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Contractors' experience on previous projects can undoubtedly be considered as 

an important asset that can help preventing rnistakes and also increases the 

chances of success in similar future encounters. Construction cost data collected 

from past projects may be used to support cost estimating at different stages of a 

project's life cycle. At eariy stages of a project, parametric cost estimate is 

perfomed when detailed project infornation is lacking. The usable historical data 

at this level pertain to the characteristics of past projects (e.g., location. size, 

complexity). their construction environment (e.g., market, weather, year). in 

addition to the associated costs spent. The large number of these factors in 

addition to other extemal political, environmental. and technological risks. 

represent a complex problem in establishing accurate cost estimating models 

and have thus contributed to the inadequacy of traditional cost estimating 

techniques. 

This thesis uses a non-traditional estimating tool, Neural Networks, to provide an 

effective cost-data management for highway projects and accordingly develops a 

realistic cost estirnating model. Neural Networks are techniques based on 

advances in Artificial Intelligence branch of computer science. They have 

recently been used as a new information management tool in many construction 

applications to provide an effective cost estimating tool for highway construction 

cost data. In the present study, the characteristic factors that affect the cost of 



highway construction have been identified and actual cases of highway and 

bridge projects constructed in Newfoundland dunng the past five years have 

been used as the source of cost data. The structure of a Neural Network 

template has been formed on a spreadsheet and three different techniques. 

Backpropagation training, Simplex Optimization and Genetic Algorithms, have 

been utilized to detenine the optimum Neural Networks model. The resulting 

optimum model has been mded on Microsoft Excel in a user-friendly program to 

predict the outcornes for new cases. In addition. the proposed model provides a 

methodology to account for uncertainty in the user's assessrnent of project 

factors by measunng the sensitivity of the model to changes in cost-related 

parameters. It also enables the user to re-optimize the model on new historical 

encounters and accardingly adapt the model to new environments. The 

capabilities and limitations of the developed model have been discussed along 

with the expected future research in this domain. 
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CHAPTER 1 

Introduction 

1.1 General 

Construction estimating is one of the most crucial functions in pruject 

management. Cost estimating needs to be done in different manner at different 

stages of a project. At the early stage where project budgets are to be decided, 

detailed information is not available and pararnetric cost estimating techniques 

are most applicable. With the ever-increasing budget restrictions, accurate 

estimating becomes crucial to the setting of appropriate project budgets. Despite 

its great importance, the estimating task is neither simple nor straightforward due 

to the lack of information at this eariy project stage and to the existence of many 

extemal factors that affect a project including political, site, environmental. and 



technological risks. Once budgets have been approved and project scope 

becomes well defined, detailed cost estimating (rather than parametnc) rnethods 

become necessary for construction bidding and project control. On the one hand. 

accurate bid proposals maintain contractots success and establish his potential 

profits while inaccurate estimates cauld result in either significant ronetary 

losses, if the estimates are too low. or no jobs at al1 if they are too high. On the 

other hand. estimating realistic costs and schedule baselines is certainly 

important for efficient job control. 

Most parametric costs estimating approaches described in the literature use 

statistical analysis techniques (Garza and Rouhana, 1995; and Creese and Li. 

1995), range from simple graphical curve ftting to multiple correlation analysis. 

The objective is to use some historical cost data and try to find a functional 

relationship between changes in cost and the factor(s) upon which the cost 

depends. Therefore, such approaches produce a mathematical mode1 that 

describes the cost of a project as a function of one or more independent 

variables. A major drawback of statistical techniques is that a general 

mathematical f o m  of the cost estimating relationship has to be defined before 

any analysis can be applied to best fit the historical cost data. This is extremely 

difficult in estimating the costs of construction projects since the number of 

independent variables in the project is huge and no clear relationship exists 

between the cost and each individual factor. Statistical tools, as such. can only 



work for simple systems where cost relationship is known before hand and may 

not be suited for construction projects. Accordingly, the use of statistical 

techniques to predict accurate future cost for a construction project is not 

appropriate as reported in several efforts in the literature (Creese and Li, 1995, 

and Garza and Rouhana, 1995). This explains the need for a more suitable 

technique for parametric cost estimation. 

Due to the inadequacy of traditional estimating techniques, a new breed of tools 

has evolved based on the Artificial Intelligence branch of cornputer science (e.g., 

Neural Networks) and have recentiy been used as a new estimating tool in 

construction (Hegazy et al.. 1994b). Some construction examples include the 

prediction of productivity levels achievable under particular job-site conditions, 

the assignment of a percentage markup before submitting the bid price, and day- 

to-day decisions regarding the allocation of resources, minimizing idle times, and 

solving disputes (Hegazy et al., 1994~). The beneffis of Neural Networks stem 

from their ability to leam from a set of examples (representing historical 

encounters) to detect by themselves the hidden relationships that link the causal 

parameters ta the correct decisions or outcornes. Moreover, Neural Networks 

have been demonstrated to have excellent performance in modeling non-linear 

multi-parameter relationships that involve judgment and experience, even in 

situations where the data are partially rnissing or incorrect (Hegazy et al., 1994~). 

Neural networks, as such. have a great potential for effectively managing 



historical cost data to provide adequate budgeting and cost estimating models. 

Recently. many researchers have started to investigate the potential use of 

Neural Networks as a tool for cost modeling (Creese and Li, 1995. Garza and 

Rouhana. 1995; and Mckim, 1993a). The models introduced in these studies 

demonstrate the applicability of Neural Networks techniques and present several 

applications for risk assessment, parametric estimating, and competitive bidding. 

1.2 Scope and Objectives 

This research deals with the problem of estimating accurate costs at eariy stage 

of a project (parametric cost estimating). The research has 6 main objectives: 

1. ldentify the factors that affect the cost of a project including subjective and 

ris k-related factors. 

2. Use state-of-the-art techniques, such as Genetic Algorithms and feed-fonvard 

Backpropagation, for optimization and training of the Neural Networks to 

detemine the optimum Neural Network model that accommodates the 

identified parameters. 

3. Promote the application of the Neural Networks approach in the construction 

domain by presenting it in a simple spreadsheet fomat that is customary to 

construction practitioners. 

4. Compare the results of the Neural Network model with other traditional 

estimating methods described in the literature. 



5. Develop a comprehensive tool for parametric cost estimation using the 

resulüng Neural Netwark model. 

6. Develop methodologies for examining the sensitivity of the developed model 

to changes in wst-related parameters and for adapting the model to new 

project environments. 

1.3 Research Methodology: 

The approach used to arrive at the study objectives can be summarized in the 

following steps: 

Design the parametric cost estimating systern in a rnodular architecture with 

several components (Fig. 1.1 ). 

Review the theory and current developments in cost estimation and Neural 

Networks that relate to the system modules. This helps identify. for each 

module. the most appropriate procedure applicable to the system. 

ldentify the qualitative factors which need to be considered in cost estimation. 

Study the applicability of Neural Networks to the problem at hand. 

accordingly. develop the cost estimation system. 



Highway Cost 
Data 

- - 
User Interface Sensitivity 

Neural Networks Analysis 
Model 

Adaptation 
Module 

Figure 1.1 : Components of a Parametric Cost Estimating Systern. 

1 .O Thesis Organization 

Chapter 2 presents a literature review of traditional and statesf-the-art efforts 

that are related to the parametric cost estimating. In this chapter, Neural 

Networks are introduced as a new tool for prediction. Neural Networks 

components, characteristics and training problems are discussed along with 

Simplex Optimization and Genetic Algorithrns as tools for selecting the optimum 

Neural Network model. 



Chapter 3 describes the data-acquisition process of historical highway cost data 

necessary for the proposed rnodel. The characteristic factors that relate to cost 

estimating of highway projects are identified and outlined. Details regarding the 

design. implementation, optimization. and testing of the Neural Network model 

are described in this chapter. 

Chapter 4 describes the development of a complete system for pararnetric cost 

estimate of highway projects. The system is caded in a user-friendly software 

that facilitates storage of previous project encounters. input of project data. 

prediction of project cost, assessment of project sensitivity and adaptation of the 

rnodel to the usef s environment. 

Chapter 5 is the thesis conclusion and description of extensions to cuvent 

research. 



CHAPTER 2 

Literature Review 

2.1 Introduction 

Cost estimation is probably the most crucial function to the success of 

construction organizations. At al1 project phases, different types of cost 

estirnating from preliminary to detailed are conducted for different purposes. 

Figure 2.1 illustrates different types of cost estimate along with their appropriate 

project phases, associated dificulty levels. and the expected cost-estimate 

accuracy. These types are briefly described as follows: 

1. Preliminary cost estimate: This type of estimate is conducted at the eariy 

stage where project budgets are to be decided, available information is limited 

and pararnetric cost estimating techniques are most applicable. It is made 



without working drawings or detailed specifications. The estimator may have 

to make such an estimate from rough design sketches, without dimensions or 

details and from an outline specification and schedule of the ownefs space 

requirernents. The preliminary cost estimate can serve several purposes. 

including: 1) it supplements or serves as the owneh feasibility estimate; 2) it 

aids the ArchitectlEngineer in designing to a specific budget; and 3) it assists 

in the establishment of the owner's funding. The most common technique at 

this stage is the parametric cost estimating approach. 

Estimate Type 1 Preliminary 1 €lemental 1 Unit price ( Detailed 

Project Phase I Prelhinary Detailed Construction 

1 Design Design 

I 
- - - - - - 

Difficulty Level High Low 

Available Information 

Expected Accuracy I 

Limited Detailed 

Figure 2.1 : Estimate Types Throughout a Project's LifeCycle. 

2. Elemental (functional analysis) estimate: This type of estimate is 

conducted at an intermediate project stage by dividing a project into 



convenient functional elements (excavation, foundation work. 

concreting,. . ... etc.) and individually pricing each of these elements. Element 

breakdown can serve several purposes: 1) to reveal the distribution of costs of 

the constituent elements of the project; 2) to relate the cost of a constituent 

element to its importance as a part of the whole project; 3) to compare the 

cost of the same element in different projects; and 4) to enable a 

determination of how costs could have been al1 allocated to obtain a better 

project. 

3. Unit price estimate: This type of estimate is conducted at a later project 

stage at which a detailed quantity take-off is possible. The key to quantity 

take-off is a well-established and identifiable code for work items. The most 

comrnon type is the 16division master format code for building projects. For 

each sub-item, the direct cost (labour, materials and equipment) can be 

estimated. The purpose of unit price estimate at this stage of the project is to 

replace previous less accurate estimates in order to keep the project within 

budget. 

4. Detailed cost estimate: This type of estimate is conducted at a more detailed 

and refined ievel than unit price estimate. This could be done by analyzing 

each sub-item more accurately considering al1 factors that affect the sub-item. 

Usually a separate sheet is used, such as those provided by R.S. Means (R.S. 



Means. 1997) for example, to perform this analysis. It should be noted that job 

planning has a great influence on the detailed estimate. For example. "cost 

per cubic yard" for excavation can be calculated more accurately than a unit 

price estirnate, by considering site condition. weather condition, dewatering. 

available excavators, drivers and so on. As such, a detailed cost estimate is 

feasible only after performing a detailed planning and scheduling study for the 

project. 

At al1 estimating levels, the difficulties involved often result in many mistakes and 

errors in judgment. However. as shown in Figure 2.1, preliminary (parametric) 

estimating exhibits the lowest accuracy level due to the lack of project 

information and the high level of uncertainty at this early stage of a project. In 

addition, the political, site, environmental, and technological nsks that are 

extremely difficult to predict. A brief description of parametric cost estimating 

techniques is described in the following subsection along with their advantages 

and limitations. 



2.2 Parametric Cost Estimating 

2.2.1 Traditional Techniques 

General forecasting techniques are basically quantitative approaches that have 

been in use for the past half century. They can be either deteministic or 

stochastic (Savin and Kumar, 1993). Examples of deteministic methods are 

regression methods (linear regression and multiple regression). econometric 

models, rnoving average methods and exponential smoothing rnethods. 

Examples of stochastic rnethods are the maximum likelihood rnethod, Box- 

Jankins models, and probability weighted moment (L-moment). 

