Part 5: Link Layer Technologies

CSE 3461: Introduction to Computer Networking Reading: "Material from Previous Editions," http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html

Outline

- Point-to-Point Protocol (PPP)
- Asynchronous Transfer Mode (ATM)
- X.25
- Frame Relay

Point to Point Data Link Control

- One sender, one receiver, one link: easier than broadcast link:
 - No Media Access Control
 - No need for explicit MAC addressing
 - e.g., dialup link, ISDN line
- Popular point-to-point DLC protocols:
 - PPP (Point-to-Point Protocol)
 - HDLC: High-level Data Link Control (Data link used to be considered "high layer" in protocol stack!)

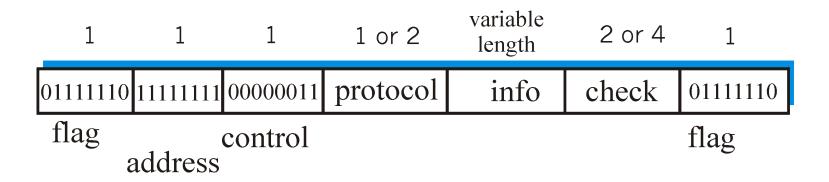
PPP Design Requirements [RFC 1557]

- Packet framing: encapsulation of network-layer datagram in data link frame
 - Carry network layer data of any network layer protocol (not just IP) at same time
 - Ability to demultiplex upwards
- **Bit transparency:** must carry any bit pattern in the data field
- Error detection (no correction)
- Connection liveness: detect, signal link failure to network layer
- Network layer address negotiation: endpoints can learn/configure each other's network address

PPP Non-Requirements

- No error correction/recovery
- No flow control
- Out-of-order delivery OK
- No need to support multipoint links (e.g., polling)

Error recovery, flow control, data re-ordering all relegated to higher layers!

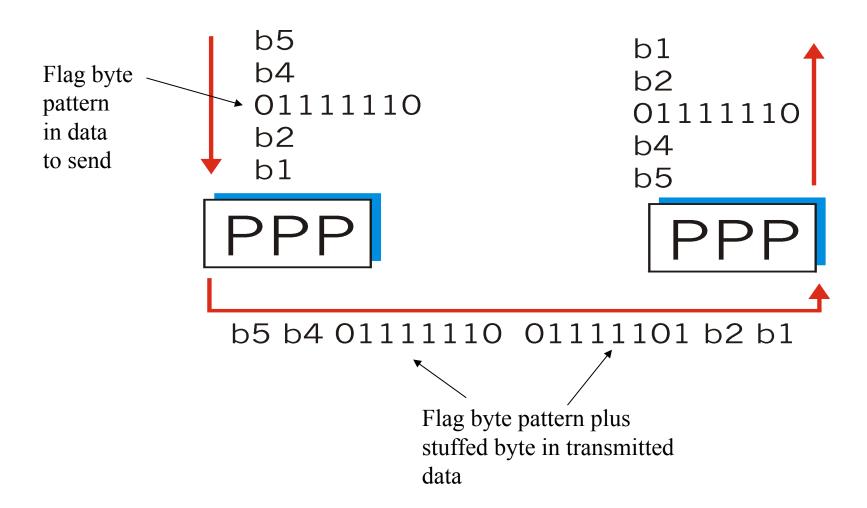

PPP Data Frame (1)

- Flag: delimiter (framing)
- Address: does nothing (only one option)
- Control: does nothing; in the future possible multiple control fields
- Protocol: upper layer protocol to which frame delivered (e.g., PPP-LCP, IP, IPCP, etc.)

1	1	1	1 or 2	variable length	2 or 4	1
01111110	11111111	00000011	protocol	info	check	01111110
flag	ddress	control				flag

PPP Data Frame (2)

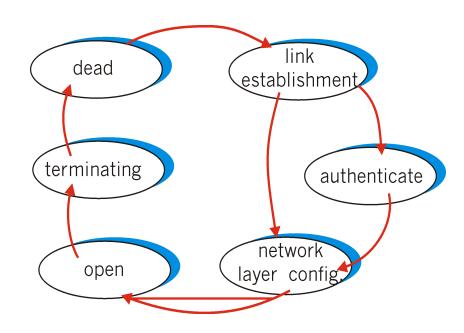
- Info: upper layer data being carried
- Check: cyclic redundancy check for error detection



Byte Stuffing (1)

- "Data transparency" requirement: data field must be allowed to include flag pattern 0111110
 - **Q**: Is received **01111110** data or flag?

