
Parfor for MATLAB

Summer Seminar
ISC5939
..........

John Burkardt
Department of Scientific Computing

Florida State University
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . parfor 2012 fsu.pdf

24/26 July 2012

1 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

2 / 101

INTRO: Parallel MATLAB on Your Desktop

Parallel MATLAB is an extension of MATLAB that takes advantage of
multicore desktop machines and clusters.

The Parallel Computing Toolbox or PCT runs on a desktop, and can
take advantage of up to 12 cores there.

The user can:

type in commands that will be executed in parallel, OR

call an M-file that will run in parallel, OR

submit an M-file to be executed in “batch” (not interactively).

3 / 101

INTRO: Local MATLAB Workers

4 / 101

INTRO: Parallel MATLAB on a Cluster

The Distributed Computing Server controls parallel execution of
MATLAB on a cluster with tens or hundreds of cores.

With a cluster running parallel MATLAB, a user can:

1 submit an M-file from a desktop, to run on the cluster, OR

2 log into the “front end” of the cluster, run interactively; OR

3 log into the “front end” of the cluster, and submit an M-file to be
executed in “batch”.

Options 1 and 3 allow the user to log out of the desktop or cluster, and
come back later to check to see whether the computation has been
completed.

Virginia Tech’s Ithaca cluster can run MATLAB on 96 cores.
The FSU HPC cluster had a temporary license for 128 cores
(now back to 16).

5 / 101

INTRO: Local and Remote MATLAB Workers

6 / 101

INTRO: PARFOR and SPMD (and TASK)

There are several ways to write a parallel MATLAB program:

some for loops can be made into parallel parfor loops;

the spmd statement synchronizes cooperating processors;

the task statement submits a program many times with different
input, as in a Monte Carlo calculation; all the outputs can be
analyzed together at the end.

parfor is a way to run FOR loops in parallel, similar to OpenMP.

spmd allows you to design almost any kind of parallel computation; it is
powerful, but requires rethinking the program and data. It is similar to
MPI.

We won’t have time to talk about the task statement.

7 / 101

INTRO: Execution

There are several ways to execute a parallel MATLAB program:

interactive local (matlabpool), suitable for the desktop;

indirect local, (batch or createTask);

indirect remote, (batch or createTask), requires setup.

indirect remote, (fsuClusterMatlab() (FSU HPC cluster only).

A cluster can accept parallel MATLAB jobs submitted from a user’s
desktop, and will return the results when the job is completed.

Making this possible requires a one-time setup of the user’s machine, so
that it “knows” how to interact with the cluster, and how to “talk” to
the copy of MATLAB on the cluster.

8 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

9 / 101

QUAD: Estimating an Integral

10 / 101

QUAD: The QUAD FUN Function

function q = quad_fun (n, a, b)

q = 0.0;
w = (b - a) / n;

for i = 1 : n
x = ((n - i) * a + (i - 1) * b) / (n - 1);
fx = bessely (4.5, x);
q = q + w * fx;

end

return
end

11 / 101

QUAD: Comments

The function quad fun estimates the integral of a particular function
over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles that lie
under the curve, and their sum is an estimate for the total area under the
curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming there is
some method to save the partial results and add them together in an
organized way.

12 / 101

QUAD: The Parallel QUAD FUN Function

function q = quad_fun (n, a, b)

q = 0.0;
w = (b - a) / n;

parfor i = 1 : n
x = ((n - i) * a + (i - 1) * b) / (n - 1);
fx = bessely (4.5, x);
q = q + w * fx;

end

return
end

http://people.sc.fsu.edu/∼jburkardt/m src/quad parfor/quad parfor.html

13 / 101

QUAD: Comments

The parallel version of quad fun does the same calculations.

The parfor statement changes how this program does the calculations. It
asserts that all the iterations of the loop are independent, and can be
done in any order, or in parallel.

Execution begins with a single processor, the client. When a parfor loop
is encountered, the client is helped by a “pool” of workers.

Each worker is assigned some iterations of the loop. Once the loop is
completed, the client resumes control of the execution.

MATLAB ensures that the results are the same whether the program is
executed sequentially, or with the help of workers.

The user can wait until execution time to specify how many workers are
actually available.

14 / 101

QUAD: What Do You Need For Parallel MATLAB?

1 Your machine should have multiple processors or cores:

On a PC: Start :: Settings :: Control Panel :: System
On a Mac: Apple Menu :: About this Mac :: More Info...
On Linux: System Menu :: About this Computer

2 Your MATLAB must be version 2008a or later:

Go to the HELP menu, and choose About Matlab.

