONS 4-5

Next, consider (4.4):

min kGm� dk22 + ↵
2kmk22 .

This is equivalent to

min g(m) + �
2 + ↵

2
f(m).

The constant �2 will not a↵ect the optimal m, so we have

min g(m) + ↵
2
f(m).

A minimum of this problem can only occur where

rg(m) + ↵
2rf(m) = 0.

Ignoring the special case ↵ = 0, we can divide through by ↵
2 to get:

1

↵2
rg(m) +rf(m) = 0.

This is exactly the same as the Lagrange multiplier optimality condition
for (4.2) with � = 1/↵2 or ↵ =

p
1/�.

So, for any optimal solution to (4.2), we can find a corresponding value of
�, and then set ↵ =

p
1/�. An optimal solution to (4.4) with this value

of the parameter ↵ will also solve (4.2).

It can be shown that for ↵ > 0, (4.4) is strictly convex, and thus has a
unique optimal solution.

For the special case ↵ = 0, (4.4) is not necessarily strictly convex, and
there may be many optimal solutions. This corresponds to the limit as
� ! 1 in (4.2).

Finally, we’ll show that (4.4) is equivalent to (4.5).

h(m) =
mX

i=1

(Gm� d)2i + ↵
2

nX

j=1

m
2
j .

h(m) =
mX

i=1

(Gm� d)2i +
nX

j=1

(↵mj)
2
.

h(m) =

����
Gm� d

↵m

����
2

2

h(m) =

����

G

↵I

�
m�

d

0

�����
2

2

.

2. (a) This problem was previously discretized in the same manner in Ex-
ercise 3.5.

4-6 CHAPTER 4. TIKHONOV REGULARIZATION

(b) Note that since we have 20 equations and 20 model parameters, our
�
2 distribution actually has 0 degrees of freedom, and we should

theoretically be able to get a perfect fit to the data. However, because
of the harsh ill conditioning of the problem, near exact fits to the data
will tend to produce wild results, and regularization is necessary to
produce reasonable models. Given that the data are accurate to four
digits past the decimal point, a reasonable estimate of the standard
deviation for each measurement is 0.00005. Using our rule of thumb,
a reasonable value for � is

� = 0.00005
p
n ⇡ 2.2361⇥ 10�4

.

(c) Figure 4.2 shows the GCV curve for the zeroth-order Tikhonov reg-
ularization solution, and the corresponding model is shown in Figure
4.3. Note that it may be easier to see the full range of GCV curves in
ill posed problems when they are plotted on log-log axes. Using the
value of � from part (b), we found the discrepancy principle solution
shown in Figure 4.4. Figure 4.5 shows the L-curve for zeroth-order
Tikhonov regularization, which has a very well defined corner when
plotted on log-log axes. The corresponding solution is shown in Fig-
ure 4.6. The three solutions are reasonably similar.

(d) Figures 4.8 and 4.9 show the solutions obtained using first-order
Tikhonov regularization. The L-curve corner is still well defined for
first-order regularization, and the corresponding solutions tend to in-
crease the value of the model near x = 0 to avoid the sharp change
in slope visible there for the zeroth-order solutions.

(e) Figure 4.13 and 4.14 show the solutions obtained using second-order
Tikhonov regularization. These solutions, being smoother still, all
tend to further reduce the excursions visible in the zeroth-order solu-
tions. The L-curve is not particularly well defined in the second–order
problem, but has a relatively subtle corner near ↵ = 3.19⇥10�5 that
produces a smooth solution.

(f) Figures 4.17 through 4.19 show the diagonal resolution values for
the various solutions using the appropriate ↵ values of the Tikhonov
regularization parameter, showing generally poor resolution every-
where and exceptionally poor resolution near x = 0. The rightmost
elements are relatively well resolved.

Because the problem is so ill-posed, only the grossest characteristics
of the true model will be recovered by our inverse procedure. All
of our solutions showed that values were generally larger on the left
half of the model and smaller on the right half of the model, and
there was agreement that the peak value was around 1. There was
also agreement that the lower values on the right hand side of the
model were around 0.5. Beyond that, the inverse solutions could not
consistently detect features at finer levels of detail. In particular, it

4.3. SOLUTIONS 4-7

isn’t possible to tell whether the peak on the left edge of the model
is at x = 0 or a bit further to the right (say x = 0.3.) It also isn’t
possible to tell for sure whether or not there is a peak towards the
right end of the solution.

Figure 4.20 shows the true model. In fact, it does have a peak at
around x = 0.2, with a peak value of about 1. There is a second
peak at x = 0.9.

Notice that the first- and second-order Tikhonov regularized solutions
tended to miss that the peak was distinctly to the right of x = 0.
The problem here was that in obtaining a very smooth solution, the
top of the peak had to be rounded o↵. The zeroth-order solutions
did not su↵er from this, because zeroth-order regularization does not
enforce smoothness. In general, it may be best to use the lowest
order regularization which “successfully” regularizes the solution to
best recover such features if there is reason to believe that distinct
peaks exist in the true model.

4-8 CHAPTER 4. TIKHONOV REGULARIZATION

10−15 10−10 10−5 100
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3
Zeroth−Order GCV Curve

�

g(
�

)

Figure 4.2: GCV curve for zeroth-order regularization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

Zeroth−Order GCV Solution (_ = 5.5628e−05)

Figure 4.3: Zeroth-order Tikhonov solution, GCV ↵.