- Sender: adds ("stuffs") extra 01111101 byte after each 01111110 *data* byte
- Receiver:
 - Two 01111110 bytes in a row: discard first byte, continue data reception
 - Single **01111110**: flag byte


Byte Stuffing (2)

PPP Data Control Protocol

Before exchanging network-layer data, data link peers must

- Configure PPP link (max. frame length, authentication)
- Learn/configure network layer information
 - For IP: carry IP Control Protocol (IPCP) messages (protocol field: 8021) to configure/learn IP address


Outline

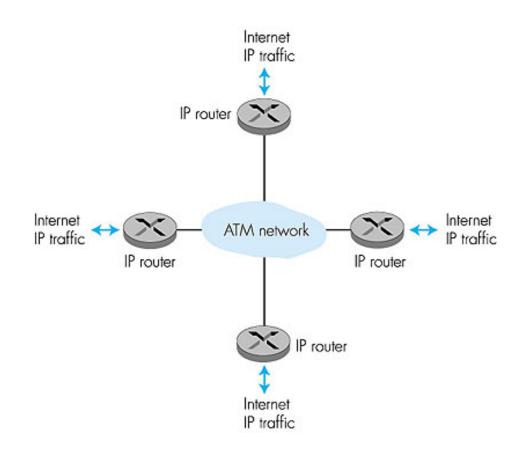
- Point-to-Point Protocol (PPP)
- Asynchronous Transfer Mode (ATM)
- X.25
- Frame Relay

Asynchronous Transfer Mode: ATM

- 1980s/1990s standard for high-speed (155–622 Mbps and higher) *Broadband Integrated Service Digital Network* architecture
- Goal: integrated, end-end transport of carrier's voice, video, data
 - Meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
 - "Next generation" telephony: technical roots in telephone world
 - Packet-switching (fixed length packets, called "cells") using virtual circuits

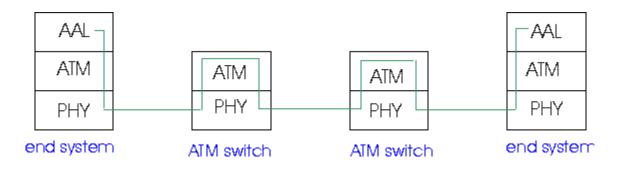
ATM Architecture

- Adaptation layer: only at edge of ATM network
 - data segmentation/reassembly
 - roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - cell switching, routing
- Physical layer


ATM: Network or Link Layer?

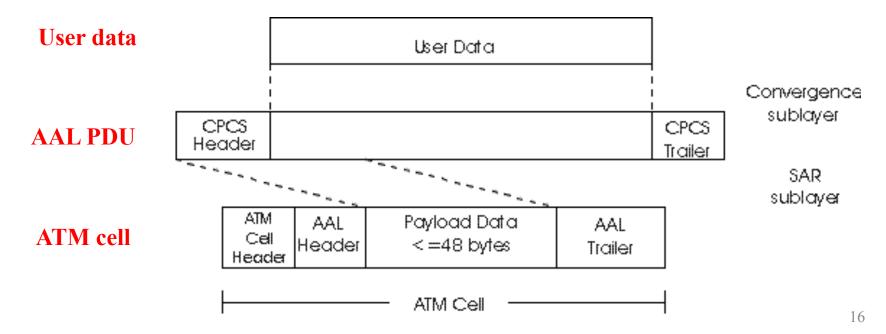
Vision: end-to-end transport: "ATM from desktop to desktop"

ATM is a network technology


Reality: used to connect IP backbone routers

- "IP over ATM"
- ATM as switched link layer, connecting IP routers

ATM Adaptation Layer (AAL) (1)


- ATM Adaptation Layer (AAL): "adapts" upper layers (IP or native ATM applications) to ATM layer below
- AAL present only in end systems, not in switches
- AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells
 - Analogy: TCP segment in many IP packets

ATM Adaption Layer (AAL) (2)

Different versions of AAL layers, depending on ATM service class:

- AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation
- AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video
- AAL5: for data (e.g., IP datagrams)

AAL5 - Simple And Efficient AL (SEAL)

- AAL5: low overhead AAL used to carry IP datagrams
 - 4 byte cyclic redundancy check
 - PAD ensures payload multiple of 48bytes
 - Large AAL5 data unit to be fragmented into 48byte ATM cells