3 You must have the Parallel Computing Toolbox (PCT):

To list all your toolboxes, type the MATLAB command ver.

Machines in DSL 400B have 2 processors; machines in DSL 152 have 8.
They all have a recent copy of MATLAB with the PCT.

15 / 101

QUAD: Interactive Execution with MATLABPOOL

Workers are gathered using the matlabpool command.

To run quad fun.m in parallel on your desktop, type:

n = 10000; a = 0; b = 1;
matlabpool open local 4
q = quad_fun (n, a, b);
matlabpool close

The word local is choosing the local configuration, that is, the cores
assigned to be workers will be on the local machine.

The value ”4” is the number of workers you are asking for. It can be up
to 12 on a local machine. It does not have to match the number of cores
you have.

16 / 101

QUAD: Indirect Local Execution with BATCH

Indirect execution requires a script file, say quad script.m:

n = 10000; a = 0; b = 1;
q = quad_fun (n, a, b);

Now we define the information needed to run the script:

job = batch (’quad_script’,
’matlabpool’, 4, ...
’Configuration’, ’local’, ...
’FileDependencies’, { ’quad_fun’ })

The following commands send the job for execution, wait for it to finish,
and then loads the results into MATLAB’s workspace:

submit (job);
wait (job);
load (job);

17 / 101

QUAD: Indirect Remote Execution with BATCH

The batch command can send your job anywhere, and get the results
back, if you have set up an account on the remote machine, and have
defined a configuration on your desktop that describes how to access the
remote machine.

For example, at Virginia Tech, a desktop computer can send a batch job
to the cluster, requesting 32 cores:

job = batch (’quad_script’, ...
’matlabpool’, 32, ...
’Configuration’, ’ithaca_2011b’, ...
’FileDependencies’, { ’quad_fun’ })

You submit the job, wait for it, and load the data the same way as for a
local batch job.

18 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

19 / 101

MD: A Molecular Dynamics Simulation

Compute positions and velocities of N particles over time.
The particles exert a weak attractive force on each other.

20 / 101

MD: The Molecular Dynamics Example

How do you prepare a program to run in parallel?

The MD program runs a simple molecular dynamics simulation.

There are N molecules being simulated.

The program runs a long time; a parallel version would run faster.

There are many for loops in the program that we might replace by
parfor, but it is a mistake to try to parallelize everything!

MATLAB has a profile command that can report where the CPU time
was spent - which is where we should try to parallelize.

21 / 101

MD: Profile the Sequential Code

>> profile on
>> md
>> profile viewer

Step Potential Kinetic (P+K-E0)/E0
Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00
2 498108.113974 0.000009 1.794265e-11

...
9 498108.111972 0.002011 1.794078e-11
10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.
Wall time = 378.828021 seconds.

22 / 101

MD: Where is Execution Time Spent?This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM

23 / 101

MD: The COMPUTE Function

f u n c t i o n [f , pot , k i n] = compute (np , nd , pos , v e l , mass)

f = z e r o s (nd , np) ;
pot = 0 . 0 ;

f o r i = 1 : np
f o r j = 1 : np

i f (i ˜= j)
r i j (1 : nd) = pos (1 : d , i) − pos (1 : nd , j) ;
d = s q r t (sum (r i j (1 : nd) . ˆ 2)) ;
d2 = min (d , p i / 2 .0) ;
pot = pot + 0 .5 ∗ s i n (d2) ∗ s i n (d2) ;
f (1 : nd , i) = f (1 : nd , i) − r i j (1 : nd) ∗ s i n (2 . 0 ∗ d2) / d ;

end
end

end

k i n = 0 .5 ∗ mass ∗ sum (v e l (1 : nd , 1 : np) . ˆ 2) ;

r e t u r n
end

http://people.sc.fsu.edu/∼jburkardt/m src/md/md.html
http://people.sc.fsu.edu/∼jburkardt/m src/md parfor/md parfor.html

24 / 101

MD: Can We Use PARFOR?

The compute function fills the force vector f(i) using a for loop.

Iteration i computes the force on particle i, determining the distance to
each particle j, squaring, truncating, taking the sine.

The computation for each particle is “independent”; nothing computed in
one iteration is needed by, nor affects, the computation in another
iteration. We could compute each value on a separate worker, at the
same time.

The MATLAB command parfor will distribute the iterations of this loop
across the available workers.

Tricky question: Could we parallelize the j loop instead?

Tricky question: Could we parallelize both loops?

