Introduction to Robotics

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 01

B4M36UIR - Artificial Intelligence in Robotics

Overview of the Lecture

- Part 1 Course Organization
 - Course Goals
 - Means of Achieving the Course Goals
 - Evaluation and Exam
- Part 2 Introduction to Robotics
 - Robots and Robotics
 - Challenges in Robotics
 - What is a Robot?
 - Locomotion

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

1 / 54

B4M36UIR - Lecture 01: Introduction to Robotics

2 / 54

Course Goals

Means of Achieving the Course Goals

1 / 54

Jan Faigl, 2019 Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Evaluation and Exam Cou

Course and Lecturers

B4M36UIR - Artificial Intelligence in Robotics

- https://cw.fel.cvut.cz/wiki/courses/b4m36uir/
- Department of Computer Science http://cs.fel.cvut.cz
- Artificial Intelligence Center (AIC) http://aic.fel.cvut.cz
- Lecturers

doc. Ing. Jan Faigl, Ph.D.

Ing. Tomáš Krajník, Ph.D.

- Center for Robotics and Autonomous Systems (CRAS)
 - http://robotics.fel.cvut.cz
- Computational Robotics Laboratory (ComRob)

http://comrob.fel.cvut.cz

Lab supervisor

Ing. Miloš Prágr

Part I

Part 1 – Course Organization

Course Goals

■ Master (yourself) with applying AI methods in robotic tasks Labs, homeworks, projects, and exam

Means of Achieving the Course Goals

- Become familiar with the notion of intelligent robotics and autonomous systems
- Acquire knowledge of robotic data collection planning
- Acquire experience on combining approaches in autonomous robot control programs

Integration of existing algorithms (implementation) in mission planning software and robot control program

■ Experience solution of robotic problems

Your own experience!

Course Organization and Evaluation

- B4M36UIR and BE4M36UIR Artificial intelligence in robotics
- Extent of teaching: 2(lec)+2(lab);
- Completion: Z,ZK; Credits: 6;

Z – ungraded assessment, ZK – exam

Ongoing work during the semester – labs' tasks, homeworks, and semestral projects

Be able to independently work with the computer in the lab (class room)

- Exam test
- Attendance to labs and successful evaluation of homeworks and semester projects

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

B4M36UIR - Lecture 01: Introduction to Robotics

7 / 54

Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Jan Faigl, 2019 Course Goals

Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Resources and Literature

MIT Press. 2007

- Textbooks
 - Introduction to Al Robotics, Robin R. Murphy MIT Press, 2000

First lectures for the background and context

The Robotics Primer, Maja J. Mataric,

First lectures for the background and context

Planning Algorithms, Steven M. LaValle, Cambridge University Press, 2006

http://planning.cs.uiuc.edu

- Lectures "comments" on the textbooks, slides, and your notes
- Laboratory Exercises labs' tasks, homeworks, and projects, and projects
- Selected research papers further specified during the course

Further Books 1/2

Computational Principles of Mobile Robotics, Gregory Dudek and Michael Jenkin. Cambridge University Pres, 2010

Further Books 2/2

Robot Motion Planning and Control, *Jean-Paul Laumond*, Lectures Notes in Control and Information Sciences, 2009

http://homepages.laas.fr/jpl/book.html

Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, Dieter Fox, MIT Press, 2005

http://www.probabilistic-robotics.org/

Robotics, Vision and Control: Fundamental Algorithms in MATLAB, *Peter Corke*, Springer, 2011

http://www.petercorke.com/RVC1/

Lectures – Winter Semester (WS) Academic Year 2019/2020

■ Schedule for the academic year 2019/2020

http://www.fel.cvut.cz/en/education/calendar.html

- Lectures:
 - Karlovo náměstí, Room No. KN:E-126, Monday, 9:15–10:45
- 14 teaching weeks

13 lectures

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

/ 54

B4M36UIR - Lecture 01: Introduction to Robotics

12 / 54

Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Jan Faigl, 2019 Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Teachers

