Part 1. The Chemistry of A Planar Cyclooctatetraene Derivative Fused to Phenanthrene Ring.

Part 2. Regiospecific Synthesis of 2,3-Disubstituted and 2,3,5-Trisubstituted Furans from 2,4Bis(trimethylsilyl)furan.

by
Chun-Yip Leung

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy in The Chinese University of Hong Kong 1993

Thesis committee:
Dr. Tony K. M. Shing (Chairman)
Dr. Kin-Shing Chan
Dr. Henry N. C. Wong
Prof. Ta Shue Chou (External Examiner)

Contents

PageAcknowledgements1
Part 1). The Chemistry of A Planar Cyclooctatetraene Derivatives Fused to Phenanthrene Ring 2
(I). Abstract 2
(II). Introduction 3
(III). Results and Discussion 9
(IV). Conclusion 18
(V). Experimental Section 19
Part 2). Regiospecific Synthesis of 2,3-Disubstituted and 2,3,5-Trisubstituted Furans from 2,4-Bis(trimethyl- silyl)furan 28
(I). Abstract 28
(II). Introduction 29
(A). Reactions of Furan 29
(1). Reactions with Electrophiles 29
(2). Reactions with Nucleophiles 30
(3). Cycloaddition Reactions 31
(B). Synthesis of Polysubstituted Furans 32
(1). By $\mathrm{Ag}(\mathrm{I})$-Catalyzed Cyclization 33
(2). By Base-Catalyzed Isomerization of Alkynyloxiranes 33
(3). By Base-Catalyzed Cyclization- Isomerization of γ-Alkynyl Allylic Alcohol 36
(4). By Palladium-Catalyzed Coupling of 2- Propargyl-1,3-dicarbonyl Compounds and Vinylic, Aryl Triflates or Halide 36
(5). From α, β-Unsaturated Ketones 38
(C). Recent Achievement 39
(III). Results and Discussion 44
(A). Attempted Synthesis of 2,4-Disubstituted Furans 44
(B). Synthesis of 2,3,5-Trisubstituted Furans 45
(1). Synthesis of 2-benzyl-3-m-anisyl-5- p-tolyl-furan (30) 45
(2). Synthesis of 2-benzyl-3-trans-hexen- 1 -yl-5-p-tolyl-furan (31) 51
(3). Synthesis of 2-(3,5-dimethyl)benzyl-3-
p-methoxycarbonylbenzyl-5-hexyl- furan (32) 52
(4). Synthesis of 2-benzyl-3-[3,4-(methyl-enedioxy)]benzyl-furan (33) 57(IV). Conclusion60
(V). Experimental Section 61
References 72
List of Spectra 77
Spectra 79

Acknowledgements

The author of this thesis is so grateful to express his thanks to his supervisor, Dr. Henry N. C. Wong, for giving him the privilege to pursue postgraduate study, for his guidance and advice in this research work.

Thanks are also given to Dr. Yu Li and Mr. Zhi-Zhong Song for their precious help and for measuring all the 250 MHz NMR spectra.

September 1993

Chun-Yip Leung
Department of Chemistry
The Chinese University of Hong Kong

Part 1: The Chemistry of A Planar Cyclooctatetraene Derivative Fused to Phenanthrene Ring.

(I). Abstract:

A benzo-phenanthro-fused planar cyclooctatetraene derivative, namely, 5,6,15,16-tetradehydrobenzo[a]phenanthro-$[9,10-e] c y c l o o c t e n e(10)$ was synthesized through the dehydrobromination (by potassium tert-butoxide) of the 5,6,15,16-tetrabromo-5,6,15,16-tetrahydrobenzo[a]phenanthro[9,-$10-e]$ cyclooctene (29) generated from benzo[a]phenanthro[9,10$e]$ cyclooctene (11).

(II). Introduction :

Hückel, on the basis of molecular orbital theory, proposed that a monocyclic fully conjugated polyene will be aromatic if and only if it prossesses a closed shell of $[4 n+2] \pi$ electrons, ${ }^{1-3}$ where n is an integer greater than or equal to zero. Benzene, preferentially undergoes substitution rather than addition reactions, is a well known example of the $[4 n+2] \pi$ systems. On the contrary, the $[4 n] \pi$ systems are less stable than the $[4 n+2] \pi$ systems and as a matter of fact, both systems behave differently. Later theoretical advancements have concluded that the $[4 n] \pi$ systems are destabilized by delocalization and will be antiaromatic. ${ }^{4-5}$ All the $[4 n] \pi$ annulenes synthesized so far have fallen into this category. Cyclooctatetraene (COT) (1) has different properties from other larger $[4 n] \pi$ members. COT is a nonplanar molecule with four conjugated double bonds. Its structure can be represented by a

"tub" or "boat" conformation. It has the character of a normal polyene and belongs to the $D_{2 d}$ point group. ${ }^{6-8}$ It is believed that the nonplanarity of COT arises not only from its geometrical strain caused by planar conformation but also, more importantly, from the pseudo Jahn-Teller effect. ${ }^{9}$ A planar symmetrical COT is very unstable because there exist two degenerate nonbonding orbitals, and each is occupied by an unpair electron, thus forming an open
shell arrangement of triplet state. This electronic state may as well suffer from the pseudo Jahn-Teller distortion that results in a geometrical change of the molecule. As a result the orbital degeneracy is removed. The overall effect is a strainless tub shape molecule which is deprived of adjacent π bond overlap.

In order to convert COT to a planar conjugated 8 -membered ring compound, the pseudo Jahn-Teller effect must be eliminated. One of the possible methods is to replace one or more of the double bonds by acetylenes, because linear sp-sp hybrid bonds would force the 8 -membered carbocycle to become planar. This idea suggests that, a fully conjugated [8]-annulene such as cycloocta-1,5-diene-3,7-diyne (2) would presumably be planar, if it indeed exists despite its high angular strain.

As a pioneer in this particular field, Krebs had synthesized cycloocta-1,3,5-triene-7-yne $(3)^{10}$ which was expected to possess planar conformation. Compound 3 was the first example in the dehydro[8]annulene family. Krebs showed that, dehydrobromination of bromocyclooctatetraene with potassium tertbutoxide $\left(\mathrm{KO}^{t} \mathrm{Bu}\right)$ gave 3 . However, due to its instability, 3 could not be isolated and its existence was only proved by trapping experiments. ${ }^{11-13}$

3

During the past two decades, many COT-derived compounds have been synthesized. Some of these COT derivatives were fused to aromatic rings to enhance stability of planar conformations. The unstable COT derivatives were usually confirmed by trapping reactions. ${ }^{14}$ Some examples of aromatic fused COTs are: 5,6,11,12tetradehydrodibenzola, e cyclooctene (4), ${ }^{15}$ 5,6-didehydrodibenzo[a, e]cyclooctene (5), ${ }^{15}$ 5,6,9,10-tetradehydrobenzocyclooctene (6), ${ }^{14}$ 9,10-didehydrotribenzo[a,c,e]cyclooctene (7), ${ }^{16}$ and $1,2,5,6$ -tetradehydro-3,4-benzo-7,8-naphtho[b]cyclooctene (8). ${ }^{17-18}$

5

6

7

8

Many experimental data have shown that, in each of the benzo fused COT, the common bond shared by both rings is relatively longer compared with other bonds in the benzene moiety. Evidences from literature have confirmed that the $\mathrm{C}_{4 \mathrm{a}}-\mathrm{C}_{12 \mathrm{a}}$ distances in compounds 4^{19} and 5^{20} are $1.422 \AA$ and $1.425 \AA$, respectively, which are even longer than the bond length of benzene $(1.39 \AA)$. It is therefore worthy to synthesize a planar [8]annulene derivative with a bond of fusion similar to the bond order of an ethylene double bond. To satisfy such criterion, the $\mathrm{C}_{9}{ }^{-}$ C_{10} bond of phenanthrene (9) was chosen to fuse with COT derivative. In phenanthrene, the $\mathrm{C}_{9}-\mathrm{C}_{10}$ bond has been found to behave as a double bond (Figure 1).

Figure 1.

The resonance structures depicted in Figure 1 show that in only one of five forms is $\mathrm{C}_{9}-\mathrm{C}_{10}$ bond a single bond. In other words, $\mathrm{C}_{9}-$ C_{10} bond is a $4 / 5 \pi$ bond. In fact, the literature value of $\mathrm{C}_{9}-\mathrm{C}_{10}$ distance is $1.341 \AA^{21}$ which is almost equal to the length of an ethylene π bond ($1.34 \AA$).

Our target molecule is thus 5,6,15,16-tetradehydrobenzo[a]phenanthro $9,10-e]$ cyclooctene (10). The aromatic rings, again, are responsible for the stability of the strained molecule. The two triple bonds are also kinetically protected by the protons at $\mathrm{C}_{1}, \mathrm{C}_{4}$, C_{7}, and C_{14} positions from nucleophilic attack.

10

11

Benzo[a]phenanthrol9,10-e]cyclooctene (11) seems to be the only possible precursor of 10 and it has been synthesized earlier. ${ }^{22}$ We report here the realization of 10 through the manipulation of 11 . It is also interesting to note that $\mathbf{1 0}$ can be regarded as a derivative of 6 , which has been found to be rather unstable. ${ }^{14}$ The direct comparison of the stabilities of 6 and 10 should shed some light on the stability enhancement caused by the protons on C_{7} and C_{14}.

(III). Results and Discussion :

The retrosynthetic pathway leading to 11 with phenanthrene (9) as the starting material is shown in Scheme 1.

Scheme 1

13
14

9

Coincidentally, Barton and coworkers have reported the synthesis of $\quad 6,15$-diphenylbenzola]phenanthro[9,10-e]cyclooctene (16) $)^{23}$ which is very similar to $\mathbf{1 1}$. Their synthetic strategy is shown in Scheme 2.

Scheme 2

18

19
diglyme, $160^{\circ} \mathrm{C}$, -CO

16

20

The room temperature cycloaddition between 1,3-diphenyl-2 H -cyclopenta[l]phenanthrene-2-one $(18)^{24}$ and the reactive
intermediate benzocyclobutene (17), generated by debromination of 1,2-dibromobenzocyclobutane ${ }^{25}$ with Zn , furnished a bridge ketone 19 . The annelated cyclooctene 16 was realized by the thermal decarbonylation of the cycloadduct 19 in diglyme at 160 ${ }^{\circ} \mathrm{C}$, and was followed by disrotatory ring opening of the intermediate 20 .

The synthesis of 11 is somewhat similar to that of $\mathbf{1 6}$. In our case, the phenanthro-benzo coupling was achieved by mixing 9,10-bis(bromomethyl)phenanthrene (13) and 1,2-dibromobenzocyclobutane (14) together in the presence of Zn in DMF. Compound 14, in turn, can be prepared according to Cava's method ${ }^{25}$ (Scheme 3).

Scheme 3

The commercially available o-xylene (27) was treated with 4 equivalents of bromine through a radical mechanism to give the 1,2-bis(dibromomethyl)benzene (28). The debromination of 28 by sodium iodide in DMF at $60^{\circ} \mathrm{C}$ afforded the desired dibromide 14. The synthesis of $\mathbf{1 1}$ is shown in Scheme 4.

