
Parameterized Posit Arithmetic Hardware Generator

Rohit Chaurasiya∗, John Gustafson†, Rahul Shrestha∗, Jonathan Neudorfer‡, Sangeeth Nambiar‡, Kaustav Niyogi‡,
Farhad Merchant§, Rainer Leupers§
∗Indian Institute of Technology, Mandi

†National University of Singapore, Singapore
‡Bosch Research and Technology Centre - India, Bangalore

§Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany
{d17018@students., rahul shrestha@}iitmandi.ac.in, johngustafson@earthlink.net

{Jonathan.Neudorfer, Sangeeth.Nambiar, Kaustav.Niyogi}@in.bosch.com, {farhad.merchant, leupers}@ice.rwth-aachen.de

Abstract—Hardware implementation of Floating Point Units
(FPUs) has been a key area of research due to their massive
area and energy footprints. Recently, a proposal was made to
replace IEEE 754-2008 technical standard compliant FPUs with
Posit Arithmetic Units (PAUs) due to the greater accuracy, speed,
and simpler hardware design. In this paper, we present the
architecture of a parameterized PAU generator that can generate
PAU adders and PAU multipliers of any bit-width pre-synthesis.
We synthesize generated arithmetic units using the parameterized
PAU generator for 8-bit, 16-bit, and 32-bit adders and multipliers
and compare them with IEEE 754-2008 compliant adders and
multipliers. Both, synthesis for Field Programmable Gate Array
(FPGA) and Application Specific Integrated Circuit (ASIC) are
performed. In our comparison of m-bit PAU units with n-bit
IEEE 754-2008 compliant units, it is observed that the area and
energy of a PAU adder and multiplier are comparable to their
IEEE 754-2008 compliant counterparts where m = n. We argue
that an n-bit IEEE 754-2008 adder and multiplier can be safely
replaced with an m-bit PAU adder and multiplier where m < n,
due to superior numerical accuracy of the PAU; we also compare
m-bit PAU adders and multipliers with n-bit IEEE 754-2008
compliant adders and multipliers. As an application example, we
examine performance in the domain of signal processing with and
without PAU adders and multipliers, and show the advantage of
our approach.

Index Terms—computer arithmetic; floating point arithmetic;
numerical error; posit arithmetic

I. INTRODUCTION

Floating point arithmetic hardware architectures have been
essential components in several domain specific and general
purpose platforms due to demands set by the applications
being executed on these platforms [1][2]. It is observed
that around 50% of the chip area and energy footprints are
consumed by a single-precision Floating Point Units (FPUs)
in a simple scalar in-order processing element, while with a
double precision FPU, the area and energy footprints can reach
up to 60–70% of the energy footprint of the processing element
[1][3]. Energy and area are not the only concerns with an
IEEE 754-2008 compliant hardware FPUs; the low accuracy
and high complexity of the standard are also major concerns.
Lately, there have been several implementation errors in the
realization of FPUs by major commercial vendors [4][5].
These anomalies are mainly due to intricacies in the IEEE stan-

TABLE I
COMPARISON OF POSIT VS. IEEE 754-2008 ARITHMETIC

Arithmetic Format IEEE 754-2008 Posit
Portability/Reproducibility No Yes
Accuracy Lower Higher
Dynamic Range Lower Higher
Hardware More Complex Simpler
Area and Energy Footprints Higher Lower
Overflow/Underflow Yes No
Redundant Representations Many None

dard that undermine the efforts of researchers and engineers
who work toward the realization of IEEE-compliant FPUs.
Recently, some researchers have taken a “U-turn” toward
“approximate computing” where compliance with the IEEE
754 floating point standard is viewed as the wrong path to
achieve energy efficiency. The expressive power of a string
of bits is not efficiently exploited when implementations are
held to IEEE 754 compliance. Ultimately, some of the major
computer architecture vendors have decided to drop IEEE
compliance while supporting arbitrary precision arithmetic,
something not even mentioned in the IEEE 754-2008 technical
standard document [6]. Despite several efforts in the literature
by researchers to overcome complications of the IEEE techni-
cal standard for floating point arithmetic, the mentioned alter-
native implementations have not been advantageous enough
to merit widespread adoption. Recently, however, there was
a proposal by Gustafson based on the projective reals, called
posit arithmetic [7]. A qualitative comparison of m-bit posit
arithmetic and m-bit IEEE 754 arithmetic is shown in table I.

It can be observed in table I that the posit arithmetic
has uniform advantages over IEEE 754 floats, as opposed
to offering tradeoffs. Preliminary studies show that posit
compliant arithmetic hardware is less complex than IEEE 754
compliant floating point arithmetic hardware [8]. In this paper,
we tackle the challenge of creating the first practical, pa-
rameterized Posit Arithmetic Unit (PAU) generator. The PAU
generator is capable of generating adders and multipliers with
different configurations. The generated units are exhaustively
verified against standard software libraries. It is experimentallyc© 2018 IEEE

(a) IEEE 754-2008 Format (b) Posit Format

Fig. 1. IEEE 754 and Posit Number Formats

shown that posit adders and multipliers attain higher numerical
accuracy than their IEEE 754 compliant floating point unit
counterparts. The Major contributions in this paper are as
follows:
• We present the first complete parameterized, area-efficient

and energy-efficient PAU generator that can generate
posit adders and posit multipliers with different sizes and
configurations.