- Ing. Miloš Prágr Lab supervisor
- Ing. Jan Bayer

 Mobile robot exploration
- Ing. David Milec Game theory
- Ing. Pert Váňa Multi-goal planning
- Ing. Robert Pěnička Multi-goal planning

Communicating Any Issue Related to the Course

- Ask the lab teacher or the lecturer
- Use e-mail for communication
 - Use your faculty e-mail
 - Put UIR or B4M36UIR, BE4M36UIR to the subject of your message
 - Send copy (Cc) to lecturer/teacher or

uir-teachers at fel dot cvut dot cz

Course Goals Means of Achieving the Course Goals Evaluation and Exam Course Goals Means of Achieving the Course Goals Evaluation and Exam

Computers and Development Tools

Network boot with home directories (NFS v4)

Data transfer and file synchronizations - ownCloud, SSH, FTP, USB

- Python or/and C/C++ (gcc or clang)
- V-REP robotic simulator

http://www.coppeliarobotics.com/

Open Motion Planning Library (OMPL)

http://ompl.kavrakilab.org/

Robot Operating System (ROS)

http://www.ros.org/

- Sources and libraries provided by Computational Robotics Laboratory, Game Theory group, and Multi-Robot Systems group.
- Any other open source libraries
- Gitlab FEL https://gitlab.fel.cvut.cz/
- FEL Google Account access to Google Apps for Education

See http://google-apps.fel.cvut.cz/

- Information resources (IEEE Xplore, ACM, Science Direct, Springer Link)
 - IEEE Robotics and Automation Letters (RA-L), IEEE Transactions on Robotics (T-RO), International Journal of Robotics Research (IJRR), Journal of Field Robotics (JFR), Robotics and Autonomous Robots (RAS), Autonomous Robots (AuRo), etc.

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

B4M36UIR - Lecture 01: Introduction to Robotics

One for each individual thematic topic

16 / 54

Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Tasks – Labs, Homeworks, and Projects

■ Multi-goal planning (10 pts)

Four projects can be scored (40 pts)

■ Game theory in robotics (15 pts)

Evaluation and Exam

Tasks – Labs and Homeworks

- Autonomous robotic information gathering (14 points)
 - T1a-control (3 points) Open-loop robot motion control
 - T1b-reactive (**3 points**) Reactive obstacle avoidance
 - T1c-map (2 points) Map building (map building of sensory perception)
 - T1d-plan (3 points) Grid based path planning
 - T1e-expl (3 points) Mobile robot exploration

robotic information gathering

- Bonus T1-bonus (5 points) Incremental path planning (D* Lite)
- Multi-goal path planning (MTP) TSP-like problem formulations (10 points)
 - T2a-tspn (5 points) Traveling Salesman Problem with Neighborhood (TSPN)
 - T2b-dtspn (5 points) Curvature-constrained MTP Dubins TSPN
- Randomized sampling-based planning (6 points)
 - T3a-samp1 (3 points) Randomized sampling-based motion planning using **PRM**
 - T3b-rrt (3 points) Curvature-constrained local planning in RRT
- Game theory in robotics (15 points)
 - T4a (3 points) Greedy policy in pursuit-evasion
 - T4b (6 points) Monte Carlo Tree Search policy in pursuit-evasion
 - T4c (6 points) Value-iteration policy in pursuit-evasion
- All tasks must be submitted to award the ungraded assessment
- Late submission will be penalized!
- The minimal scoring from homeworks is 25 points

Jan Faigl, 2019 Course Goals

Means of Achieving the Course Goals

■ Focus on integration of the tasks into complete ROS (Robot

Operating System) application - https://www.ros.org/

Several task assignments during the labs that are expected to be

solved partially during the labs, but most likely as homeworks using

BRUTE - https://cw.felk.cvut.cz/upload

Mandatory homeworks (45 pts) organized in four thematic topics

Autonomous robotic information gathering (14 pts)

Exploration – robot control, sensing, and mapping

■ Randomized sampling-based planning (6 pts)

One bonus task on Incremental Path Planning (5 pts)