Scheme 4

1. $\mathrm{Mg}, \mathrm{EL}_{2} \mathrm{O}$
2. Mel

97\%

Scheme 4 (continued)

Scheme 4 (continued)

[2,3]

Phenanthrene (9) was allowed to react with bromine in refluxing temperature, giving 9 -bromophenanthrene $(21)^{26}$ in fair yield. This electrophilic aromatic substitution released hydrogen
bromide to restore the aromaticity of the product. The bromide 21 was treated with magnesium to give the corresponding Grignard reagent which was then methylated by dimethyl sulfate to generate 9 -methylphenanthrene (22). ${ }^{27}$ The second bromination was performed on the $\mathrm{C}_{9}-\mathrm{C}_{10}$ bond of 22 at room temperature. The simultaneous elimination of hydrogen bromide resulted in the formation of 9-bromo-10-methylphenanthrene (23). ${ }^{28}$ The bromide 23, after being converted to Grignard salt, was methylated by methyl iodide to furnish 9,10dimethylphenanthrene (24). ${ }^{28}$ Radical bromination on the dimethyl group of 24 with two equivalents of bromine afforded 9,10-bis(bromomethyl)phenanthrene (13). ${ }^{22}$ 1,4,4a,8b-tetra-hydro-2,3-phenanthro[l]biphenylene $(\mathbf{2 5})^{22}$ was prepared by coupling 13 and 14 in the presence of activated zinc in DMF at $100{ }^{\circ} \mathrm{C}$. The benzylic position of biphenylene 25 was oxidized by pyridinium chlorochromate (PCC) in dichloromethane to provide $1,4,4 \mathrm{a}, 8 \mathrm{~b}$-tetrahydro-2,3-phenanthro[l]biphenylene-1-one (26). ${ }^{22}$ Reduction of the ketone 26 using sodium borohydride in THF yielded $\quad 1,4,4 \mathrm{a}, 8 \mathrm{~b}$-tetrahydro-1-hydroxy-2,3-phenanthro[l]biphenylene (12). ${ }^{22}$ The conversion of 12 to 11 was base on Wang and Paquette's method. ${ }^{29}$ The "allylic" alcohol 12 was treated with 2,4-dinitrobenzenesulfenyl chloride and triethylamine in 1,2dichloroethane, forming a sulfenate ester. It then underwent a $[2,3]$ sigmatropic rearrangement followed by thermal syn elimination to give a diene which, through a disrotatory ring opening, afforded benzola]phenanthro[9,10-e]cyclooctene (11).

Finally, the generation of 5,6,15,16-tetradehydrobenzo $[a]$ -phenanthro[9,10-e]cyclooctene (10) from 11 was carried out by dehydrobromination of the corresponding tetrabromide 9 which, in turn was obtained by bromination of the two ethylene double bonds of 11 (Scheme 5).

Scheme 5

The ${ }^{1} \mathrm{H}$-NMR spectrum of 10 includes an $\mathrm{A}_{2} \mathrm{~B}_{2}$ system of $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and H_{4} at δ 6.66-6.68 ppm with J $=3.3,5.5 \mathrm{~Hz} . \mathrm{H}_{8}, \mathrm{H}_{9}, \mathrm{H}_{12}$ and H_{13} exhibit adsorptions at $\delta 7.51-7.64 \mathrm{ppm}$ centered at 7.57 ppm (m , $4 \mathrm{H}) . \mathrm{H}_{7}, \mathrm{H}_{14}$ show adsorption at $\delta 7.69-7.72 \mathrm{ppm}$ as a doublet of
doublets with $\mathrm{J}=1.7,7.32 \mathrm{~Hz}$ and $\mathrm{H}_{10}, \mathrm{H}_{11}$ show adsorption at δ $8.50-8.53 \mathrm{ppm}$ as a doublet having $\mathrm{J}=8.65 \mathrm{~Hz}$. The two pairs of symmetric acetylene carbons $\mathrm{C}_{5}, \mathrm{C}_{16}$ and $\mathrm{C}_{6}, \mathrm{C}_{15}$ gave two peaks in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum at 109.67 and 113.04 ppm , respectively. The downfield shift of the acetylenic carbon adsorptions as compared with the chemical shifts of other ordinary linear sphybridized alkynes (eg. $\delta 80.3$ for 4-octyne; $\delta 87$ for 2,2,5,5-tetramethyl-3-hexyne) might be attributable to a hybridization change due to the angle strain in $10 .{ }^{30}$ The result of X-ray crystallography confirmed the bond length of $C_{6 a}-C_{14 b}$ to be $1.343 \AA$. The perspective view of $\mathbf{1 0}$ is shown in Figure 2.

Figure 2. Perspective View of COT 10

(IV). Conclusion :

5,6,15,16-Tetradehydrobenzo[a]phenanthro $[9,10-e]$ cyclooctene (10) has been synthesized from phenanthrene. Compound 10 is confirmed to be a planar anti-aromatic [8]-annulene with the common double bond shared by the phenanthrene and the cyclooctatetraene being equal to $1.343 \AA$.

(V). Experimental Section

All the ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra were obtained from a Bruker Cryospec WM250 spectrometer. Samples were run in CDCl_{3} solutions at ambient temperature and the chemical shifts were recorded downfield (δ scale) from the reference, TMS, at 0 ppm . Mass spectra were recorded on a VG Micromass 7070F spectrometer operated at 20 and 70 eV . Melting points were determined on a hot-stage microscope apparatus and were uncorrected. E-Merk silica gel ($70-230$ mesh) was used for all column chromatography. Microanalyses were carried out by the Microanalysis Unit of the Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences and by MEDAC Ltd., Department of Chemistry, Brunel University.

9-Bromophenanthrene

Phenanthrene (9) (100) g, 0.56 mol) was dissolved in CCl_{4} $(100 \mathrm{~mL})$ and was heated to reflux. Bromine ($30 \mathrm{~mL}, 0.59 \mathrm{~mol}$) in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ was added dropwise to the solution over a period of two hours. The HBr gas evolved was transferred through an inverted funnel (connected by a rubber tube to the reflux condenser) to a beaker (containing NaOH solution) to be neutralized. The resulting mixture was refluxed overnight, and then cooled to room temperature. The solution was washed by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 67 \mathrm{~mL})$ and water $(67 \mathrm{~mL})$. The organic layer was separated, dried, and evaporated to give a brownish oil. The remaining solvent was removed under vacuum (0.01 mmHg) at room temperature to give crude brownish-yellow solids which were recrystallized from a mixture of 95% ethanol-acetone. The yellow crystals obtained were dried under vacuum at room temperature for 12 hours ($98 \mathrm{~g}, 64 \%$), mp $62-64{ }^{\circ} \mathrm{C}$ (lit. ${ }^{26}{ }^{65-66}$ $\left.{ }^{0} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (NMR-1), $\delta 7.59-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}), 8.11$ $(\mathrm{s}, 1 \mathrm{H}), 8.35-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.64-8.71(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{e} 258.0\left(\mathrm{M}^{+}\right.$ $+2), 256.0\left(\mathrm{M}^{+}\right), 177.1\left(\mathrm{M}^{+}-\mathrm{Br}\right)$.

9-Methylphenanthrene $(22)^{27}$

9-Bromophenanthrene (21) (70 g, 0.27 mol) in dry diethyl ether (100 mL) and dry benzene (100 mL) was added dropwise to magnesium ($7.2 \mathrm{~g}, 0.29 \mathrm{~mol}$) in dry ether (50 mL). A catalytic amount of iodine was added to activate the reaction. After the
brown mixture had been refluxed for four hours, the flask was immersed in an ice bath. An excess amount of dimethyl sulfate $(70 \mathrm{~mL}, 0.74 \mathrm{~mol})$ in dry ether (70 mL) was added. The resulting yellow mixture was heated to reflux for another three hours and then left stirring overnight. The flask was again cooled in an ice bath, and $\mathrm{HCl}(10 \%, 100 \mathrm{~mL})$ was added slowly. The organic layer was separated and $\mathrm{NaOH}(10 \%, 100 \mathrm{~mL})$ was added. The resulting mixture was refluxed for one hour and was allowed to cool to room temperature. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}$ (3 x 200 mL), dried, and evaporated to give crude yellowish solids. Recrystallization from 95% ethanol gave light yellow crystals ($43 \mathrm{~g}, 82 \%$), mp $89-90{ }^{\circ} \mathrm{C}$ (lit. ${ }^{31} 90-91^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}$ NMR (NMR-2), $\delta 2.72(\mathrm{~s}, 3 \mathrm{H}), 7.54-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.73-7.81(\mathrm{~m}, 1 \mathrm{H})$, 8.03-8.07 (m, 1H), 8.62-8.73 (m, 2H). MS m/e $192\left(\mathrm{M}^{+} .100 \%\right), 191$ ($\mathrm{M}^{+}-\mathrm{H}, 47 \%$).

9-Bromo-10-methylphenanthrene $(23)^{28}$
9-Methylphenanthrene (22) ($45 \mathrm{~g}, 0.23 \mathrm{~mol}$) was dissolved in dry $\mathrm{CCl}_{4}(200 \mathrm{~mL})$. Bromine ($13 \mathrm{~mL}, 0.25 \mathrm{~mol}$) in dry $\mathrm{CCl}_{4}(30$ mL) was added dropwise to the solution at room temperature. After the bromine was added, the solution turned dark brown. The resulting solution was stirred for 1.5 hour and was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(400 \mathrm{~mL})$ and then with $\mathrm{H}_{2} \mathrm{O}(2 \times 400 \mathrm{~mL})$. The organic layer was separated, dried and evaporated to give crude brownish-yellow solids which were recrystallized from 95\% ethanol to afford yellow needle-like crystals ($50 \mathrm{~g}, 79 \%$), mp 118$120{ }^{\circ} \mathrm{C}$ (lit. $.^{27} 119-120{ }^{\circ} \mathrm{C}$, lit. ${ }^{28} 117-118{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR-3), δ
$2.96(\mathrm{~s}, 3 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 4 \mathrm{H}), 8.11-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.45-8.49(\mathrm{~m}$, $1 \mathrm{H}), 8.64-8.71(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{e} 272\left(\mathrm{M}^{+}+2,34 \%\right), 270\left(\mathrm{M}^{+}, 35 \%\right)$, 191 ($\left.\mathrm{M}^{+}-\mathrm{Br}, 47 \%\right)$.

9,10-Dimethylphenanthrene (24) ${ }^{28}$

Oven-dried magnesium ($8.4 \mathrm{~g}, 0.31 \mathrm{~mol}$) was immersed in dry THF (20 mL). 9-Bromo-10-methylphenanthrene (23) (80 g, 0.29 mol) in dry THF $(200 \mathrm{~mL}$) was added dropwise during 3 hours to the magnesium. The solution was warmed to start the reaction. After all bromide had been added, the mixture was refluxed for 5 hours. The reaction flask was immersed in an ice bath. Excess methyl iodide ($135 \mathrm{~mL}, 2.16 \mathrm{~mol}$) was slowly added to the Grignard reagent and the reaction mixture was heated to reflux for 12 hours. The reaction flask was allowed to cool in an ice bath, and dilute $\mathrm{HCl}(10 \%, 200 \mathrm{~mL})$ was added to the solution slowly with stirring to quench the reaction. The solution was washed with saturated NaCl solution $(3 \times 300 \mathrm{~mL})$. The organic layer was separated, dried and evaporated to give yellow solids which were adsorbed on silica gel. Chromatography on silica gel (hexanes eluent) afforded white solids (59 g, 97\%), mp 140-141 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{28}$ 140.5-141 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR-4) $\delta 2.72$ ($\left.\mathrm{s}, 6 \mathrm{H}\right) 7.59-7.63(\mathrm{~m}, 4 \mathrm{H})$, $8.10-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.69-8.73(\mathrm{~m}, 2 \mathrm{H})$. MS m/e $206\left(\mathrm{M}^{+}, 85 \%\right), 191$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100 \%\right)$.