• A detailed comparison of PAU generated units is pre-
sented, and it is shown that a PAU consumes less energy
and occupies less area compared to state-of-the-art real-
izations.

• It is experimentally shown that an n-bit IEEE 754 com-
pliant adder/multiplier can often be safely replaced by an
m-bit posit adder/multiplier, where m < n.

• An application study with PAU-generated units is pre-
sented that shows reduction of the overall area and
energy footprints of applications in posit arithmetic while
maintaining higher accuracy.

II. BACKGROUND

A. IEEE 754-2008 Technical Standard

The IEEE 754-2008 standard defines interchange formats,
multiple rounding modes, required and optional operations,
internal processor flag behavior, and exception handling. An
IEEE 754-2008 compliant representation is divided into three
parts as shown in fig. 1(a): a sign bit, exponent bits, and
fractional bits. Mantissa and significand are alternative terms
used in the literature for what we call the fraction, a value
between 0 and 1. Here, we use the term significand to indicate
the implied leading 1 plus the fraction, a value between 1 and 2
for normal floats. A summary of IEEE 754-2008 binary format
for different precisions is shown in table II. The significand
bits in the table I include an implicit 1 bit for normal numbers
and a 0 bit for “subnormal” numbers (an exception case when
all exponent bits are zero). The value x of a floating point
number that does not fall into one of the many exception
categories is given by

x =(−1)MSB × (1 +

fn−1∑
i=1

bfn−1−i2
−i)× 2exp−bias (1)

where fn is the number of fraction bits, exp is the exponent bits
interpreted as an unsigned integer, and bias = 2exp bits−1 − 1.
Table I also shows the dynamic range of different precisions
along with the percentage of area occupied by the arithmetic
hardware when incorporated in a processor die of an in-order
simple scalar processor. Note that for the higher precisions,
the area occupied can go up to 75% of total processor die
area and 80% of the energy [9][1]. Further details of IEEE

TABLE II
SUMMARY OF IEEE 754-2008 BASIC AND INTERCHANGE FORMATS

Format
(bits)

Exp.
Bits

Sig.
Bits

Dynamic Range %Area %Energy

binary16 5 11 6× 10−8 to 7× 104 25-30% 40%
binary32 8 24 1× 10−45 to 3× 1038 35-40% 50%
binary64 11 53 5× 10−324 to 2× 10308 50-55% 60%
binary128 15 113 6× 10−4966 to 1× 104932 60-65% 70%
binary256 19 237 2×10−78984 to 2×1078913 70-75% 80%

754-2008 can be found in [6] while a concise description of
floating point arithmetic can be found in [10].

B. Posit Arithmetic

Recently, posit arithmetic has been proposed as a direct
replacement for IEEE 754 floats. Posit arithmetic has several
advantages over IEEE 754 compliant arithmetic. The posit
number format is shown in fig. 1(b). There are only two
exception cases: zero and Not-a-Real (NaR). For all other
cases, the value x of a posit is given by

x =(−1)MSB × useedk × 2exp × (1 +

fn−1∑
i=1

bfn−1−i2
−i) (2)

The regime indicates a scale factor of useedk where useed =
22

es
and es is the exponent size. The numerical value of k

is determined by the run length of 0 or 1 bits in the string
of regime bits. The use of run length encoding of the regime
automatically allows more fraction bits for the more common
values for which magnitudes are closer to 1, and thus provides
tapered accuracy in a bit-efficient way. Further details about
the posit number format can be found in [7].

III. RELATED WORK

A. Posit Arithmetic-Based Implementations

Since the advent of posit arithmetic, there have been several
software and hardware implementations of posits. A parame-
terized adder and multiplier is presented in [8]. Although the
universal number posit arithmetic generator presented in [8]
is the first parameterized implementation of a posit adder and
multiplier, it is not a complete realization. Its generator lacks
several features required for posit arithmetic; for example,
it does not perform posit rounding (round to nearest, tie to
even, or unbiased rounding) for addition or multiplication,
making the implementation noncompliant and reducing accu-
racy. Furthermore, as per the Field Programmable Gate Array
(FPGA) synthesis reports, the implementation presented in
[8] occupies 30% more area than its IEEE 754 counterpart
implementations. In our realization, we show that the area
and the energy footprints of posit adders and multipliers are
comparable to their IEEE 754 counterpart implementations.
It means that for an m-bit posit adder/multiplier and an m-
bit IEEE 754 compliant adder/multiplier, area and energy
footprints are comparable but posits provide much better
accuracy; for an m-bit posit adder/multiplier and an n-bit
IEEE 754 compliant adder/multiplier where m < n, the m-bit
posit adder/multiplier has a significant advantage in area and

energy footprint over a corresponding IEEE 754 compliant
counterpart capable of providing similar accuracy. A posit
adder architecture is presented in [11]. The implementations
presented in [11] have limitations similar to those of the posit
arithmetic generator presented in [8]. To the best of our knowl-
edge, the exposition here is the first complete implementation
of posit arithmetic units with a holistic approach that covers
all the aspects of the scheme.