4.3. SOLUTIONS 4-9

10−5 10−4 10−3 10−2 10−1 100
100

101

102

103

104

105

106

107

108

109

1010

||Gm−d||

||m
||

Zeroth−Order Tikhonov L−Curve, Corner at: _ =2.586e−05

Figure 4.4: Zeroth-order Tikhonov solution, discrepancy principle ↵.

10−5 10−4 10−3 10−2 10−1 100
100

101

102

103

104

105

106

107

108

109

1010

||Gm−d||

||m
||

Zeroth−Order Tikhonov L−Curve, Corner at: _ =2.586e−05

Figure 4.5: L-curve for zeroth-order regularization.

4-10 CHAPTER 4. TIKHONOV REGULARIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

L−curve Corner Solution (_ = 2.586e−05)

Figure 4.6: Zeroth-order Tikhonov solution, L-curve ↵.

4.3. SOLUTIONS 4-11

10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100
10−11

10−10

10−9

10−8

10−7

10−6
First−Order GCV Curve

_

g(
_

)

Figure 4.7: GCV curve for first-order regularization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

First−Order GCV Solution (_ = 0.00022897)

Figure 4.8: First-order Tikhonov solution, GCV ↵.

4-12 CHAPTER 4. TIKHONOV REGULARIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

First−Order Discrepancy Principle Solution (_ = 0.00012794)

Figure 4.9: First-order Tikhonov solution, discrepancy principle ↵.

10−5 10−4 10−3
10−1

100

101

102

103

104

105

||Gm−d||

||L
m

||

First−Order Tikhonov L−Curve, Corner at: _ =0.0002271

Figure 4.10: L-curve for first-order regularization.

4.3. SOLUTIONS 4-13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

First−Order L−curve Corner Solution (_ = 0.0002271)

Figure 4.11: First-order Tikhonov solution, L-curve ↵.

4-14 CHAPTER 4. TIKHONOV REGULARIZATION

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100
10−11

10−10

10−9
Second−Order GCV Curve

_

g(
_

)

Figure 4.12: GCV curve for second-order regularization.

%Chapter 4, problem 2; Ill posed Tikhonov regularization problem.
%
% Load the data in.
%
clear
load ifk.mat
%
%Setup vectors of the x and y collocation points.
%
x=(0.025:0.05:0.975)’;
y=x;
%
%Set up the G matrix as in Exercise 3.5.
%
%Part (a) discretize the model via simple collocation
for i=1:20, for j=1:20, G(i,j)=0.05*x(j)*exp(-x(j)*y(i)); end; end;
%
%Compute the SVD and G’*G.
%
[U,S,V]=svd(G);
GTG=G’*G;

% Part (c) Solve the zeroth order problem, selecting the regularization
% parameter in three different ways
%
%
%Calculate the zeroth order L-curve and find its corner
%
figure(1);
[rho,eta,reg_param]=l_curve_tikh_svd(U,diag(S),d,1000);
[alpha_corner,ireg_corner,kappa]=l_curve_corner(rho,eta,reg_param);
loglog(rho,eta)
hold on
loglog(rho(ireg_corner),eta(ireg_corner),’o’)
hold off
xlabel(’||Gm-d||’)
ylabel(’||m||’)
title([’Zeroth-Order Tikhonov L-Curve, Corner at: \alpha =’,num2str(alpha_corner)]);
print -deps lcurve0.eps
%
%Solve by discrepancy principle.
%
delta = 5e-5*sqrt(20);
%find the corresponding regularization parameter via interpolation
alpha_disc0=interp1(reg_param,rho,delta);
Gsharp_disc0=(GTG+alpha_disc0^2*eye(20))\G’;
mdisc0=Gsharp_disc0*d;

4.3. SOLUTIONS 4-15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

Second−Order GCV Solution (_ = 0.0011522)

Figure 4.13: Sceond-order Tikhonov solution, GCV ↵.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

Second−Order Discrepancy Principle Solution (_ = 0.00012794)

Figure 4.14: Second-order Tikhonov solution, discrepancy principle ↵.

4-16 CHAPTER 4. TIKHONOV REGULARIZATION

10−4.016 10−4.015 10−4.014 10−4.013 10−4.012
10−2

10−1

100

101

||Gm−d||

||L
m

||

Second−Order Tikhonov L−Curve, Corner at: _ =3.1879e−05

Figure 4.15: L-curve for second-order regularization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

Second−Order L−curve Corner Solution (_ = 3.1879e−05)

Figure 4.16: Second-order Tikhonov solution, L-curve ↵.

4.3. SOLUTIONS 4-17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

R i,i

Zeroth−Order Regularization Resolution Diagonal Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

R i,i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

x

R i,i

Discrepancy Principle

GCV

L−Curve

Figure 4.17: Resolution diagonal elements for zeroth-order solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

R i,i

First−Order Regularization Resolution Diagonal Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

R i,i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

x

R i,i

Discrepancy Principle

GCV

L−Curve

Figure 4.18: Resolution diagonal elements for first-order solutions.

4-18 CHAPTER 4. TIKHONOV REGULARIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

R i,i

Second−Order Regularization Resolution Diagonal Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8
R i,i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

x

R i,i

Discrepancy Principle

GCV

L−Curve

Figure 4.19: Resolution diagonal elements for second-order solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

m
(x

)

x

True Solution

Figure 4.20: True solution.