In construction, deteministic cost estimation models (referred to as parametric 

models) have traditionally been in wide use by many researchers due to their 

simple formulations. In these techniques, historical data are used to develop cost 

relationships based solely on statistical analysis. They have been used to 

estimate one characteristic of a system, usually its cost, from other performance 

characteristics of the system. The term "Parametric Estimating". however, may 

mean different things to different researchers (Black, 1982). For instance. it may 

mean the determination of the life cycle cost of a system from a mathematical 

rnodel containing a number of parameters and based on case histories of sirnilar 

projects. On the other hand, it could mean the cost estimation of any system, 

made up of aggregated components. by means of mathematicai models 

containing parameters. 



In parametric analysis. the main parametric equation has to be defined with its 

associated independent variables before any analysis can be perforrned. The 

variables in the parametric equation could be identified by highlighting those 

characteristics of the system under study that are most directly related to its cost. 

Then, a mathematical relationship for wrrelating data could be used to express 

this relationship. The most popular mathematical models are linearized f o n s  of 

the aithmetic, logarithrnic and semi-logarithmic equations (Black. 1982). In the 

parametric cost estimating technique, there is one dependent variable which is 

the cost and two or more independent variables like size. location, capacity, 

time .... etc. The equations generally take one of the following three fomis: 

1 ) Linear relationships: 

Cost=a+bX, +cX,+ ........... 

2) Logarithrnic relationships: 

.......... Log(Cost)=a+b Log XI + c log X,+.. 

3) Exponential relationships: 

........ Cost=a+ b ~ , ~ + d ~ :  +... 

.......... Where a, b, c, d and e are constant and XI, X,, X,, X X, are the 

performance characteristics of a system. 



The best critenon for choosing a form of the cost estirnating relationship is a 

good understanding of how costs Vary with changes in the independent 

parameters. This is a dificult task that is based on the experience of the 

estimators involved and. as such, has been performed mainly on a trial and error 

basis. 

A major disadvantage of the tracilional techniques for parametric estimating is 

that the mathematical form has to be defined before any analysis can be 

performed to detemine the actual cost function that best fits the historical data 

(Creese and Li, 1995). Also, modeling the cost of a system as a function of a 

member of independent variables is not an easy task. This is due to the large 

number of variables present in the system under evaluaüon and the numerous 

interactions among them. Another drawback is the use of a single cost 

estimation relationship to al1 cost variables involved which often have different 

mathematical correlation with the cost of that system. These problems may 

explain the low accuracy and limited use of parametric estimating techniques 

based on mathematical analysis in the construction industry and the need for a 

more accurate technique to solve the cost estimation problem. 

Recently, several research efforts have developed for parametric cost estimation 

models based on traditional estimating techniques. Some of these efforts assist 

in generating cost indexes or production rates in addition to traditional parametric 



analysis. Examples of these efforts that are of interest to the present study 

include: (Al-Bani 1994, Lopez 1993, Pantzeter 1993, Akeel 1989. Ellis 1989; and 

Uhlik 1984). Al-Bani (1994) developed a concrete cost estimate model for small 

residential buildings. The research studied the inter-relationships between the 

difFerent physical elements of a concrete structure such as footings and columns 

using mathematical expressions and formulas. In a different approach, Lopez 

(1993) conducted a study on forecasting construction costs in hyper-inflated 

economies. In this study, Mexican economic indicators were compared with 

those from the United States. As a result a new Mexican cost index was 

developed using Box and Jenkins models. Multiple regression analysis has also 

been used by Pantzeter (1993) to develop a methodology for modeling the cost 

and duration of concrete highway bridges. In this research, different projects 

were divided into five work categories and the cost of each category was 

modeled by applying statistical techniques. A similar effort was also conducted 

by Akeel (1 989) in developing a database tool for statistically based construction 

cost estimating. This research utilized the multiple regression analysis to develop 

the cost estimating relationship. Another effort using statistical analysis was 

perfomed by Ellis (1989) to produce a predictive model for construction 

production rates and examine their variability. To optimize cost estimation in 

uncertain situations, Uhlik (1 984) developed a combined stochastic and 

deterrninistic model for highway projects. His developments accounted for the 

uncertainties associated with quantity of rock in cut areas to estimate fieet 



production and determine the optimum distribution of material in cut and fiIl 

areas. These research efforts. while mnstrained by the limitations of traditional 

tools. provide insights into the elements that need to be considered in the 

development of effective parametnc models. 

With the advantage of camputers in the 1980's, commercial software systems for 

cost estimation have proliferated. Several surveys have been conducted to 

identrfy the commercial cost estimation software (Fayek et al.. 1994; and Arditi 

and Riad. 1988). The first suivey has listed recent systems and compared their 

capabilities with respect to estimating features. tendering features. reporting 

features. type of project and other factors. Table 2.1 illustrates some of these 

capabilities for each estimating system. 



Table 2.1 : Current Available Cost Estimation Systems (Fayek et al., 1 994). 

ACE Y Y Y Y Y N Y Y Y 
Cornputer Gold Y Y Y Y Y Y Y Y Y 
Estimator II Y Y Y Y Y N Y Y Y 
Everest Y Y Y Y Y Y Y Y Y 
Expert Estimation N Y Y Y N N Y Y Y 
G2 Estimator Y Y Y Y Y Y Y Y Y 
ISCE Y Y Y Y Y N Y Y Y 
L-8.E-S.T. Y Y Y Y Y N Y Y Y 
Leader Y Y Y Y Y N Y Y Y 
Lodex Build Y Y Y N Y Y -  Y Y N 
MAPAS Y Y Y N Y N Y Y N 
Paydirt N Y Y Y N N Y Y Y 
Probid 8088 Y Y Y Y Y - Y Y Y 
SUCCESS Y Y Y Y Y Y Y Y Y 
Timberiine Y Y Y Y Y N Y Y Y 
TRACE N Y Y Y N N Some Y Y 
Wessex Y Y Y Y Y Y Y Y Y 

Note: Y= yes. N= no 

Some of these systems, such as Thberline, are fully integrated systems that 

allow estirnating module to exchange data with other modules, such as CAD, 

scheduling and praject control as shown in Figure 2.2. 



CAD Design 
Module 

l nteg rated 
* 

Estimating Software 
Schedule 
Module 

Data bases 

Project 
Control 

Figure 2.2: A Complete lntegrated System for Cost Estimation. 

The majority of listed systems with the exception of (Success, 1995) are used for 

cost control and detailed cost estimation. Success system and another 

commercial software, (Design 4/Cost, 1995). are used at the early stage of a 

project when data is not sufficient to perfon a detailed cost estimate. On the 

one hand, Success helps in providing a parametric as well as a detailed estimate 

of a project based on independent variables associated with each item of work. 

The cost generated, however, is only applicable to the United States and is 

difficult to be adjusted ta other countries. Also the software still needs user 

identification of how to correlate parameters affecting an item to its cost which is 

a d i~cu l t  task. On the other hand, Design 4/Cosf uses a historical database of 

previous projects executed in The United States. The software uses algorithms 



and mathematical relationships for regional adjustment and cost escalation 

inside the United States for up to the year 2000. All estimates, however, are 

generated using the square feet building area of the praject as the main 

parameter. The accuracy of the estimates, however, degrades if the new building 

area is not within a k20% range, relative to the historical database. 

Several attempts were made in the literature to introduce parametric models for 

cost estimation based on various computerized techniques. Yau (1992) 

implemented an object-oriented methodology to develop a model for integrated 

scheduling and a cost estimate at the preliminary design stage of mid-rise 

building projects. Another study by Lee (1992) developed a cost estimating 

model that can provide detailed cost information on design alternatives at al1 

stages of design for reinforced concrete buildings. A recent effort by Hollrnan 

(1994) introduced a parametric cost estimating systern for buildings developed 

by the capital estimating department at Kodak Park. The system can give a 

rough cost estimate with a +5% accuracy for the total cost of buildings. The 

advantage of this system over other existing square feet systems is the 

elimination of the need for detail or assembly level cost data. Also, The US. 

A m y  Corps of Engineering (COE) has developed a software program that can 

be used for preparing a quantitative estimate from parametric rnodels. The 

program is known as Control Estimate Generator. This program was used by 

Melin (1994) to demonstrate various aspects of parametric estimating and 



standard esümating software. The parametric models are designed to generate a 

detailed estimate from historical or past projects. The program uses a parametric 

approach to adjust the original quantities by parameters to generate new 

quantities for use in the proposed estimate. 

As opposed to the deterministic approaches described eariier, probabilistic 

techniques (e-g., Monte Carlo simulation) have recently been used for 

estimating. The beneffi of such techniques is their ability to account for risks and 

model the cost components with high variability. Smith (1989) implemented a 

simulation model that uses a cost breakdown structure to assess the uncertainty 

and risk involved in project cost estimate. The simulation considers statistical 

distribution for each cost variable under estimation and produces a value for the 

total cost estimate and its probability of occurrence. Despite the probabilistic 

advantage of the Monte Cario simulation, it has two major limitations. First, 

statistical distributions for vanous cost components need to be established 

before hand. Second, if the cost variables are not independent, their correlation 

should be accounted for. 

It is clear from the previous discussion that cornputers are very fast and accurate 

when carrying out the extensive computations needed for cost estimating. They 

are, however, traditionally poor at the intuitive aspects that require the integration 

of experience and making decisions that can not be clearly defined in 



mathematical fom. Therefore, they fail to adequately model the essential part of 

estimating that is based on experience and analogy with previous situations. This 

has motivated the application of non-traditional estimating techniques based on 

artificial intelligence (Al) in this dornain. Among the several Al areas, the Neural 

Networks technique presents itself as a new approach of computation and 

decision making that may potentially resolve some of the major drawbacks of 

traditional estimating techniques. It holds a great promise for rendering the 

parametric method of cost estimating a reliable and reasonably accurate way to 

prepare cost estimates. 

2.2.2 Artificial Intelligence-Based Techniques 

Artificial Intelligence (Al) has been a rapidly growing field of computer science 

that has direct applications in the construction industry. The terni (Al) is applied 

to those fields of computer science attempt to simulate human intelligence. 

Expert Systems and Neural Networks are among current Artificial lntelligence 

research areas. On the one hand, Expert Systems attempt to model the 

intelligent reasoning and problem-solving capabilities of the human brain. They 

use rules in the fonn of (IF .... THEN) to explain how they amved at reliable 

decisions (Moselhi et al.. 1990). Mohan (1990) listed 37 expert-system 

applications in the field of construction engineering and management. Of these, 

two are specialized in cost estimating at eariy stage of the project as shown in 

Table 2.2. Also Salamh (1989) implemented a knowledge-based expert system 



for the conceptual design and cost estimating. The research focused on 

detemining the essential rules and heuristics used by experts in making 

conceptual cost estimates for the construction of buildings. Neural Networks. on 

the other hand, take a different approach to Al than traditional techniques such 

as Expert Systems. The technique attempts to replicate the mechanism by which 

the human brain manipulates data and reaches decisions (Mckim, 1993b). 

Table 2.2: ExpertSysterns Used for Preliminary Cost Estimate. 

1 construction durina initial desian 1 resources 1 activities 1 

preliminary design 
-Predicting time and cost of 

2.3 Neural Networks 

Neural Networks are particularly effective for complex estimating problems where 

the relationship between the variables can not be expressed by a simple 

mathematical relationship. They are cornputer programs simulating the biological 

structure of the hurnan brain which consists of tens of thousands of highly 

interconnected computing units called neurons. An Artificial Neural Network can 

alternatives 
Activity details and 

preliminary design 
Time and cost of 



be constmcted to simulate the action of a human expert in a cornplicated 

decision situation. 

2.3.1 Structure and Functionality 

A Neural Network is constructed by arranging several processing units in a 

number of layers (Fig. 2.3). The output of a single layer provides the input to the 

subsequent layer and the strength of the output is determined by the connection 

weights between the processing units of two adjacent layers. One of the most 

important characteristics of Neural Networks is their ability to leam from a set of 

examples to detect by themselves the relationships that link inputs to outputs. 

During training, both the inputs (representing problem pararneters) and outputs 

(representing the solutions) are presented to the network normally for thousands 

of cycles. At the end of each cycle, or iteration, the network evaluates the eror 

between the desired output and actual output. then uses this error to modify the 

connection weights according to the training algorithms used. One of the most 

common training algorithms is Backpropagation (Rumelhart et al., 1986). For a 

certain number of leaming cycles the weights are continuously adjusted until the 

deviations from the desired outputs are minirnized. After training. the network 

can be used to predict the solution for a new case not used in training. For 

background information regarding Neural Network formulations, mathematics 

and potential applications in constructions, the reader is referred to several 



publications (Hegazy et al., 1994a; and Moselhi et al., 1990) and will be dealt 

with in chapter 3. 