B. IEEE-754 2008 Technical Standard-Based Implementations

We cover IEEE 754 compliant implementations and trans-
precision implementations, where IEEE 754 non-compliant
implementations are tailored for domain-specific computing
platforms. IEEE 754 conforming implementations may not
necessarily be IEEE 754-2008 compliant, but may support
only a subset of the features advocated by the standard.
VFLOAT is one such open source package developed for
FPGAs that implements a majority of the recommendations
of the IEEE 754-2008 technical standard, but omits support
for subnormal numbers and the full set of rounding modes
[12]. In such a system, it is possible for x − y to produce a
zero result even when x 6= y, creating additional hazards for
programmers as well as for hardware designers who rely on
the subtraction functional unit to set comparison flags.

Recently, transprecision hardware implementations have
emerged as a viable solution to applications in the domain of
approximate computing, where higher performance is attained
at the cost of tolerated numerical error. One such recent imple-
mentation is presented in [13], where authors have proposed
a transprecision computing paradigm capable of switching
precision of the operations at runtime in the applications.
In the transprecision computing paradigm, when numerical
errors are encountered, the minimum precision of operations
is set such that despite errors, the application has acceptable
accuracy [1]. A similar approach, improving energy efficiency
of overall system through transprecision arithmetic, is pre-
sented in [14] and [15]. While transprecision architectures are
viable solutions to low power computing, we hypothesize that
they can be improved further by employing posit arithmetic
architectures instead of IEEE 754 floating point architectures
to maximize information-per-bit. We examine this hypothesis
with a simple study of IEEE 754 compliant floating point and
posit compliant arithmetic architectures.

We have generated posit arithmetic units with different
configurations by supplying parameters of word size N and
Exponent Size es and compared them with several recent posit
and IEEE 754 based implementations, and found that the area,
and energy of our implementation is better than state-of-the-art
realizations of posit arithmetic units, and comparable to IEEE
754 based arithmetic hardware units with better accuracy.

IV. POSIT ARITHMETIC UNIT GENERATOR

This section presents the proposed PAU-generator algo-
rithms for addition and multiplication operations.

Fig. 2. Schematic Flow Diagram of the Proposed Posit Adder/Subtraction
Algorithm

A. Adder Generator

We illustrate the complete flow diagram of the new posit
add/substract process in fig. 2. The encircled numbers to the
right bottom of the red blocks represent the subsection of IV-A
that has detailed algorithmic description for each block:

1) Special Case: In posit arithmetic, several exceptions of
IEEE 754 float are simplified into two cases: zero and NaR.
Exceptional cases like imaginary numbers, multi-valued and
indeterminate results, signed infinity and unsigned infinity are
categorized as NaR. Thereby, checking for such exceptions is
essentially performed by a reduction OR operator, as shown in
algorithm 1 (line no. 6).

2) 2’s Complement: Since posit arithmetic directly maps to
2’s complement signed integers, an efficient way to obtain the
regime and exponent values is to first determine its absolute
value. Subsequently, the posit bit string is converted to the
equivalent 2’s complement representation provided its sign bit
is 1, as shown in algorithm 1 (line no. 7).

3) Extraction of Regime, Exponent and Fraction Bits: Posit
arithmetic is at an early stage in the hardware implementation
domain. To the best of our knowledge, there is only one
reported work in this domain [8]. It uses a leading one detector
for decoding the regime and exponent bits of a posit bit string
having a value greater than or equal to 1 (positive regime)
and a leading zero detector for a posit bit string having a
value less than 1 (negative regime). In this paper, we propose
an implementation that requires only a leading zero detector
for decoding the regime, exponent and fraction bits.

As presented in algorithm 1, the regime, exponent and
fraction bits are extracted from OutputTwos [N − 2 : 0]. It
is to be noted here that the sign bit is excluded because we

are decoding a positive posit number. The pseudocode for the
aforementioned process has been illustrated in algorithm 1
(lines no. 8–14) and its explanation is as follows:
• The OutputTwos [N − 2] bit is replicated [N − 1] times

and XORed with OutputTwos [N − 2 : 0]. This operation
inverts all the bits of the OutputTwos and adds 1 to the
least-significant bit (LSB) if the OutputTwos [N − 2] bit
is 1 (+ve regime), else OutputTwos remains unchanged
(line 8).

• In order to count the sequence of 0 bits terminating in a
1 bit, the value OutputTwos [N − 2 : 0] is applied to the
leading zero detector module (line 9).

• For extracting exponent and fraction bits, OutputTwos
[N − 2] is left shifted by ZC− 1 (because the minimum
value of ZC is 1). This step dynamically shifts the
exponent bits towards the extreme left (lines 10).

• The fraction bits are extracted from the shifted bits. The
implied 1 bit is attached before the fraction bits and three
lower bits are appended after the LSB which act as the
Guard (G), Round (R), and Sticky (S) bits needed for
unbiased rounding. It is to be noted that the posit format
obviates the need for subnormal values and hence, the
implied bit before the fraction is always 1 (line 11).

• The exponent bits are extracted from the extreme left. The
number of bits to be extracted depends upon the value of
es (line 12).