4.3. SOLUTIONS 4-19

%resolution matrix
R_disc0=Gsharp_disc0*G;
figure(2);
plotconst(mdisc0,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’Zeroth-Order Discrepancy Principle Solution (\alpha = ’,num2str(alpha_disc0),’)’])
print -deps mdisc0.eps
%
%Solve with GCV
%
%L0 is just the identity matrix ("roughening" matrix for zeroth order
%regularization)
L0 = get_l_rough(20,0);
[U0,V0,X0,Lam0,Mu0]=gsvd(G,L0);
lam=sqrt(diag(Lam0’*Lam0));
mu=sqrt(diag(Mu0’*Mu0));
p=rank(L0);
sm0=[lam(1:p),mu(1:p)];
%get the gcv values varying alpha
[alpha0,g0,reg_param0]=gcval(U0,sm0,d,1000);

%find the minimum value of of the g functions
[ming0,iming0] = min(g0);
alpha_gcv0=reg_param0(iming0);

%plot the zeroth order GCV function and indicate its minimum (it is subtle,
%so we will use a log-log plot)
figure(3);
loglog(reg_param0,g0);
hold on
loglog(alpha_gcv0,ming0,’o’)
hold off
title(’Zeroth-Order GCV Curve’)
xlabel(’\alpha’)
ylabel(’g(\alpha)’)
print -deps gcv0.eps

%find the GCV solution and plot it
Gsharp_gcv0=(GTG+alpha_gcv0^2*eye(20))\G’;
mgcv0=Gsharp_gcv0*d;
%resolution matrix
R_gcv0=Gsharp_gcv0*G;
figure(4);
plotconst(mgcv0,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’Zeroth-Order GCV Solution (\alpha = ’,num2str(alpha_gcv0),’)’])
print -deps mgcv0.eps

%
%Solve from the L-curve corner
%
Gsharp_L0=(GTG+alpha_corner^2*eye(size(GTG)))\G’;
mL0=Gsharp_L0*d;
R_L0=Gsharp_L0*G;
figure(5);
plotconst(mL0,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’L-curve Corner Solution (\alpha = ’,num2str(alpha_corner),’)’])
print -deps mltik0.eps;

%Resolution Matrix Diagonal Element Plot
figure(6)
subplot(3,1,1)
plotconst(diag(R_disc0),0,1)
legend(’Discrepancy Principle’)
ylabel(’R_{i,i}’)
title(’Zeroth-Order Regularization Resolution Diagonal Elements’)
subplot(3,1,2)
plotconst(diag(R_gcv0),0,1)
ylabel(’R_{i,i}’)
legend(’GCV’)
subplot(3,1,3)
plotconst(diag(R_L0),0,1)
legend(’L-Curve’)
ylabel(’R_{i,i}’)
xlabel(’x’)
print -deps res0.eps
%
%
% Part (d) Solve the first-order problem, selecting the regularization
% parameter in three different ways
%
%
%Calculate the first-order L-curve and find its corner
%

4-20 CHAPTER 4. TIKHONOV REGULARIZATION

L1=get_l_rough(20,1);
[U1,V1,X1,Lam1,Mu1]=gsvd(G,L1);
p=rank(L1);
sm1=[lam(1:p),mu(1:p)];

figure(7);
[rho,eta,reg_param]=l_curve_tikh_gsvd(U1,d,X1,Lam1,Mu1,G,L1,1000,1e-10,0.15);
[alpha_corner,ireg_corner,kappa]=l_curve_corner(rho,eta,reg_param);
loglog(rho,eta)
hold on
loglog(rho(ireg_corner),eta(ireg_corner),’o’)
hold off
xlabel(’||Gm-d||’)
ylabel(’||Lm||’)
title([’First-Order Tikhonov L-Curve, Corner at: \alpha =’,num2str(alpha_corner)]);
print -deps lcurve1.eps
%
%Solve by discrepancy principle.
%
%find the corresponding regularization parameter via interpolation
alpha_disc1=interp1(reg_param,rho,delta);
Gsharp_disc1=(GTG+alpha_disc0^2*(L1’*L1))\G’;
mdisc1=Gsharp_disc1*d;
%resolution matrix
R_disc1=Gsharp_disc1*G;
figure(8);
plotconst(mdisc1,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’First-Order Discrepancy Principle Solution (\alpha = ’,num2str(alpha_disc0),’)’])
print -deps mdisc1.eps
%
%
%Solve with GCV
%
%L0 is just the identity matrix ("roughening" matrix for zeroth order
%regularization)
lam=sqrt(diag(Lam1’*Lam1));
mu=sqrt(diag(Mu1’*Mu1));
p=rank(L1);
sm1=[lam(1:p),mu(1:p)];
%get the gcv values varying alpha
[alpha1,g1,reg_param1]=gcval(U1,sm1,d,1000);

%find the minimum value of of the g functions
[ming1,iming1] = min(g1);
alpha_gcv1=reg_param1(iming1);

%plot the zeroth order GCV function and indicate its minimum (it is subtle,
%so we will use a log-log plot)
figure(9);
loglog(reg_param1,g1);
hold on
loglog(alpha_gcv1,ming1,’o’)
hold off
title(’First-Order GCV Curve’)
xlabel(’\alpha’)
ylabel(’g(\alpha)’)
print -deps gcv1.eps