9,10-Bis(bromomethyl)phenanthrene $\quad(13)^{22}$

9,10-Dimethylphenanthrene (24) (15 g, 0.07 mol$)$ in CCl_{4} $(300 \mathrm{~mL})$ was illuminated with a 500 W sunlamp until reflux. Bromine ($7.5 \mathrm{~mL}, 0.15 \mathrm{~mol}$) in $\mathrm{CCl}_{4}(10 \mathrm{~mL})$ was added dropwise to the refluxing solution under illumination. After all bromine had been added, the brown mixture was refluxed for 5.5 hours. The resulting solution was cooled to room temperature and part of the product precipitated as white solids. After filtering the solids the solution was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(300 \mathrm{~mL})$ and water $(2 \times 300 \mathrm{~mL})$. The organic layer was separated, dried and evaporated to give crude brownish solids which were combined with the filtered precipitates. Recrystallization of the crude products from CHCl_{3} afforded white crystals ($22 \mathrm{~g}, 84 \%$), mp. 243.5-244 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{22}$ 235.5-237.5 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR-5), $\delta 5.13$ (s, $4 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 4 \mathrm{H}), 8.21-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.71-8.75(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ $\mathrm{m} / \mathrm{e} 366\left(\mathrm{M}^{+}+4,8 \%\right), 364\left(\mathrm{M}^{+}+2,17 \%\right), 362\left(\mathrm{M}^{+}, 10 \%\right), 285\left(\mathrm{M}^{+}\right.$ $-\mathrm{Br}+2,51 \%), 283\left(\mathrm{M}^{+}-\mathrm{Br}, 49 \%\right), 204\left(\mathrm{M}^{+}-2 \mathrm{Br}, 60 \%\right)$.
$1,4,4 \mathrm{a}, 8 \mathrm{~b}$-Tetrahydro-2,3-phenanthro[l biphenylene $(25)^{22}$

9,10-Bis(bromomethyl)phenanthrene (13) (19.46 g, 53.4 mmol) and 1,2-dibromo-1,2-dihydrobenzocyclobutene (14) (14 g, 53.4 mmol) were dissolved in DMF (300 mL) under nitrogen atmosphere. The resulting solution was heated at $100-110{ }^{\circ} \mathrm{C}$, and activated zinc $(20 \mathrm{~g})$ was added to the solution in one portion. The heterogeneous solution was stirred at $100-110{ }^{\circ} \mathrm{C}$ for 6 hours. The
resulting solution was allowed to cool to room temperature and the excess zinc and zinc bromide were filtered. The filtrate was poured into ether (300 mL) and washed with water ($4 \times 500 \mathrm{~mL}$). The organic layers were collected, dried and evaporated to give yellowish solids. The crude product was adsorbed on silica gel and purified by column chromatography on silica gel (EtOAc : hexanes $=1: 30$ eluent). The white solid obtained was recrystallized from CHCl_{3} : hexanes to yield white crystals ($8 \mathrm{~g}, 50 \%$), $\mathrm{mp} 215.5-217{ }^{\circ} \mathrm{C}$ (lit. ${ }^{22}$ 216.5-217.5 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR-6), $\delta 3.21-3.29$ (m, 2H), 3.57$3.64(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.96(\mathrm{t}, 2 \mathrm{H}, 3.5 \mathrm{~Hz}), 6.98(\mathrm{~s}, 4 \mathrm{H}), 7.49-7.61(\mathrm{~m}$, $4 \mathrm{H}), 8.16-8.20(\mathrm{dd}, 2 \mathrm{H}, 2.1,7.5 \mathrm{~Hz}), 8.60-8.64(\mathrm{~m}, 2 \mathrm{H})$. MS m/e 306 ($\mathrm{M}^{+}, 100 \%$).

1,4,4a, 8b-Tetrahydro-2,3-phenanthro[l]biphenylene-1one $(26)^{22}$

Biphenylene $25(0.2 \mathrm{~g}, 0.7 \mathrm{mmol})$ was mixed with pyridinium chlorochromate ($1.31 \mathrm{~g}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL). The mixture was refluxed for 20 hours. After cooling to room temperature, the dark brown mixture was extracted with dilute $\mathrm{HCl}(10 \%)$ and $\mathrm{H}_{2} \mathrm{O}\left(50^{\circ} \mathrm{mL}\right)$. The organic layer was separated, dried and evaporated to give brown solids which were adsorbed on silica gel and chromatographed on a silica gel column (eluted with EtOAc : hexanes $=1: 10$) to give yellow solids. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes to afford yellow crystals ($0.12 \mathrm{~g}, 57 \%$), mp $222.5-223{ }^{\circ} \mathrm{C}$ (lit. ${ }^{22} 224-225{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR7), $\delta 3.4(0-3.50(\mathrm{dd}, 1 \mathrm{H}, 6.9,17 \mathrm{~Hz}), 3.94-4.02(\mathrm{dd}, 1 \mathrm{H}, 2.5,17 \mathrm{~Hz})$, 4.41-4.48 (m, 1H), 4.61-4.63 (d, $1 \mathrm{H}, 5.1 \mathrm{~Hz}), 7.05-7.25(\mathrm{~m}, 4 \mathrm{H})$,
$7.56-7.71(\mathrm{~m}, 4 \mathrm{H}), 8.20-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.46-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.56-8.66$ (m, 2H). MS m/e $320\left(\mathrm{M}^{+}, 38 \%\right), 291\left(\mathrm{M}^{+}-\mathrm{CO}, 83 \%\right)$.
$1,4,4 \mathrm{a}, 8 \mathrm{~b}$-Tetrahydro-1-hydroxy-2,3-phenanthro[l]biphenylene $(12)^{22}$

Sodium borohydride ($0.1 \mathrm{~g}, 2.6 \mathrm{mmol}$) was mixed with the ketone 26 ($0.2 \mathrm{~g}, 0.6 \mathrm{mmol}$) in THF (21 mL). The resulting solution was refluxed under N_{2} for 20 hours. After cooling to room temperature, the solution was extracted with ether (35 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. After layer separation, the aqueous layer was extracted with ether $(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried and evaporated. The crude product was adsorbed on silica gel and purified by column chromatography on silica gel (EtOAc : hexanes $=1: 5$ eluent) to afford white solids (0.1 $\mathrm{g}, 52 \%$), mp $214.5-215.5{ }^{\circ} \mathrm{C}$ (lit. ${ }^{22} 218-219{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR-8), δ $1.64-1.65(\mathrm{~d}, 1 \mathrm{H}, 2.3 \mathrm{~Hz}), 3.19-3.29(\mathrm{dd}, 1 \mathrm{H}, 11.2,14.2 \mathrm{~Hz}), 3.69-$ $3.71(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.99(\mathrm{t}, 1 \mathrm{H}, 5.7 \mathrm{~Hz}), 4.14-4.23$ (dd, $1 \mathrm{H}, 7.7,14.2$ $\mathrm{Hz})$, 6.41-6.44 (dd, 1H, 2, 5.5 Hz$), 7.37-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.73(\mathrm{~m}$, $4 \mathrm{H})$, 8.35-8.44 (m, 2H), 8.78-8.82 (m, 2H). MS m/e $322\left(\mathrm{M}^{+}, 71 \%\right)$, $304\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, \mathrm{I}(0) \%\right)$.

Benzo $a]$ phenanthro[9, 10-e]cyclooctene $(11)^{22}$

The alcohol $12(0.79 \mathrm{~g}, 2.5 \mathrm{mmol})$ and 2,4-dinitrobenzenesulfenyl chloride ${ }^{22}(3 \mathrm{~g}, 12.57 \mathrm{mmol})$ were dissolved in 1,2 dichloroethane $(150 \mathrm{~mL})$ at room temperature under N_{2} atmosphere. To the solution was added triethylamine (2 mL) via a
syringe. The solution became turbid in one minute and was stirred at room temperature for 3.5 hours. It was then heated to reflux for 20 hours. The resulting mixture was allowed to cool to room temperature and evaporated. The crude product was adsorbed on silica gel and chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexanes $=1: 15$ eluent) to give white solids which were recrystallized from benzene-hexanes to yield colorless needles ($0.5 \mathrm{~g}, 63 \%$), $\mathrm{mp} 231.5-232.5{ }^{\circ} \mathrm{C}$ (lit. ${ }^{22}$ 238.5-239 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (NMR-9), $\delta 7.06-7.26(\mathrm{ABq}, 4 \mathrm{H}, 11.8 \mathrm{~Hz}), 7.12(\mathrm{~s}, 4 \mathrm{H}), 7.59-7.63$ $(\mathrm{m}, 4 \mathrm{H}), 8.06-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.61-8.65(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{e} 304\left(\mathrm{M}^{+}\right.$, $100 \%)$.

5,6,15,16-Tetrabromo-5,6, 15, 16-tetrahydrobenzo $[a]$ phen-anthro[9,10-e]cyclooctene (29)

To a stirring solution of $11(0.47 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dry CCl_{4} (15 $\mathrm{mL})$ was added $\mathrm{Br}_{2}(0.18 \mathrm{~mL}, 3.6 \mathrm{mmol})$ through a syringe. The resulting solution was heated to reflux for 20 hours. The color of the solution became orange-red. The mixture was evaporated and adsorbed on silica gel. Purification by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexanes $=1: 5$ eluent $)$ gave light yellow solids which were recrystallized from CHCl_{3}-hexanes to afford white crystals ($0.8 \mathrm{~g}, 84 \%$), mp 24(0.6-241.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (NMR-10), δ $6.10-6.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}), 6.2()-6.23(\mathrm{~d}, 1 \mathrm{H}, 9.2 \mathrm{~Hz}), 6.68-6.72(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 6.78-6.83(\mathrm{~d}, 1 \mathrm{H}, 10.9 \mathrm{~Hz}), 6.81-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.95-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.72(\mathrm{~m}, 5 \mathrm{H}), 8.08-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.50-8.61(\mathrm{~m}$, 3H). MS m/e $624\left(\mathrm{M}^{+}+4,6 \%\right), 466\left(\mathrm{M}^{+}-2 \mathrm{Br}+4,5 \%\right), 464\left(\mathrm{M}^{+}\right.$ $-2 \mathrm{Br}+2,10 \%), 462\left(\mathrm{M}^{+}-2 \mathrm{Br}, 4 \%\right), 385\left(\mathrm{M}^{+}-3 \mathrm{Br}+2,12 \%\right), 383\left(\mathrm{M}^{+}\right.$
$-3 \mathrm{Br}, 16 \%), 304\left(\mathrm{M}^{+}-4 \mathrm{Br}, 100 \%\right)$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{4}: \mathrm{C}$, 46.20; H, 2.58. Found: C, 46.08; H, 2.06.
$5,6,15,16$-Tetradehydrobenzo $[a]$ phenanthro $[9,10-e]$ cyclooctene (10)

