
Parametric Estimating –
Nonlinear Regression

The term “nonlinear” regression, in the context of this job aid, is used to describe 
the application of linear regression in fitting nonlinear patterns in the data. The 
techniques outlined here are offered as samples of the types of approaches used 
to fit patterns that some might refer to as being “curvilinear” in nature.

This job aid is intended as a complement to the Linear Regression job aid which 
outlines the process of developing a cost estimating relationship (CER), addresses 
some of the common goodness of fit statistics, and provides an introduction to 
some of the issues concerning outliers.  The first 6 steps from that job aid are 
cited on the next page for reference. 



Nonlinear Regression



Nonlinear Regression (continued)



This job aid will address several techniques intended to fit patterns, such as the 
ones immediately below, that will be described here as being nonlinear or 
curvilinear (i.e. consisting of a curved line).  These types of shapes are sometimes 
referred to as being “intrinsically linear” in that they can be “linearized” and then 
fit with linear equations.

For our purposes we will describe the shape below as being “not linear”.  The 
techniques described here cannot be used to fit these types of relationships.

What do we mean by the term “nonlinear”?



The Linear Regression job aid 
suggests that the first step in 
developing a cost estimating 
relationship would be to involve 
your subject matter experts in the 
identification of potential 
explanatory (X) variables.  The 
second step would be to specify 
what the expected relationships 
would look like between the 
dependent (Y) variable and 
potential X variables.  Those 
expectations may identify the 
need for a nonlinear technique.

When would we consider a Nonlinear approach?

It’s also a good practice to scatterplot the data and observe whether the data is consistent 
with expectations; or, if lacking specific expectations, whether the data itself makes a 
compelling case to consider either a linear technique or nonlinear technique.



The Linear Regression job 
aid identifies some of the 
potential problems that you 
might experience with an 
equation such as: a data 
point that is more poorly 
predicted by the equation 
that the other data points; 
an influential observation; 
and residuals evidencing a 
pattern that would suggest 
nonlinearity in the data.

Other reasons to consider a Nonlinear approach

There were a number of investigative steps suggested with each of these types of 
problems, one of those steps would have you consider the possibility that the data 
had not been properly fit (e.g. a linear equation had been used to fit data that was 
predominately nonlinear in nature) in which case a nonlinear fitting technique might 
be appropriate.



The first example shows a pattern between X and Y 
that we will call “increasing at an increasing rate”.  
One possible approach in fitting this data would be 
to do a linear regression with Y and X squared.

The second case shows a pattern between X and Y 
that could be called “increasing at an decreasing 
rate”.  One technique would be to fit this data by 
regressing Y against the square root of X.

The third example is a pattern between X and Y we 
might call “decreasing at an decreasing rate”.  In 
this case, regressing Y against the reciprocal of X
might result in a better fit.

Fitting Data using an X Transformation

The term “transformation” is used in this job aid to describe the mathematical 
operations that can be performed on an X variable, Y variable, or X and Y variable 
such that an otherwise existing nonlinear relationship between X and Y can be made 
more linear by virtue of the transformation.  A linear regression is then performed 
using the transformed variables.  The illustrations below deal with transforming only 
the X variable.



The relationship between X and Y appears 
to be increasing at an increasing rate.  This 
would suggest an X squared transformation.

Notice that only the X values have been 
squared, the Y values remain the same.  The 
result is a more linear relationship which 
can now be better fit with linear regression.

It’s important to note that regardless of the 
application you might use, the application 
cannot distinguish that the values you are 
fitting are X squared and not X.

Using an X Transformation

In applying the equation you must substitute X squared (in this case) for X, or 
whatever transformed X was used in creating the equation.



The equation produces the “right-side up” parabola 
when the coefficient on X squared is positive, and it 
produces the “upside down” parabola when the 
coefficient on X squared is negative.

If you were to bisect each of the two parabolas you 
would note that the quadratic can fit the previously 
mentioned “decreasing at a decreasing rate”, 
“increasing at an increasing rate”, and “increasing at 
a decreasing rate” patterns within certain ranges of 
the equation.  Since the patterns are in fact range 
dependent in the quadratic equation, it’s particularly 
important not to extrapolate beyond the range of 
the data, otherwise unexpected results would occur.

Fitting Data using a Quadratic Equation

The quadratic equation is a linear regression where the same X variable is used twice, 
once in it’s untransformed state, and second as the square of that X variable  

Since the same X variable is being used twice in the equation, it is inevitable that 
correlation will exist between X and X squared.  Although the correlation exists, it 
does not pose some of the issues as when the correlation is between different X 
variables.  For more on correlation between the X variables, and equations with 
multiple X variables, see the Multiple Regression job aid.