%find the GCV solution and plot it
Gsharp_gcv1=(GTG+alpha_gcv0^2*(L1’*L1))\G’;
mgcv1=Gsharp_gcv1*d;
%resolution matrix
R_gcv1=Gsharp_gcv1*G;
figure(10);
plotconst(mgcv1,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’First-Order GCV Solution (\alpha = ’,num2str(alpha_gcv1),’)’])
print -deps mgcv1.eps

%
%Solve from the L-curve corner
%
Gsharp_L1=(GTG+alpha_corner^2*(L1’*L1))\G’;
mL1=Gsharp_L1*d;
R_L1=Gsharp_L1*G;
figure(11);
plotconst(mL1,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’First-Order L-curve Corner Solution (\alpha = ’,num2str(alpha_corner),’)’])
print -deps mltik1.eps;

%Resolution Matrix Diagonal Element Plot
figure(12)
subplot(3,1,1)

4.3. SOLUTIONS 4-21

plotconst(diag(R_disc1),0,1)
legend(’Discrepancy Principle’)
ylabel(’R_{i,i}’)
title(’First-Order Regularization Resolution Diagonal Elements’)
subplot(3,1,2)
plotconst(diag(R_gcv1),0,1)
ylabel(’R_{i,i}’)
legend(’GCV’)
subplot(3,1,3)
plotconst(diag(R_L1),0,1)
legend(’L-Curve’)
ylabel(’R_{i,i}’)
xlabel(’x’)
print -deps res1.eps
%
%
% Part (e) Solve the first-order problem, selecting the regularization
% parameter in three different ways
%
%
%Calculate the first-order L-curve and find its corner
%
L2=get_l_rough(20,2);
[U2,V2,X2,Lam2,Mu2]=gsvd(G,L2);
%p=rank(L2);

figure(13);
%[rho,eta,reg_param]=l_curve_tikh_gsvd(U2,d,X2,Lam2,Mu2,G,L2,1000,0.000000001,100000);
[rho,eta,reg_param]=l_curve_tikh_gsvd(U2,d,X2,Lam2,Mu2,G,L2,1000,1e-6,0.0001);
[alpha_corner,ireg_corner,kappa]=l_curve_corner(rho,eta,reg_param);
loglog(rho,eta)
hold on
loglog(rho(ireg_corner),eta(ireg_corner),’o’)
hold off
xlabel(’||Gm-d||’)
ylabel(’||Lm||’)
title([’Second-Order Tikhonov L-Curve, Corner at: \alpha =’,num2str(alpha_corner)]);
print -deps lcurve2.eps

%
%Solve by discrepancy principle.
%
%find the corresponding regularization parameter via interpolation
alpha_disc2=interp1(reg_param,rho,delta);
Gsharp_disc2=(GTG+alpha_disc0^2*(L2’*L2))\G’;
mdisc2=Gsharp_disc2*d;
%resolution matrix
R_disc2=Gsharp_disc2*G;
figure(14);
plotconst(mdisc2,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’Second-Order Discrepancy Principle Solution (\alpha = ’,num2str(alpha_disc0),’)’])
print -deps mdisc2.eps
%
%
%Solve with GCV
%
%L0 is just the identity matrix ("roughening" matrix for zeroth order
%regularization)
lam=sqrt(diag(Lam2’*Lam2));
mu=sqrt(diag(Mu2’*Mu2));
p=rank(L2);
sm2=[lam(1:p),mu(1:p)];
%get the gcv values varying alpha
[alpha2,g2,reg_param2]=gcval(U2,sm2,d,1000);

%find the minimum value of of the g functions
[ming2,iming2] = min(g2);
alpha_gcv2=reg_param2(iming2);

%plot the zeroth order GCV function and indicate its minimum (it is subtle,
%so we will use a log-log plot)
figure(15);
loglog(reg_param2,g2);
hold on
loglog(alpha_gcv2,ming2,’o’)
hold off
title(’Second-Order GCV Curve’)
xlabel(’\alpha’)
ylabel(’g(\alpha)’)
print -deps gcv2.eps

%find the GCV solution and plot it
Gsharp_gcv2=(GTG+alpha_gcv0^2*(L2’*L2))\G’;
mgcv2=Gsharp_gcv2*d;
%resolution matrix
R_gcv2=Gsharp_gcv2*G;
figure(16);
plotconst(mgcv2,0,1);

4-22 CHAPTER 4. TIKHONOV REGULARIZATION

axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’Second-Order GCV Solution (\alpha = ’,num2str(alpha_gcv2),’)’])
print -deps mgcv2.eps

%
%Solve from the L-curve corner
%
Gsharp_L2=(GTG+alpha_corner^2*(L2’*L2))\G’;
mL2=Gsharp_L2*d;
R_L2=Gsharp_L2*G;
figure(17);
plotconst(mL2,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’Second-Order L-curve Corner Solution (\alpha = ’,num2str(alpha_corner),’)’])
print -deps mltik2.eps;