The tetrabromide 29 ($98.4 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in dry THF (10 mL) at room temperature under N_{2} atmosphere. Potassium tetr-butoxide ($0.20 \mathrm{~g}, 1.7 \mathrm{mmol}$) in dry THF (6 mL) was added dropwise during 10 minutes to the solution. The mixture was left stirring for 30 minutes at room temperature. The resulting orange-red solution was poured into ether (15 mL) and washed with water (15 mL). After separating the organic fraction, the aqueous layer was extracted with ether ($2 \times 10 \mathrm{~mL}$). The combined organic layers were dried and evaporated. The resulting crude brownish solids were adsorbed on silica gel and purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexanes $=1: 10$ eluent). The isolated orange product was recrystallized from benzene-hexanes, yielding red-orange crystals ($29 \mathrm{mg}, 63 \%$). The crystals decomposed at $183{ }^{\circ} \mathrm{C}$ on an attempted melting point determination. Single crystals of $\mathbf{1 0}$ were obtained by recrystallization from cyclooctene. ${ }^{1} \mathrm{H}$ NMR (NMR-11), δ 6.66-6.88 (AA'BB', 4H, J $=3.3,5.5 \mathrm{~Hz}), 7.51-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H})$, 8.50-8.53 (d, 2H, 8.6 Hz$) ;{ }^{13}$ CNMR (CMR-1), δ 109.67, 113.04, $122.79,126.93,127.06,127.32,127.79,128.96,129.35,130.28$, 134.31. MS m/e $300\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{12}: \mathrm{C}, 95.97$; H, 4.03. Found: C, 95.07; H, 3.86.
$\begin{array}{cl}\text { Part 2: } & \text { The Syntheses of 2,3-Disubstituted and 2,3,5- } \\ & \text { Trisubstituted Furans from 2,4-Bis(trimethyl- } \\ & \text { silyl)furan }\end{array}$

(I). Abstract :

2-Benzyl-3-m-anisyl-5-p-tolyl-furan (30), 2-benzyl-3-trans-hexen-1-yl-5-p-tolyl-furan (31), 2-(3,5-dimethyl)benzyl-3-p-methoxylcarbonylbenzyl-5-hexyl-furan (32) and 2-benzyl-3-[3,4-(methylenedioxy)]benzylfuran (33) have been synthesized by utilizing a sequence of regiospecific iodination, Nickel catalyzed Grignard cross-coupling, Stille-type cross-coupling and Suzukitype cross-coupling reactions.

(II), Introduction :

Polysubstituted furans commonly occurred as key structural units of a widespread natural substances. ${ }^{32(a)-(e)}$ The furan derivatives (both saturated and unsaturated) have also made a tremendous contribution to the preparation of a wide range of cyclic and acyclic organic compounds ${ }^{33}$ (eg. retro-isosenine, ${ }^{32(b)}$ hallchondrin $B,{ }^{34}$ and fusarin ${ }^{35}$) as well as some important pharmaceuticals. ${ }^{36}$

In connection with the studies on 3,4 -disubstituted furans, ${ }^{37(a)-(d)}$ we are also interested in developing new methodologies to the preparation of substituted furans of other kinds. We report herein a brief survey on the various reactions of furan.

(A). Reactions of Furan :

(1). Reaction with Electrophiles :

Furan is characterized as an electron rich heterocycle that contains six π-electrons distributed over the five-membered ring system. It undergoes electrophilic attack more readily at the α position than the β-position. Such feature can be easily understood in terms of delocalization of a positive charge in the cationic intermediate ${ }^{38}$ as shown in Scheme 6.

Scheme 6

It is clear that the cation a, derived by α-addition, represents 3 resonance structures and as a result should have greater stability than cation \mathbf{b}, which is derived by β-addition.
(2). Reactions with Nucleophilic Reagents :

Nucleophilic reagents do not react with furan and its alkyl derivatives by addition or by substitution. However, furan can be
treated with a strong base, resulting in the deprotonation at the α carbon. ${ }^{39(a)}$ In this manner, furan reacts effectively with n butyllithium / TMEDA in refluxing hexane to give synthetically useful furyllithium. ${ }^{40}$ (Scheme 7).

Scheme 7

The 2 -lithio species can immediately react with various electrophiles to produce 2 -substituted furan.

(3). Cycloaddition reactions :

Furan, as a diene, undergoes Diels-Alder reaction ${ }^{41}$ with dienophiles of high reactivity such as maleic anhydride ${ }^{42}$ (Scheme $8)$.

Scheme 8

Equally important is the cycloaddition of furan to activated acetylenes (eg. 1,1,1,1,4,4,4,4-hexafluoro-2-butyne) in the generation of 3,4 -disubstituted furans ${ }^{43}$ (Scheme 9).

Scheme 9

$$
\mathrm{H}_{2} / \mathrm{Pt}
$$

(B). Syntheses of Polysubstituted Furans :

There is a resurgence in the literature of new and effective methodologies for furan synthesis in the last decade, due to the rapid development of organic chemistry, in particular organometallic chemistry. As a result of these activities, many new possibilities for furan synthesis have been recorded. In order to only focus our attention on the new synthetic methods, some old and not so frequently used methods are not discussed here
since they have been reviewed elsewhere. ${ }^{39(b)-(c)}$ Some latest developments in furan synthesis are outlined below.

(1). By $\mathrm{Ag}(\mathrm{I})$ Catalyzed Cyclization :

Conjugated allenones readily cyclized to 2,3,5-trisubstituted furans upon treatment with $\mathrm{AgNO}_{3}-\mathrm{CaCO}_{3}$ in aqueous acetone ${ }^{44}$ (Scheme 10)

Scheme 10

(2). By Base-Catalyzed Isomerization of Alkynyloxiranes

Alkynyloxiranes can isomerize to different substituted furans upon treatment with $\mathrm{KO}^{\mathrm{I}} \mathrm{Bu}$ in ${ }^{\mathrm{t}} \mathrm{BuOH}-18$-crown-6. This is an unusual cyclization ${ }^{45}$ (Scheme 11) which involves an initial 1,4-elimination of the alkynyloxirane \mathbf{i} leading to the cumulene \mathbf{i}. Intramolecular cyclization of ii gives a vinylic anion iii which
undergoes proton transfer via iv and \mathbf{v} followed by protonation to furnish vi.

Scheme 11

i

iv

v

iii

This pathway can be further verified with the used of α methylene homopropargylic alcohol vii as a starting material to provide a 2,4 -disubstituted furan xii (Scheme 12). The anion viii generated from the alcohol vii in the presence of $\mathrm{KO}^{\mathrm{B}} \mathrm{Bu}$ undergoes
cyclization to give the vinylic anion ix, proton transfer through \mathbf{x} and $\mathbf{x i}$ followed by protonation affords the furan $\mathbf{x i i}$.

Scheme 12

(3). By Base-Catalyzed Cyclization-Isomerization of $\gamma=$

 Alkynyl Allylic Alcohol:This methodology has been employed for the preparation of 2,3,5-trisubstituted furans via cyclization of γ-alkynyl allylic alcohol followed by a subsequent isomerization in $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu} .{ }^{46} \mathrm{An}$ illustration of the mechanism is shown in Scheme 13.

Scheme 13

(4). By Palladium-Catalyzed Coupling of 2-Propargyl-1,3-dicarbonyl Compounds and Vinylic. Aryl Triflates or Halides :

2-Propargyl-1,3-dicarbonyl reacts as a functionalized alkyne with vinyl, aryl triflates or halides in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
and $\mathrm{K}_{2} \mathrm{CO}_{3}$, providing 2,3,5-trisubstituted furans ${ }^{47}$ (Scheme 14). The reaction proceeds through the formation of a π-palladium complex xiii and is followed by generation of the σ-vinylpalladium complex xiv via regioselective trans addition of oxygen. The reductive elimination of $\operatorname{Pd}(0)$ gives hydrofuran $x v$ which undergoes isomerization to afford the 2,3,5-trisubstituted furan xvi.

Scheme 14

(5). From α, β-Unsaturated Ketones :

$$
\alpha \text {-Bromo- } \beta \text {-alkoxy ketone (in its enolated form) can be }
$$ converted to 2-acetyl-4-alkoxymethyl-5-methylfurans in a one pot process by dehydrohalogenation with 1,8 -diazabicyclo[5,4,0]-undec-7-ene (DBU) ${ }^{48}$ (Scheme 15).

Scheme 15

All the aforementioned methods are well established synthetic methodologies for the preparation of polysubstituted furans. However, a common shortcoming of these methods is that the availability of starting materials may be limited.

(C). Recent Achievement:

In previous works, we have demonstrated the use of DielsAlder and retro Diels-Alder reactions to prepare 3,4bis(trimethylsilyl)furan (34), which can be used as a building block for the synthesis of 3,4 -disubstituted furans ${ }^{37(a),(d)}$ (Scheme 16).

Scheme 16 :
TMS $=$ TMS

It is known that the trimethylsilyl-substituted aromatic compounds would experience electrophilic substitution readily at the ipso-position. ${ }^{49}$ The intermediate thus formed is stabilized by a β-effect as a result of the contribution from the carbon-silicon bond to the adjacent carbocation (Scheme 17).

Scheme 17

B-effect

The conjugation between the carbon-silicon σ-bond and the adjacent p-orbital is responsible for the intermediate's stability. ${ }^{49}$ Experiments have shown that ipso-substitution of a proton on trimethylsilylated aromatic compounds would result in the rearrangement of the trimethylsilyl group. ${ }^{50}$

Based on these facts, we have successfully prepared 2,4bis(trimethylsilyl)furan (35) from bis(trimethylsilyl)acetylene and 4-phenyloxazole ${ }^{51}$ (Scheme 18). It is noteworthy that 35 has been previously prepared ${ }^{52}$ in a small quantity by a photorearrangement of 2,5 -bis(trimethylsilyl)furan.

Scheme 18

TMS $=$ TMS

The rearrangement of a trimethylsilyl group occurs because of the sterically unfavorable orientation of the two trimethylsilyl groups at the C-3 and C-4 positions. The mechanism of the isomerization of $\mathbf{3 4}$ to $\mathbf{3 5}$ is shown in Scheme 9. It begins with the electrophilic attack of a proton on the ipso-position to form a cation 34 a . As
the rearrangement proceeds from $\mathbf{3 4 b}$ to $\mathbf{3 4 d}$, it is likely that a pentavalent silicon cation intermediate $\mathbf{3 4 c}$ is also involved. ${ }^{53}$ The resulting 2,4-bis(trimethylsilyl)furan (35) is formed through the simultaneous elimination of a proton from the C-2 position.

Scheme 19

In a separate experiment, 3,4-bis(trimethylsilyl)furan (34) was converted efficiently to $\mathbf{3 5}$ on exposure to trifluoroacetic anhydride containing a catalytic amount of trifluoroacetic acid with CCl_{4} as a solvent.

2,4-Bis(trimethylsilyl)furan (35) was used as a building block for the synthesis of polysubstituted furans. The synthetic utility of $\mathbf{3 5}$ is outlined in the following section.

(III). Results and Discussion :

(A). Attempted Synthesis of 2,4-disubstituted furans :

Our first attempt in the use of 2,4-bis(trimethylsily1)furan (25) was to prepare 2,4 -disubstituted furans. It was known that aryltrimethylsilane can be iodinated easily at the ipso-position upon treatment with silver salt and iodine. ${ }^{54}$ Therefore, our approach used as the key step was an iodination of the furan 35 with silver trifluoroacetate, iodine and THF at $-78{ }^{\circ} \mathrm{C}$. Unfortunately, the products turned out to be a mixture of nonseparable mono- and di-iodo-furans (Scheme 20).