25 / 101

MD: Speedup

Replacing “for i” by “parfor i”, here is our speedup:

26 / 101

MD: Speedup

Parallel execution gives a huge improvement in this example.

There is some overhead in starting up the parallel process, and in
transferring data to and from the workers each time a parfor loop is
encountered. So we should not simply try to replace every for loop with
parfor.

That’s why we first searched for the function that was using most of the
execution time.

The parfor command is the simplest way to make a parallel program, but
in other lectures we will see some alternatives.

27 / 101

MD: PARFOR is Particular

We were only able to parallelize the loop because the iterations were
independent, that is, the results did not depend on the order in which the
iterations were carried out.

In fact, to use MATLAB’s parfor in this case requires some extra
conditions, which are discussed in the PCT User’s Guide. Briefly, parfor
is usable when vectors and arrays that are modified in the calculation can
be divided up into distinct slices, so that each slice is only needed for one
iteration.

This is a stronger requirement than independence of order!

Trick question: Why was the scalar value POT acceptable?

28 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

29 / 101

PRIME: The Prime Number Example

For our next example, we want a simple computation involving a loop
which we can set up to run for a long time.

We’ll choose a program that determines how many prime numbers there
are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N multiplies the run time roughly by 4.

30 / 101

PRIME: The Sieve of Erastosthenes

31 / 101

PRIME: Program Text

f u n c t i o n t o t a l = p r ime fun (n)

%% PRIME FUN r e t u r n s the number o f p r imes between 1 and N.

t o t a l = 0 ;

f o r i = 2 : n

pr ime = 1 ;

f o r j = 2 : i − 1
i f (mod (i , j) == 0)

pr ime = 0 ;
end

end

t o t a l = t o t a l + pr ime ;

end

r e t u r n
end

http://people.sc.fsu.edu/∼jburkardt/m src/prime serial/prime serial.html
http://people.sc.fsu.edu/∼jburkardt/m src/prime parfor/prime parfor.html

32 / 101

PRIME: We can run this in parallel

We can parallelize the loop whose index is i, replacing for by parfor.
The computations for different values of i are independent.

There is one variable that is not independent of the loops, namely total.
This is simply computing a running sum (a reduction variable), and we
only care about the final result. MATLAB is smart enough to be able to
handle this summation in parallel.

To make the program parallel, we replace for by parfor. That’s all!

33 / 101

PRIME: Local Execution With MATLABPOOL

matlabpool (’open’, ’local’, 4)

n = 50;

while (n <= 500000)
primes = prime_fun (n);
fprintf (1, ’ %8d %8d\n’, n, primes);
n = n * 10;

end

matlabpool (’close’)

34 / 101

PRIME: Timing

PRIME_PARFOR_RUN
Run PRIME_PARFOR with 0, 1, 2, and 4 workers.
Time is measured in seconds.

N 1+0 1+1 1+2 1+4

50 0.067 0.179 0.176 0.278
500 0.008 0.023 0.027 0.032
5000 0.100 0.142 0.097 0.061
50000 7.694 9.811 5.351 2.719

500000 609.764 826.534 432.233 222.284

35 / 101

PRIME: Timing Comments

There are many thoughts that come to mind from these results!

Why does 500 take less time than 50? (It doesn’t, really).

How can ”1+1” take longer than ”1+0”?
(It does, but it’s probably not as bad as it looks!)

This data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.

36 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

37 / 101

ODE: A Parameterized Problem

Consider a favorite ordinary differential equation, which describes the
motion of a spring-mass system:

m
d2x

dt2
+ b

dx

dt
+ k x = f (t)

38 / 101

ODE: A Parameterized Problem

Solutions of this equation describe oscillatory behavior; x(t) swings
back and forth, in a pattern determined by the parameters m, b, k, f and
the initial conditions.

Each choice of parameters defines a solution, and let us suppose that the
quantity of interest is the maximum deflection xmax that occurs for each
solution.

We may wish to investigate the influence of b and k on this quantity,
leaving m fixed and f zero.

So our computation might involve creating a plot of xmax(b, k).

39 / 101

ODE: Each Solution has a Maximum Value

40 / 101

ODE: A Parameterized Problem

Evaluating the implicit function xmax(b, k) requires selecting a pair of
values for the parameters b and k , solving the ODE over a fixed time
range, and determining the maximum value of x that is observed. Each
point in our graph will cost us a significant amount of work.

On the other hand, it is clear that each evaluation is completely
independent, and can be carried out in parallel. Moreover, if we use a few
shortcuts in MATLAB, the whole operation becomes quite
straightforward!