Tasks – Projects

- P1-expl Autonomous robotic information gathering (15 points)
 - Implement full exploration pipeline using ROS.org and V-REP simulator
- P2-data Multi-goal path planning (10 points)
 - Implement full surveillance mission planning for UAV with plan execution using ROS.org and Gazebo simulator
 - Using full deployment pipeline of Multi-robot Systems (MRS) group
- P3-motion Randomized sampling-based planning (5 points)
 - Implement (utilize) asymptotically optimal randomized sampling-based path planning using OMPL and ROS.org
- P4-gt Game theory in robotics (10 points)
 - Implement complete deployment pipeline for patrolling polygonal environment using designed patrolling strategy, ROS.org, and V-REP
- Minimal required scoring from the projects is 15 points!
 - It can be achieved by P1, but it must be perfect!
- There is a common deadline for the projects

05.01.2020 23:59 CET

Grading Scale

Course Evaluation

Points	Maximum Points	Required Minimum Points
Homeworks	45	25
Bonus Homework	5	0
Projects	40	15
Exam test	20	10
Total	110 points	50

- All homeworks have to be submitted
- 40 points from the semester are required for awarding ungraded assessment
- The course can be passed with ungraded assessment and exam
- All homeworks must be submitted and pass the evaluation

Jan Faigl, 2019 20 / 54 Jan Faigl, 2019 21 / 54 B4M36UIR - Lecture 01: Introduction to Robotics B4M36UIR - Lecture 01: Introduction to Robotics

Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Robots and Robotics

Challenges in Robotics

Α

C

D

Excellent

Very Good

Satisfactory

Sufficient

Good

Fail

Overview of the Lectures

- 1. Course information, Introduction to (AI) robotics
- 2. Robotic paradigms and control architectures
- 3. Path and motion planning
- 4. Grid and graph based methods
- 5. Robotic information gathering exploration of unknown environment and multi-goal planning (robotic TSP)

Public holiday - Czech Independence Day

- 6. Data collection planning TSP(N), PC-TSP(N), and OP(N)
- 7. Data collection planning with curvature-constrained vehicles
- 8. Randomized sampling-based motion planning methods
- 9. Game theory in robotics
- 10. Visibility based pursuit evaluation games (Game theory in robotics)
- 11. Patrolling games (Game theory in robotics)
- 12. Multi-robot planning
- 13. Long-term navigation and spatio-temporal mapping

Part II

Grade Points Mark Evaluation

2.5

4

≥ 90

80-89

70 - 79

60-69

50-59

< 50

Part 2 – Introduction to Robotics

What is Understood as Robot?

Rossum's Universal Robots (R.U.R)

Industrial robots

Cyberdyne T-800

NS-5 (Sonny)

Artificial Intelligence (AI) is probably most typically understand as an intelligent robot

B4M36UIR - Lecture 01: Introduction to Robotics

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

26 / 54

Robots and Robotics

Jan Faigl, 2019

Challenges in Robotics

What is a Robot?

25 / 54

Robots and Robotics

Challenges in Robotics

Stacionary vs Mobile Robots

Robots can be categorized into two main groups

Stationary (industrial) robots

Mobile robots

- Stationary robots defined (limited) working space
 - Even stationary robots need an efficient motion, and thus motion planning tasks can be a challenging problem
- Mobile robot it can move, and therefore, it is necessary to address the problem of navigation

Intelligent Robots

- React to the environment sensing
- Adapt to the current conditions
- Make decision and new goals

E.g., in robotic exploration

- Even though they are autonomous systems, the behaviour is relatively well defined
- Adaptation and ability to solve complex problems are implemented as algorithms and techniques of Artificial Intelligence

In addition to mechanical and electronical design. robot control, sensing, etc.

Stationary Robots

- Conventional robots needs separated and human inaccessible working space because of safety reasons
- Cooperating robots share the working space with humans

28 / 54

Challenges in Robotics

Robotic companions

Robotic surgery

Search and rescue missions Extraterrestrial exploration

Multi-robot coordination

future challenges

cleaner

Autonomous vehicles – cars, delivery, etc.