Scheme 20

The ${ }^{1} H$ NMR spectrum of the non-polar fraction, separated by column chromatography on silica gel, indicates two peaks at $\delta 6.53$ $(\mathrm{s}, 1 \mathrm{H})$ and $7.44(\mathrm{~s}, 1 \mathrm{H})$ corresponding to the protons at $\mathrm{C}-3$ and C 5 of iodofuran 36, respectively. There also exists a singlet at δ 6.49 ppm which represents the $\mathrm{C}-4$ proton of diiodofuran 37 . Both the mass peaks of 36 and 37 were found in the mass spectrum. In view of the results obtained in the direct iodination of $\mathbf{3 5}$, further manipulation was not sought.

(B). Synthesis of 2,3,5-trisubstituted furans

Since the direct iodination route had failed to give pure product, attention was drawn to the manipulation of $\mathrm{C}-2$ position. It was well known that lithiation took place readily at $\mathrm{C}-2$ position of furan. ${ }^{55}$ Therefore, a blocking group could be added to the C-2 position of 2,4-bis(trimethylsilyl)furan (35) through $\mathrm{n}_{\mathrm{BuLi}}$ and alkyl or benzyl halides.

(1). Synthesis of 2-benzyl-3-m-anisyl-5-p-tolyl-furan (30):

A benzyl group was chosen as a blocking substitutent to replace the $\mathrm{C}-2$ proton of 35 , thus resulting in the generation of benzylfuran 38. Subsequent ipso-iodination at C-5 provided the iodide 39, which through a Ni -catalyzed cross-coupling yielded the diaryl-furan 40 (Scheme 21).

Scheme 21

Scheme 21 (continued)

Nickel(II)-phosphine complexes are useful tools for the conversion of halofurans to arylfurans ${ }^{56}$. Here NiCl_{2} (dppe) was employed to catalytically convert the iodofuran 39 together with p tolylmagnesium bromide to 2-benzyl-5-p-tolyl-3-trimethylsilylfuran (40). The general mechanism of a Ni -catalyzed crosscoupling is shown in Scheme 22.

Scheme 22

The dihalodiphosphine nickel reacted with a Grignard reagent to form an intermediate diorganonickel complex which, after
releasing an organo-dimer, was converted to an activated $\mathrm{Ni}(0)$ complex. An oxidative addition of the halofuran 39 a on $\mathrm{Ni}(0)$ followed by transmetallation with $\mathrm{Ar}^{\prime} \mathrm{MgX}$ furnished the diorgano complex 39 c . The reductive elimination of the coupling product $40 \mathbf{a}$ resulted in the regeneration of the activated $\mathrm{Ni}(0)$ to complete the cycle.

Treatment of 40 with one equivalent of boron trichloride at $-78{ }^{\circ} \mathrm{C}$ and a subsequent work up with $1 \mathrm{M} \mathrm{Na} \mathrm{CO}_{3}$ and ether afforded the boroxine 41 as an intermediate ${ }^{37(d)}$ (Scheme 23). A palladium-catalyzed Suzuki-type cross-coupling ${ }^{57}$ of the boroxine 41 and 3 -bromoanisole using tetrakis(triphenylphosphine)palladium(0) as a catalyst, in methanol, toluene and $2 \mathrm{M} \mathrm{Na} \mathrm{NO}_{3}$ at refluxing temperature afforded $\mathbf{3 0} 0$. Scheme 24 represents the general catalytic pathway of this Suzuki-type cross-coupling reaction.

The oxidative addition of $R X$ on the activated $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$, given by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, generated an organo-halo-palladium complex 41c which upon an anion exchanged provided an intermediate 41d. The trimer 41 a then took part in the cycle, releasing the tetrahydroxyboroxine, and furnishing the diorgano-palladium 41b. On completion of the cycle, the reductive elimination of the expected product [i.e. the $2,3,5$-trisubstituted furan $\mathbf{3 0 a}$] and the simultaneous regeneration of the activated $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ took place.

Scheme 23

1) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$
2) $1 \mathrm{M} \mathrm{Na}{ }_{2} \mathrm{CO}_{3}, \mathrm{Et}_{2} \mathrm{O}$

Scheme 24

The ${ }^{1} H$ NMR spectrum exhibits an $A^{\prime} X X '$ system at $\delta 7.16-7.19$ and $7.55-7.58 \mathrm{ppm}(4 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz})$ which corresponds to the two pairs of symmetrical protons of the tolyl group at the C-5 position. The methyl-protons of the tolyl group resonance as a singlet at δ
$2.35 \mathrm{ppm}(3 \mathrm{H})$, so do the methoxy and the benzylic protons at δ $3.76 \mathrm{ppm}(3 \mathrm{H})$ and $\delta 4.20 \mathrm{ppm}(2 \mathrm{H})$, respectively. The $\mathrm{C}-4$ proton shows a singlet at $\delta 6.76 \mathrm{ppm}(1 \mathrm{H})$. The rest of the 9 aromatic protons gave rise to the appearance of a multiplet at $\delta 6.81-7.33$ ppm.

(2). Synthesis of 2-benzyl-3-trans-hexen-1-yl-5-p-tolyl-furan (31) :

Catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, the boroxine 41 reacted with trans-1-iodo-1-hexene at refluxing temperature to afford 2-benzyl-3-trans-hexen-1-yl-5-p-tolyl-furan (31) (Scheme 25).

Scheme 25

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 31 , the terminal methyl-protons of the hexenyl group show a triplet at $\delta 0.89-0.95 \mathrm{ppm}(3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz})$ and the aliphatic protons resonance at $\delta 1.26-1.46 \mathrm{ppm}(4 \mathrm{H})$ and δ $2.14-2.22 \mathrm{ppm}(2 \mathrm{H})$ as multiplets. The methyl protons of the tolyl group and the benzylic protons display two singlets at $\delta 2.34 \mathrm{ppm}$ $(3 \mathrm{H})$ and $\delta 4.05 \mathrm{ppm}(2 \mathrm{H})$, respectively. The vinylic protons
resonance at $\delta 5.89-6.00 \mathrm{ppm}(1 \mathrm{H})$ and $\delta 6.20-6.27 \mathrm{ppm}(1 \mathrm{H})$ as two sets of multiplets. The $\mathrm{C}-4$ proton provides a singlet at $\delta 6.69$ ppm. There is also an $\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}$ system locating at $\delta 7.13-7.16(2 \mathrm{H}$, J $=8.2 \mathrm{~Hz})$ and $\delta 7.49-7.53(2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz})$. The rest of the aromatic protons afford a multiplet at $\delta 7.20-7.33(5 \mathrm{H})$.

(3). Synthesis of 2-(3,5-dimethyl)benzyl-3-methoxy-

 carbonylbenzyl-5-hexyl-furan (32):2,4-Bis(trimethylsilyl)furan (35) reacted with ${ }^{\mathrm{n}} \mathrm{BuLi}$ and the resulting lithium salt was alkylated by 3,5-dimethylbenzyl bromide to give 2-(3,5-dimethyl)benzyl-3,5-bis(trimethylsilyl)furan (42). The usual iodination with $\mathrm{AgO}_{2} \mathrm{CCF}_{3}$ and I_{2} in THF at $-78{ }^{\circ} \mathrm{C}$ furnished the iodide 43 . Palladium-catalyzed crosscoupling reaction ${ }^{58}$ was used to convert 43 to an alkynyl furan 44. The triple bond was hydrogenated catalytically to generate a hexyl-furan 45 in good yield (Scheme 26). The general catalytic cycle of the Pd-catalyzed cross-coupling is shown in Scheme 27.

Scheme 26

35

r.t. , 46%

Scheme 26 (continued)

$\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}$
EtOH, r.t., 78%

Scheme 27

The mechanism was initiated when the $\mathrm{Pd}(\mathrm{II})$ complex reacted with a terminal acetylene in the presence of $\mathrm{Et}_{2} \mathrm{NH}$ and CuI to form a dialkynylpalladium complex, which, through a reductive elimination of the diacetylene, became a reactive species of
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$. A subsequent oxidative addition of ArI to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ gave the aryl-iodo-palladium complex $\mathbf{4 3 b}$ on which alkynylation took place to form an aryl-alkynyl palladium 43c. Subsequently, the cycle was completed by an reductive elimination of the coupling product 44 a and the regenerateion of the reactive $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$.

The furan 45 was finally converted to 32 , via a boroxine intermediate 46 , by the usual consecutive treatment with BCl_{3}, $\mathrm{Na}_{2} \mathrm{CO}_{3}$-ether and Suzuki cross-coupling with methyl 4bromomethylbenzoate (Scheme 28).

The ${ }^{1} H$ NMR spectrum of $\mathbf{3 2}$ indicates the presence of the hexyl protons in between $\delta 0.83$ and $\delta 2.54 \mathrm{ppm}$. The protons of the two methyl groups exhibit a singlet at $\delta 2.24 \mathrm{ppm}(6 \mathrm{H})$. The two sets of benzylic protons at C-2 and C-3 resonance as two singlets at $\delta 3.84 \mathrm{ppm}(2 \mathrm{H})$ and $\delta 3.72 \mathrm{ppm}(2 \mathrm{H})$, respectively. The benzoate methyl shows a singlet at $\delta 3.89 \mathrm{ppm}(3 \mathrm{H})$. The C-4 proton resonances at $\delta 5.72 \mathrm{ppm}$ as a singlet $(1 \mathrm{H})$. The aromatic protons of the C-2 benzyl group show two singlets at $\delta 6.74 \mathrm{ppm}$ $(2 \mathrm{H})$ and $\delta 6.82 \mathrm{ppm}(1 \mathrm{H})$. There is also an $\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}$ system (from the $\mathrm{C}-3$ benzyl group) locating at $\delta 7.18-7.94 \mathrm{ppm}(4 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz})$.

Scheme 28

(1) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$

(4). Synthesis of 2-benzyl-3-[3,4-(methylenedioxy)]-

 benzylfuran (33) :The previously prepared iodofuran 39 was reduced by LAH in THF at room temperature to furnish 2-benzyl-3-trimethylsilylfuran (47) which, upon treatment with BCl_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$-ether, provided an intermediate boroxine 48. A $\operatorname{Pd}(0)$-catalyzed Suzukitype cross-coupling reaction between 48 and 3,4-(methylenedioxy)benzyl chloride afforded the desired 2,3-disubstituted furan 33 (Scheme 29).

Scheme 29

Scheme 29 (continued)

1) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-78^{\circ} \mathrm{C}, 9 \mathrm{~h}} \begin{aligned} & \text { 2) } 1 \mathrm{M} \mathrm{Na} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \text { ether }\end{aligned}$ ether

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 33 , there are three singlets locating at $\delta 3.58 \mathrm{ppm}(2 \mathrm{H}), \delta 3.88 \mathrm{ppm}(2 \mathrm{H})$ and $\delta 5.82 \mathrm{ppm}(2 \mathrm{H})$, which correspond to the benzylic protons at $\mathrm{C}-2, \mathrm{C}-3$, and the methylene protons respectively. The $\mathrm{C}-4$ and $\mathrm{C}-5$ protons show two doublets at $\delta 6.07 \mathrm{ppm}(1 \mathrm{H})$ and $\delta 7.18 \mathrm{ppm}(1 \mathrm{H})$, respectively. The multiplets of the aromatic protons appear in between $\delta 6.51$ and δ $7.23 \mathrm{ppm}(8 \mathrm{H})$.