• The OutputTwos [N−2] bit aids to determine the regime
value. If this bit is 1 then the regime value is (ZC − 1)
(+ve regime) else the regime value is −ZC (–ve regime)
(line 13).

• If the operation to be performed is subtraction, then the
2’s complement of the fraction bits for the input posit bit
string having sign bit 1 is taken (line 14).

Algorithm 1 Regime, Exponent, Fraction Bits Extraction
1: Posit Size: N ; Exponent Size: es
2: OutputTwos [N − 2 : 0] . Input Size
3: Regime [log2(N) : 0] . Input Size
4: FractionBits [N + 1− es : 0] . Output Size
5: ExpBits[es− 1 : 0] . Exponent Size
6: Atest ← InputA[N − 1]

& ∼|InputA[N − 2 : 0] . Checking Special Case
7: OutputTwos ← {[N]{InputA[N − 1]}}

XOR InputA[N − 1 : 0] + InputA[N − 1] . 2’s
Complement of Input

8: InvertInput ← {[N − 1]{OutputTwos [N − 2] }}
XOR OutputTwos [N − 2 : 0]

9: ZC ← Leading Zero Detector (InvertInput)
10: temp[N − 4 : 0] ← OutputTwos [N − 4 : 0] � (ZC− 1)
11: FractionBitsTemp ← {2′b01, temp, 3′b0}
12: ExpBits ← temp[N − 4 : N − 3− es]
13: Regime ← OutputTwos [N − 1] ? (ZC− 1) : –ZC
14: FractionBits ← ((InputA [N − 1] XOR

InputB [N − 1]) & InputA/B [MSB])
? –FractionBitsTemp : FractionBitsTemp

4) Calculating the Scaling Factor (SF): This module com-
putes the net scaling factor (SFA & SFB) (effective exponent)
for both the inputs. Here we define net SF as ((2es)Regime+es
bits) which provides the amount of shift required for the
smaller value to align its binary point with the larger value.
The pseudocode for this process is presented in algorithm 2
and its brief description is given below.

• The regimeA value is left shifted es times (lines 1, 2).
• The amount by which the smaller significant needs to

be shifted to the right for binary point alignment is the
absolute difference of the net scaling factors (line 5).

• By comparing the input posit strings, the smaller and
larger value significand bits and greater net scaling factor
are obtained (lines 6–14).

Algorithm 2 Calculating Scaling Factor
1: ShiftRegimeA ← RegimeA � es
2: ShiftRegimeB ← RegimeB � es
3: SFA ← ShiftRegimeA + ExpBitsA
4: SFB ← ShiftRegimeB + ExpBitsB
5: ValuetoShift ← |SFA – SFB|
6: if InputA> InputB then
7: GreaterFractionBits ← FractionBitsA
8: SmallerFractionBits ← FractionBitsB
9: GreatestScalingFactor ← SFA

10: else
11: GreaterFractionBits ← FractionBitsB
12: SmallerFractionBits ← FractionBitsA
13: GreatestScalingFactor ← SFB
14: end if

5) Adding Significand: This module adds the significands
(the fraction bits with the implied 1 bit prepended) of the
posit inputs, and provides the normalized significand bits with
three extra bits (G, R and S). It also adjusts the greater net
scaling factor if there is a carry from the addition of significand
bits or subtractive cancellation of leading bits. Our proposed
implementation performs a reduction OR operator over the
result of added significand bits to check whether the result
is zero (for X + (−X)). The pseudocode is presented in
algorithm 3.

• The greater posit significand bits are added to the arith-
metic right-shifted smaller posit significand bits. (line 1)

• For the case X + (−X), the AnsIsZero flag returns 1.
• Renormalization of the significand bits and adjustment

of the greater net scaling factor is analogous to that for
floating point (lines 5–16).

6) Decoding Regime and Exponent Value, Encoding and
Rounding: Depending on the sign of adjusted net scaling
factor, this module extracts the exponent and regime values
and encodes them, followed by rounding. The pseudocode is
presented in algorithm 4 (lines 1–8).

Packing Stage 1: As the number of fraction bits present in
the result is dynamic, in packing stage-1 extra fraction bits are

Algorithm 3 Adding Significand
1: SignificandAdd ← (GreaterFractionBits +

(SmallerFractionBits � ValuetoShift))
2: AnsIsZero ← ∼| SignificandAdd
3: AddOperation ← InputA[N − 1] OR InputB[N − 1]
4:
5: if SignificandAdd[MSB] = 0 & AddOperation=0/1 then
6: ToNormalizedFraction ← SignificandAdd
7: Shift = 0
8: else if SignificandAdd[MSB] =1 & AddOperation=0 then
9: ToNormalizedFraction ← SignificandAdd � 1

10: Shift = 1
11: else if SignificandAdd[MSB] =1 & AddOperation=1 then
12: ToNormalizedFraction ← –SignificandAdd
13: ZC1←Leading Zero Detector(ToNormalizedFraction)
14: NormalizedFraction← ToNormalizedFraction� ZC1
15: end if
16: Adjusted Scaling factor ←

GreatestScalingFactor+Shift−ZC1

eliminated; this leaves behind the required fraction bits along
with the G, R and S bits.