41 / 101

ODE: The Function

function peakVals = ode_fun_parfor (bVals, kVals)

[kGrid, bGrid] = meshgrid (bVals, kVals);
peakVals = nan (size (kGrid));
m = 5.0;

parfor ij = 1 : numel(kGrid)

[T, Y] = ode45 (@(t,y) ode_system (t, y, m, ...
bGrid(ij), kGrid(ij)), [0, 25], [0, 1]);

peakVals(ij) = max (Y(:,1));

end
return

end

http://people.sc.fsu.edu/∼jburkardt/m src/ode sweep serial/ode sweep serial.html
http://people.sc.fsu.edu/∼jburkardt/m src/ode sweep parfor/ode sweep parfor.html 42 / 101

ODE: The Script

If we want to use the batch (indirect or remote execution) option, then
we need to call the function using a script. We’ll call this
“ode script batch.m”

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;

peakVals = ode_fun_parfor (bVals, kVals);

43 / 101

ODE: Plot the Results

The script ode display.m calls surf for a 3D plot.

Our parameter arrays bVals and kVals are X and Y, while the computed
array peakVals plays the role of Z.

figure;

surf (bVals, kVals, peakVals, ...
’EdgeColor’, ’Interp’, ’FaceColor’, ’Interp’);

title (’Results of ODE Parameter Sweep’)
xlabel (’Damping B’);
ylabel (’Stiffness K’);
zlabel (’Peak Displacement’);
view (50, 30)

44 / 101

ODE: Interactive Execution

Using the interactive option, we set up the input, get the workers, and
call the function:

bVals = 0.1 : 0.05 : 5;
kVals = 1.5 : 0.05 : 5;

matlabpool open local 4

peakVals = ode_fun_parfor (bVals, kVals);

matlabpool close

ode_display <-- Don’t need parallel option here.

45 / 101

ODE: BATCH Execution

Using batch execution, our script computes the data on a cluster,
(here, Virginia Tech’s Ithaca cluster), but we plot that data back on the
desktop:

job = batch (...
’ode_sweep_script’, ...
’matlabpool’, 64, ...
’Configuration’, ’ithaca_2011b’, ...
’FileDependencies’, {’ode_fun_parfor’, ’ode_system’});

wait (job);
load (job); <-- Load data from cluster
ode_display <-- The desktop plots the data that

was computed on the cluster

46 / 101

ODE: A Parameterized Problem

47 / 101

MATLAB Parallel Computing - End of Part 1

48 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

49 / 101

SPMD: Single Program, Multiple Data

The SPMD command is like a very simplified version of MPI. There is
one client process, supervising workers who cooperate on a single
program. Each worker (sometimes also called a “lab”) has an identifier,
knows how many workers there are total, and can determine its behavior
based on that ID.

each worker runs on a separate core (ideally);

each worker uses separate workspace;

a common program is used;

workers meet at synchronization points;

the client program can examine or modify data on any worker;

any two workers can communicate directly via messages.

50 / 101

SPMD: Getting Workers

Interactively, we get workers with matlabpool:

matlabpool open local 4
results = myfunc (args);

or use batch to run in the background on your desktop:

job = batch (’myscript’, ...
’matlabpool’, 4, ...
’Configuration’, ’local’)

or send the batch command to a cluster such as Virginia Tech’s Ithaca:

job = batch (’myscript’,
’matlabpool’, 31, ...
’Configuration’, ’ithaca_2011b’)

51 / 101

SPMD: The SPMD Environment

MATLAB sets up one special worker called the client.

MATLAB sets up the requested number of workers, each with a copy of
the program. Each worker “knows” it’s a worker, and has access to two
special functions:

numlabs(), the number of workers;

labindex(), a unique identifier between 1 and numlabs().

The empty parentheses are usually dropped, but remember, these are
functions, not variables!

If the client calls these functions, they both return the value 1! That’s
because when the client is running, the workers are not. The client could
determine the number of workers available by

n = matlabpool (’size’)

52 / 101

SPMD: The SPMD Command

The client and the workers share a single program in which some
commands are delimited within blocks opening with spmd and closing
with end.

The client executes commands up to the first spmd block, when it
pauses. The workers execute the code in the block. Once they finish, the
client resumes execution.

The client and each worker have separate workspaces, but it is possible
for them to communicate and trade information.

The value of variables defined in the “client program” can be referenced
by the workers, but not changed.

Variables defined by the workers can be referenced or changed
by the client, but a special syntax is used to do this.