Hidden Layer 

Figure 2.3: General Structural of a Neural Network. 

2.3.2 Applications in Cost Estimation 

Neural Networks have been applied by several researchers to develop 

parametric cost models. A summary of these efforts is presented in table 2.3. 
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Table 2.3: Previous Applications in Pararnetric Cost Estimating using 
Neural ~etu&ks Techniaue. 

cost of 
Carbon 
steel pipes. 

Creese and 
Li (1 995) 

Estimating 
the cost of 
tim ber 
bridges. 

Williams Estimating 
(1 994) the 

changes in 
cos t 
indexes. 

(1 993a) the actual 
cost of 
pumps. 

Mckim 
(1 993 b) 

Predicting 
the % of 
change of 
the final 
costs from 
estimated 
costs. 

- -- - Pipe 
diameter- 
-Number of 
elbows. 
-Fiange 
rating . 

-Volume of 
the web. 
-Volume of 
the decks. 
-Weight of the 
steel used in 
the bridge. 

-The prime 
lending rate. 
-# of housing 
starts for the 
month. 
-The month of 
the year and 
other 
variables. 

CGt per 1 Multiple 
100 ft regression(lin- 
of pipe. 

Actual 
cost of the 
bridge. 

Changes 
in cost 
index. 

ear f om and 
non-linear 
fonn). 

Linear 
regression 
analysis. 

-Exponential 
srnoothing. 
-Linear 
regression. 

-Pump fiow. Cost of -Exponent 
-Purnp head. the pump. scale method. 

-6est- fit 
exponent 
method. 
-6es t-fit 
equation 
rnethod. 

-Contractor. Percenta- Mean ovemin 
-Architect. ge of method. 
-Location. change in 
-Size. the cost. 

square error 
using NNs 
was less than 
mean square 
error using 
multiple 
regression. 
ln al1 possible 
input 
alternatives, 
the r-square 
values using 
NNs were 
greater than 
those using 
regression 
analysis. 

NNs 
produced a 
poor 
prediction for 
changes in 
cost index. 

The r-square 
value from 
NNs was 
greater than 
other 
estimating 
methods. 

The variance 
of NNs results 
was less than 
the variance 
of mean 
overrun 
results. 

propagation 
which is used in 
this study could 
not be suitable 
for other 
applications. 

A comparison 
was made 
between al1 
possible 
alternatives for 
input variables 
and it was found 
that the models 
with 3 input 
variables are 
giving the least 
errors. 
An additional 
effort should be 
done to identii 
variables 
affecting the 
construction cost 
indexes better 
than those used 
in the past. 

The accuracy of 
the NNs 
prediction was 
affected by the 
quality of the 
available 
historical data. 

NNs is producing 
good results only 
in case of rough 
cost estimation 
and it is not 
recommended 
for detailed 
estimate. 



Gram and Rouhana (1995) compared the results of Neural Networks with those 

of regression models for predicting the material cost of carbon steel pipes. Ten 

sets of cost data were used to train the Neural Networks and six sets were used 

in testing. The wsts for these 6 sets were estimated using three methods (linear 

regression, non-linear regression and Neural Netwarks). The mean square error 

was calculated for each model. It was found that Neural Networks produced the 

lowest mean square error wmpared with the other two models. The accuracy 

level was between 66.8% and 77.96%. This study proves that the Neural 

Networks approach muld be used to resolve sorne of the major drawbacks of the 

regression-based pararnetric estimation. 

A similar study was conducted by Creese and Li (1995). In this study. three 

models were developed to estimate the cost of timber bridges. A set of actual 

cases of 12 timber bridges was collected from West Virginia department of 

highways. Three variables were used as the main factors affecting the total cost: 

cost of the web. cost of the deck. and weight of the steel used. The study 

experimented with three Neural Network models to identify the optimum one. 

The three models consider either one input variable, two input variables, or three 

input variables, respectively, to predict the total cost. It was observed that the 

overall training accuracy increased as more input variables were used and as 

such. the model with three input variables was the best. The initial training of the 

Neural Networks used al1 available bridges' data and 1.500 training cycles were 



used. The standard linear regression approach was used to predict the actual 

cost for the three rnodels using the same variables and r-square values 

(coefficient of detemination) were calculated to evaluate the three models. The 

study also compared the Neural Networks approach to linear regression analysis 

and concluded that the estimation accuracy of Neural Networks approach is 

better than Iinear regression analysis in tirnber bridges' types. Another important 

conclusion of the study is that the cost prediction abilrty of Neural Networks to 

improves when more independent variables are introduced in training. 

Williams (1994) developed two Backpropagation Neural Network models to 

predict change in ENR construction cost index for one rnonth and six months 

ahead. The models used many different factors such as the prime lending rate 

and the month of the year) as input variables. A training set of 215 cases and a 

test set of 63 cases were used for the one-month model while a training set of 

207 cases and test set of 66 cases were used for the six-month model. Two 

other simple models were used to predict the change in construction cost 

indexes, an exponential smoothing model and a linear regression model. When 

comparing the predicted results from the Neural Network models with those 

predicted from the other two models, it was found that the Neural Networks 

produced close but poorer predictions of changes in construction cost indexes. 

These poor predictions were attributed to the extrapolation, rather than 

estimation, nature of the application. Another study was conducted by Mckim 



(1 993a). ln this study, a Neural Network model was developed to predict the cost 

of pumps. The input variables to the Neural Network model were the pump flow 

and head. A set of 23 pumps with their associated flow, head and actual pnces 

was used as training cases. The Neural Network rnodel was trained for 50.000 

cycles. The results were compared to other industrial methods commonly used in 

practice for predicting pumps' cost. These methods were: 1) 0.6 exponent 

scaling method, 2) Best-fit exponent scaling method. and 3) Empirical best-fit 

equation method. The standard deviation error and the coefficient of 

detemination were calculated for each method. Similar to the previous study by 

Creece, it was concluded that the Neural Networks method provides a more 

accurate estimate than the other regression methods. A similar conclusion has 

also been arrived at by the same author (Mckim. 1993b) in another study. 

2.3.3 Problems with Neural Networks 

Despite the good performance of Neural Networks in the previous studies, the 

process of developing and implementing Neural Networks to parametric cost 

estimation has a number of problems associated with it. First, designing the 

network architecture and setting its parameters is not a straight-fonnrard 

approach; it actually requires some trial and enor process. A large amount of 

time must be spent determining the best network architecture and the network 

parameters that best fit the application under consideration. Second, the leaming 

algorithms, such as Backpropagation, require optimization of the network training 



in order to achieve adequate generalization. Also, there is no explicit set of rules 

to deterrnine whether a given leaming algorithm is suitable for a particular 

application or not. In addition, the little user control over training and the final 

status of network weights have contributed to their black box perception. Also, it 

should be noted that Neural Networks do not do perform well with applications 

where precise nurnerical computations are required, like detailed estimating and 

cost control. 

2.3.4 Genetic Algonthms 

With Backpropagation being the most applicable training algorithms in cost 

estimation domain, achieving good generalization performance becomes an 

essential issue. One of the most promising tools that can be used to optirnize 

generalization capabilities of Backpropagation is the use of Genetic Algorithrns 

(GAs). In general, GAs is optimization procedures inspired by biological systems' 

improved ftness through evolution (Hegazy et al., 1994b). GAs seeks to solve 

optimization problems using the method of evolution, specifically survival of the 

fittest. The theory of GAs is that a population of a certain species will, after many 

generations, adapt to live better in its environment. For example, if the species is 

an animal that lives mainly in a swampy area, it may eventually evolve with 

webbed feet. GAs solves optimization problem in the same fashion. It will create 

a population of possible solutions to the problern. It solves the problem by 

allowing the less ffi individuals in the population to die and selectively breeding 



the fittest individuals (the ones that solve the problem best) of the population. 

This process is called selection. as in selection of the fittest. GAs takes two fit 

individuals and mates them (a process called crossover). The offspring of the 

mated pair will receive some of the characteristics of the mother. and some of 

the father. Offspring often have some slight abnormalities called mutations. After 

GAs mates frt individuals and rnutates some. the population undergoes a 

generation change. The population will then cunsist of offsprings plus a few of 

the old individuals which was allowed to survive to the next generation because 

they are the rnost fit in the population and it is wanted to keep them breeding. 

The fittest individuals are called elite individuals. After dozen or even hundreds of 

generations, a population eventually emerges wherein the individuals will solve 

the problem very well. In fact. the fittest elite individual will be an optimum or 

close to optimum solution. 

2.4 Conclusion 

Cost estimating is the act of appraising and evaluating the cost of a project 

before implementing it. There are many existing techniques for parametric cost 

estimation. These techniques could be classified into two categories: 1) 

Traditional techniques. and 2) Artificial I ntelligence-based techniques. In this 

chapter, the two categories have been reviewed with emphasis on parametric 

cost estimation and the feasibility of applying the technique in this domain. 

Several conclusions are derived based on this literature survey: 



1. Backpropagation is the most widely used Neural Network training algonthms 

for parametric cost estimation. 

2. Neural Networks are proved to outperfonn traditional techniques including 

regression analysis in this dornain. 

3. Special attention has to be focused on identifying the problem attributes and 

accordingly the relevant independent factors. 

4. Special attention has to be focused on improving Neural Networks 

generalization either by using appropriate testing and verifkation or the use 

of optimization technique such as GAs. 

5. Neural Networks have been perceived as black box and this has contributed 

to their slow applicability in construction. 



CHAPTER 3 

Cost Data Modeling using Neural Networks 

3.1 Introduction 

The case study being dealt with in this study is the developing of a parametric 

cost estimation system for highway projects. A structured methodology for Neural 

Networks development (Hegazy et al.. 1994b) has been used to model the 

problem at hand. The methodology incorporates three main phases: 1) 

Conceptual analysis. 2) Neural Network design; and 3) Neural Network rnodeling 

and implementation as shown in Fig. 3.1. 
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Figure 3.1 : Neural Network Development Methodology. 
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3.2 Conceptual Analysis 

At the conceptual analysis stage. a Neural Network paradigm has to be selected 

as a suitable environment for developing the application. It can be done based on 

a comparison of the application requirements against Neural Network paradigm 

capabilities. Based on the literature review of Chapter 2, the Neural Network type 

deemed suitable for cost estimation has been identified as feed-fomard pattern- 

recognition type (Backpropagation) to suit the desired interpolative and predictive 

performance of the model. Other suitable types include the General Regression 

Neural Network (GRNN) which uses a multidimensional regression algorithm that 

trains fast on sparse data. GRNN applications are sometirnes able to outperfom 

Backpropagation (NeuroShell2 Reference Manual, 1995). For the present study, 

a comparison has been conducted between the results of these two common 

Problem 
Analysis 

Problem 
Structuring 



Neural Network architectures (Backpropagation and GRNN) and those of 

multiple regression analysis. 

3.3 Neural Network Design 

Model design consists of two main tasks: 1) Problem analysis; and 2) Problem 

structuring. Problem analysis, on the one hand, is the identification of the 

independent (non-correlated) factor(s) that fully describes the problem and that 

are expected to be easily obtainable for training the network at a later stage. For 

the present study, ten major factors describing a highway project and affecting its 

cost have been identified. These factors include descriptors of project size, year 

of construction, and project location so as to have a generic estimating model 

accounting for tirne, capacity and other uncertainty-related factors. Problem 

structuring, on the other hand, entails the arrangement and representation of the 

descriptive factors and their associated results (cost of tasks) in the form of 

inputs and outputs, as required by Neural Network modeling. With the ten inputs 

readily identified, the outputs describing the cost of a highway project can be 

modeled in different ways and thus two Neural Networks were constructed as 

shown in Fig. 3.2 (Hegazy and Ayed, 1997). The inputs and outputs in each 

network are as follows: 



10 Inputs i 
NEURAL NETWORK 1 

e 
Project Type 
(1 =Bridge, 2=Highway, 3=Others) 
Project S a p e  
(l =New, 2=Rehab-, 3=Others) 
Year 
Construction Season 
(1 =Winter, 2=Summer, 3=Fall) 
Location 
(1 =St. John's. 2= St. John's 

Total Budget 
Cost for the 
Project ($millions) 

Figure 3.2: Description of Neural Network Inputs and Outputs. 