(IV). Conclusion :

The 2-benzyl-3-m-anisyl-5-p-tolyl-furan (30), 2-benzyl-3-trans-hexen-1-yl-5-p-tolyl-furan (31) and 2-(3,5-dimethyl)-benzyl-3-p-methoxycarbonylbenzyl-5-hexyl-furan (32) have been synthesized from 2,4-bis(trimethylsilyl)furan (35). The strategy used involved a C-2 lithiation-alkylation, a C-5 ipsoiodination, nickel-catalyzed cross-compling reaction and $\operatorname{Pd}(0)$ catalyzed Suzuki-type cross-coupling reaction. 2-Benzyl-3-[3,4(methylenedioxy)|benzylfuran (33) was synthesized through the reduction of iodofuran 39 and was followed by a $\operatorname{Pd}(0)$-catalyzed Suzuki-type cross-coupling reaction.

These experimental series described above are expected to find important application in the synthesis of polysubstituted furans.

(V). Experimental Section :

4-Phenyloxazole ${ }^{51}$

A mixture of phenacyl bromide ($255 \mathrm{~g}, 1.28 \mathrm{~mol}$), ammonium formate ($281 \mathrm{~g}, 4.4 \mathrm{~mol}$) in anhydrous formic acid (1.3 L) was refluxed for 5.5 hours. The resulting dark-brown solution was poured into ice (1 kg). NaOH solution ($8.3 \mathrm{M}, 4 \mathrm{~L}$) was added to the mixture with continuous stirring in order to neutralize the acid. When the pH reached 8 , ether (1 L) was added to extract the product. The organic layer was separated, dried, and evaporated to give a crude dark-red liquid which was distilled under vacuum at $94-95{ }^{\circ} \mathrm{C}(10 \mathrm{mmHg})$ [lit. $\left.{ }^{51} \mathrm{bp} .57-60{ }^{\circ} \mathrm{C}(0.6 \mathrm{mmHg})\right]$ to furnish a light yellow liquid. Silica gel column chromatography (ether : hexanes $=1: 6$ eluent) afforded a colorless oil ($57 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR (NMR-12), δ 7.27-7.43 (m, 3H), 7.73-7.77 (m, 2H), $7.91(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}$ $\mathrm{m} / \mathrm{e} 145\left(\mathrm{M}^{+}\right)$.

2,4-Bis(trimethylsilyl)furan (35) ${ }^{52}$
(a). Bis(trimethylsilyl)acetylene ($2 \mathrm{~g}, 0.02 \mathrm{~mol}$) and 4phenyloxazole ($2 \mathrm{~g}, 0.01 \mathrm{~mol}$) were mixed in a sealed tube to which anhydrous $\mathrm{HCOOH}(0.1 \mathrm{~mL}, 2.6 \mathrm{mmol})$ was added. The sealed tube was heated at $290{ }^{\circ} \mathrm{C}$ for 3.5 days to give a dark mixture. Vacuum distillation of the resulting mixture gave a colorless liquid. Column chromatography on silica gel (hexanes eluent) afforded a colorless oil of $35(1.63 \mathrm{~g}, 33 \%) .{ }^{1} \mathrm{H}$ NMR (NMR$13), \delta 0.21(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$.
(b). From 3,4-bis(trimethylsilyl)furan (34):

3,4-Bis(trimethylsilyl)furan (34) ($0.1 \mathrm{~g}, 0.5 \mathrm{mmol}$) and CCl_{4} $(1 \mathrm{~mL})$ were mixed in a sealed tube. To this solution $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(0.1$ mL) was added through a syringe. The sealed tube was heated to $160{ }^{\circ} \mathrm{C}$ for 24 hours. The resulting mixture was evaporated to give a brown oil which was purified by chromatography on a silica gel column (hexanes eluent) to afford a colorless oil ($85 \mathrm{mg}, 85 \%$). The physical and spectrometric data are identical with an authentic sample prepared previously.

Iodination of 2,4-bis(trimethylsilyl)furan

2,4-Bis(trimethylsilyl)furan (34) ($0.27 \mathrm{~g}, 1.3 \mathrm{mmol}$) was mixed with $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.62 \mathrm{~g}, 2.8 \mathrm{mmol})$ in dry THF (10 mL). After all silver salt had been dissolved, the reaction flask was cooled in a dry ice-acetone bath $\left(-78{ }^{\circ} \mathrm{C}\right)$. The mixture was stirred under N_{2} for 5 minutes and $\mathrm{I}_{2}(0.33 \mathrm{~g}, 1.3 \mathrm{mmol})$ in dry $\operatorname{THF}(10 \mathrm{~mL})$ was added dropwise in a period of 20 minutes. The resulting suspension was stirred for 1 hour and was filtered to give a light yellow solution which was diluted with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ solution $(20 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$. The organic layer was separated, dried and evaporated to furnish a yellowish oil. Purification by silica gel column chromatography (hexanes eluent) afforded a mixture of 36 and 37 as a colorless oil (137.8 mg). The oil decomposed quickly on prolonged standing at room temperature. ${ }^{1} \mathrm{H}$ NMR (NMR-14) $\delta 0.29(\mathrm{~s}, 11 \mathrm{H}), 6.49(\mathrm{~s}, 0.5 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.44$
($\mathrm{s}, 1 \mathrm{H}$). MS m/e $266\left(\mathrm{M}^{+}\right.$, mono-iodide, 29%), $392\left(\mathrm{M}^{+}\right.$, di-iodide, 76%).

2-Benzyl-3,4-bis(trimethylsilyl)furan (38)

To a stirred solution of 2,4-bis(trimethylsilyl)furan (35) $(0.66 \mathrm{~g}, 3.1 \mathrm{mmol})$ in dry THF $(12 \mathrm{~mL})$ was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2 \mathrm{~mL}, 3.3$ mmol) through a syringe. The mixture was stirred under N_{2} for 30 minutes. Benzyl bromide ($0.4 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in dry THF (8 mL) was added dropwise to the orange mixture and it became light yellow immediately. The resulting mixture was left stirring for another 30 minutes, and then was poured into ether (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic fraction was separated, dried and evaporated to give a yellowish oil. The crude product was purified by silica gel column chromatography (hexanes eluent) to afford a colorless oil as product of $\mathbf{3 8}(0.75 \mathrm{~g}, 79 \%) .{ }^{1} \mathrm{H}$ NMR (NMR-15), $\delta(0.23(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 7.18-7.34(\mathrm{~m}, 5 \mathrm{H})$. MS m/e $302\left(\mathrm{M}^{+}, 10 \%\right), 73$ (TMS, 100\%). Anal. : Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}_{2}: \mathrm{C}, 67.48$; $\mathrm{H}, 8.66$. Found : C, 67.51 ; H, 8.48 .

2-Benzyl-5-iodo-3-trimethylsilylfuran

2-Benzyl-3,5-bis(trimethylsilyl)furan (38) (0.47 g, 1.6 mmol) was mixed with $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.78 \mathrm{~g}, 3.5 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$. After all silver salt had been dissolved, the reaction flask was immersed in a dewar flask containing dry ice and acetone ($78{ }^{\circ} \mathrm{C}$). The mixture was stirred under N_{2} for 5 minutes and I_{2}
$(0.40 \mathrm{~g}, 1.6 \mathrm{mmol})$ in THF (10 mL) was added dropwise in a period of 30 minutes. One hour later the resulting suspension was filtered through celite to give a light yellow solution which was diluted with saturated sodium metabisulfite $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}\right)$ solution $(20 \mathrm{~mL})$ and ether (20 mL). The organic portion was separated, dried and evaporated to yield a yellow oil. Purification by silica gel column chromatography (hexanes eluent) afforded a colorless oil of 39 ($0.41 \mathrm{~g}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (NMR-16), $\delta 0.25$ (s, 9H), 4.07 (s, $2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H})$. MS m/e $356\left(\mathrm{M}^{+}, 42 \%\right)$. Anal. : Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{OSil}: \mathrm{C}, 47.20$; H, 4.81. Found : C, 47.32 ; H, 4.63.

2-Benzyl-5-p-tolyl-3-trimethylsilylfuran

The Grignard reagent was prepared by reacting 4 bromotoluene ($2 \mathrm{~g}, 11.7 \mathrm{mmol}$) and a large excess of magnesium $(1 \mathrm{~g}, 41.1 \mathrm{mmol})$ in dry ether $(10 \mathrm{~mL})$ at reflux temperature. The concentration of the Grignard salt formed was approximately 2.28 g per 10 mL . The iodide $39(0.62 \mathrm{~g}, 1.7 \mathrm{mmol})$ was stirred with NiCl_{2} (dppe) ($49.1 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dry ether (5 mL) under N_{2} at room temperature. The Grignard reagent p-tolyl magnesium bromide ($6 \mathrm{~mL}, 1.37 \mathrm{~g}, 7 \mathrm{mmol}$) wals added to the solution through a syringe. After stirring for 17 hours, the resulting mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and was extracted with ether (10 mL). The organic layer was separated, dried and evaporated to furnish a brownish oil. Column chromatography on silica gel (hexane eluent) afforded a colorless oil of $40(0.29 \mathrm{~g}$, $52 \%) .{ }^{1} \mathrm{H}$ NMR (NMR-17), $\delta(0.24(\mathrm{~s}, 9 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.15$ and $7.48-7.52\left(\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4 \mathrm{H}, 8.2 \mathrm{~Hz}\right.$, 7.21-
$7.29(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{e} 320\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. : Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{OSi}$: C, 78.69 ; H, 7.55. Found : C, 78.80 ; H, 7.38 .

2-Benzyl-3-m-anisyl-5-p-tolyl-furan (30)

Furan 40 ($74 \mathrm{mg}, 0.2 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under N_{2} at $-78^{\circ} \mathrm{C}$. $1 \mathrm{M} \mathrm{BCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.27 \mathrm{~mL}, 0.3 \mathrm{mmol})$ was added via a syringe to the stirring solution. One hour later, the mixture was poured into $1 \mathrm{M} \mathrm{Na} \mathrm{CO}_{3}$ solution (10 mL) and was extracted with ether $(15 \mathrm{~mL})$. After layer separation, the organic fraction was dried and evaporated to give the crude yellowish boroxine 41. Without purification, the boroxine 41 was mixed with $3-$ bromoanisole $(0.06 \mathrm{~mL}, 0.5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(14.3 \mathrm{mg}, 0.01$ mmol) in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{PhMe}(6 \mathrm{~mL})$. The solution was heated to dissolve all $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ was added. The mixture was heated to reflux for 1 hour. The resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}$) and ether (10 mL). The organic layer was separated, dried and evaporated to furnish a brownish oil which was chromatographed on a silica gel column (ether : hexanes $=1: 20$ eluent) to afford a colorless oil of $30(46.7 \mathrm{mg}$, $57 \%) .{ }^{1} \mathrm{H}$ NMR (NMR-18), $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H})$, $6.76(\mathrm{~s}, 1 \mathrm{H}), 6.81-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.19$ and 7.55-7.58 (AA' XX^{\prime}, $4 \mathrm{H}, 8.2 \mathrm{~Hz}), 7.21-7.33(\mathrm{~m}, 6 \mathrm{H})$. MS m/e $354\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. : Calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 84.72 ; $\mathrm{H}, 6.26$. Found : C, 84.56 ; $\mathrm{H}, 6.33$.