%Resolution Matrix Diagonal Element Plot
figure(18)
subplot(3,1,1)
plotconst(diag(R_disc2),0,1)
legend(’Discrepancy Principle’)
ylabel(’R_{i,i}’)
title(’Second-Order Regularization Resolution Diagonal Elements’)
subplot(3,1,2)
plotconst(diag(R_gcv2),0,1)
ylabel(’R_{i,i}’)
legend(’GCV’)
subplot(3,1,3)
plotconst(diag(R_L2),0,1)
legend(’L-Curve’)
ylabel(’R_{i,i}’)
xlabel(’x’)
print -deps res2.eps

%Show the True Solution
load mtrue.mat
figure(19);
plotconst(mtrue,0,1);
axis([0 1 0 1.5]);
ylabel(’m(x)’)
xlabel(’x’)
title([’True Solution)’])
print -deps mtrue.eps

3. (a) Figure 4.21 shows the singular values of the G matrix. Note that
there is a sharp drop after the 243rd singular value. Figure 4.22
shows the truncated SVD solution obtained by using the first 243
singular values. Notice the vertical “bands” in the solution and the
general noise level. In an attempt to clean up the noise and produce a
simpler model, Figure 4.23 shows the solution using only the first 200
singular values. This solution clearly shows a high velocity/reduced
slowness feature near location (9,5).

(b) Figure 4.24 shows the L-curve for zeroth-order Tikhonov regulariza-
tion. The corner is quite distinct. Figure 4.25 shows the correspond-
ing solution. This solution is similar to the TSVD solution with 243
singular values.

The di�culty with using the discrepancy principle on this problem
is that we have m = 256 and n = 256. Thus our �

2 distribution
has zero degrees of freedom, and theoretically, the misfit should be
exactly zero. In fact, the misfit of our solution is far smaller than
the bound that we might establish by taking

p
256 times 0.0005 (the

error level of the measurements).

(c) Figure 4.26 shows the L-curve for second order Tikhonov regulariza-
tion. This time, the corner of the L-curve is not very distinct. Figure

4.3. SOLUTIONS 4-23

4.27 shows a resulting solution. Next, we consider the regularization
parameter corresponding to the second “corner” of the L-curve, near
0.059. This solution is shown in Figure 4.28. Figure 4.29 shows the
diagonal of the resolution matrix for this solution. The resolution is
generally quite good, except for areas at the top and bottom of the
image, where there are few ray paths. Figure 4.30 shows the resolu-
tion of a spike at location (9,6). The spike is quite clearly resolved.
This gives us confidence that the high velocity region near (9,5) in
Figure 4.28 is a real feature.

(d) Of all the solutions obtained here, the one shown in Figure 4.28 seems
most reasonable if we expect the true model to be smooth. The other
solutions tend to exhibit vertical bands. These appear because it is
possible to shift slowness from one column of the model to a neighbor-
ing column without much a↵ecting the observed travel times. Such
shifts fall within the model null space and are di�cult if not impos-
sible to eliminate using zeroth-order regularization. It is possible to
eliminate them using second order regularization, but it takes a sub-
stantial amount of regularization to accomplish this. The resolution
of this second-order solution (4.28) is quite good in most parts of the
model, as seen by the diagonal elements of R shown in correspond-
ing model locations in Figure 4.29, with degraded resolution near the
top and bottom of the model. Representative spike tests shown in
Figures 4.30 and 4.31 reflect this. The true model is shown in Figure
4.32, showing that the solution in Figure 4.28 is indeed reasonably
close to the true (smooth) model.

%Chapter 4, problem 3; Crosswell tomography Exercise 3
% First clear the workspace
%
clear
%
% Next, make the G matrix.
%
G=zeros(256,256);
k=1;
for i=1:16,

for j=1:16,
M=zeros(16,16);
slope=((j-0.5)-(i-0.5))/16;
xstart=0;
xend=16;
ystart=i-0.5;
yend=j-0.5;
deltax=0.001;
deltay=slope*deltax;
lbit=sqrt(deltax^2+deltay^2);
for x=0:deltax:16,

y=ystart+x*slope;
if ((ceil(x)==ceil(x+deltax)) && (ceil(y)==ceil(y+deltay))),

M(ceil(x),ceil(y))=M(ceil(x),ceil(y))+lbit;
end;

end;
V=reshape(M’,256,1);
G(k,:)=V’;
k=k+1;

end;
end;
G=G*100;
%
%model axes
Xa=linspace(50,1550,16);
Ya=Xa;
%
% Make the true model and true data.
%

4-24 CHAPTER 4. TIKHONOV REGULARIZATION

0 50 100 150 200 250 300
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

i

s(
i)

Figure 4.21: Singular values of the G matrix.

243−term TSVD Solution

m

m

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10−4

Figure 4.22: Truncated SVD solution, 243 singular values.

4.3. SOLUTIONS 4-25

200−term TSVD Solution

m

m

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10−4

Figure 4.23: Truncated SVD solution, 200 singular values.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

101

102

103

||Gm−d||

||m
||

Zeroth−Order Tikhonov L−Curve, Corner at: _ =3.4853e−07

Figure 4.24: L-curve for zeroth-order Regularization.

4-26 CHAPTER 4. TIKHONOV REGULARIZATION

m

m

Zeroth−Order Tikhonov L−Curve Solution, Corner at: _ =3.4853e−07

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10−4

Figure 4.25: Zeroth-order Tikhonov L-curve sSolution.