~uburbs, 3=Avalon Region) 
Is. Du ration (Months) NEURAL NEWORK 2 
1,. Size (Length. Km) 11 5 Outputs 
III. Capacity 

(1 =2-Lanes, 2=2-Lane Divided) 1, 
19. Water Body 1, 

(O=No. 1 =Yes) 
I Ilo.Soil Condition 

(O=Class O to 9=Class 9) 
L 

O,. Cost of Site Work ($mil.) 
O,. ~ o s t  of Excavation ($mil.) 
O,. Cost of Materials ($mil.) 
O,. Cost of Paving ($mil.) 
O,. Other Costs ($mil.) 



Neural Network 1 (NNI): 10 inputs (project descriptors); and 1 output (total 

project cost). Since this netwark produces the total project cost as a single 

output. it is usable at an eariy project stage for budgetary estimates before 

detailed design data is available. 

Neural Network 2 (NN2): 10 inputs (project descriptors); and 5 major outputs 

(cost items). Project cost in this case is modeled as five values corresponding to 

the five major work items in highway projects. 

Having the inputs and outputs of the two Neural Networks defined, relevant data 

can then be documented and collected for each project. Both the input and 

output data are utilized during model development. Aftenvards, only inputs are 

needed for the actual use of the trained model to estirnate the cost of new 

projects. 

3.4 Neural Network Implementation: Data Collection and Preparation 

Once there is a clear idea about some feasible structures and the information 

needed to be elicited, the implernentation phase starts with knowledge 

acquisition and data preparation. Collecting cost data and information related to 

cost estimating problems is a difficult task because such information is the 

property of each construction fim. Construction fimis usually do not like to share 

their approaches or their experience and cost data with other competing 



construction firms. Moreover, most fims believe that such information usually 

rnakes a difFerence in being more cornpetitive in the market. There is a need, 

therefore. for a methodology for collecting the experience-based practices of 

contractors and effectively utilizing it to develop accurate parametric cost 

estimating models that adequately account for a project environment and 

establish accurate cost estimates accordingly. 

To collect cost data for Neural Network training, personal contacts were made 

with contractors, engineering consultants and govemment offices across Canada 

(such as lnstitute for Research in Construction, NRC). As a result of these 

efforts, the Department of Public Worùs, Services and Transportation, St. John's. 

Newfoundland, Canada indicated interest in providing such information. 

Accordingly, the data used in this study was collected frorn eighteen bids 

submitted to their office in the past five years. All eighteen projects were unit 

price jobs with the itemized prices submitted by non-revealed bidders. Detailed 

tender documents. however, were deemed confidential by the Department of 

Public Works and thus mandated additional independent data collection. Some 

contractors were contacted to provide project-specific information to be used in 

the model. Other data, such as soi1 type, has been identified based on the 

geographic location as classified by St. John's Department of Agriculture. 

The data pertaining ta the input parameters for al1 projects was then entered into 



a spreadsheet program (Microsoff Excel) and further transformed into numerical 

values according to the representation of Fig. 3.2. The values for the 

"Construction seasonn parameter, for example, have been transformed into an 

integer from 1 to 3 for Winter, Spring/Summer, and Fall, respectively. With 

respect to the model outputs, on the other hand, the cost estimate of each project 

was available in the fom of detailed unit prices. These were grouped together 

and five major cost items were used in further experiments with Neural Network 

2, as shown in Fig. 3.2. 

3.5 Neural Network Implementation: Spreadsheet Simulation 

In an effort to develop a more realistic parametric cost model. this study attempts 

to overcome some of Neural Network drawbacks desctibed early in Chapter 2 

and presents 1 as a simple and transparent approach for use in construction. 

Accordingly, a three-layer Neural Network was simulated on a spreadsheet 

format that is easy to use. transparent, and customary to many practitioners in 

construction. The simulation of Neural Networks on a spreadsheet format 

presents its underlying mathematical formulas in a simple and fully controllable 

form. 

A typical Neural Nehnrork consists of a group of processing elements organized 

into a sequence of layeis with usually full connection between successive layers. 

Fig. 3.3 shows a simple three-layer network. The input nodes accept the data 



that is presented to the network (representing model parameters) while the 

output nodes produce the network outputs (representing the decision associated 

with the parameters). The hidden nodes intemally represent the relationships in 

the data and their values usually deterrnined in a trial and error manner. Each 

processing element in the network perfomis a simple surn product of its inputs by 

the corresponding weight value. Also, a bias node is usually added to the input 

and hidden layers to facilitate network processing (Hegazy et al., 1994a). Those 

bias nodes are treated as regular nodes having inputs of 1 .O and are connected 

to successive layers as shown in Fig.3.3. The accuracy of the developed mode1 

depends on weight values. If optimum weights are reached. the weights and bias 

values encode the network's state of knowledge. Afterwards. using that network 

on new cases is merely a matter of simple mathematical manipulation of these 

values (Fig. 3.3). 

A spreadsheet simulation of a three-layer Neural Network was implemented on 

Microsoft Excel (Fig. 3.4). It represents a template for a one hidden-layer 

network. which is suitable for most application (Hegazy et al., 1994b), with one 

output node. The processing of the template incorporates seven steps, following 

the widely known Backpropagation formulation (Rumelhart, 1986). The general 

structure and forward wmputations of this type of Neural Networks are 

presented in Fig. 3.3. These seven steps are as follows: 



Step 1: Data Organization; as a preliminary stage to Neural Network modeling. 

the problem at hand needs to be thoroughly analyzed. Through this process. the 

independent factors affecting the problem are identified and considered as (N) 

input parameters represented by nodes at the input buffer of a Neural Network 

(Fig. 3.3). Similady. the numbers of associated outputs or conclusions (0) are 

represented by nodes at the output layer. Once input and output parameters are 

identified, their relevant data is collected from the historical examples (P) 

available for later training of the Neural Networks. 



1.g ----- Input Values 

Scahg of 1, Scaling of I, Scaling of 1, 

Final Output 
O=Tanh (Y) 

Fig. 3.3: Schematic Diagram of a Neural Network. 
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To implement this step on Excel spreadsheet, the data is first transformed into 

numerical values and stored in a data-list which is a matrix of (N+O) columns and 

(P) rows (Fig. 3.4). The numerical transformation of textual data can be done in 

either a continuous or a binary manner. In wntinuous transformation. the value 

of a parameter called 'Season", for example. can be an integer O to 3 for Winter. 

Spring, Summer and Fall. respectively. Altematively, in binary transformation. 

four parameters are used to represent the four seasons and only one of them is 

assigned a value of 1.0 while the others are zeroes. Depending on the type of 

transformation used, the number of Neural Network nodes will be determined 

and accordingly, the size of the spreadsheet data-list. As shown in Fig. 3.4, two 

rows of formulas were made at the bottom of the row data-list with the minimum 

and maximum values of each column (input parameter). 

Step 2: Data Scaling; In this step, the input data part of the first matrix (N 

columns by P rows) is scaled to a range [-1 to 11 to suit Neural Networks 

processing. This is done by constructing a second matrix with a linear formula for 

scaling the row value of each cell, as follows: 

2 x (Unscaled Value - Column Min.) 
ScaIed Value = - 1. . . a . . . . . . . . . . . . . 

(Column Max.-Column Min.) 
(1 

This scaling formula is written in only one cell (815, for example). and then 

copied to ali cells in the scaling matrix. To the right of this matrix. a new column 

is added with unit values associated with the bias node, as illustrated in Fig. 3.4. 



Step 3: Weight Matrïx (W) frorn (N) Inputs to (L) Hidden Nodes; the third step 

is to wnstruct and initialize the weight matrix between the inputs and the hidden 

layer. All inputs (1 to N) and a bias node were fully connected to the hidden 

nodes. The number of hidden nodes (L) has been set as one half of the total of 

input and output nodes, as heuristically suggested in the literature (Hegazy et al.. 

1994a). All the values in the weight matrix are considered variables to be 

determined in Neural Network modeling. Through preliminary experimentation, it 

was found that setting the initial weight values to a range of (0.5 to 1) is 

appropriate for inputs scaled to a range of (-1 to 1). 

Step 4: Output of Hidden Nodes; the fourth step is to allow the hidden nodes to 

process the input data and produce values to be forwarded to the next layer. 

According to Neural Networks processing (Fig. 3.3). each hidden node j receives 

an activation Xi which is the sum product of weights by scaled inputs. 

Accordingly. the hidden node produces an output X'i that is a function of its 

activation as shown in Fig. 3.3. 

Experimenting with different activation functions such as Linear, Logistic, Sine 

and Tanh has shown that the Tanh function is producing the best results. As 



shown in step 4 of Fig.3.4, a formula was written for the first row of al1 hidden 

nodes and then capied to the down cells. 

Step 5: Weight Matrix (W) from Hidden Nodes (L) to Output Node; similar to 

the weight rnatrix constructed in step 3, a second matrix was constnicted to 

connect (L) hidden nodes and a bias to output nodes. These weights are 

additional variables in the model and were initialized as previously described. 

STEP 6: FINAL NNs Output; similar to step 4, the output of Neural Network (O) 

is computed by calculating the sum product (Y) of each output from hidden node 

by its connected weight and processing this value through the Tanh activation 

function producing (O) output as follows: 

Step 7: Scaling Output Back and Calculating the Error; in the seventh step, 

the Neural Networks output (O) is scaled back to the original range of values 

using the reverse of formula (1) as follows: 

(Output value + 1 )(Max. Output - Min. Output) + Min. Output 
Output Scaledback = 

2 
. . . . . . . . . . .  (6) 

To calculate a measure of the Neural Networks performance, a calumn is 



constructed for detemining the error between the actual output and Neural 

NeWorks output as follows: 

(NNs output - Actual output) 
00 Estimating Error (%) = ........... 

Actual output 

It is also possible in the Neural Networks simulation to use sorne cases for 

training and others for testing by splitting the data into h o  groups, training and 

testhg sets. The average error of each group of cases can be calculated in a 

different cell and then combined in a cell that calculates the performance 

measure of the Neural Networks, for example: 

Weighted Error (%) = 0.5(test set average error) + O.S(training set average error) 

.................a (8 )  

where weights of 0.5 and 0.5 were assumed for illustration. This approach gives 

high weight on the test cases (which are usually of small number as compared to 

training cases) to ensure good generalization performance and avoid 

overtraining. It is noted that the spreadsheet simulation of (Fig. 3.4) was 

constructed using only one output node for simplicity. However, the user may 

easily extend it to more than one output node to suit other applications. 



3.6 Neural Network Implementation: Determining NN Weights 

Since al1 formulas in the spreadsheet template are functions of the weights, the 

next step was to determine the Neural Network weight values that optimize 

network performance. Three approaches were used: 1) Neural Network training 

(using NeuroShell2. 1995); 2) Simplex Optimization (using Microsoff Excel 

Solver); and 3) Genetic Algo Ahms (using GeneHunter, 1995). Neural Networks 

training is one of the most common methods for determining Neural Networks 

weight values. The results of Neural Networks training. therefore, are considered 

as a baseline to which other approaches were cornpared. A Neural Network 

training program, NeuroShell2, was used as a standalone environment for Neural 

Networks development and training and later the two optimization approaches 

were utilized to arrive at the best Neural Network weights using the spreadsheet 

simulation. The details of each approach are provided in the following 

su bsections. 

3.6.1 Neural Network Training 

For the problem at hand. NeuroSheli2 has been used for its ease of use. speed 

of training, and for its host of Neural Network architectures including 

Backpropagation and GRNN, with flexible user-optimization of training 

parameters. NeuroShell;' includes a simplified set of procedures for building and 

executing a complete, powerful Neural Networks application. The user has the 

flexibility to specify his own leaming rate, momentum, activation functions. and 



initial weight range on a layer basis in the design module. It also has multiple 

criteria for stopping training in addition to different methods for handling missing 

data; pattern selection; and viewing weight and neuron values during training. 