• For the +ve regime, the normalized fraction bits and
exponent bits are concatenated with two bits 10, followed
by concatenating with the number of 1 bits equivalent
to the maximum regime value. This avoids error in the
calculation of S, the so-called “sticky” bit (line 10).

• For the –ve regime, the normalized fraction bits and
scaling bits are concatenated with two bits ‘01’, followed
by concatenating with the number of 0 bits equivalent
to the minimum regime value (which is same as the
maximum regime value since posits have symmetric
magnitude) (line 11).

• Necessary care is taken in the shifting amount for a corner
case (lines 12–16).

• Lines 17–21 dynamically prepend the regime bits, i.e, a
run of 1 bits ending with a 0 bit for +ve regime and
a run of 0 bits ending with a 1 bit for –ve regime. The
dynamic prepending of bits is achieved with an arithmetic
right shifter.

• Based on the sign of adjusted net scaling factor, the
tempAns1/2 is shifted right (lines 17–21).

Packing Stage 2/Unbiased rounding: There is only one
rounding mode for posits: round to nearest, tie to even,
sometimes called unbiased rounding. Rounding is performed
by checking the G, R and S bits (lines 22–24). In the case
of floats, if all the significand bits are 1 when performing
the round operation, the exponent must be adjusted with a
conditional check for overflow and underflow, whereas nothing
needs to be done for posits; if all the significand bits are 1,
the exponent and regime bits get adjusted automatically (line
27). Analogous to the sign-magnitude representation used for
floating point, the sign of the final answer is applied using 2’s
complement if necessary, based on the sign bit of the largest

Algorithm 4 Decoding Regime and Exponent Value, Encoding
and Rounding

1: Absolute SF ← Adjusted Scaling Factor [MSB]
? –Adjusted Scaling Factor : Adjusted Scaling Factor

2: if Adjusted Scaling Factor[MSB] = 0 then
3: ExpBits ← Absolute SF [es− 1 : 0]
4: RegimeAns ← Absolute SF � es
5: else
6: ExpBits ← Adjusted Scaling Factor [es− 1 : 0]
7: RegimeAns1 ← Adjusted Scaling Factor � es
8: RegimeAns ← –RegimeAns1
9: end if

10: TempAns1 ← {2’b10,ExpBits, NormalizedFraction,
{[maxregime]{1’b0 } } . Packing Stage 1

11: TempAns2 ← {2’b01,ExpBits, NormalizedFraction,
{[maxregime]{1’b0 } }

12: if RegimeAns={log(N){1’b1}} then
13: Shiftnegexp ← RegimeAns
14: else
15: Shiftnegexp ← RegimeAns−1
16: end if
17: if Adjusted Scaling Factor[MSB] = 0 then
18: TempAns ← TempAns1 � RegimeAns
19: else
20: TempAns ← TempAns2 � Shiftnegexp
21: end if
22: Guard bit ← Extract from TempAns . Packing Stage 2
23: Round ← Extract from TempAns
24: Sticky ← Extract from TempAns
25: LSB ← Extract from TempAns
26: checkround ← ((LSB & Guard) | (Guard & Round)) |

(Guard & Round | Sticky)
27: IntermediateAns ← {1’b0,TempAns}+checkround
28: if AnsIsZero= 0 then
29: FinalAns ← 0
30: else if take2sans=1 then

FinalAns ← –IntermediateAns
31: else

FinalAns ← IntermediateAns
32: end if
33: AdditionResult ← Special ? inf : FinalAns

magnitude posit input (lines 30–32).

B. Multiplier Generator

The computational flow of a posit multiplier is almost the
same as for floating point multiplication, i.e. the net SF of
posits are added and their significands are multiplied and
rounded. The pseudocode for multiplication is as shown in
algorithm 5. In a posit multiplier, the reduction OR is used to
check whether the inputs are 0 or not. For a posit multiplier,
there is a minor difference in the extraction of regime, fraction
and significand bits compared to their extraction in a posit
adder. Since multiplication of significands will result in bit
width, which is the sum of the individual significand widths,

there is no need to include extra three bits at the end of the
significand result (line 3). The rest of the algorithm for packing
and rounding is same as the one described for the posit adder in
algorithms 1 through 4. While decoding regime and exponent
values from the net adjusted scaling factor of the result, special
care needs to be taken for cases such as (maxpos × maxpos or
minpos × minpos) for which the effective exponent is greater
than or less than what can be represented by the posit format.
Lines 11 and 12 of algorithm 5 handle this.

Algorithm 5 Proposed Multiplier Algorithm
1: ZeroInputTest ← ∼|InputA[N − 1 : 0]
2: Regime, Exponent and Fraction bits Extraction ←

Same as Algorithm 1 with the following difference:
3: FractionBitsTemp ← {1′b1, temp}
4: Adding Scaling factor:
5: AddedScalingFactor ← {ShiftRegimeA + ExpBitsA} +
{ShiftRegimeB + ExpBitsB}

6: Significand Multiplication:
7: Mul ← (1+FractionBitsA)×(1+FractionBitsB)
8: NormalizedFraction ← Mul � Mul[MSB]
9: Adjusted Scaling factor ← AddedScalingFactor +

Mul[MSB]
10: Calculating Regime and Exponent value ← Same as

Algorithm 4.
11: FinalRegime ← RegimeAns[MSB] ? { log2(N) − 1 {
{1′b1},{1′b0} }} : RegimeAns[log2(N)− 1 : 0]

12: FinalExp ← RegimeAns[MSB] | (&FinalRegime) ? { es {
{1′b0} }} : Exp bits

13: Packing Stage 1 and Rounding ← Same as Algorithm
4 with the following changes.