To a stirring solution of furan $40(116.5 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} was added BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M}, 0.54$ $\mathrm{mL}, 0.5 \mathrm{mmol})$. The mixture was stirred for 30 minutes. The resulting solution was poured into $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL) and was extracted with ether $(15 \mathrm{~mL})$. The separated organic fraction was dried and evaporated to yield a yellow oil which was chromatographed on a silica gel column (ether : hexanes $=1: 1$ eluent) to furnish white solids. The solids obtained were immediately treated with trans-1-iodo-1-hexene, (supplied by Zhi-Zhong Song, Department of Chemistry, The Chinese University of Hong Kong), ($147.7 \mathrm{mg}, 0.7 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.02$ mmol) in $\mathrm{MeOH}(7 \mathrm{~mL})$ and $\mathrm{PhMe}(7 \mathrm{~mL})$. The solution was heated to dissolved all $\mathrm{Pd}(0)$ reagent and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ was added in one portion. The resulting mixture was refluxed for 1 hour and was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and ether (10 mL). The organic layer was separated, dried and evaporated to furnish a brownish oil, which was purified by silica gel column chromatography (hexanes eluent) to afford a colorless oil of $31(66.8 \mathrm{mg}, 66 \%) .{ }^{1} \mathrm{H}$ NMR (NMR-19), $\delta(0.89-0.95(\mathrm{t}, 3 \mathrm{H}, 7 \mathrm{~Hz}), 1.26-1.46(\mathrm{~m}, 4 \mathrm{H}), 2.14-$ $2.22(\mathrm{q}, 2 \mathrm{H}, 6.7 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 5.89-6.01(\mathrm{~m}, 1 \mathrm{H})$, 6.20-6.27 ($\mathrm{d}, 1 \mathrm{H}, 16.7 \mathrm{~Hz}, 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.16$ and $7.49-7.52$ ($\left.\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}, 4 \mathrm{H}, 8.2 \mathrm{~Hz}\right), 7.20-7.33(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{e} 330\left(\mathrm{M}^{+}, 18 \%\right)$. Anal. : Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 87.23 ; \mathrm{H}, 7.93$. Found : C, 87.36 ; H , 7.56.

To a stirring solution of 2,4-bis(trimethylsilyl)furan (35) $(0.59 \mathrm{~g}, 2.8 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at room temperature under N_{2} was added ${ }^{\mathrm{n}} \mathrm{BuLi}(1.7 \mathrm{~mL}, 2.8 \mathrm{mmol})$ through a syringe. After 30 minutes, 3,5-dimethylbenzyl bromide ($393 \mathrm{mg}, 2 \mathrm{mmol}$) in dry THF (5 mL) was added to the solution. The resulting solution was stirred for 30 minutes and was poured into ether (20 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. After layer separation, the organic fraction was dried and evaporated to give a brown oil. The crude product was chromatographed on a silica gel column (hexanes eluent) to afford a colorless oil of $42(0.42 \mathrm{~g}, 46 \%) .{ }^{1} \mathrm{H}$ NMR (NMR-20), $\delta 0.32$ (s, $9 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}$, $2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{e} 330\left(\mathrm{M}^{+}, 39 \%\right)$. Anal. : Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OSi}_{2}: \mathrm{C}, 69.02 ; \mathrm{H}, 9.14$. Found : C, $69.12 ; \mathrm{H}, 9.00$.

2-(3,5-dimethyl)benzyl-5-hexyl-3-trimethylsilylfuran (45)
(a) Formation of 2-(3,5-dimethyl)benzyl-5-iodo-3-trimethylsilylfuran (43) :

Furan 42 ($404.5 \mathrm{mg}, 1.2 \mathrm{mmol}$) was mixed with $\mathrm{AgO}_{2} \mathrm{CCF}_{3}$ $\left(0.55 \mathrm{~g}, 2.5 \mathrm{mmol}\right.$) in dry THF (10 mL) under N_{2}. After all the Ag salt had been dissolved, the reaction flask was cooled to $-78^{\circ} \mathrm{C}$. Iodine ($314.4 \mathrm{mg}, 1.2 \mathrm{mmol}$) in dry THF (10 mL) was added to the solution dropwise in a period of 30 minutes. After stirring for 1 hour, the resulting suspension was filtered through celite to give a light yellow solution which was poured into a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
solution (20 mL) and was extracted by ether (20 mL). The organic layer was dried and evaporated to furnish a yellowish oil. Purification by silica gel column chromatography (hexanes eluent) afforded a colorless oil of $43(426 \mathrm{mg}, 91 \%)$ which decomposed gradually on prolonged standing at room temperature. ${ }^{1} \mathrm{H}$ NMR $($ NMR-21) $\delta(0.21(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.77$ $(\mathrm{s}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$. Compound 43 was used in the following reaction without further purification.
(b) Formation of 2-(3,5-dimethyl)benzyl-5-hexynyl-3-trimethylsilylfuran (44)

Iodide 43 ($180 \mathrm{mg}, 0.5 \mathrm{mmol}$) was mixed with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(128 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CuI}(10) \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{NH}(5 \mathrm{~mL})$ and was stirred under N_{2} at room temperature. After 1-hexyne (1 $\mathrm{g}, 12.7 \mathrm{mmol}$) had been added through a syringe, the mixture turned dark in a few minutes. The mixture was left stirring for 36 hours and was followed by evaporation of the organic solvent. The black residue was adsorbed on silica gel and column chromatography on silica gel using hexanes as eluent gave a colorless oil of 44 , which was used in the following reaction without further purification.
(c) Hydrogenation of $\mathbf{4 4}$

The acetylene 44, without further purification, was mixed with a catalytic amount of $\mathrm{Pd} / \mathrm{C}(10 \%)$ in absolute ethanol (12 mL). The solution was then stirred under hydrogen atmosphere for 18 hours. The resulting mixture was filtered through celite and
evaporated. The crude product was purified by silica gel column chromatography (hexanes eluent) to afford a colorless oil of 45 $(126 \mathrm{mg}, 78 \%) .{ }^{1} \mathrm{H}$ NMR, (NMR-22) $\delta 0.20(\mathrm{~s}, 9 \mathrm{H}), 0.84-0.89(\mathrm{t}, 3 \mathrm{H}$, $6.8 \mathrm{~Hz}), 1.26-1.59(\mathrm{~m}, 8 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.52-2.58(\mathrm{t}, 2 \mathrm{H}, 7.6 \mathrm{~Hz})$, $3.89(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$. Anal. : Calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{OSi}: \mathrm{C}, 77.13 ; \mathrm{H}, 10.00$. Found : C, 77.72 ; H, 10.07.

2-(3,5-dimethyl)benzyl-3-p-methoxycarbonylbenzyl-5-hexyl-furan (32)

Furan 45 ($62 \mathrm{mg}, 0.2 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . \mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.23 \mathrm{~mL}, 0.2 \mathrm{mmol}\right)$ was added through a syringe. The solution was stirred for 30 minutes and was poured into $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL}$) and ether (20 mL). The organic layer was separated, dried and evaporated to give a yellowish oil of $\mathbf{4 6}$. The crude boroxine $\mathbf{4 6}$ was chromatographed on a silica gel column (ether : hexanes $=1: 2$ eluent) to furnish a yellowish oil as a pure boroxine 46. It was immediately treated with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 0.01 \mathrm{mmol})$ and methyl 4-bromomethylbenzoate ($44 \mathrm{mg}, 0.2 \mathrm{mmol}$) in MeOH (5 $\mathrm{mL})$ and $\mathrm{PhMe}(5 \mathrm{~mL})$. The mixture was heated to dissolve all the $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \cdot 2 \mathrm{M} \mathrm{Na} 2_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ was added to the stirring solution in one portion. The resulting mixture was refluxed for 1 hour and was then cooled to room temperature. It was diluted with $\mathrm{H}_{2} \mathrm{O}$ (15 mL) and ether (15 mL). The organic layer was separated, dried and evaporated to give a brownish-yellow residue which was adsorbed on silica gel and purified by column chromatography on silica gel (ether : hexanes $=1: 20$ eluent) to yield a colorless oil of

32 ($54 \mathrm{mg}, 71 \%),{ }^{1} \mathrm{H}$ NMR (NMR-23), $\delta 0.83-0.89(\mathrm{t}, 3 \mathrm{H}, 6.8 \mathrm{~Hz})$, $1.26-1.61(\mathrm{~m}, 8 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.48-2.54(\mathrm{t}, 2 \mathrm{H}, 7.6 \mathrm{~Hz}), 3.72(\mathrm{~s}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~s}$, $1 \mathrm{H})$, 7.18-7.22 and 7.90-7.94 (AA'XX', $4 \mathrm{H}, 8.3 \mathrm{~Hz}$). MS m/e 418 $\left(\mathrm{M}^{+}, 100 \%\right)$. Anal. : Calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3}: \mathrm{C}, 80.35 ; \mathrm{H}, 8.19$. Found : C, 80.35 ; H, 8.21.

2-Benzyl-3-trimethylsilylfuran

Lithium aluminum hydride ($49 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added in one portion to a stirred solution of 2-benzyl-5-iodo-3trimethylsilylfuran (39) ($0.83 \mathrm{~g}, 2.3 \mathrm{mmol}$) in THF (10 mL) under N_{2} at room temperature. The suspension was stirred for 10 hours. The reaction flask was immersed in an ice bath and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added very slowly to destroy the unreacted LAH. The resulting solution was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and ether (15 mL). The organic layer was separated, dried and evaporated. The crude product was purified by silica gel column chromatography (hexanes eluent) to afford a colorless oil of $47(441 \mathrm{mg}, 82 \%),{ }^{1} \mathrm{H}$ NMR (NMR-24) $\delta(0.24(\mathrm{~s}, 9 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 6.29-6.30(\mathrm{t}, 1 \mathrm{H}, 1.8$ $\mathrm{Hz})$, 7.14-7.27 (m, 5H), 7.34-7.35 (t, $1 \mathrm{H}, 1.8 \mathrm{~Hz}$). Anal. : Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OSi} ; \mathrm{C}, 72.99 ; \mathrm{H}, 7.87$. Found : C, $72.78 ; \mathrm{H}, 7.65$.

2-Benzyl-3-[3,4,-(methylenedioxy)]benzylfuran

2-Benzyl-3-trimethylsilylfuran (47) ($190 \mathrm{mg}, 0.8 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} \cdot \mathrm{BCl}_{3}(1 \mathrm{M}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.22 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added through a
syringe to the reaction flask. The solution was left stirring for 9 hours. The resulting mixture was poured into $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ and was extracted with ether (15 mL). After layer separation, the organic fraction was dried and evaporated. The crude boroxine 48 was chromatographed on a silica gel column (ether: hexanes $=1: 2$ eluent) to give yellowish solids. The amount of the starting 47 recovered was 96.6 mg (0.4 mmol) and the amount of starting material actually reacted was $93.3 \mathrm{mg}(0.4 \mathrm{mmol})$. The yield of boroxine 48 was 46 mg (62%). Boroxine 48 was immediately treated with 3,4-(methylenedioxy)benzyl chloride ($73 \mathrm{mg}, 0.4$ mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 17 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ and PhMe (6 mL). The solution was heated to dissolve the palladium catalyst. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ was added to the mixture in one portion. The mixture was refluxed for 2 hours. The resulting mixture was allowed to cool to room temperature and was poured into $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. After extraction with ether (15 mL), the organic layer was separated, dried and evaporated. Purification of the crude product through silica gel column chromatography (hexanes eluent) afforded a yellowish oil of 33 ($17 \mathrm{mg}, 24 \%$). ${ }^{1} \mathrm{H}$ NMR (NMR-25) $\delta 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 6.07-6.08(\mathrm{~d}, 1 \mathrm{H}$, $1.8 \mathrm{~Hz}), 7.19-7.20(\mathrm{~d}, 1 \mathrm{H}, 1.8 \mathrm{~Hz}), 6.51-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.64(\mathrm{~m}$, $1 \mathrm{H}), 7.07-7.23(\mathrm{~m}, 5 \mathrm{H})$. Anall. : Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 78.06$; H , 5.52. Found : C, 77.81 ; H, 5.61.