53 / 101

SPMD: How SPMD Workspaces Are Handled

Client Worker 1 Worker 2
a b e | c d f | c d f

a = 3; 3 - - | - - - | - - -
b = 4; 3 4 - | - - - | - - -
spmd | |
c = labindex(); 3 4 - | 1 - - | 2 - -
d = c + a; 3 4 - | 1 4 - | 2 5 -

end | |
e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -
c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |
f = c * b; 3 4 7 | 1 4 4 | 5 6 20

end

54 / 101

SPMD: When is Workspace Preserved?

A program can contain several spmd blocks. When execution of one
block is completed, the workers pause, but they do not disappear and
their workspace remains intact. A variable set in one spmd block will still
have that value if another spmd block is encountered.

You can imagine the client and workers simply alternate execution.

In MATLAB, variables defined in a function “disappear” once the
function is exited. The same thing is true, in the same way, for a
MATLAB program that calls a function containing spmd blocks. While
inside the function, worker data is preserved from one block to another,
but when the function is completed, the worker data defined there
disappears, just as regular MATLAB data does.

55 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

56 / 101

QUAD SPMD: The Trapezoid Rule

Area of one trapezoid = average height * base.

57 / 101

QUAD SPMD: The Trapezoid Rule

To estimate the area under a curve using one trapezoid, we write∫ b

a

f (x) dx ≈ (
1

2
f (a) +

1

2
f (b)) ∗ (b − a)

We can improve this estimate by using n − 1 trapezoids defined by
equally spaced points x1 through xn:∫ b

a

f (x) dx ≈ (
1

2
f (x1) + f (x2) + ... + f (xn−1) +

1

2
f (xn)) ∗ b − a

n − 1

If we have several workers available, then each one can get a part of the
interval to work on, and compute a trapezoid estimate there. By adding
the estimates, we get an approximate to the integral of the function over
the whole interval.

58 / 101

QUAD SPMD: Use the ID to assign work

To simplify things, we’ll assume our original interval is [0,1], and we’ll let
each worker define a and b to mean the ends of its subinterval. If we
have 4 workers, then worker number 3 will be assigned [1

2 , 3
4].

To start our program, each worker figures out its interval:

fprintf (1, ’ Set up the integration limits:\n’);

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;

end

59 / 101

QUAD SPMD: One Name References Several Values

Each worker is a program with its own workspace. It can “see” the
variables on the client, but it usually doesn’t know or care what is going
on on the other workers.

Each worker defines a and b but stores different values there.

The client can “see” the workspace of all the workers. Since there are
multiple values using the same name, the client must specify the index of
the worker whose value it is interested in. Thus a{1} is how the client
refers to the variable a on worker 1. The client can read or write this
value.

MATLAB’s name for this kind of variable, indexed using curly brackets, is
a composite variable. It is very similar to a cell array.

The workers “see” the client’s variables and inherit a copy
of their values, but cannot change the client’s data.

60 / 101

QUAD SPMD: Dealing with Composite Variables

So in QUAD, each worker could print a and b:

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;
fprintf (1, ’ A = %f, B = %f\n’, a, b);

end

———— or the client could print them all ————

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;

end
for i = 1 : 4 <-- "numlabs" wouldn’t work here!
fprintf (1, ’ A = %f, B = %f\n’, a{i}, b{i});

end

61 / 101

QUAD SPMD: The Solution in 4 Parts

Each worker can now carry out its trapezoid computation:

spmd
x = linspace (a, b, n);
fx = f (x); <-- Assume f handles vector input.
quad_part = (b - a) / (n - 1) *
* (0.5 * fx(1) + sum(fx(2:n-1)) + 0.5 * fx(n));

fprintf (1, ’ Partial approx %f\n’, quad_part);
end

with result:

2 Partial approx 0.874676
4 Partial approx 0.567588
1 Partial approx 0.979915
3 Partial approx 0.719414

62 / 101

QUAD SPMD: Combining Partial Results

We really want one answer, the sum of all these approximations.

One way has the client gather the answers, and sum them:

quad = sum (quad_part{1:4});
fprintf (1, ’ Approximation %f\n’, quad);

with result:

Approximation 3.14159265

63 / 101

QUAD SPMD: Source Code for QUAD FUN

f u n c t i o n v a l u e = quad fun (n)

f p r i n t f (1 , ’ Compute l i m i t s\n ’) ;
spmd

a = (l a b i n d e x − 1) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f (1 , ’ Lab %d works on [%f ,% f] .\ n ’ , l a b i nd e x , a , b) ;

end

f p r i n t f (1 , ’ Each l a b e s t ima t e s pa r t o f the i n t e g r a l .\n ’) ;

spmd
x = l i n s p a c e (a , b , n) ;
f x = f (x) ;
quad pa r t = (b − a) ∗ (f x (1) + 2 ∗ sum (f x (2 : n−1)) + f x (n)) . . .