In addition to the brain-like structure of Neural Networks, the major property that 

deems Neural Networks superior to algorithmic and other Al-based systems is 

their ability to be trained. Training is the act of continuously adjusting the 

connection weights until they reach unique values that allow the network to 

produce outputs that are close enough to the desired outputs. As such. Neural 

Networks can generalize well on new cases if over-training is avoided (Hegazy et 

al., 1994~). To achieve good generalization, a special feature (NetPerfect) of 

NeuroShell2 was used. NetPerfect optirnizes training by exposing the network to 

the amount of training that minimizes the average error between actual and 

predicted results for a group of test cases. Using NetPerfect, two Neural Network 

architectures in NeuroShell2 were tested: 1) Traditional Backpropagation (BP); 

and 2) General Regression Neural Network (GRNN). Figure. 3.5 shows the 

NeuroShell2 Advanced Options screen and displays the independent modules 

that may be used to create a Neural Network application. 

Traditionally, Backpropagation training is one of the most wmmon methods for 

training Neural Networks on historical data. In essence, Backpropagation training 

adopts a gradient-descent approach of adjusting the Neural Network weights. 



During training, a Neural Network is presented with the data thousands of times 

(called cycles). After each cycle. the error between the Neural Network outputs 

and actual outputs are propagated backwards to adjust the weights in a manner 

that is mathematically guaranteed to converge (Rumelhart et al., 1986). As 

opposed to the gradientdescent nature of Backpropagation, GRNN uses a 

multidimensional regression algorithm (NeuroShell2 Reference Manual, 1995) 

that is able to train fast on sparse data. Using the Backpropagation architecture 

with NetPerfect, on the one hand, the network was saved whenever a new 

minimum average error is reached. The testing interval, which is how often the 

test cases are evaluated, was set to 50 epochs (training cycle). Using GRNN 

Networks, on the other hand, a regression smoothing factor (O to 1) was 

optimized using NetPerfect. 



Figure 3.5: NeuroShellZ Advanced Options Screen. 

To implement the Neural Network training on NeuroShell2, the data of the 18 

projects was first entered into a spreadsheet. Each row represents a case study 

from the 18 projects and each column represents one of the 10 input parameters. 

To the right of these columns, five columns were constructed to enter the 5 cost 

items for each project (as required for NN2 rnodeling) and an additional column 

for the total cost for each project (as required for NNI modeling). By selecting the 

"File Importn option from NeuroShell2 screen (Fig.3.5), this option was used to 

import the spreadsheet file from other systems into the NeuroShell2. Then. the 

"Data Entryn option was used to view and Save the data file into NeuroShell2. 



Afterwards. the 'Define Inputs/Outputsn option can be used to choose which 

variables is to be used as network inputs and outputs. and to wmpute the 

minimum and maximum value for each variable. This option creates an .MMX file 

which is required to either train a network or to process a file through the trained 

network. For the case study at hand, the first 10 columns were selected as the 

input variables and the column contains the total cost as the output in case of 

NNI modeling (five columns in case of NN2 modeling). 

Since network training is as dependent on the quantity of training data as on how 

the data is presented to the network, several data-representation experiments 

and network architectures were conducted during training to arrive at the best- 

trained Neural Network. In these experiments, network parameters such as 

number of hidden layers, number of hidden nodes. network connections, and 

transfer functions were tested and the best result was documented. The "Design" 

option in NeuroShell2 provides the user with various types of network 

architecture design to choose from. In case of a three layer network, for example. 

the user has the Rexibility to experiment the network with different types of 

scaling functions, number of neurons on each layer (slab). leaming rate, initial 

weights and momentum as shown in Figure 3.6. 



Figure 3.6: Design Parameters for 3-Layer Network. 

With respect to data presentation, the "Test Set Extract" option was used to 

extract a test set from the data as shown in Figure 3.7. First. top fourteen cases 

were used in training and the last four cases used for testing (L4). As such, the 

third option in the 'Extract" menu was selected with N=14, and M is blanked. 

Second, fourteen randomly selected cases were used in training and the other 

four for testing by the software accord ing to its NetPerfect optimization feature 

(R4). Accordingly, the first option in the "Extract" menu was selected with N=25, 

and M is blanked. Table 3.1 shows the characteristics of the eight training 

experiments of this study; four for each Neural NeWork model. 



Figure 3.7: Test Set Extraction Screen. 

Table 3.1 : Neural Network Training Expen'ments 

Experiment / Model 1 Architecture 1 Test Cases 

1 
2 
3 
4 
5 
6 
7 
8 

BP = Backpropagation 
GRNN = General Regression Neural Network 

NNI 
NNl 
NN? 
NNI 
NN2 
NN2 
NN2 
NN2 

BP 
BP 
GRNN 
GRNN 
BP 
BP 
GRNN 
GRNN 

Last 4 cases (L4) 
4 cases at randorn (R4) 
Last 4 cases (L4) 
4 cases at random (R4) 
Last 4 cases (L4) 
4 cases at random (R4) 
Last 4 cases (L4) 
4 cases ai random (R4) 



Once the network architecture was selected, each of the 8 Neural Networks 

outlined in table 3.1 was trained using the NetPerfect feature and the leaming 

module of NeuroShel12. This module calls different leaming subprograms 

depending upon the paradigrn and architecture selected earlier. Figure 3.8 

illustrates the leaming options screen during network training. While other default 

settings were satisfactorily used for al1 GRNN networks. they had to be changed 

for BP networks and the optimum number of layers for each network was 

decided in a trial-and-error manner. 

Figure 3.8: NeuroShellZ Leaming Screen. 



Once the network was trained, the 'Apply to Filen option was used to pmcess a 

data file through the trained Neural Network accordingly, produce the network's 

classifications or predictions for each pattern in the file (one value in NN1 and 

five items in NN2). A file of outputs (the .OUT file) was produced which can be 

activated from Microsoff ficel. As such. a spreadsheet was constructed on 

Microsoff Excel to compare among the Neural Network results. 

In order to evaluate the performance of the Neural Network models as cornpared 

with traditional techniques, two muitiple regression analysis experiments 

(experiment 9 and 10) were also conducted. One experiment used the input data 

of fourteen cases to predict project detailed cost. while the other used al1 the 

eighteen cases in the analysis. The regression analysis was implemented using 

the same spreadsheet on which the wmparison among al1 results was 

conducted. Figure 3.9, for example, shows the cornparison among Neural 

Network experiment results experiment 1, 9. and the actual cost. 

Predicted versus actual costs were then plotted against those produced by 

regression analysis. Figure 3.10, for example, shows the performance of NNI 

models (BP and GRNN) as compared with actual cost and regression analysis. It 

is noted that with the random ordering of projects presented in Fig. 3.10, the lines 

connecting the points serve no purpose other than better visual intelligibility. The 

percentage error in cost prediction of each mode1 was calculated on the training 



cases (14 projects) separately from the test cases (4 projects). The combined 

error on al1 eighteen projects is also presented in Table 

3.2. 

-1 mie Edit New Insert Fgrmat lools Data Mndow Help ml 

Figure 3.9: Spreadsheet for Cornparison among Different Results. 
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Figure 3.10: Actual versus Estimated Cost for NNI. 

Table 3.2: Models' Performance Evaluation 

1 NN1 BP-L4 
2 NN1 BP-R4 
3 NNl GRNN-L4 
4 NN1 GRNN-R4 
5 NN2 BP-14 
6 NN2 BP-R4 
7 NN2 GRNN-L4 
8 NN2 GRNN-R4 
9 RA*" NIA 

IO RA I N J A  

Experi- 
ment 

Error in Estimating the Total 

Fea t u tes 

Projects 
3-layer network 1.43 19.33 5.41 

Model 

4-layer network 
Default 
Default 

Network* 

NIA N/A 
20.28 1.59 
NIA NIA 

3-layer network 
4-layer network 
Default 
Default 
RA on 14 projects 
RA on 18 projects 

3.50 32.9 
NIA NIA 
9.97 17.1 1 
NIA NIA 
8.59 33.34 
NIA NIA 

* Refer to Table 1 regarding BP, GRNN, L4, and R4 " Regression Analysis - % = Absolute [ I O 0  x (Actual Total Cost - Predicted Total Cost) / Actual Total Cost] 



3.6.2 Simplex Optirniration 

As a first alternative to Neural Network training, a simplex optimization was 

implemented using Solver. an Excel add-in prograrn. The implementation, 

therefore, was conducted directly on the Neural Networks spreadsheet of Fig. 

3.4. Solver is a powerful and easy to use optimization tool that is highly 

integrated into Excel. It optimizes linear and integer problems using the simplex 

and branch-and-bound methods. Solver can find the optimum set of values for 

some variables so as to maximize or minimize a target cell (or objective function) 

that is linked by formulas to the variables. under a set of user-specified 

constraints. It proceeds by first finding a feasible solution, and then seeking to 

improve upon it; changing the variables to move from one feasible solution to 

another until the objective function has reached its maximum or minimum. 

Using the described procedure of simulating a Neural Network on Excel, the data 

of the 18 project were then entered into Excel as shown in Fig. 3.11, with the 

textual values transformed into nurnbers according to the notations used in Fig. 

3.2. All ranges and matrix dimension have been modified according to the 

numbers of inputs, outputs, and historical examples of the case study (Le., = I O ,  

0=1, P=18, and L=5). 



1 &O 1 : Original Unscaled Inputs - 
Roject Roject Water Soil 
Type x o p e  Year Season Location Duration Sire Capacity Bodies Condetion 

3 3 1991.00 2 3 1 4.75 1 O 7 
4 2 1 1 1990.00 2 3 9 O. 1 1 1 7 - 
6 3 2 2 1991.00 2 3 8 7.9 1 O 8 

Actual 
Output 

1 1  2 2 1990.00 1 3 2 2 13.5 1 1 8 1.210 
12 1 1 1991.00 2 3 t 7 O. 1 1 1 5 0.220 
13 2 2 1990.00 2 3 16 40 2 1 8 1.738 

2 2 1991.00 2 3 20 0.9 1 O 8 0.637 
2 2 1991.00 2 3 12 7.55 1 O O 0.608 

10 2 2 1989.00 1 3 36 11.6 1 1 O 0.717 
17 2 2 1990.00 2 2 12 9 1 O 8 0.959 
10 2 2 1991.00 2 3 Il 8.4 1 O 8 0.710 

1 1 1989 1 2 1 O 1 O O 0.13 
3 3 1991 3 3 36 40 2 1 9 1.74 

= 2'~B3-B321)1(8$22-8S211-1 
24 / Made once and copied ta al1 cells 

ScaIed inputs/ I 1 

1 fioiect 1 P~ ( 1 1 1 1 1 1 Water 1 soi1 1 
~ v p y ~ s c o p e  1 Year Season Location 1 Ouration Site Capacitv Bodies Condetion 1 biasl 

1 q 1 1 O 1 -1.000 -0.767 - 1 - 1 0.556 
2 -1 - 1 O O 1 -0.543 -1  .O00 - 1 1 0.556 
3 O O 1 O 1 -0.600 -0.609 - 1 - 1 0.778 

Weights of links from 10 inputs and a bias to 5 hidden neurons 
1 3-319 0.058 0.088 -2.983 -5.712 1.787 -1.948 9.647 0.270 3.462 3.834 

2 2.177 -1.698 0.793 1.056 4.066 2.040 4.353 5.600 3.244 3.01 5 -4.187 

F ig. 3.1 1: NN Simulation for a Case Study of 18 Highway Projects. 



Weights from 5 Hidden Neurons to 1 Output 

Stel, NNNs Output m E r r o r  Calculation 

r l  NN output Actual 
Project Output Scaled back Output % Error 

gA5 0.151 2 . w  
/0.34 0.335 H o 0  

= Tanh(SUMPRODUCT(F62:K62.F$83:K$83)) 
Formula made onœand copied to the down cells 1.080 2.00 

0.67/ 0.673 0.00 
9 -943 O& 0.678 2.00 

p. 13 0.129 0.03 
1.23 t .21O 2.00 

=(Hg 1 + 1 )(SLS22-SLS21)/2+SU21 0.22 0.220 0.00 
Formula made once & mpied dawn 1.74 1.738 0.00 

0.64 0.637 0.00 
0.61 0.608 0.00 

16 - 0 . H  0.72 0.717 0.00 
17' H o 3  0.96 0.959 0.00 

0.710 5.00 
=ABS((J9IX91 ).la0 I Kg1 ) 

Formula made once & copied down 
0.72 
1.25 

Final 
Weighted )ml 

Error 

Fig. 3.1 1 (Cont.) 



Figure 3.12: Solver Optimization Screen. 