Types of Mobile Robots

- Regarding the environment: ground, underground, aerial, surface, and underwater vehicles
- Based on the locomotion: wheeled, tracked, legged, modular

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

29 / 54 Jan Faigl, 2019 B4M36UIR - Lecture 01: Introduction to Robotics

31 / 54

Robots and Robotics

Challenges in Robotics

Robots and Robotics

Challenges in Robotics

■ Consumable robots – toys, vacuum cleaner, lawn mover, pool

Robotic Surgery

- Evolution of Laparoscopic Surgery Complex operations with shorter postoperative recovery
- Precise robotic manipulators and teleoperated surgical robotic systems
- Further step is automation of surgical procedures

One of the main challenges is planning and navigation in tissue

Tissue model

Jan Faigl, 2019

Robotic Arm of the Da Vinci Surgical System

Surgical droid 2-1B

Artificial Intelligence and Robotics

 Artificial Intelligence (AI) field originates in 1956 with the summary that a intelligent machine needs:

In addition to other technological challenges, new efficient AI algorithms have to be developed to address the nowadays and

- Internal models of the world
- Search through possible solutions
- Planning and reasoning to solve problems
- Symbolic representation of information
- Hierarchical system organization
- Sequential program execution M. Mataric, Robotic Primer
- Al-inspired robot Shakey

Artificial Intelligence laboratory of Stanford Research Institute (1966-1972)

■ Shakey – perception, geometrical map building, planning, and acting – early Al-inspired robot with purely deliberative control

Robotics in B4M36UIR

- Fundamental problems related to motion planning and mission planning with mobile robots
- The discussed motion planning methods are general and applicable also into other domains and different robotic platforms including stationary robotic arms
- Robotics is interdisciplinary field
 - Electrical, mechanical, control, and computer engineering
 - **Computer science** filds such as machine learning, artificial intelligence, computational intelligence, machine perception, etc.
 - Human-Robot interaction and cognitive robotics are also related to psychology, brain-robot interfaces to neuroscience, robotic surgery to medicine, etc.

In B4M36UIR, we will touch a small portion of the whole field, mostly related to motion planning and mission planning that can be "encapsulated" as robotic information gathering

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

34 / 54

B4M36UIR - Lecture 01: Introduction to Robotics

36 / 54

Robots and Robotics

Challenges in Robotics

What is a Robot?

Robots and Robotics

Jan Faigl, 2019

Challenges in Robotics

What is a Robot?

Embodiment

■ The robot body allows the robot to act in the physical world

E.g., to go, to move objects, etc.

- Software agent is not a robot
- Embodied robot is under the same physical laws as other objects
 - Cannot change shape or size arbitrarily
 - It must use actuators to move
 - It needs energy
 - It takes some time to speed up and slow down
- Embodied robot has to be aware of other bodies in the world
 - Be aware of possible collisions
- The robot body influences how the robot can move

Notice, faster robots look smarter

What is a Robot?

A robot is an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals

- The robot has a physical body in the physical world embodiment
- The robot has sensors and it can sense/perceive its environment
- A robot has effectors and actuators it can act in the environment
- A robot has controller which enables it to be autonomous

Sensing / Perception

- Sensors are devices that enable a robot to perceive its physical environment to get information about itself and its surroundings
- Exteroceptive sensors and proprioceptive sensors
- Sensing allows the robot to know its state
- State can be observable, partially observable, or unobservable
 - State can be discrete (e.g., on/off, up/down, colors) or continuous (velocity)
 - State space consists of all possible states in which the system can be
 - **space** refers to all possible values
 - External state the state of the world as robot can sense it
 - Internal state the state of the robot as the robot can perceive it E.g., remaining battery

B4M36UIR - Lecture 01: Introduction to Robotics

Jan Faigl, 2019

■ Proprioceptive sensors – measure internal state, e.g., encoders, inclinometer, inertial navigation systems (INS), compass, but also Global Navigation Satellite System (GNSS), e.g., GPS, GLONASS, Galileo, BeiDou

- Exteroceptive (proximity) sensors measure objects relative to the robot
- Contact sensors e.g., mechanical switches, physical contact sensors that measure the interaction forces and torques, tactile sensors etc.