/ 2 . 0 / (n − 1) ;
f p r i n t f (1 , ’ Approx %f\n ’ , quad pa r t) ;

end

quad = sum (quad pa r t{:}) ;
f p r i n t f (1 , ’ Approx imat ion = %f\n ’ , quad)

r e t u r n
end

http://people.sc.fsu.edu/∼jburkardt/m src/quad spmd/quad spmd.html

64 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

65 / 101

DISTANCE: A Classic Problem

Anyone doing highway traveling is familiar with the difficulty of
determining the shortest route between points A and B. From a map, it’s
easy to see the distance between neighboring cities, but often the best
route takes a lot of searching.

A graph is the abstract version of a network of cities. Some cities are
connected, and we know the length of the roads between them. The
cities are often called nodes or vertices and the roads are links or edges.
Whereas cities are described by maps, we will describe our abstract
graphs using a one-hop distance matrix, which is simply the length of the
direct road between two cities, if it exists.

66 / 101

DISTANCE: An Intercity Map

Here is an example map with the intercity highway distances:

67 / 101

DISTANCE: An Intercity One-Hop Distance Matrix

Supposing we live in city A, our question is, “What is the shortest
possible distance from A to each city on the map?”

Instead of a map, we use a “one-hop distance” matrix OHD[I][J]:

A B C D E F
A 0 40 15 ∞ ∞ ∞
B 40 0 20 10 25 6
C 15 20 0 100 ∞ ∞
D ∞ 10 100 0 ∞ ∞
E ∞ 25 ∞ ∞ 0 8
F ∞ 6 ∞ ∞ 8 0

where ∞ means there’s no direct route between the two cities.

68 / 101

DISTANCE: The Shortest Distance

The map makes it clear that it’s possible to reach every city from city A;
we just have to take trips that are longer than “one hop”. In fact, in this
crazy world, it might also be possible to reach a city faster by taking two
hops rather than the direct route. (Look at how to get from city A to
city B, for instance!)

We want to use the information in the map or the matrix to come up
with a distance vector, that is, a record of the shortest possible distance
from city A to all other cities.

A method for doing this is known as Dijkstra’s algorithm.

69 / 101

DISTANCE: Dijkstra’s algorithm

Use two arrays, connected and distance.
Initialize connected to false except for A.
Initialize distance to the one-hop distance from A to each city.
Do N-1 iterations, to connect one more city at a time:

1 Find I, the unconnected city with minimum distance[I];

2 Connect I;

3 For each unconnected city J, see if the trip from A to I to J is
shorter than the current distance[J].

The check we make in step 3 is:
distance[J] = min (distance[J], distance[I] + ohd[I][J])

70 / 101

DISTANCE: A Sequential Code

connected(1) = 1;
connected(2:n) = 0;

distance(1:n) = ohd(1,1:n);

for step = 2 : n

[md, mv] = find_nearest (n, distance, connected);

connected(mv) = 1;

distance = update_distance (nv, mv, connected, ...
ohd, distance);

end

http://people.sc.fsu.edu/∼jburkardt/m src/dijkstra/dijkstra.html

71 / 101

DISTANCE: Parallelization Concerns

Although the program includes a loop, it is not a parallelizable loop!
Each iteration relies on the results of the previous one.

However, let us assume we have a very large number of cities to deal
with. Two operations are expensive and parallelizable:

find nearest searches all nodes for the nearest unconnected one;

update distance checks the distance of each unconnected node to
see if it can be reduced.

These operations can be parallelized by using SPMD statements in which
each worker carries out the operation for a subset of the nodes. The
client will need to be careful to properly combine the results from these
operations!

72 / 101

DISTANCE: Startup

We assign to each worker the node subset S through E.
We will try to preface worker data by “my ”.

spmd
nth = numlabs ();
my_s = floor ((labindex () * n) / nth);
my_e = floor (((labindex () + 1) * n) / nth) - 1;

end

73 / 101

DISTANCE: FIND NEAREST

Each worker uses find nearest to search its range of cities for the
nearest unconnected one.

But now each worker returns an answer. The answer we want is the node
that corresponds to the smallest distance returned by all the workers, and
that means the client must make this determination.