When Solver was activated, its optimization options were set as shown in 

Fig.3.12. The optimization objective is to minimize the target cell containing the 

Neural Networks weighted eror (cell L I  14 of Fig. 3.1 1). Also, the optimization 

variables, representing the adjustable cells, are the weights from inputs ta hidden 

nodes and from hidden nodes to outputs. In order to avoid erroneous network 

results on individual training cases, optimization constraints were set so as to 

limit the percentage error on the training and test cases to 2% and 5% (or lower) 

respectively. Cell references for the optimization variables and the constraints 

are shown in Fig. 3.12. 



Once optimization parameters were input into Solver screen, the optimization 

process was started. Experimenting with this approach, it was found that the 

results are often sensitive to the initial values of the variables and some 

manipulation of Solver options may become necessary to arrive at the optimum 

solution. Using the suggested (O to 1.0) range for the weights can be a good 

start. Also. when optimization is not improved over long period of time, it can be 

manually stopped and then continued after re-initialking some of the weight 

values. Generally, the time taken by Solver to solve a problem varies significantly 

depending on the size and complexity of the model. Solutions to al1 linear models 

can be found much faster than nonlinear models of equivalent size. In non-linear 

situation such as the present case study. the optimization process may need to 

be frequently intempted to change Soiver options which are fully described in 

Excel documentation (Excel Reference Manual, 1995). 

Using Solver and experirnenting with its various options on a trial and error basis, 

experirnentation took 2 hours on a Pentium 120 MHz machine. An optimum 

solution was reached with a weighted error of 0.98% (optimization target) with 

0.71% and 1.25% error on training and test sets, respectively. The resulting 

network weights and errors are shown in the Neural Networks spreadsheet of 

Fig. 3.1 1. 



3.6.3 Genetic Algorithrns (GAs) 

This technique is another optimization method that is fundamentally different 

from traditional sirnplex-based algorithms such as the one used by Excel Solver. 

It uses the method of evolution, specifically survival of the fttest. First. a 

population of possible solutions to the problem is created. lndividuals in the 

population are then allowed to randomly breed. a proœss called crossover, until 

the fittest offspring is generated (Hegazy et al., 1994b). After a large number of 

generations, a population eventually emerges wherein the individuals will provide 

an optimum or close to optimum solution. 

For the case study at hand, a Genetic Algorithm software (GeneHunter, 1995) 

was used to find the optimum weights of the model. GeneHunter is an Excel add- 

in tool that can replace Excel Solver for optimizing complicated problems. It also 

includes a Dynamic Link Library (DLL) of genetic algorithm functions that may be 

called from programming languages such as Microsoft Visual Basic or C. 

The GeneHunter screen is shown in Fig. 3.1 3 with al1 the cell references to the 

optimization objective function and constraints. The objective, or fitness, function 

specifies the location of the cell to be optimized. Similar to Soiver optimization, 

cell L I  14, representing the Neural Networks weighted error, was selected to be 

minimized. The adjustable cells containing the optimization variables (called 

chromosomes in GAs teminology) were also specified as the two weight 



matrices. Optimization cbnstraints were then set. These wnstraints limit the 

range of weight values within which GeneHunter will search for a solution. thus 

reducing processing time. In addition. the constraints add restrictions or subgoals 

to the original ftness function so as to limit the percentage error on training and 

test sets to 2% and 5%. respectively. 

Figure 3.1 3: GeneHunter Optirnization Screen. 

During the Genetic Algorithm optimization, GeneHunter options can be used to 

enhance the results during optimization of the problem. For example, "Population 

Sizen affects processing time since the Wness function must be calculated for 

every individual in every generation. A population of size 50 was found as a good 

number to start with. This nurnber can be increased later during the optirnization 

process. Chromosome Length presents the level of accuracy needed for the 



adjustable cells. More bits mean high precision answers. One possible strategy 

for problem solving is to first start with 8 bit chromosomes and then increased to 

16 bit when little progress is being made towards a better solution. 'Crossover 

Raten which is the probability that the crossover operator will be applied to a 

particular chromosome during generation must be set fairiy high (0.9 is usually 

good). 'Mutation Rate" which is the probability that the mutation operator will be 

applied to a particular chromosome during generation must be set fairiy low (0.01 

is fairiy good). When using the Elitisrn Strategy. the individuals who live are the 

fittest individuals. It should almost always be on so that the most desirable 

genetic characteristics are available for breeding in subsequent generation. A 

good strategy for problem solving is to start Elitism option off to allow the 

population to evolve without significant selective pressure and then after a while, 

it may be turned on in order to concentrate the optimization process around the 

best solution. Diversity option is also used to produce individuals that are slightly 

changed during mutation. This option can make a major contribution to 

evolutionary progress and should be tu med on du ring optimization process. With 

the above GeneHunter settings and on a trial and error basis during the 

optimization process. GeneHunter was able ta corne up with an over al1 weighted 

error of 21.8 O h  with 22.48 % error on training set and 21.1 1 % on the test set. 



3.7 Discussion of Results 

3.7.1 Neural Networks Training versus Regression Analysis 

Several interesting observations are drawn from the results of Table 3.2. As 

expected, Backpropagation networks, as in experiments 1 and 5. have small 

errors on the training cases and higher emrs  on test cases. GRNN networks. on 

the other hand, did not exhibit a similar consistent behavior. The best overall 

model for NNI can be identified as Backpropagation (experiments 1 and 2), 

having excellent performance on the training cases and less than 20% error on 

new cases (often acceptable at the budgetary level). It is noted that while 

experiment 3 (GRNN) produced a netwark with small errors on the test cases, it 

behaved relatively pooriy on the training cases which is reflected on its overall 

error (16.12%). For the NN2 model, on the other hand, Backpropagation 

(experiment 5) and GRNN (experiment 7) produced reasonable results. Despite 

the slightly higher overall errors of expenment 7, it exhibits a more consistent 

performance than experirnent 5. It is cuncluded, therefore, that for the NN1 

model, the networks of experiments 1 and 2 are most suited while the networks 

of experiments 5 and 7 are most suited for the NN2 model. In using these 

networks, the estirnates of the two selected networks may indicate any erroneous 

results and also may be averaged to arrive at a final cost estimate. It can be 

inferred from the results obtained that the NNI model. in general, performs better 

than the NN2 model, probably due to the larger size of NN2 (5 outputs) and 

accordingly requires a larger number of training cases. Accordingly, NN2 model 



was not used with further experimentation using Solver and GeneHunter 

optimizations. Furthemore, it is demonstrated that the BP and GRNN networks 

consistently perforrned better than Regression Analysis on new cases and as 

such provide a better predictive model. 

3.7.2 Neural Networks Training versus Optirnization 

Since the Backpropagation network of experiment 1 performed better than other 

networks, it can be considered as a baseline to which the experimented 

optimization approaches will be compared. The cornparison of results, as shown 

in Fig. 3.14, detemines the optimum Neural Network weiçhts. The best overall 

model is the one produced by Excel Solver, having excellent performance on 

both the training and test cases. While Backpropagation training produced a 

network with small errors on the training cases, its learning performance was 

slightly inadequate on the test cases which was reflected on its overall error 

(10.4%). For the Genetic Algorithrns, on the other hand, the model did not 

produce reasonable results probably due to the random selection of the 

generated population. Although The model perfoimed uniformly over training and 

test sets, it produced an overall error (21 3%) which is slightly above the 

parametnc estimating level of accuracy (20%). It is concluded, therefore, that the 

network optimized by Simplex Optimization is the most appropriate network ta 

the present case study. 



8ackpropagation S i x  Genetic Algorithms 
Training Optumation OptirrPation 

Figure 3.14: Cornparison among Weight-Detemining Methods. 

3.8 Conclusion 

In this chapter. the data of 18 highway projects constructed in Newfoundland 

during the past five years were used as training examples. Accordingly, two 

Neural Network models were trained to predict the cost of new jobs using one 

output and 5 outputs, respectively. Issues regarding the rnodeling approach of 

Neural Networks were discussed, including data preparation. model formation. 

network configuration and Neural Networks implementation. To validate the 

developed models. a cornparison was conducted between the results of WO 

common Neural Network architectures (Backpropagation and GRNN) and those 

of multiple regression analysis. The results signify that Neural Networks have 

captured the relations embedded in the trained data and in tum indicate better 



predictive models than traditional models. It was also concluded that the model 

with one output was more accurate than the one with 5 outputs. 

As an alternative to traditional Neural Network training, the structure of a simple 

Neural Network was simulated on Microsoff Excel program. Two approaches, 

Simplex optimization and Genetic Algorithms were then applied on the 

spreadsheet simulation to find the optimum weights of the Neural Networks. 

Based on the obtained results, it was found that Simplex Optimization, rather 

than Backpropagation or Genetic Algorithm optimization. determined the 

optimum Neural Network weights. The resulting optimum mode1 and the 

spreadsheet simulation will be utilized to implement a wmprehensive system for 

parametric cost estimating of highway projects. The system is fully described in 

the next chapter. 



CHAPTER 4 

A Comprehensive System for Parametric 

Cost Estimating 

4.1 Introduction 

In pararnetric cost estirnating models, it is always difficult to decide which 

parameters to be measured and how to evaluate their significance to the model. 

This is due to the lack of information at the early stage of project life cycle at 

which the parametric cost estimating is usually perfomed. Thus, it is desirable to 

find the key parameters which give the relevant information and measure the 

level of importance and uncertainty for each parameter. Such uncertainty can be 

accounted for by conducting a sensitivity analysis. Also. additional modules need 

to be integrated with the system to facilitate the storage of the data and adapt 

the developed model to new environments. 



Once the optimum Neural Network Model was selected, as discussed in chapter 

3. other M O ~ U ~ S  have been integrated with the optimum Neural Network to 

develop a comprehensive parametric estirnating system (Fig. 1.1. chapter 1 ). 

The system consists of: 1) A user interface; 2) A sensitivity analysis module to 

detemine the sensitivity of the predicted cost to changes in cost-related 

parameters; 3) A database module to store new highway projects into the 

historical cases; and 4) An adaptation module to re-optimize the Neural Network 

mode1 on new historical cases and accordingly adapt model's performance to 

new environments. The development of these modules and the operation of the 

whole system is described in the following subsections. 

4.2 The User Interface 

A user-friendly interface to the parametric estimating system was developed on 

Microsot? Excel using its macro tool. Excel macros can be used to automate 

repetitious tasks and make an application easier to use. It can be created by 

tuming on the macro recorder, and then manually work through the process that 

needs to be automated, and accordingly a macro code will be automatically 

written. Such macro can then be assigned to a button on the screen. The macro 

code can also be edited and modified to suit the application or to correct 

mista kes. 



Also. before recording the rnacro. it should be worked through the process so 

that the procedure can be organized. There are two ways ta begin recording a 

macro: Select the Tools menu, then select Record Macro and Record New 

Macro. The other way is by clicking on the Record Macro button on the Visual 

Basic toolbar as shown in Fig. 4.1 . 

Figure 4.1. Visual Basic Toolbar 

A dialogue box will appear that will ask to name the new macro, and also give a 

brief description of its function. After clicking OK, every operation was performed 

will be recorded in this macro (from entering data, formatting cells, opening a 

file, ........ etc.) until the rnacro is tumed off. The rnacro can be tumed off by 

clicking on the Stop rnacro button, either the one on the Visual Basic toolbar or 

the freestanding one that will appear somewhere on the screen when the macro 

is recording (Excel Reference Manual, 1996). Using Excei macros, the user 

interface was developed to facilitate the operation of al1 modules. 



4.3 Sensitivity Analysis Module 

Once the optimum Neural Network model has been selected as described early 

in Chapter 3, it can be put to actual use in predicting the budget cost for new 

highway projects. In this case, the Neural Network is presented wlh the user's 

best judgment conceming the ten characteristic factors that describe the project. 

However, at this early project stage in which the model is applicable, project 

characteristics might not be decided for certain. A practical model, therefore, has 

to assess the sensitivity of the rnodel's predictions to variation in the project 

characteristics Therefore, a sensitivity analysis module has been incorporated 

into the present model. This module was coded in Microsoff Excel macros and 

was linked to the Neural Networks spreadsheet. The sensitivity analysis screen 

is shown in Fig. 4.2, with two steps for perfoming the analysis. First, the user 

inputs the project data by clicking on "Enter Project Datan button. A user-friendly 

data-input screen (see Fig. 4.3) was activated and the data for a sample project 

was input. Second, the user selects the parameter or combination of parameters 

in which heishe lacks confidence in the initial judgment. As shown in Fig. 4.2, 

three parameters were selected for demonstration: project type. location, and 

duration. Acwrdingly, a plot comparing the Neural Networks initial cost 

prediction with those of a group of 20 project scenarios generated with little 

random variation to the initial project data. 



y, m factors to change: 

Figure 4.2: Sensitivity Analysis Screen. 