References :

(1). Hückel, E., Z. Phys. 1931, 70, 204
(2). Hückel, E., Z. Elektrochem., 1937, 43, 752.
(3). Hückel, E., Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, Verlag Chemie: Berlin, 1938.
(4). Breslow, R., Acc. Chem. Res., 1973, 6, 393
(5). Dewar, M. J. S., Adv. Chem. Phys., 1965, 8121.
(6). Rapheal, R. A., In Non-Benzenoid Aromatic Compounds;

Ginsburg, D., Ed; Interscience: New York, 1959; Ch VIII.
(7). Schröder, G., Cyclooctatetraen; Verlag Chime: Weinheim, 1965.
(8). Paquette, L. A., Tetrahedron, 1975, 31, 2855.
(9). Salem, L. The Molecular Orbital Theory of Conjugated Systems ; W. A. Benjamin: New York, 1966, pp 122-125, pp 468-470.
(10). Krebs, A. Angew. Chem. Int. Ed. Engl. 1965, 4, 953.
(11). Krebs, A. ; Byrd, D. Justus Liebigs Ann. Chem. 1967, 707, 66.
(12). Elix, J. A.; Sargent, M. V.; Sondheimer, F.; J. Am. Chem. Soc. 1970, 92, 962.
(13). Lankey, A. S.; Ogliaruso, M. A.; J. Org. Chem. 1971, 36, 3339.
(14). Wong, H. N. C.; Sondheimer, F. Angew. Chem. Int. Ed. Engl. 1976, 15, 117.
(15). Wong, H. N. C.; Sondheimer, F. Tetrahedron 1981, 37 (S1), 99.
(16). Huang, N. Z.; Sondheimer, F. Acc. Chem. Res. 1982, 15, 96.
(17). Rynard, C. M. Thankachan, C.; Tidwell, T.T. J. Am. Chem. Soc. 1979, 101, 1196;

Naito, K.; Rickborn, B. J. Org. Chem. 1980, 45, 4061.
Rodrigo, R. Tetrahedron 1988, 44, 2093
(18). Man, Y. M.; Mak, T. C. W; Wong, H. N. C. J. Org. Chem. 1990, 55, 3214.
(19). Destro, R.; Pilati, T.; Simonetta, M. J. Am. Chem. Soc. 1975, 97, 658; Acta Crystallogr. 1977, B33, 447.
(20). Graaf, R. A. G.; Gorter, S.; Romers, C.; Wong, H. N. C.; Sondheimer, F. J. Chem. Soc. Perkin Trans. 2 1980, 478.
(21). Kay, M. I.; Okaya, Y.; Cox, D. E. Acta Crystallogr. 1971, 27, 26.
(22). Cheng, S. K. T.; Wong, H. N. C. Synth. Comm. 1990, 20, 3053.
(23). Barton, J. W.; Lee, D. V.; Shepherd, M. K. J. Chem. Soc. Perkin. Trans. 1. 1985, 1407.
(24). Dilthey, W.; ter Horst, I.; Schommer, W. J. Prakt. Chem. 1935, 143, 189.
(25). Cava, M. P.; Napier, D. R. J. Am. Chem. Soc. 1957, 79, 1701.
(26). Dornfeld, C. A.; Callen, J. E.; Coleman, G. H. Org. Syn. Coll. Vol. 1960, 3, 134.
(27). Lambert, P.; Martin, R. H. Bull. Soc. Chim. Belg. 1952, 61, 124.
(28). DeRidder, R.; Martin, R. H. Bull. Soc. Chim. Belg. 1960 , 69, 534.
(29). Wang, T.-Z.; Paquette, L. A. Tetrahedron Lett. 1988, 29, 41.
(30). Meier, H.; Peterson, H.; Kolshorn, H. Chem. Ber. 1980 , 113, 2398.
(31). Bachmann, W. E. J. Am. Chem. Soc. 1934, 56, 1365.
(32) (a). DeShong, P.; Ramesh, S.; Elango, V.; Perez, J. J. J. Am. Chem. Soc. 1985, 107, 5219.
(b). Klein, L. L. J. Am. Chem. Soc. 1985, 107, 2573.
(c). Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407.
(d). Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commum. 1989, 1371.
(e). Carney, J. R.; Scheuer, P.J.; Kelly-Borges, M. J. Org. Chem. 1993, 58, 3460.
(33). Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
(34). Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5330.
(35). Williams, R. M.; Esslinger, C. S. Tetrahedron Lett. 1991, 32, 3635.
(36). Nakanishi, K. Natural Products Chemistry Kodansha, Ltd.: Tokyo, 1974
(37) (a). Ho, M. S.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 1989, 1238.
(b). Yang, Y.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 1992, 656.
(c). Yang, Y.; Wong, H. N. C. J. Chem. Soc., Chem. Commun, 1992, 1723.
(d). Song, Z. Z.; Zhou, Z. Y.; Mak, T. C. W.; Wong, H. N. C.; Angew. Chem. Int. Ed. Engl. 1993, 32, 432.
(38). Joule, J. A.; Smith, G. F. Heterocyclic Chemistry; ELBS ; U. K., 1986.
(39) (a). Gschwend, H. W.; Rodriguez, H. R. Org. Reactions 1979, 26, 1.
(b). Donnelly, D. M. X.; Meegan, M. J. In Comprehensive Heterocyclic Chemistry; Bird, C. W.; Cheeseman, G. W. H., Eds.; Pergamon Press: Oxford, 1984; Vol. 4, Part 3, pp 657-712.
(c). Dean, F. M. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1982; Vol. 30, pp 167-238.
(d). Dean, F. M. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1982; Vol. 31, pp 237-344.
(e). Yang, Y. Ph. D. Thesis, The Chinese University of Hong Kong, 1993.
(40). Chadwick, D. J.; Willbe, C. J. Chem. Soc., Perkin Trans 1. 1977, 887.
(41). Bosshard, P.; Eugster, C. H. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1966; Vol. 7, pp 378-392.
(42). Lee, M. W.; Herndon, W. C. J. Org. Chem., 1978, 43, 518.
(43). Weis, C. D. J. Org. Chem. 1962, 27, 3693.
(44). Marshall, J. A.; Wang, X.-j. J. Org. Chem. 1991, 56, 960.
(45). Marshall, J. A.; DuBay, W. J. J. Am. Chem. Soc. 1992, 114 , 1450.
(46). Marshall, J. A.; DuBay, W. J. J. Org. Chem. 1993, 58 , 3435.
(47). Arcadi, A.; Cacchi, S.; Larock, R. C; Marinelli, F.; Tetrahedron Lett. 1993, 34, 2813.
(48). Dulcère, J.-P.; Faure, R.; Rodriguez, J. Synlett. 1992, 737.
(49). Chan, T. H.; Fleming, I. Synthesis 1979, 761.
(50). Seyferth, D.; White, D. L. J. Am. Chem. Soc. 1972, 94, 3132.
(51). Bredereck, H.; Gompper, R.; Chem. Ber. 1954, 87, 700.
(52). Barton, T. J.; Hussmann, G. P. J. Am. Chem. Soc. 1983, 105, 6316.
(53). Knölker, H.-J.; Jones, P. G.; Pannek, J.-B. Synlett. 1990, 429.
(54). Wilson, S.R.; Jacob, L. A. J. Org. Chem. 1986, 51, 4833.
(55). Kuwajima, I.; Urabe, H. Tetrahedron Lett. 1981, 22 , 5191.
(56). Pridgen, L. N.; Jones, S. S. J. Org. Chem. 1982, 47, 1590.
(57). Suzuki, A. Pure and Appl. Chem. 1991, 63, 419.

Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513.

Miyaura, N; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem.Soc. 1985, 107, 972.
(58). Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
List of Spectra : Page
(NMR-1) 9-Bromophenanthrene (21) 79
(NMR-2) 9-Methylphenanthrene (22) 80
(NMR-3) 9-Bromo-10-methylphenanthrene(23) 81
(NMR-4) 9,10-Dimethylphenanthrene (24) 82
(NMR-5) 9,10-Bis(bromomethyl)phenanthrene (13) 83
(NMR-6) 1,4,4a,8b-Tetrahydro-2,3-phenanthro[$l]$ biphenylene (25)84
(NMR-7) $1,4,4 \mathrm{a}, 8 \mathrm{~b}$-Tetrahydro-2,3-phenanthro- [l]biphenylene-1-one (26) 85
(NMR-8) 1,4,4a,8b-Tetrahydro-1-hydroxy-2,3-phenanthro[l]biphenylene (12) 86
(NMR-9) Benzo[a]phenanthro[9,10-e]cyclooctene (11) 87
(NMR-10) 5,6,15,16-Tetrabromo-5,6,15,16-tetrahydro-benzo $a]$ phenanthro $[9,10-e]$ cyclooctene (29) 88(NMR-11) 5,6,15,16-Tetradehydrobenzo[a]phenanthro-[9,10-e]-cyclooctene (10) 89(CMR-1) 5,6,15,16-Tetradehydrobenzo[a]phenanthro-[9,10-e]-cyclooctene (10)90
(NMR-12) 4-Phenyloxazole 91
(NMR-13) 2,4-Bis(trimethylsilyl)furan (35) 92(NMR-14) 2-Iodo-4-trimethylsilylfuran (36),
2,5-Diiodo-3-trimethylsilylfuran (37) 93
(NMR-15) 2-Benzyl-3,4-bis(trimethylsilyl)furan (38) 94
(NMR-16) 2-Benzyl-5-iodo-3-trimethylsilylfuran (39) 95
(NMR-17) 2-Benzyl-5-(4-methyl)benzo-3-
trimethylsilylfuran (40) 96
(NMR-18) 2-Benzyl-3-m-anisyl-5-p-tolyl-furan (30) 97
(NMR-19) 2-Benzyl-3-trans-hexen-1-yl-5-p-tolylfuran (31) 98
(NMR-20) 3,5-Bis(trimethylsilyl)-2-(3,5-dimethyl)benzylfuran (42) 99
(NMR-21) 2-(3,5-dimethyl)benzyl-5-iodo-3trimethylsilylfuran (43) 100
(NMR-22) 2-(3,5-Dimethyl)benzyl-5-hexyl-3trimethylsilylfuran (45) 101
(NMR-23) 2-(3,5-Dimethyl)benzyl-5-hexyl-3-p-methoxycarbonylbenzyl-furan (32) 102
(NMR-24) 2-Benzyl-3-trimethylsilylfuran (47) 103
(NMR-25) 2-Benyl-3-[3,4-(methylenedioxy)]benzyl -furan (33) 104

391.6