74 / 101

DISTANCE: FIND NEAREST

lab count = nth{1};

for step = 2 : n
spmd
[my_md, my_mv] = find_nearest (my_s, my_e, n, ...
distance, connected);

end
md = Inf;
mv = -1;
for i = 1 : lab_count
if (my_md{i} < md)
md = my_md{i};
mv = my_mv{i};

end
end
distance(mv) = md;

http://people.sc.fsu.edu/∼jburkardt/m src/dijkstra spmd/dijkstra spmd.html

75 / 101

DISTANCE: UPDATE DISTANCE

We have found the nearest unconnected city.

We need to connect it.

Now that we know the minimum distance to this city, we need to check
whether this decreases our estimated minimum distances to other cities.

76 / 101

DISTANCE: UPDATE DISTANCE

connected(mv) = 1;

spmd
my_distance = update_distance (my_s, my_e, n, mv, ...
connected, ohd, distance);

end

distance = [];
for i = 1 : lab_count
distance = [distance, my_distance{:}];

end

end

http://people.sc.fsu.edu/∼jburkardt/m src/dijkstra spmd/dijkstra spmd.html

77 / 101

DISTANCE: Comments

This example shows SPMD workers interacting with the client.

It’s easy to divide up the work here. The difficulties come when the
workers return their partial results, and the client must assemble them
into the desired answer.

In one case, the client must find the minimum from a small number of
suggested values.

In the second, the client must rebuild the distance array from the
individual pieces updated by the workers.

Workers are not allowed to modify client data. This keeps the client data
from being corrupted, at the cost of requiring the client to manage all
such changes.

78 / 101

MATLAB Parallel Computing

Introduction

QUAD Example

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

79 / 101

CONTRAST: Image → Contrast Enhancement → Image2

%
% Get 4 SPMD worke r s .
%

mat labpoo l open l o c a l 4
%
% Read an image .
%

x = imread (’ s u r f s u p . t i f ’) ;
%
% Since the image i s b l a c k and white , i t w i l l be d i s t r i b u t e d by columns .
%

xd = d i s t r i b u t e d (x) ;
%
% Have each worker enhance the c o n t r a s t i n i t s p o r t i o n o f the p i c t u r e .
%

spmd
x l = ge tLo c a lPa r t (xd) ;
x l = n l f i l t e r (x l , [3 , 3] , @ad j u s tCon t r a s t) ;
x l = u i n t 8 (x l) ;

end
%
% We are work ing wi th a b l a c k and wh i t e image , so we can s imp l y
% conca t ena t e the s ubma t r i c e s to ge t the whole o b j e c t .
%

xf spmd = [x l{:}] ;

mat l abpoo l c l o s e

http://people.sc.fsu.edu/∼jburkardt/m src/contrast spmd/contrast spmd.html

80 / 101

CONTRAST: Image → Contrast Enhancement → Image2

When a filtering operation is done on the client, we get picture 2. The
same operation, divided among 4 workers, gives us picture 3. What went
wrong?

81 / 101

CONTRAST: Image → Contrast Enhancement → Image2

Each pixel has had its contrast enhanced. That is, we compute the
average over a 3x3 neighborhood, and then increase the difference
between the center pixel and this average. Doing this for each pixel
sharpens the contrast.

+-----+-----+-----+
| P11 | P12 | P13 |
+-----+-----+-----+
| P21 | P22 | P23 |
+-----+-----+-----+
| P31 | P32 | P33 |
+-----+-----+-----+

P22 <- C * P22 + (1 - C) * Average

82 / 101

CONTRAST: Image → Contrast Enhancement → Image2

When the image is divided by columns among the workers, artificial
internal boundaries are created. The algorithm turns any pixel lying along
the boundary to white. (The same thing happened on the client, but we
didn’t notice!)

Worker 1 Worker 2
+-----+-----+-----+ +-----+-----+-----+ +----
| P11 | P12 | P13 | | P14 | P15 | P16 | | P17
+-----+-----+-----+ +-----+-----+-----+ +----
| P21 | P22 | P23 | | P24 | P25 | P26 | | P27
+-----+-----+-----+ +-----+-----+-----+ +----
| P31 | P32 | P33 | | P34 | P35 | P36 | | P37
+-----+-----+-----+ +-----+-----+-----+ +----
| P41 | P42 | P43 | | P44 | P45 | P46 | | P47
+-----+-----+-----+ +-----+-----+-----+ +----

Dividing up the data has created undesirable artifacts!