The random variations were introduced only in the parameters that the user has 

selected and the sensitivity analysis was conducted in a manner similar to 

traditional Monte Carlo simulation. In order not ta introduce impractical scenarios 

into the sensitivity analysis. random variations were limited to a range that is V 

25% of the initial parameter value, and bounded by the maximum and minimum 

limits. Other parameters that have discrete values, such as "project scopen. were 

dealt with as integer values. The calculations underiying the sensitivity analysis 

was done in a spteadsheet similar to that of Fig. 3.1 1 with only the first matrix 

changed with formulas to calculate the values for the different scenarios. Neural 



Network predictions. as such, are instantaneous and are plotted automatically as 

shown in Fig. 4.2. The rnacro executing the sensitivity analysis is shown in 

appendix A. The mean and the standard deviation of the predicted costs for the 

20 scenarios can be compared to the initially estimated cost. The mean value 

represents the expected change in predicted cost. considering variations in the 

selected parameters. This approach can be used to detemine the relative 

significance of each input parameter in the model. This can be done by using the 

same initial data and then conducting the sensitivity several times with a single 

parameter selected in each, then comparing the resulting mean and standard 

deviation values. 

Figure 4.3: Project Data-Input Screen. 
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4.4 Historical Database and Model-Adaptation Modules 

One important aspect of a practical model is to adapt it to new project situations. 

This enables 1 to adjust its contractor-independent nature to becorne more 

suited to the user's own work environment. It also enables the build-up 

experience and incorporates new experiences into the model. In the present 

study. therefore, an adaptation module has been added to the model. This 

module uses the user's own historical project cases as a representative of his 

work environment. It then re-optimizes the Neural Networks of the model on 

those cases. Fig.4.4 shows the adaptation screen, developed using Excel 

macros. The macro for integrating the adaptation module with the optimum 

model is shown in appendix B. Initially, the usefs historical projects need to be 

entered into the model by selecting "Add a New Projectn button. The user will be 

prompted for project data and accordingly the cell ranges in the Neural Networks 

spreadsheet (Fig. 3.1 1) will be increased and the formulas copied to 

accommodate for an additional example. Once al1 data is entered. the "Review 

and Modify Data" button can be used to browse and modify the projects' data in 

a manner similar to Fig.4.3. To re-optimize the Neural Networks, the user has the 

flexibility to re-optimize on the total number of projects in the historical database 

by clicking the "Re-Optimize on All Cases" button. Altematively, the user can re- 

optimize the Neural Networks using only the newly added projects by clicking the 

"Re-Optimize on New Cases Onlyn button. In each of the two optirnization 



options. cell references and Solver optirnization parameters are adjusted 

autornatically and the user is prompted out when the process is completed. 

Figure 4.4: Model Adaptation Screen. 

Once the model is re-optimized. it can be used to estirnate the cost of new 

projects by selecting the "Estimate New Project" button. It should be noted that 

model adaptation permits the user to add new historical data to the model, 

without introducing changes to the structure of the model itself such as the 

number of inputs and hidden nodes, which had been fixed at an eariy stage. 



4.5 Conclusion 

In this chapter, a wmplete parametric estimating system is presented and mded 

in a user-friendly software using Microsoff Excel. The software uses Neural 

Networks for pararnetric cost estimation that derive solutions for new highway 

projects. A sensitivity analysis is included to account for the uncertainty in the 

mode! parameters. The objective is to study the sensitivity of the rnodel output 

(predicted cost) to changes in cost-related parameters. The sensitivity analysis is 

camed out by changing each cost-related parameter independently and studying 

how the model output is being influenced by these changes. In addition, the 

software provides a tool that facilitates storage of previous project encounters, 

efficient data editing. model adaptation to the user's environments. and 

necessary computations. 



CHAPTER 5 

Conclusion 

5.1 Comments on Present Developments 

In this study, the Neural Networks technique was employed to develop a 

parametric cost estimating model for highway projects. The study demonstrates 

the benefits of using Neural Network technique for effective management and re- 

use of historical cost data. The data of 18 highway projects constructed in 

Newfoundland during the past five years were used to train the Neural Networks. 

The structure of a simple Neural Network was simulated on Microsoff Excel 

program with its main cornponents and elements to determine the optimum 

Neural Netwark model. Three different approaches. Neural Network training 

Algonthms. Simplex optimization and Genetic Algorithms were utilized to find the 



optimum weights of the Neural Networks. These approaches greatly beneffl from 

the simulation of Neural Network on a spreadsheet. Issues regarding the 

modeling approach of Neural Networks were discussed, including data 

preparation. model formation. network configuration and Neural Networks 

implementation. 

A cornparison was conducted between the results of two common Neural 

Network training Algorithms (Backpropagation and GRNN) and that of multiple 

regression analysis. The results signify that Neural Networks have captured the 

relations embedded in the trained data and in tum indicate better predictive 

models than traditional ones. It was concluded, therefore, that the performance 

of Backpropagation network model with the total cost as the only model output is 

performing better than other training techniques. 

Next. the Simplex optimization and Genetic Algorithms were applied to optimize 

the model using the Neural Network spreadsheet simulation and a cornparison 

among Backpropagation. Simplex Optimization and Genetic Algorithms was 

conducted. Based on this experimentation, the Simplex Optimization produced 

the optimum Neural Network. Excel macros were then utilized to encode the 

optimum model in a user-friendly software to facilitate user input of cost-related 

parameters for new projects and accordingly. predict their budget costs. For 

practicality. the developed model provides a module to study the sensitivity of the 



mode1 to changes in wst-related parameters and to determine their relative 

sig nificance. In addition. the present model incorporates an adaptation module 

that allows the user to input new project cases and utilize thern to re-optimize the 

model to hislher particular environment. The developments made in this 

research demonstrated the practicality of using spreadsheet programs in 

developing adequate Neural Network models for use in construction. 

Since their introduction in early 1980's. spreadsheet programs have been among 

the most easy-to-use software programs that include powerful data management 

capabilities. The use of spreadsheets in construction has, therefore. been 

customary to many practitioners and several applications. particularly in cost 

estimation. were developed in their familiar spreadsheet format (Pickard 1997; 

and Compton 1987). In the present developments, the use of a spreadsheet 

program has brought several benefits to the development process and 

presumably to the end user. It was possible to simulate the Neural Networks 

process in a transparent fom, and further optimize it using spreadsheet tools. 

This presents Neural Networks as a viable tool for use in construction by 

adjusting the deveioped template to other applications. Also, spreadsheets 

incorporate many powerful features including formula computations and 

unlimited customization tools that are easy to use. The user, therefore, does not 

have to program any routines for creating reports and printing results. In addition, 

recent versions of spreadsheet programs have included powerful data 



management techniques and scenario-management capabilities. They have also 

included links to the intemet to present information and allow the sharing of files 

among work groups. Their capabilities offer many general-purpose features that 

can be used to develop modules to integrate with existing ones to form global 

solutions. Users can also select arnong many add-in modules available on the 

market to extend spreadsheet capabilities. 

The research conclusions and limitations can be summarized as follows: 

Neural Networks has dernonstrateci to be a promising tool for use in the initial 

stages of construction projects when typically only a limited or incornplete 

data set is available for cost analysis. 

Compared with traditional approaches, this technique is simple and flexible. 

requires no complicated mathematical modeling and makes no assumptions 

about the relationship between the cost related parameters. 

The developed model makes significant advances in traditional highway 

estimating methods by means of using state-of-the-art techniques in the 

analysis of cost and provides a methodology to adapt the model to new 

construction environments. 



Wth this model, the effects of cost-related parameters on the total cost of 

construction projects can be investigated through its sensitivity analysis 

procedure. 

This model was developed only using data collected from St. John's and 

surrounding area, and accordingly the mode1 can not be used ta predict 

construction costs for other areas. However, new historical data can be fed 

into the model and re-optimized to develop a new estimating model. In such 

cases, it is recommended to re-optirnize the data using only the new historical 

data which presents the new environrnents. 

Although many efforts were made to collect as much information as possible. 

the presented model for St. John's area can be enhanced by feeding the 

model with more training examples. In this case, it is recommended to 

eliminate redundant and distorted examples and keep only cases with 

realistic relationship between inputs and outputs. 

The model developed in this study can only be used at the prelirninary design 

stage at which the acceptable level of accuracy is within Q 0 %  range. 



5.2 Future Research 

The current research is being expanded to investigate the ability of applying the 

developed mode1 to The Canadian Strategic Highway Research Program (C- 

SHRP) and the Canadian Long Terni Pavement Performance (C-LTPP) Project 

The C-LTPP program documents a comprehensive database of field test results 

to evaluate the performance of a wide range of pavement types. over a 20-year 

tirne frame. The study involves over 2800 test sites located on primary highways 

in North Amerka. The advantages of expanding the present study to this 

program are to improve the performance of highways by relating the life cycle 

cost of highway construction to its service environment and type of pavement 

construction. This reduces not only the initial costs of construction and enables 

the estimation of realistic construction cost but also supports the selection of 

appropriate pavement type and maintenance activities to suit a particular 

hig hway condition. 
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APPENDICES 

Appendix A 

Macros of Sensitivity Analysis Module 

Sub ma~~02~Click() 
'new projed 

itemNum = Application.lnputSox(Ch6(13) & 'Enter Project Type (1.2 or 3)". Type:=l ) 
Range("T;>').Value = itemNum 
itemNum = Application.lnputBox(Ch6(13) & 'Enter Project Scope(1.2 or 3) ". Type:=l) 
Range("U2")-Value = itemNum 
itemNum = Applimtion.lnputBox(ChrS(13) 8 'Enter Year of construcüon. e.g 1991 ", Type:=l) 
Range("V2").Value = itemNum 
iternNum = Application.lnputSox(Chr$(13) & "Enter Construction Season(l=Winter. 2=Summer or 3=Fall) *. Type:=l) 
Range("W2").Value = itemNum 
itemNum = Application.lnputBox(Chra(l3) & 'Enter Location (l=StJohn's, 2=StJohn's suberb or 3=Avalon Reagion) ", 

Type:=l ) 
Range("X2").Value = itemNum 
iternNum = Aqplication.InputBox(Ch6(13) 8 "Enter Duration in Months ', Type:=l ) 
Range("Y2").Value = iternNum 
itemNum = Application.lnputBox(Chr%(l3) & "Enter Size in Km '. Type:=l ) 
Range("Z2").Value = itemNum 
itemNum = Application.lnputBox(Ch6(13) & 'Enter Capacity. 1 =24anes, 2=24anes devided ' ,Type:=l) 
Range("AA2").Value = itemNum 
itemNum = Application.lnpuBox(Chra(i3) 8 '1s there any watehody O=No, l=Yes ". Type:=l) 
Range("AB2').Value = itemNum 
itemNum = Appli~tion.lnputSox(ChR(13) 8 "Enter Soi1 Classes according to AGR O ta 9 ', Type:=l) 
Range("AC2').Value = itemNum 
X = MsgBox("NN Cost Estimate is $" 8 Int(Range("Ae2").Value 1000000) & " Dollars", vbOKOnly) 
X = MsgEox("Average of 20 Sœnarios $- & Int(Range("Ag2").Value 1000000) 8 " Dollars". vbOKOnly) 
X = MsgBox("Standerd Devision of 20 Scenarios = ' & (Range("Ah2").Value). vbOKOnly) 

End Sub 

Sub Macm30 
Range("AH 132:AJ 152").Seled 
ActiveSheetChartObjects.Add(1400, 1930,437. 281 ).Select 
Application.CutCopyMode = False 
ActiveChaRChartWizard Sourœ:=Range("AH132W152'), Gallery:= - 

xlline, Forrnat=2, PlotB~=xlColumns. Categorylabels:=l. - 
SeriesLabels:=l . Haslegend:=l , TiUe:=-, CategorylÏUe:= - 
'20 Randorn Cases". ValueTitle:="Generated Cast in Million Sa, - 
ExtraTiUe:=- 