- Range sensors measure the distance to objects, e.g., sonars, lasers, IR, RF, time-of-flight
- Vision sensors complex sensing process that involves extraction, characterization, and information interpretation from images

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

39 / 54 Jan Faigl, 2019 B4M36UIR - Lecture 01: Introduction to Robotics

40 / 54

Robots and Robotics

Challenges in Robotics

What is a Robot?

Robots and Robotics

Challenges in Robotics

Degree of Freedom (DOF) is the minimal required number of

■ Controllable DOF (CDOF) – the number of the DOF that are

B4M36UIR - Lecture 01: Introduction to Robotics

independent parameters to completely specify the motion of a me-

With more and more complex robots, a separation between mobile and manipulator robots is less strict and robots combine mobility and manipulation

■ They use underlying mechanisms such as muscles and motors

■ Locomotion mechanisms – wheels, legs, modular robots, but also

■ Effectors and actuators provide two main types of activities

41 / 54 | Jan Faigl. 2019

In 3D space, a body has usually 6 DOF (by convention)

controllable, i.e., a robot has an actuator for such DOF

■ Translational DOF – x, y, z

■ Rotational DOF – roll, pitch, and yaw

Effectors enable a robot to take an action

■ Locomotion — moving around

■ Manipulation – handling objects

called actuators

Degrees of Freedom (DOF)

chanical system

propellers etc.

What is a Robot?

It defines how the robot can move

Mobile robotics - robots that move around

Effectors and Actuators

- Effector any device on a robot that has an effect on the environment
- Actuator a mechanism that allows the effector to execute an action or movement, e.g., motors, pneumatics, chemically reactive materials, etc.
- Electric motors Direct-Current (DC) motors, gears,
 - Servo motors can turn their shaft to a specific position DC motor + gear reduction + position sensor + electronic circuit to control the motor

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

Hexapod with 3 servo motors (joints) per each leg has 18 servo motors in the total

Action

Robotic arms

Sensors

DOF vs CDOF

- If a vehicle moves on a surface, e.g., a car, it actually moves in 2D
- The body is at the position $(x,y) \in \mathbb{R}^2$ with an orientation $\theta \in \mathbb{S}^1$
- A car in a plane has DOF = 3, (x, y, θ) but CDOF=2, (v, φ)

Only forward/reverse direction and steering angle can be controlled

That is why a parallel parking is difficult

- A car cannot move in an arbitrary direction, but 2 CDOF can get car to any position and orientation in 2D
- To get to a position, the car follows a continuous trajectory (path), but with discontinuous velocity

Uncontrollable DOF makes the movement more complicated

Jan Faigl, 2019 B4M36UIR – Lecture 01: Introduction to Robotics 43 / 54

Robots and Robotics Challenges in Robotics What is a Robot? Locomotion

Locomotion

- Locomotion refers how the robot body moves from one location to another location

 From the Latin Locus (place) and motion
 - Troil the Eath Locus (place) and moti
- The most typical effectors and actuators for ground robots are wheels and legs
- Most of the robots need to be stable to work properly
 - Static stability a robot can stand, it can be static and stable

 Biped robots are not statically stable, more legs make it easier.

 Most of the wheeled robots are stable.
 - Statically stable walking the robot is stable all the times
 - E.g., hexapod with tripod gait
 - Dynamic stability the body must actively balance or move to remain stable, the robots are called dynamically stable

E.g., inverse pendulum

Ratio of CDOF to the Total DOF

- The ratio of Controllable DOF (CDOF) to the Total DOF (TDOF) represents how easy is to control the robot movement
- Holonomic (CDOF=TDOF, the ratio is 1) holonomic robot can control all of its DOF
- Nonholonomic (CDOF<TDOF, the ratio < 1) a nonholonomic robot has more DOF that it can control

 E.g., a car
- Redundant (CDOF>TDOF, the ratio > 1) a redundant robot has more ways of control

6 DOF Hexapod

4 TDOF, 18 CDOF Hexapod walking robot

Jan Faigl, 2019 B4

B4M36UIR - Lecture 01: Introduction to Robotics

44 / 54

Robots and Robotics

Challenges in Robotics

What is a Robot?