83 / 101

CONTRAST: Image → Contrast Enhancement → Image2

The result is spurious lines on the processed image.

84 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

85 / 101

CONTRAST2: Workers Need to Communicate

The spurious lines would disappear if each worker could just be allowed
to peek at the last column of data from the previous worker, and the first
column of data from the next worker.

Just as in MPI, MATLAB includes commands that allow workers to
exchange data.

The command we would like to use is labSendReceive() which controls
the simultaneous transmission of data from all the workers.

data_received = labSendReceive (to, from, data_sent);

86 / 101

CONTRAST2: Who Do I Want to Communicate With?

spmd

xl = getLocalPart (xd);

if (labindex ~= 1)
previous = labindex - 1;

else
previous = numlabs;

end

if (labindex ~= numlabs)
next = labindex + 1;

else
next = 1;

end

87 / 101

CONTRAST2: First Column Left, Last Column Right

column = labSendReceive (previous, next, xl(:,1));

if (labindex < numlabs)
xl = [xl, column];

end

column = labSendReceive (next, previous, xl(:,end));

if (1 < labindex)
xl = [column, xl];

end

88 / 101

CONTRAST2: Filter, then Discard Extra Columns

xl = nlfilter (xl, [3,3], @enhance_contrast);

if (labindex < numlabs)
xl = xl(:,1:end-1);

end

if (1 < labindex)
xl = xl(:,2:end);

end

xl = uint8 (xl);

end

http://people.sc.fsu.edu/∼jburkardt/m src/contrast2 spmd/contrast2 spmd.html

89 / 101

CONTRAST2: Image → Enhancement → Image2

Four SPMD workers operated on columns of this image.
Communication was allowed using labSendReceive.

90 / 101

CONTRAST2: The Heat Equation

Image processing was used to illustrate this example, but consider that
the contrast enhancement operation updates values by comparing them
to their neighbors.

The same operation applies in the heat equation, except that high
contrasts (hot spots) tend to average out (cool off)!

In a simple explicit method for a time dependent 2D heat equation, we
repeatedly update each value by combining it with its north, south, east
and west neighbors.

So we could do the same kind of parallel computation, dividing the
geometry into strip, and avoiding artificial boundary effects by having
neighboring SPMD workers exchange “boundary” data.

91 / 101

CONTRAST2: The Heat Equation

The ”east” neighbor lies in the neighboring processor, so its value must
be received by message in order for the computation to proceed.

92 / 101

CONTRAST2: The Heat Equation

So now it’s time to modify the image processing code to solve the heat
equation.

But just for fun, let’s use our black and white image as the initial
condition! Black is cold, white is hot.

In contrast to the contrast example, the heat equation tends to smooth
out differences. So let’s watch our happy beach memories fade away ...
in parallel ... and with no artificial boundary seams.

93 / 101

CONTRAST2: The Heat Equation, Step 0

94 / 101

CONTRAST2: The Heat Equation, Step 10

95 / 101

CONTRAST2: The Heat Equation, Step 20

96 / 101

CONTRAST2: The Heat Equation, Step 40

97 / 101

CONTRAST2: The Heat Equation, Step 80

98 / 101

MATLAB Parallel Computing

Introduction

QUAD Example (PARFOR)

MD Example

PRIME Example

ODE Example

SPMD: Single Program, Multiple Data

QUAD Example (SPMD)

DISTANCE Example

CONTRAST Example

CONTRAST2: Messages

Conclusion

99 / 101

Conclusion: A Parallel Version of MATLAB

MATLAB’s Parallel Computing Toolbox allows programmers to take
advantage of parallel architecture (multiple cores, cluster computers) and
parallel programming techniques, to solve big problems efficiently.

MATLAB controls the programming environment; that makes it possible
to send jobs to a remote computer system without the pain of logging in,
transferring files, running the program and bringing back the results.
MATLAB automates all this for you.

Moreover, when you use the parfor command, MATLAB automatically
determines from the form of your loop which variables are to be shared,
or private, or are reduction variables; in OpenMP you must recognize and
declare all these facts yourself.

100 / 101

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 6.0,
http://www.mathworks.com/help/pdf doc/distcomp/distcomp.pdf

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://people.sc.fsu.edu/∼jburkardt/presentations/...
sem 2012 parfor.pdf (these slides)

http://people.sc.fsu.edu/∼jburkardt/m src/m src.html

quad parfor
md parfor
prime parfor
ode sweep parfor
quad spmd
dijkstra spmd
contrast spmd
contrast2 spmd

101 / 101