The transformation on X and Y can be done using 
either the common (base 10) logarithm (LOG) or the 
natural (base e) logarithm (LN).

Since the regression is performed using either the 
LOG or LN values of X and Y, you may also see the 
power model referred to as the log-linear model or 
the log-log model.

Note, the graph on the upper left is referred to as 
Cartesian space, where the values of the variables 
exist in their normal “units” of measure (e.g. dollars, 
hours, pounds, horsepower).  We will call this “Unit” 
space, in contrast to the logarithmic scale on the 
upper right which we will call “Log” space.

The Power Model

It’s been observed that where a 
nonlinear pattern exists between 
the X and Y variables, the pattern 
between Log X and Log Y tends to 
be much more linear. The Power 
model is the result of a logarithmic 
transformation of both the X and Y 
variables. 



In the example, linear 
regression is performed on 
the natural logarithm (LN) of 
X and Y.  The resulting 
equation is linear in what we 
will call “log space”, i.e. 
between LN(X) and LN(Y).

Since we began by taking the 
logs of X and Y, the process 
of converting back to X and Y 
will require us to take the 
antilog of the equation.

Creating the Power Model

From the equation in log space we take the antilog of the intercept. The X variable’s 
coefficient (slope) become the X variable’s exponent.  The value of Y now becomes 
the product of the terms, lending the equation to sometimes being called a 
multiplicative equation subject to a multiplicative error term. 

In a linear equation the b0 term represents the intercept, i.e. the value of Y when X is 
equal to zero (0.0).  In the power model the b0 term represents the value of Y when X 
is equal to one (1.0).



The first example shows a pattern between X and Y 
that we will call “increasing at an increasing rate”.  
An exponent greater than one (1.0) will produce 
these types of patterns.

The second case shows a pattern between X and Y 
that could be called “increasing at an decreasing 
rate”.  The equation will produce theses patterns if 
the value of the exponent is between zero (0.0) 
and one (1.0).

The third example is a pattern between X and Y we 
might call “decreasing at an decreasing rate”.  An 
exponent less than zero (0.0), i.e. negative, will 
produce this shape.

Exponents of the Power Model

The power equation is a popular convention when modeling nonlinear or curvilinear 
patterns due in part to the ability of the equation to produce three different curve 
shapes by simply varying the value of the exponent.



If the Y variable was in $K for 
example, we could say the 
average estimating error is 
around $20.68K.  We could 
then calculate the coefficient 
of variation (CV) and state 
that, relatively speaking, 
there is an average estimating 
error of around 7%.  

(In both cases some latitude 
has been taken with the exact 
meaning of a standard error.)

The Standard Error for the Power Model

Since the linear regression was performed on LN(X) and LN(Y), the standard error 
reported on the regression output corresponds to the log linear equation.  In order to 
put the standard error into context of Y rather than LN(Y), a standard error in “unit” 
space needs to be calculated.

The process follows the normal convention with a comparison of the actual value of Y 
and the predicted value of Y, in this case the predicted value being the result of 
entering the X values into the power model:   �Y = 0.9899 (X) 1.9069



The “Approximate” Standard Error for the Power Model

Notice that the residuals do not 
sum to zero as they would have 
in a linear equation.  

A linear equation is fitted 
through the means of X and Y.  

A log linear equation is fitted to 
the means of LN(X) and LN(Y).  

When the antilog is taken of the 
log linear equation to derive the 
power model, a “bias” occurs 
such that the residuals no longer 
sum to zero.

Consequently, the bias affects to 
some degree the accuracy of the 
unit space SE calculation.    

X Y
2 4
8 42

16 225
25 450
32 750

Mean 16.6 294.2

LN (X) LN(Y)
0.6931 1.3863
2.0794 3.7377
2.7726 5.4161
3.2189 6.1092
3.4657 6.6201

Mean 2.4459 4.6539

-200

-100

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4



In the article “The Trouble with R2” by Book and 
Young, they propose representing the R squared by 
taking the square of the Pearson R calculation 
(shown below). 

The square of the Pearson R could be interpreted 
as the variation between the actual Y values and 
the predicted Y values that is explained by the 
equation.

The R Squared in Unit Space for the Power Model

The Linear Regression job aid (shown) notes that the R squared can be calculated by 
dividing the SSR (explained variation) by the SST (total variation).  The resulting 
value is interpreted as the variation in Y explained by the variation in X.  

Equivalently, in the linear equation, R squared can be calculated by taking one (1.0) 
minus the SSE (unexplained variation) divided by the SST.  However, due to the bias 
previously noted with the conversion from log space to unit space, this equivalency 
no longer holds true when attempting to calculate the unit space R squared.
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