Parametric Curves & Surfaces

Adam Finkelstein Princeton University COS 426, Spring 2002

Curves

- · Splines: mathematical way to express curves
- · Motivated by "loftsman's spline"
 - Long, narrow strip of wood/plastic
 - Used to fit curves through specified data points
 - Shaped by lead weights called "ducks"
 Gives curves that are "smooth" or "fair"
 -
- Have been used to design:
 - AutomobilesShip hulls
 - Aircraft fuselage/wing

Parametric polynomial curves

· A parametric polynomial curve is described:

$$x(u) = \sum_{i=0}^{n} a_{i}u$$
$$y(u) = \sum_{i=0}^{n} b_{i}u$$

- · Advantages of polynomial curves
 - Easy to compute
 - Infinitely differentiable

Explicit formulation Let's indicate level of nesting with superscript j: An explicit formulation of Q(u) is given by: V_i^j = (1-u)V_i^{j-1} + uV_i^{j-1}

```
• Case n=2 (quadratic):

Q(u) = V_0^2
= (1-u)V_0^1 + uV_1^1
= (1-u)[(1-u)V_0^0 + uV_1^0] + u[(1-u)V_1^0 + uV_2^0]
= (1-u)^2V_0^0 + 2u(1-u)V_1^0 + u^2V_2^0
```

More properties
• General case: Bernstein polynomials

$$Q(u) = \sum_{i=0}^{n} V_i {n \choose i} u^i (1-u)^{n-i}$$
• Degree: polynomial of degree n
• Tangents:
$$Q'(0) = n(V_1 - V_0)$$

$$Q'(1) = n(V_n - V_{n-1})$$

Cubic curves

- From now on, let's talk about cubic curves (n=3)
- · In CAGD, higher-order curves are often used
- In graphics, piecewise cubic curves will do
 - Specified by points and tangents
 - $\,\circ\,$ Allows specification of a curve in space
- All these ideas generalize to higher-order curves

Matrix form

Bézier curves may be described in matrix form:

$$Q(u) = \sum_{i=0}^{n} V_{i} \binom{n}{i} u^{i} (1-u)^{n-i}$$

= $(1-u)^{3}V_{0} + 3u(1-u)^{2}V_{1} + 3u^{2}(1-u)V_{2} + u^{3}V_{3}$
= $\binom{u^{3}}{u^{2}} u^{2} u^{3} + \binom{1}{3} - \frac{3}{6} - \frac{3}{3} 0 \binom{V_{0}}{V_{1}} \binom{V_{0}}{V_{2}}$
= $\binom{u^{3}}{u^{2}} u^{2} u^{3} + \binom{1}{2} \binom{U_{0}}{U_{1}} \binom{V_{0}}{V_{2}} \binom{V_{0}}{V_{3}}$
M_{Bezier}

Display Pseudocode for displaying Bézier curves: procedure Display({V_i}): if {V_i} flat within ɛ then output line segment V₀V_n else subdivide to produce {L_i} and {R_i} Display({L_i}) Display({R_i}) end if end procedure

Flatness

- Q: How do you test for flatness?
- A: Compare the length of the control polygon to the length of the segment between endpoints

Matrix formulation

Convert from Catmull-Rom CP's to Bezier CP's:

(B_0)		(0	6	0	0)	(V_0)
B_1	$=\frac{1}{6}$	-1	6	1	0	V_1
B_2		0	1	6	-1	V_2
$\left(B_{3}\right)$		0	0	6	0)	$\left(V_{3}\right)$

Exercise: Derive this matrix. (Hint: in this case, τ is not 1/2.)

- · Catmull-Rom splines have these attributes:
 - C1 continuity
 - Interpolation
 - Locality of control
 - No convex hull property (Proof left as an exercise.)

Curved Surfaces Curved Surfaces Motivation · What makes a good surface representation? • Exact boundary representation for some objects • Accurate • More concise representation than polygonal mesh • Concise Intuitive specification · Local support • Affine invariant Arbitrary topology · Guaranteed continuity • Natural parameterization · Efficient display • Efficient intersections H&B Figure 10.46

Curved Surface Representations

- · Polygonal meshes
- · Subdivision surfaces
- · Parametric surfaces
- · Implicit surfaces

Curved Surface Representations

- Polygonal meshes
- Subdivision surfaces
- Parametric surfaces
- Implicit surfaces

H&B Figure 10.10

 $\mathbf{U} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}$

Where M is a matrix describing the blending functions for a parametric cubic curve (e.g., Bezier, B-spline, etc.)

Drawing Bezier Surfaces

 One problem with adaptive subdivision is avoiding cracks at boundaries between patches at different subdivision levels

Avoid these cracks by adding extra vertices and triangulating quadrilaterals whose neighbors are subdivided to a finer level. Watt Figure 6.33

Parametric Surfaces Advantages: Easy to enumerate points on surface Possible to describe complex shapes

- · Disadvantages:
 - Control mesh must be quadrilaterals
 - Continuity constraints difficult to maintain
 - · Hard to find intersections