10−7 10−6 10−5 10−4 10−3 10−2
10−5

10−4

10−3

10−2

10−1

100

||Gm−d||

||L
m

||

Second−Order Tikhonov L−Curve, Corner at: _ =9.3555e−08

Figure 4.26: L-curve for second-order regularization. The two indicated corners
marked with a circle and an ’x’ correspond to the solutions shown in Figures
4.27 and 4.28, respectively.

4.3. SOLUTIONS 4-27

m

m

Second−Order Tikhonov L−Curve Solution, Corner at: _ =9.3555e−08

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10−4

Figure 4.27: Second-order Tikhonov solution, ↵ = 9.4⇥ 10�8.

m

m

Second−Order Tikhonov L−Curve Solution, Corner at: _ = 0.042422

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10−4

Figure 4.28: Second-order Tikhonov solution, ↵ = 0.042.

4-28 CHAPTER 4. TIKHONOV REGULARIZATION

Second−Order Tikhonov L−Curve Solution Diagonal Resolution

m

m

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.29: Diagonal elements of R for the solution shown in Figure 4.28.

Second−Order Tikhonov L0−Curve Solution Spike Test (element 9,6)

m

m

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.30: Resolution of a spike at (9,6) for the solution shown in Figure 4.28.

4.3. SOLUTIONS 4-29

Second−Order Tikhonov L0−Curve Solution Spike Test (element 1,8)

m

m

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.31: Resolution of a spike at (1,8) for the solution shown in Figure 4.28.

m

m

True Solution

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600 3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10−4

Figure 4.32: The true model.

4-30 CHAPTER 4. TIKHONOV REGULARIZATION

mtruem=zeros(16,16);
for i=1:16,

for j=1:16,
mtruem(i,j)=1/(2900+600*exp(-0.2*((i-9)^2+(j-5)^2)));

end;
end;
mtruev=reshape(mtruem,256,1);
dtruev=G*mtruev;
%
% Construct the noisy data. Standard deviation is 0.5 milliseconds.
%
randn(’state’,0);
dn=dtruev+0.0005*randn;
%
% Save data for the students to use in solving the problem.
%
%save prob.mat G dn
%
% Find the SVD of G.
%
[UU,SS,VV]=svd(G);
%
%precalculate G’*G;
GTG=G’*G;
%
% Look at the singular values.
%
figure(1)
semilogy(diag(SS),’ko’);
xlabel(’i’)
ylabel(’s(i)’)
print -deps singvals.eps

disp(’singularvalues 243 and 244’)
SS(243,243)
SS(244,244)
%
% It looks like p=243 may be good for the generalized inverse solution.
%
%calculate the TSVD solution
m243=zeros(length(V),1);
s=diag(SS);
for i=1:243

m243=m243+((UU(:,i)’*dn)/s(i))*VV(:,i);
end
figure(2);
imagesc(Xa,Ya,reshape(m243,16,16),[3.0e-4 3.5e-4]);
title(’243-term TSVD Solution’)
ylabel(’m’)
xlabel(’m’)
colorbar
colormap(gray);
print -deps m243.eps
%
% This solution is a bit noisy, so we’ll go back to the svd log "corner" near p=200
% and look at that solution too.
%
%calculate the TSVD solution
m200=zeros(length(V),1);
s=diag(SS);
for i=1:200

m200=m200+((UU(:,i)’*dn)/s(i))*VV(:,i);
end
figure(3);
imagesc(Xa,Ya,reshape(m200,16,16),[3.0e-4 3.5e-4]);
title(’200-term TSVD Solution’)
ylabel(’m’)
xlabel(’m’)
colorbar
colormap(gray);
print -deps m200.eps
%
% Next, try 0th order Tikhonov regularization.
%
%
figure(4);
[rho,eta,reg_param]=l_curve_tikh_svd(UU,s,dn,1000);
[alpha_corner,ireg_corner,kappa]=l_curve_corner(rho,eta,reg_param);
loglog(rho,eta)
hold on
loglog(rho(ireg_corner),eta(ireg_corner),’o’)
hold off
xlabel(’||Gm-d||’)
ylabel(’||m||’)
title([’Zeroth-Order Tikhonov L-Curve, Corner at: \alpha =’,num2str(alpha_corner)]);

print -deps lcurve0.eps
%
% Show zeroth-order solution
I=eye(size(GTG));
figure(5);

4.3. SOLUTIONS 4-31

%We’ll calculate this using the filter factor series
m0=zeros(256,1);
for i=1:256

f(i)=s(i)^2/(alpha_corner^2+s(i)^2);
m0=m0+f(i)*((UU(:,i)’*dn)/s(i))*VV(:,i);

end

imagesc(Xa,Ya,reshape(m0,16,16),[3.0e-4 3.5e-4]);
colorbar
colormap(gray);
title([’Zeroth-Order Tikhonov L-Curve Solution, Corner at: \alpha =’,num2str(alpha_corner)]);
ylabel(’m’)
xlabel(’m’)
colorbar;
colormap(gray);
print -deps mtik0.eps
%
% Next, apply 2nd order Tikhonov regularization.
%
%Make the L matrix.
%
L2=zeros(14*14,256);
k=1;
for i=2:15,

for j=2:15,
M=zeros(16,16);
M(i,j)=-4;
M(i,j+1)=1;
M(i,j-1)=1;
M(i+1,j)=1;
M(i-1,j)=1;
L2(k,:)=reshape(M,256,1)’;
k=k+1;