Locomotion

Locomotion - Wheel Robots

- One of the most simple wheeled robots is differential drive robot
 - It has two drived wheels on a common axis
 - It may use a castor wheel (or ball) for stability
 - It is nonholonomic robot

Omnidirectional robot is holonomic robot

- \mathbf{v}_l and \mathbf{v}_r are velocities along the ground of the left and right wheels, respectively
- $\omega = \frac{v_r v_l}{l}$, $R = \frac{l}{2} \frac{v_l + v_r}{v_r v_l}$
- For $v_l = v_r$, the robot moves straight ahead

R is infinite

For $v_I = -v_r$, the robot rotates in a place

R is zero

 Simple motion control can be realized in a turn-move like schema

Further motion control using path following or trajectory following approaches with feedback controller based on the position of the robot to the path / trajectory

Locomotion – Legged Robots (Gaits)

- Gait is a way how a legged robot moves
- A gait defines the order how the individual legs lift and lower and also define how the foot tips are placed on the ground
- Properties of gaits are: stability, speed, energy efficiency, robustness (how the gait can recover from some failures), simplicity (how complex is to generate the gait)
- A typical gait for hexapod walking robot is tripod which is stable as at least three legs are on the ground all the times

Gullan et al., The Insects: An outline of entomology, 2005

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

48 / 54

Locomotion

Challenges in Robotics

Central Pattern Generator (CPG)

- Central Pattern Generators (CPGs) are neural circuits to produce rhythmic patterns for various activities, i.e., locomotor rhythms to control a periodic movement of particular body parts
- Salamander CPG with 20 amplitude-controlled phase oscillators

Auke Jan Ijspeert, Neural Networks, 2008

Locomotion of Hexapod Walking Robot

- Let have hexapod robot with six identical legs each with 3 DOF
- Each leg consists of three parts called Coxa, Femur, and Tibia

- The movement is a coordination of the stance and swing phases of the legs defined by the gait, e.g., tripod
- A stride is a combination of the leg movement with the foot tip on the ground (during the stance phase) and the leg movement in a particular direction (in the swing phase) within one gait cycle
- Various gaits can be created by different sequences of stance and swing phases
- T_{Stance} , T_{Swing} , and $T_{Stride} = T_{Stance} + T_{Swing}$ defines the duty factor $\beta = T_{Stance}/T_{Stride}$ Triod $\beta = 0.5$

Jan Faigl, 2019 B4M36UIR - Lecture 01: Introduction to Robotics 49 / 54

Example of Rhythmic Pattern Oscillator

- Matsuoka oscillator model based on biological concepts of the extensor and flexor muscles
- Van der Pol oscillator

$$\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0$$

- The rhythmic patterns define the trajectory of the leg end point (foot tip)
- Joint angles can be computed from the foot tip coordinates using the Inverse Kinematics

Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics 52, 367-376

An example of simple CPG to control hexapod walking robot will be shown during the labs

Robots and Robotics Challenges in Robotics Locomotion Topics Discussed

Control Architectures

A single control rule may provide simple robot behaviour

Notice, controller can be feed-forward (open-loop) or feedback controller with vision based sensing

- Robots should do more than just avoiding obstacles
- The question is "How to combine multiple controllers together?"
- Control architecture is a set of guiding principles and constraints for organizing the robot control system
 - Guidelines to develop the robotic system to behave as desired

It is not necessary to know control architectures for simple robotic demos and tasks. But it is highly desirable to be aware of architectures for complex robots

Summary of the Lecture

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

52 / 54 Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

Topics Discussed

Topics Discussed

- Information about the Course
- Overview of robots, robotics, and challenges
 - Robot Embodied software agent
 - Sensor, Controller, Actuators
 - Degrees of Freedom (DOF) and Controllable DOF
 - Mobile Robot Locomotion
 - Locomotion Gaits for Legged Robots
 - Central Pattern Generator
- Next: Robotic Paradigms and Control Architectures

Jan Faigl, 2019

B4M36UIR - Lecture 01: Introduction to Robotics

54 / 54

53 / 54