Part 2: Heredity and Mendelian Genetics

Mendel's Second Experiment: A Dihybrid Cross

Mendel's second major experiment involved the crossing of _____

Mendel wanted to discover if the _____

(i.e. Did pea colour influence pea shape?)

Once again Mendel crossed _____. that were _____.

This time he observed

The Determination of Gametes for a Dihybrid Cross.

When generating the possible gametes for		
, on	e must predict the	
	. If the F1	
generation are	, then each parent can	
each produce		

The possible gametic alleles:

Each hybrid F1 individual has the genotype:

The possible gametic alleles are:

Nine different genotypes and four different phenotypes result from a dihybrid cross of F1 plants.

Mendel dis	covered that al	I of the F1
generation		

Mendel then crossed discovered that the	the F1 generation and
	. The F2
generations of other	also
showed this ratio.	

Of the 551 plants in Mendel's F2 generation, he observed the following traits:

Mendel's Law of Independent Assortment

The inheritance of	alleles for one trait
	_ the inheritance of alleles
for	
This means that th	e combination of alleles in
the offspring	
(i.e. they sort	.)

Probability

Genotypic and phenotypic ratios are determined by the
_____. The probability of
an event is the likelihood that the event will occur.
Probability can be expressed by the following formula:

In humans, free	earlobes are controlled by	
the	, and attached	
earlobes by the _	The	
widow's peak hairline is regulated by the		
	, while the straight	
hairline is control	lled by the	

Sample Problem 1

What are the probabilities of obtaining F1 offspring with the following characteristics if one parents is homozygous dominant for both traits and the other is heterozygous dominant for both?

- widow's peak and free earlobes
- straight hairline and free earlobes
- widow's peak and attached earlobes
- straight hairline and attached earlobes

Check your answers by completing a Punnet Square!

Sample Problem 2
What is the probability that a child from the mating of the EeHh × EeHh parents
would be a male with a widow's peak and have attached earlobes? Write your probability as a percentage!

Beyond Mendel's Laws

Although his research and examination of patterns of inheritance in the pea plant was revolutionary in genetics;

There are three other mechanisms of inheritance we will discuss in this course.

Incomplete Dominance

Not all traits are	or
as Mendel	suggested.
Some traits are	, that is
there can be an	of a
particular trait when the ge	enotype is

The snapdragon flower is incompletely dominant for flower colour.

	are required for a red flower
i.e.	
	are required for a
white flower i.	e.
	of alleles is
required for a	pink flower i.e.

Incomplete Dominance in the Snapdragon Flower

Sample 1.

Determine the F1 phenotypic ratio of a cross between a pink and a white snapdragon.

Co-dominant Inheritance

In some cases _	for a trait		
may			
Such alleles are	said to be		
because both alleles are			
	<u> </u>		
co-dominant in	nave the mechanism of heritance for their coat colour.		
The expression of	occurs and		
there is	<u> </u>		
The	red coat alleles are:		
(called "			
The	coat alleles are:		
The	coat alleles are:		

Sample 1.

Find the F1 phenotypes of a cross between a red cow and a roan bull.

Multiple Allelic Inheritance

For some traits mo	ore than
Although a single more than different individual	individual cannot have for each trait,

Human blood types have multiple allele inheritance.

Table 1: Dominance Hierarchy and Symbols for Eye Colour in *Drosophila*

Phenotype	Genotypes	Dominant over
wild type	E ¹ E ¹ , E ¹ E ² , E ¹ E ³ , E ¹ E ⁴	apricot, honey, white
apricot	E ² E ² , E ² E ³ , E ² E ⁴	honey, white
honey	E^3E^3 , E^3E^4	white
white	E ⁴ E ⁴	

Sample Problem

What is the phenotypic ratio of the offspring from the mating of the following Drosophila?

 E^1E^4 (wild-type eye colour) $\times E^2E^3$ (apricot eye colour)

Sex Linkage - X and Y

Some traits are inherited from _	
This is known as	
inheritance.	
	are sex-
linked traits.	

A male with hemophilia mates with a woman with no hemophiliac gene. What is the probability of producing sons or daughters who have hemophilia?

Pedigree Charts

Pedigree analysis is useful when the

A pedigree chart can be used to trace the _____

A pedigree chart contains a

Birth order within each group of offspring is drawn left to right, oldest to youngest.

Sample Pedigree

- 1. Indicate whether each family member is homozygous or heterozygous for shortsightedness, or homozygous for normal vision.
- 2. If couple 4 and 5 in row II had another child, what genotype might the child have? (Hint: What genotype is possible but not shown in the chart?) Would the child have normal vision or be shortsighted?