ActiveWindow.SmallScroll Down:=4 
Selection.Width = 648.75 
ActiveWndow.SmallScroll ToRights5 

End Sub 



Appendix B 

Macros of Mode! Adaptation Module 

Sub Maaol() 
worksheets~~ew-i 0 u t p u r ) m t e  
Applicatim.Goto reference:="unscaled" 
Seledion.End(xlDown).SeIect 
A d i v e C e l l . O f k e t ( ~ t = l ,  columnOffset=O)Mvate 
Selection.EntireRow.lnsert 
AdiveCell.FormulaR1 Cl = '=R[-l]C+im 
ActiveCelI.Offset(rowOffset=O. columnOffset=l ).Activate 
iteml = Application.lnputBox(Chrs(l3) & "Enter Project Type(1 =Bridge; 2=Higtiway):*. Type:=1) 
ActiveCeIl-Value = iteml 
AcüveCell.Offset(TOWOffSBt:=û~ columnOffset=l )Activate 
item2 = Application.lnputBox(Chrs(i 3) & *Enter the Scope for Pmjed (1 =New; 2=Rehab.; 3=Other):". Type:=l ) 
ActiveCell.Value = item2 
ActiveCell.Onset(rOwOffSet=û, c o l u m n O f f s e t = l ) ~ t e  
item3 = AppIicabjon.lnputBox(Ch6(13) & 'Enter Year of Construction for the Projed(e.g.. 1991):". Type:=l) 
ActnreCell.Value = item3 
ActiveCell.Offset(rOwOffSet=O, columnûfiset=f )Advate 
item4 = Application.lnputSox(Chr$(l3) & "Enter the Construction Season (l=Winter, 2=Summer; 3=FaB): ". Type:=l ) 
AcüveCell.Value = item4 
AdiveCell.Offset(TOWOffSBt=O1 mlumnOtrset=l).Adivate 
item5 = Application.lnputBox(Chfa(13) & 'Enter Projed Location (l=St John's; 2=Suburbs: 3=Avalon):". Type:=l) 
ActiveCell.Value = item5 
ActiveCe11.0ffset(rOwOffSet=O, columnOffset=l )Advate 
item6 = Application.lnpu180x(Chra(i3) & 'Enter the Contracî's Duration (months): ", Type:=l) 
ActiveCell.Value = item6 
ActiveCell.Offset(rOwOffSet=O, wlumnOffset==l)Activate 
item7 = Application.lnputSox(Chd(13) & "Enter Projed lengtti in kilometers: ", Type:=l) 
ActiveCell.Value = item7 
ActiveCe11.0ffSet(TOWOffSBt=O, columnOffset=l )Advate 
item8 = Application.lnputSax(Chr-$(13) & "Enter the Highway Capaaty (1 =2-Lanes; 2=2-bries divided): '. Type:=l ) 
ActiveCell.Value = item8 
ActiveCell.Offset(rOwOffSet=O, calumnOffset=l).Ac!ivate 
item9 = &plication.lnputSox(Chd(13) & "1s there any crossing water-bodies (O=No; l=Yes)? ". Type:=1) 
AdiveCell.Value = item9 
ActiveCell.Offset(rOwOffSet:=O~ columnOnset=l).Acüvate 
item10 = Application.lnputBox(Chrâ(l3) & "Enter Soi1 classification according to AGR. Canada (O to 9): ", Type:=l) 
AdiveCell.Value = item10 
ActiveCell.Offset(rowOffset=O, colurnnOffset=i).Activate 
item1 t = Applicotion.lnputBox(Ch6(13) 8 'Enter Aduat Cost in Million 5: ", Type:=l) 
AdiveCell.Value = iteml 1 

Application.Goto referenœ:="scaled" 
Selection.End(xlOown).Select 
AcüveCe11.0ffset(rowOffset:=l. colurnnOffset=O).Activate 
Selection. EntireRow.lnsert 
AdiveCell.FormulaR1 C l  = '=R[-1]C+ln 
ActiveCeIl.Offset(rowOffset=O, columnOnset=l )Activate 
Range(%" & Trim(Str(AcüveCell.Row - 1)) & ':Lm & Tnm(Str(AcüveCell.Row - l})).Seled 
Seledion.Copy 
AdveCe11.Offset(rowOnset=l. ~l~mnOf fse t=o)Act i~ te  
ActiveSheet Paste 
Application.CutCopyMode = False 



Selection.Copy 
ActiveCell.Onset(TOWOffSBt=l. edumnOfFset=û)Aûivate 
ActiveShee t Paste 
Application.CutCopyMode = False 

Application.Goto referenœ:="nnoutput? 
Seledon.End(xlDown).Seled 
ActiveCell.Offset(TOWOffSBt=l. edumnOffçet=O)Mvate 
Sefecb'on.EntireRow.lnsert 
ActiveCell.FormulaR1 C l  = "=R[-1 J C W  
AcoveCell.Offset(mvOfket=O, columnOffset=l ).Activate 
RangerHe & Trim(Sb(AcoveCell.Row - 1)) 8 ":Lw & Tn'm(Str(ActiveCell.R - l))).Seled 
Seledion.Copy 
ActiveCe11.0fFset(row0ffset=l, columnOffset=O)ACtiMte 
ActiveSheet Paste 
Application.CutCopyMode = False 
AdiveCell.Offset(mvOffset=û, coIumnOffset=2)Acthte 
Application-SendKeys "[ESCJA(HOMw. True 
Ranger Ml  ").Select 
Sele~on.End(xlDown).Seled 
Seledion.Copy 
AaiveCell.Onset(l.O)Acüvate 
A~ü~8Sheet. Paste 
Range(W1 ").Select 
Selection.End(xlDown).Seled 
Seledon-Copy 
AdiveCell.Offset(l.O)Acîivate 
AdiveSheetPaste 
ApplicationSendKeys "AwOME)", Tnie 
Workshee!s('Mainm).Adivate 

End Sub 

Sub macro2() 
Worksheets("New-t 0utpur)Acb'~te 
RangerAl ").Adivate 
Application.SendKeys "%doa. Tnie 
Application-SendKeys mAwOMw. Tme 
Worksheets("Mainn)m~te 

End Sub 

Sub Mac&() 
Worksheets("New-1 Output").Activate 
Application.ExewteExœl4Maao String:= - 

-[SOLVERXLA]SOLvER!SOLVERROK(!targetl,2,0.)* 
Aqplication.ExewteExcel4Maao String:= - 

m[SOLVER.XM]SOLVER!SOLVER.RESET()" 
Application.ExearteExcel4Maao String:= - 

'[SOLVER.XLA]SOLVER!SOLVERRADD(!train.1.~=2-)" 
Application.ExewteExcel4Macro String:= - 

'[SOLVER.XLA]SOLVER!SOLVERMD(!test.1."=5")" 
Application.ExeaitaExcel4Mam String:= - 

'[SOLVER.XLA]SOLVER!SOLVEROK(Itargetl.2.0.(!moved~weights))a 
Application.Exeaitefxoel4Maao String:= - 

-[SOLVERXLNSOLVER!SOLVER.SOLVE()" 
Worksheets("Mainm)Mmte 

End Sub 
Sub Maao4() 

Worksheets("New-1 Output").Acti~te 
Application.Exea~teExcel4Mam String:= - 

'[SOLVERXLA]SOLVER!SOLVER.OK(!targeti .2.0,)" 
Applcation.ExeaiteExœI4Maao String:= - 

"[SOLVERXLA]SOLVER!SOiVER.RESET()" 
Application.ExeartaExœI4Mam String:= 

m [ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V E ~ ! ~ ~ ~ ~ ~ A D ~ ! n e w c a s e s , l  .-=Fr 



Aqplication.EX~cuteExœMMacro Stting:= 
" [ S O L ~ ~ S O L E R I S O L V E R - O K ~ ~ ~ ~ ~ ~ ~ ~ , O . ( ! ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ) ) "  

Application.ExeaJteExœMMacro String:= - 
"ISOLVERXU]SOL~!SOLVERRSOLVE(~ 

WorksheetsCMain")vate 
End Sub 

Sub macro5CT05C1ick() 
'new pmject 
Worksheets("New-1 O~tpur).Acüvate 
itemNum = Application.lnputBox(Ch6(13) & 'Enter Project Type (1.2 or 3)". Type:=?) 
Range('T2').Value = itemNum 
iternNum = Application.lnputBox(Chrâ(i 3) & 'Enter Projed Scope(l.2 or 3) ", Type:=l) 
Range(W2").Value = itemNurn 
itemNum = Application.lnputBox(ChrS(l3) & 'Enter Year of consiruction. e.g 1991 ". Type:=f ) 
Rangew).Value = itemNum 
itemNum = Application.lnputBox(Chr$(l3) & 'Enter Construction Season(l=Winter. 2=Summer or 3=Fall) ', Type:=l ) 
Range(WW).Value = itemNum 
iternNum = Application.lnputBox(Chr$(l3) & 'Enter Location (1 =StJohn's, 2=!XJohn's subert, or 3=Avalon Reagion) ', 

Type:=l ) 
Range('XT).Value = itemNum 
itemNum = Application.lnpu~x(ChR(I 3) & "Enter Ouration in Months ", Type:=l ) 
Range("Y2").Value = iternNum 
itemNum = Application,lnputBox(Chr$(13) 8 'Enter Size in Km ", Type:=l) 
Range(72").Value = itemNum 
itemNum = Application.lnputBox(Chr$(13) & 'Enter Capaaty. 1 =2-lanes. 2=24anes devided ". Type:=l ) 
Range("AA2").Value = itemNum 
itemNum = Application.lnputBox(Ch&(l3) & "1s there any watefbady O=No, 1 =Yes '. Type:=l ) 
Range("AB2").Value = itemNum 
itemNum = Application.lnputBox(Chr$(13) & 'Enter Soil Classes according to AGR O to 9 ', Type:=?) 
Range("AC2").Value = itemNum 
X = MsgBoxCNN Cost Estimate is $" & Int(Range("AeT).Value 1000000) & * Dollars". vbOKOnly) 
Worksheets("Maina)Mvate 

End Sub 

Sub Macro9() 'delete 
Worksheets('New-1 Outpur).Acüvate 
Range(-Al ').Select 
delitem = Application.lnputSox(Ch6(13) 8 "Enter Projed Number to Delete( > 18):". Type:=l) 
If delitem <= 18 Then Worksheek("Main").AdiMte: Exit Sub 
ApplicationGoto referenœ:='unscaled' 
AdiveCell.Offset(rowOffset:=18, columnûffset=û).Activate 
done = O 
Do 
ActiveCeil.Offset(rwvOnset:=l, mlumnOfFset=û)Activate 
If AdiveCel1,Value = O Then Worksheets("Main')Mvate: Exit Sub 
If ActiveCell.Value = delitem Then done = 1 : Seledon.EntireRow.Oelete 
Loop While done = O 

Application-Goto referenœ:="scaled" 
ActiveCeII.Offset(~t=l 8. wlumnOffset=O)~vate 
done = O 
Do 
ActiveCe11.0ffset(K)HIOffset:=l. columnOffset=0).Acüvate 
If ActiveCell.Vaiue = O Then Worksheets(%Iain')Mvate: Exit Sub 
If AdiveCell.Value = delitem Then done = 1 : Selecîion.EntireRow.Oelete 
Loop M i l e  done = O 

Application.Goto referenœ:="outoffiiddenm 
AdiveCell.Onset(rowOffset:=18, colurnnOffset=O).Activate 
done = O 
Do 
AcüveCelI.Offset(rOwOffSet=l. colurnnOnset=O).Acb'vate 
If ActiveCell.Value = O Then Worksheets("Mainn)Acb'vate: Exit Sub 
If ActiveCell.Value = delitem Then done = 1: Selecb'on.EntireRow.Oelete 
Loop While done = O 



Application.Goto referenœ:*nnoutpur 
ActiveCell.Offset(rOwOffS6t=l8, colurnnOffset=û)ActiMte 
done = O 
Do 
Acb;reCell.Offset(rOwOfFSet:=l, eolurnnOffset=û)Activate 
If Acb'veCell.Value = O Then Workshee~Mainn).Acüvate: Exit Sub 
If ActiveCell.Value = delitem Then done = 1: Selection.EntireRow.Oelete 
Loop While done = O 

Application-SendKeys "AwOMw. True 
Worksheets("Mainn)Adivate 

End Sub 
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