14: if RegimeAns = {log2(N){{1′b1}}} then
15: Shiftnegexp ← RegimeAns−2
16: Shiftposexp ← RegimeAns−1
17: else
18: Shiftnegexp ← RegimeAns−1
19: Shiftposexp ← RegimeAns
20: end if
21: if Adjusted Scaling Factor[MSB] = 0 then
22: TempAns ← TempAns1 � Shiftposexp
23: else
24: TempAns ← TempAns2 � Shiftnegexp
25: end if
26: Packing Stage 2 and Convergent Rounding← Same as

Algorithm 4 from line 22.

V. RESULTS AND DISCUSSION

The proposed posit arithmetic adder/subtracter is success-
fully implemented on a Zedboard with a Zynq-7000 SoC.
Vivado 2017.4 is used for the FPGA synthesis results. To have
a fair comparison with the work presented in [8], the code is
obtained from [16] and synthesized using Vivado 2017.4.

A. Verification of PAU

As per [7], there is only one rounding mode for posits
(i.e. unbiased rounding); the Julia package presented in [17]
implements this mode. We created two implementations of
posit: one with round to zero (RZ) to have fair comparison
with [8], and another with unbiased rounding (RE). The
functional simulation results for the adder and multiplier with
unbiased rounding are verified with the Julia package for the
posit (N = 8, es = 4) configuration. It is observed that for
every input combination, the results of our implementation
exactly matches the results of the Julia package.

B. FPGA Synthesis Results

Fig. 3(a) shows the resource utilization on an FPGA for a
posit adder with a variable es size. It can be observed that
the proposed posit adder with RZ has less resource utilization
than [8]. Also, the resource utilization of the posit adder with
RE is comparable to [8].

Fig. 3(b) shows the FPGA datapath delay for a posit adder
with variable es size. We see that the proposed posit adder
with RZ has a delay similar to [8]. As the posit adder with
RE has an extra module for unbiased rounding, it has more
datapath delay than [8].

Fig. 3(c) shows the resource utilization on an FPGA for a
posit multiplier with variable es size. It can be observed that
the proposed posit multiplier with RZ uses fewer resources
than [8]. Also, the resource utilization of a posit multiplier
with RE is similar to [8].

Fig. 3(d) shows the datapath delay on FPGA for a posit
multiplier with variable es size. The proposed posit multiplier
with RZ has less datapath delay as compared to [8]. The
datapath delay of posit multiplier with RE is similar to [8].

C. ASIC Synthesis Results

ASIC synthesis is performed using Synopsys design com-
piler with the 90 nm-CMOS Faraday library for proposed
PAU generated units and presented in [8]. It can be observed

TABLE III
ASIC SYNTHESIS AT 200 MHZ

Bit
Configuration

Adder Multiplier
Area

(µm2)
Power
(mW)

Area
(µm2)

Power
(mW)

Proposed
Work Literature Proposed

Work Literature Proposed
Work Literature Proposed

Work Literature

(8,1) 2157.56 2472.43 0.15 0.16 1635.42 1917.66 0.12 0.13
(8,2) 2079.95 2436.67 0.14 0.15 1463.72 1923.15 0.11 0.13
(16,1) 6870.18 6366.86 0.47 0.43 7252.78 7767.08 0.57 0.58
(16,2) 6795.71 6210 0.44 0.40 6790.22 7218.28 0.53 0.54
(32,1) 19122.54 15360.12 1.43 1.08 28146.38 26054 2.47 2.27
(32,2) 18517 15471.45 1.33 1.08 27268.30 25338.09 2.39 –

from the table III that for small bit sizes, the proposed posit
adders and multipliers outperform the adders and multipliers
presented in [8]. For larger sized adders and multipliers,
similar performance can be achieved by pipelining the units.

D. Comparison with IEEE-754 32-Bit & 16-Bit Floats

A comparison of the dynamic range and the maximum
number of fraction bits for IEEE Floating Point versus posits
of various (N, es) configurations is shown in table IV. The
maximum fraction bit accuracy holds for posits in the range

(a) Posit Adder Resource Utilization (Proposed
Vs. Literature)

(b) Posit Adder Datapath Delay (Proposed Vs. Literature)

(c) Posit Multiplier Resource Utilization
(Proposed Vs. Literature)

(d) Posit Multiplier Datapath Delay (Proposed
Vs. Literature)

Fig. 3. Comparision of Posit Adder and Multiplier Resource Utilization (Proposed Vs. Literature) and Data Path Delay (Proposed Vs. Literature) in FPGA
Synthesis

1/useed to useed, which is 1/256 to 256 for es = 3. The
accuracy decreases by one bit for every additional increase
or decrease of a factor of useed in the magnitude of values
represented as posits. The resource utilization of floating point