end;
end;
L22=L2’*L2;
%
[U2,V2,X2,Lam2,Mu2]=gsvd(G,L2);

figure(6);
[rho,eta,reg_param]=l_curve_tikh_gsvd(U2,dn,X2,Lam2,Mu2,G,L2,1000,1e-10,60);
[alpha_corner,ireg_corner,kappa]=l_curve_corner(rho,eta,reg_param);
loglog(rho,eta)
hold on
loglog(rho(ireg_corner),eta(ireg_corner),’o’)
hold off
xlabel(’||Gm-d||’)
ylabel(’||Lm||’)
title([’Second-Order Tikhonov L-Curve, Corner at: \alpha = ’,num2str(alpha_corner)]);
%
% Examine the second-order solution
Gsharp2=inv(GTG+alpha_corner^2*L22)*G’;
m2=Gsharp2*dn;
figure(7)
imagesc(Xa,Ya,reshape(m2,16,16),[3.0e-4 3.5e-4]);
colorbar
colormap(gray);
title([’Second-Order Tikhonov L-Curve Solution, Corner at: \alpha = ’,num2str(alpha_corner)]);
ylabel(’m’)
xlabel(’m’)
print -deps mtik2a.eps
%
% That was awful! However, the misfit was tiny, the pseudoinverse calculation was very poorly conditioned,
% and the model amplitudes were huge, all indicating that the
% solution is under-regularized. Try using the larger value
% of alpha at the second corner of the l-curve, near where ||Gm-d|| = 2e-6??
%
alpha_corner=interp1(rho,reg_param,2e-6);
eta_interp=interp1(rho,eta,2e-6);
%plot the second corner on the L-curve
figure(6)
hold on
loglog(2e-6,eta_interp,’x’,’markersize’,20)
hold off
print -deps lcurve2.eps
%

Gsharp2=inv(GTG+alpha_corner^2*L22)*G’;
m2=Gsharp2*dn;
figure(8);
imagesc(Xa,Ya,reshape(m2,16,16),[3.0e-4 3.5e-4]);
colorbar
colormap(gray);
title([’Second-Order Tikhonov L-Curve Solution, Corner at: \alpha = ’,num2str(alpha_corner)]);
ylabel(’m’)
xlabel(’m’)
colorbar;
colormap(gray);
print -deps mtik2b.eps
%
% Look at the resolution of this solution (diagonal resolution elements)

4-32 CHAPTER 4. TIKHONOV REGULARIZATION

%
R=Gsharp2*G;
figure(9);
imagesc(Xa,Ya,reshape(diag(R),16,16),[0 1]);
title(’Second-Order Tikhonov L-Curve Solution Diagonal Resolution’)
ylabel(’m’)
xlabel(’m’)
colorbar
colormap(gray);
print -deps res.eps
%
% Look at the resolution of a spike at (9,5)
%
spikem=zeros(16,16);
spikem(9,6)=1;
spike=reshape(spikem,256,1);
spiker=R*spike;
figure(10);
imagesc(Xa,Ya,reshape(spiker,16,16),[0 1]);
title(’Second-Order Tikhonov L0-Curve Solution Spike Test (element 9,6)’)
ylabel(’m’)
xlabel(’m’)
colorbar
colormap(gray);
print -deps res2.eps
%
% Look at the resolution of a spike at (1,8)
%
spikem=zeros(16,16);
spikem(1,8)=1;
spike=reshape(spikem,256,1);
spiker=R*spike;
figure(11);
imagesc(Xa,Ya,reshape(spiker,16,16),[0 1]);
title(’Second-Order Tikhonov L0-Curve Solution Spike Test (element 1,8)’)
ylabel(’m’)
xlabel(’m’)
colorbar
colormap(gray);
print -deps res3.eps
%
% Plot the true solution.
%
figure(12);
imagesc(Xa,Ya,mtruem,[3.0e-4 3.5e-4]);
colorbar;
colormap(gray);
title(’True Solution’)
ylabel(’m’)
xlabel(’m’)
print -deps mtrue.eps

4. The G matrix for this problem has 20 rows and 191 columns. Because
we only have data constraints for 20 our of the 191 points in the function
that we wish to determine, and rely on regularization to determine the
other points, the matrix is an identity matrix for the 20 known ponts,
and has zero columns corresponding to the remaining 171 points. The
regularization matrix is a standard second-order roughing matrix. We
can easily solve this regularized system by a variety of Tikhonov solution
methods. Here we simply construct an augmented matrix [G;L] and solve
for the 191-point model using the MATLAB backslash operator. A range
of solutions for various values of ↵ is shown in Figure 4.33. The recovered
model is increasingly smooth in the seminorm sense of reduced ||Lm|| as
↵ is progressively increased. The corresponding tradeo↵ curve (which is
essentially linear on a linear-linear plot) between smoothness and data
misfit at the 20 given points is shown in Figure 4.34. The discrepancy
principle guideline of fitting the 20 data points indicates that our target
�
2 value should be

p
20 ⇡ 4.47. The actual value of the standard error-

normalized misfit at the 20 data points is easily confirmed to be very close
to this.