TABLE IV
COMPARISON OF POSITS WITH IEEE-754 16 & 32-BIT FLOATS

Bit
Configuration

Adder Multiplier Fraction Bits Dynamic Range
(decades)Slice

LUT
Datapath
Delay
(ns)

Slice
LUT

DSP
Uti-
lized

Datapath
Delay
(ns)

32 : FP 1049 41.576 533 4 29.051 23 83
(32,1): Posit 934 38.041 576 4 31.013 28 36
(32,2): Posit 981 40.032 572 4 33.021 27 72
(32,3): Posit 951 39.254 582 4 32.263 26 144
(32,4): Posit 955 39.960 576 4 32.281 25 289
(31,3): Posit 894 39.964 560 4 31.927 25 140
(30,3): Posit 873 39.542 655 3 32.199 24 135
(29,3): Posit 837 39.748 464 2 29.496 23 130
(28,3): Posit 821 39.369 459 2 28.966 22 125
16 : FP 356 27.027 212 1 21.379 10 12
(16,1): Posit 391 32.374 218 1 24.041 12 17
(16,2): Posit 404 33.974 223 1 23.680 11 34
(16,3): Posit 386 32.466 219 1 24.078 10 67
(16,4): Posit 371 33.079 233 1 24.581 9 135
(15,1): Posit 382 30.416 207 1 23.848 11 16
(14,1): Posit 353 29.835 184 1 23.282 10 14
(13,1): Posit 290 28.420 181 1 23.445 9 13
(12,1): Posit 254 28.549 167 0 21.142 8 12

adder compared to posit for m = n, and m < n bits is shown
in table IV for various values of es. It can be observed in the
table IV that the resource utilization of posit for m = n is
comparable to IEEE floats while it is less than the resource
utilization of IEEE floats for m < n. The dynamic range
approximately doubles for every increment by 1 in es; a (32, 2)

posit format has a dynamic range of 72 decades, slightly less
than that of a 32-bit IEEE float, yet it has four more bits of
significand accuracy for values between 1/16 and 16.

E. FIR Filter Study

In order to compare the total area utilized on FPGA as
well as the accuracy of computation by the floating point
arithmetic unit [8] with the proposed posit arithmetic unit
implementations, we considered a simple 4-tap Finite-Impulse-
Response (FIR) filter.

1) FPGA-Synthesis Comparison of Float and Posit Arith-
metic Based FIR Filter: Table V shows the comparison on
total slice LUT utilization on FPGA, it can be observed that
the proposed work has comparable resource utilization against
floating point for m = n bits and less resource utilization
for m < n bits. In addition, it shows that our work is
more efficient than the reported in [8] in-terms of resource
utilization.

2) Accuracy comparison of Float and Posit Arithmetic
based FIR Filter: Input sets X[n] with 8-bit representation for
floating point and (8,1) representation for posits was applied to
a 4-tap FIR filter to obtain the response Y[n]. The filter coeffi-
cients are fixed to 1 for simplicity. Y[n] has been converted to
its decimal equivalent from its floating point and posit outputs.
Table VI and table VII show the obtained output Y[n] and
relative error for Y[n] with floating point arithmetic and the

TABLE V
COMPARISON OF RESOURCE UTILIZATION FOR 4 TAP FIR FILTER WITH

FLOAT AND POSIT (PROPOSED & LITERATURE)

Bit Configuration Slice LUT DSP Utilized Slice without DSP
Proposed
Work

Literature Proposed
Work

Literature Proposed
Work

Literature

16: FP 1956 4 2579
(16,1): Posit 2067 2601 4 4 2810 3746
(15,1): Posit 1963 2237 4 4 2702 3033
(14,1): Posit 1790 1965 4 4 2344 2617
(13,1): Posit 1584 1791 4 4 2032 2331
(12,1): Posit 1831 1268 0 4 1831 1646
32: FP 4794 16 7798
(32,3): Posit 4981 6220 16 16 9344 10398
(31,3): Posit 4785 5487 16 16 9125 9487
(30,3): Posit 5260 5267 12 16 8301 8751
(29,3): Posit 4576 5225 8 16 7755 8641
(28,3): Posit 4474 5103 8 16 7223 8104

TABLE VI
COMPARISON OF FIR OUTPUT Y[N] WITH FP, LITERATURE[8] AND

PROPOSED WORK

X[n]
Expected
Y[n]

Y[n] with
FP

Y[n]
with
Literature

Y[n]
with
Proposed Work

0.000244140625 0.0009765625 0.03125 0.0009765625 0.0009765625
0.005859375 0.0234375 0.03125 0.0234375 0.0234375
0.0390625 0.15625 0.1875 0.15625 0.15625
0.078125 0.3125 0.40625 0.3125 0.3125
0.03125 0.125 0.125 0.125 0.125
0.203125 0.8125 0.90625 0.8125 0.8125
0.390625 1.5625 1.5625 1.5625 1.5625
0.71875 2.875 2.875 2.875 2.875
0.96875 3.875 3.875 3.875 3.875
1.4375 5.75 5.75 5.5 6
0.02734375 0.109375 0.125 0.109375 0.109375
4 16 Inf 16 16
5 20 Inf 20 20
6 24 Inf 24 24
7 28 Inf 28 28
256 1024 NaN 1024 1024
59 236 NaN 192 256

proposed (and literature) [8] posit arithmetic unit; posits have
higher accuracy and a larger dynamic range. The largest value
that can be represented by an 8-bit floating point with 3 bits of
exponent is 15.5 in decimal, and the smallest normalized value
is 0.25 in decimal (with denormalization, more values can be
packed between zero and the smallest normalized value); it has
221 finite values, 2 zeros, 2 infinities, and 30 NaNs, whereas
(8,1) posit representation has a maximum value of 4096 in
decimal and a minimum value of 1/4096 in decimal, with
unique zero and NaR representations.