4.3. SOLUTIONS 4-33

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

x

y

α = 10

Figure 4.33: Second-order Tikhonov solutions for 0.2 ↵ 10. Higher values
of ↵ produce progressively smoother models that fit the data less well (e.g.,
↵ = 10 is the smoothest curve).

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

Residual norm ||Gm−d||
2

S
o
lu

tio
n
 s

e
m

in
o
rm

 |
|L

m
||

2

 δ

Figure 4.34: Second-order Tikhonov tradeo↵ curve for 0.2 ↵ 10 with
discrepancy principle residual norm indicated.

4-34 CHAPTER 4. TIKHONOV REGULARIZATION

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

x

y

α = 2.6959

Figure 4.35: Second-order Tikhonov discrepancy principle model and observed
data points (↵ ⇡ 2.7).

0 5 10 15 20 25
0

5

10

15

20

25
Discrepancy Principle and True Model Points with standard errors (α = 2.6959)

x

y

Figure 4.36: Second-order Tikhonov discrepancy principle model and true data
points with standard errors.

4.3. SOLUTIONS 4-35

%Tikhonov interpolation/Smoothing Exercise_4_4
clear
%Data for problem are generated here
randn(’seed’,0);
sigma=0.3;
M=20;
x=(1:M)’;
y=2*sin(2*pi*0.45*x)+x;
noise=sigma*randn(size(y));
ynn=y;
y=y+noise;
%save interpdata.mat x y

%construct a 20 by 191 G matrix for the problem
%Every 10th column of G will have a 1 in the next element
xx=(1:0.1:M);
N=length(xx);
G=zeros(M,N);

for i=1:M
j=find(xx==x(i));
G(i,j)=1;

end

%second order Tikhonov regularization
torder=2;
L=get_l_rough(N,torder);
d=[y;zeros(N-torder,1)];
ialpha=1;

%examine a range of alpha values
alpha=0.2:.2:10;
for a=alpha
%construct an augmented G matrix
GG=[G;a*L];
%solve for m using the backslash operator
m(:,ialpha)=GG\d;
%calculate model seminorm, eta, and residual norm, rho
eta(ialpha)=norm(L*m(:,ialpha));
rho(ialpha)=norm(G*m(:,ialpha)-y);

%plot the data and model fit for each value of alpha (random colors)
figure(1)
c=rand(1,3);
plot(x,y,’o’);
xlabel(’x’)
ylabel(’y’)
hold on
plot(xx,m(:,ialpha),’k’,’color’,c)
title([’\alpha = ’,num2str(alpha(ialpha))])
pause(0.1)
ialpha=ialpha+1;
end
hold off
print -depsc2 allmodels.eps

%plot the tradeoff curve
figure(2)
plot(rho,eta,’o’)
xlabel(’Residual norm ||Gm-d||_2’)
ylabel(’Solution seminorm ||Lm||_2’)

%plot discrepancy principal value on the tradeoff curve
delta = sqrt(M)*sigma;
hold on
plot([delta,delta],[min(eta),max(eta)]);
text(delta,max(eta),’ \delta’,’fontsize’,20)
hold off
print -depsc2 tradoffcurve.eps

%Interpolate to find a solution closest to the discrepancy criterion
alpha_disc=interp1(rho,alpha,delta);
GG=[G;alpha_disc*L];
%solve for m using the backslash operator
m_disc=GG\d;
figure(3)
plot(x,y,’o’);
xlabel(’x’)
ylabel(’y’)
hold on
plot(xx,m_disc,’k’)
hold off
title([’\alpha = ’,num2str(alpha_disc)])
print -depsc2 discmodel.eps

figure(4)
plot(xx,m_disc,’k’)
title([’Discrepancy Principle and True Model Points with standard errors (\alpha = ’,num2str(alpha_disc),’)’])
xlabel(’x’)
ylabel(’y’)
hold on

4-36 CHAPTER 4. TIKHONOV REGULARIZATION

errorbar(x,ynn,sigma*ones(size(x)),’o’);
hold off
print -depsc2 tdiscmodel.eps

%misfit calculated at the 20 data points
m_test=m_disc(1:10:191);
display([’Chi-square measured at the 20 data points and predicted values: ’,num2str(norm(y-m_test)/sigma)]);
display([’Chi-square target for uncorrelated data: ’,num2str(sqrt(20))]);

5. Writing this as a least-squares problem gives:

min

����

G

↵L

�
m�

d

↵Lm0

�����
2

2

.

The normal equations for this least squares problem are

(GT
G+ ↵

2
L
T
L)m = G

T
d+ ↵

2
L
T
Lm0 .

These equations are not quite in a form that allows them to be solved by
the GSVD. However, a bit of algebra fixes this. Subtracting m0 from m

on the right-hand side and subtracting identical terms on the right hand
side, we have

(GT
G+ ↵

2
L
T
L)(m�m0) = G

T
d+ ↵

2
L
T
Lm0 �G

T
Gm0 � ↵

2
L
T
Lm0

(GT
G+ ↵

2
L
T
L)(m�m0) = G

T
d�G

T
Gm0

(GT
G+ ↵

2
L
T
L)(m�m0) = G

T (d�Gm0) .

This last system of equations is precisely in the form that we have previ-
ously solved using the GSVD or via other methods. The only di↵erence is
in the (given) right hand side. Once we’ve solved for the unknown m�m0,
we simply add m0 to obtain the desired model m.