VI. CONCLUSION

This paper presented the first complete posit-arithmetic-
unit generator that is parameterized to generate adders and

TABLE VII
COMPARISON OF RELATIVE ERROR FOR OUTPUT Y[N] WITH FP,

LITERATURE[8] AND PROPOSED WORK

Relative Error
in FP

Relative Error
in Literature

Relative Error
in Proposed Work

31 0 0
0.333333333333333 0 0
0.2 0 0
0.3 0 0
0 0 0
0.115384615384615 0 0
0 0 0
0 0 0
0 0 0
0 0.0434782608695652 0.0434782608695652
0.142857142857143 0 0
Inf 0 0
Inf 0 0
Inf 0 0
Inf 0 0
NaN 0 0
NaN 0.186440677966102 0.0847457627118644

multipliers of different sizes. It is shown that in FPGA and
ASIC synthesis, the area and power of adders and multipliers
generated are comparable with their IEEE 754-2008 technical
standard counterparts. Furthermore, it is experimentally shown
that n-bit IEEE 754-2008 compliant adders and multipliers
can be replaced by m-bit posit adders and multipliers where
m < n. With 4-tap FIR filters, such a replacement is feasible.
Experimental results reflect great potential in posit arithmetic
for prospective exploration of high performance and embedded
computing systems.

REFERENCES

[1] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2018, Dresden, Germany, March 19-23, 2018, 2018, pp. 1051–
1056. [Online]. Available: https://doi.org/10.23919/DATE.2018.8342167

[2] M. Langhammer and B. Pasca, “High-performance qr decomposition
for fpgas,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18.
New York, NY, USA: ACM, 2018, pp. 183–188. [Online]. Available:
http://doi.acm.org/10.1145/3174243.3174273

[3] X. Fang and M. Leeser, “Open-source variable-precision floating-point
library for major commercial fpgas,” TRETS, vol. 9, no. 3, pp. 20:1–
20:17, 2016. [Online]. Available: http://doi.acm.org/10.1145/2851507

[4] W. E. Wong, X. Li, and P. A. Laplante, “Be more familiar
with our enemies and pave the way forward: A review of
the roles bugs played in software failures,” Journal of Systems
and Software, vol. 133, pp. 68 – 94, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121217301334

[5] N. Whitehead and A. Fit-florea, “Precision & performance: Floating
point and ieee 754 compliance for nvidia gpus,” 2011.

[6] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, Aug 2008.

[7] J. Gustafson and I. Yonemoto, “Beating floating point at its
own game: Posit arithmetic,” Supercomput. Front. Innov.: Int.
J., vol. 4, no. 2, pp. 71–86, Jun. 2017. [Online]. Available:
https://doi.org/10.14529/jsfi170206

[8] M. K. Jaiswal and H. K. So, “Universal number posit arithmetic
generator on FPGA,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2018, Dresden, Germany,
March 19-23, 2018, 2018, pp. 1159–1162. [Online]. Available:
https://doi.org/10.23919/DATE.2018.8342187

[9] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Grkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, Oct 2017.

[10] D. Goldberg, “What every computer scientist should
know about floating-point arithmetic,” ACM Comput. Surv.,
vol. 23, no. 1, pp. 5–48, Mar. 1991. [Online]. Available:
http://doi.acm.org/10.1145/103162.103163

[11] M. K. Jaiswal and H. K. H. So, “Architecture generator for type-3
unum posit adder/subtractor,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[12] X. Fang and M. Leeser, “Open-source variable-precision floating-point
library for major commercial fpgas,” ACM Trans. Reconfigurable
Technol. Syst., vol. 9, no. 3, pp. 20:1–20:17, Jul. 2016. [Online].
Available: http://doi.acm.org/10.1145/2851507

[13] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni,
G. Tagliavini, A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Flamand,
and N. Wehn, “The transprecision computing paradigm: Concept,
design, and applications,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2018, Dresden, Germany,
March 19-23, 2018, 2018, pp. 1105–1110. [Online]. Available:
https://doi.org/10.23919/DATE.2018.8342176

[14] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A
transprecision floating-point architecture for energy-efficient embedded
computing,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2018, pp. 1–5.

[15] H. Giefers and D. Diamantopoulos, “Extending the power architecture
with transprecision co-processors,” in 2018 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[16] M. K. Jaiswal, “(2017) Posit HDL Arithmetic. [Online],”
https://github.com/manish-kj/Posit-HDL-Arithmetic, 2018, [Online;
accessed 19-May-2018].

[17] I. Yonemoto, “2017) Sigmoid Numbers for Julia. Available,”
https://github.com/interplanetary-robot/SigmoidNumbers, 2018.