CPCS-PDU payload	PAD	Length	CRC
0-65535	0-47	2	4

ATM Layer

Service: transport cells across ATM network

- Analogous to IP network layer
- Very different services than IP network layer

Network	Service	Guarantees?				Congestion Feedback
Architecture	Model	Bandwidth	Loss	Order	Timing	
Internet	Best effort	None	No	No	No	No (inferred via loss)
ATM	CBR	Constant rate	Yes	Yes	Yes	No congestion
ATM	VBR	Guaranteed rate	Yes	Yes	Yes	No congestion
ATM	ABR	Guaranteed minimum	No	Yes	No	Yes
ATM	UBR	None	No	Yes	No	No

ATM Layer: Virtual Circuits (1)

- VC transport: cells carried on VC from source to dest
 - Call setup, teardown for each call before data can flow
 - Each packet carries VC identifier (not destination ID)
 - Every switch on source-dest path maintain "state" for each passing connection
 - Link, switch resources (bandwidth, buffers) may be allocated to VC to get circuit-like perf.

Permanent VCs (PVCs)

- Long lasting connections
- Typically: "permanent" route between to IP routers

• Switched VCs (SVC):

- Dynamically set up on per-call basis

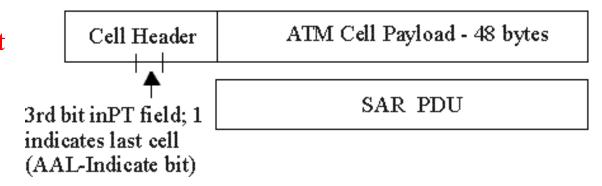
ATM VCs (2)

Advantages of ATM VC approach:

 QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)

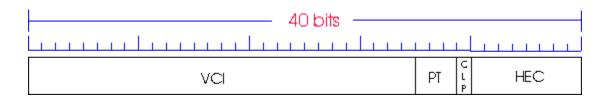
Drawbacks of ATM VC approach:

- Inefficient support of datagram traffic
- One PVC between each source/dest pair) does not scale (N^2 connections needed)
- SVC introduces call setup latency, processing overhead for short lived connections


ATM Layer: ATM Cell

- 5-byte ATM cell header
- 48-byte payload
 - Why?: small payload ⇒ short cell-creation delay for digitized voice
 - Halfway between 32 and 64 (compromise!)

Cell header



Cell format

ATM Cell Header

- VCI: virtual channel ID
 - Will *change* from link to link thru net
- PT: Payload type (e.g. RM cell versus data cell)
- CLP: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- **HEC:** Header Error Checksum
 - Cyclic redundancy check

ATM Physical Layer: Sub-Layers

Two pieces (sub-layers) of physical layer:

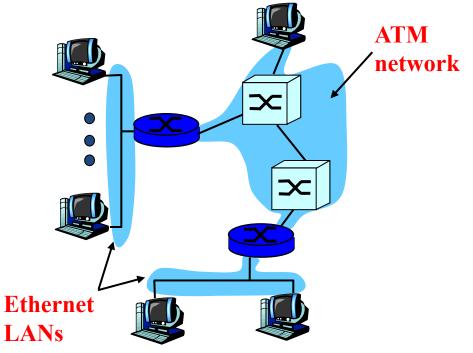
- Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below
- Physical Medium Dependent: depends on physical medium being used

TCS Functions:

- Header checksum generation: 8 bits CRC
- Cell delineation
- With "unstructured" PMD sub-layer, transmission of idle cells when no data cells to send

ATM Physical Layer

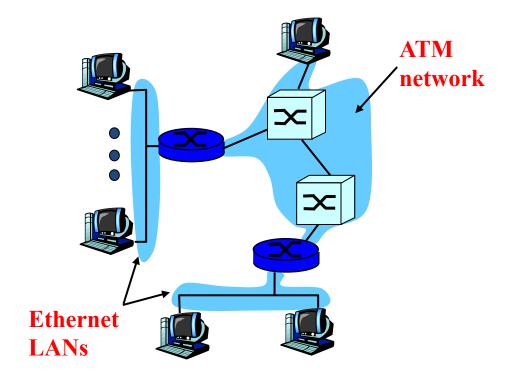
Physical Medium Dependent (PMD) sublayer


- **SONET/SDH**: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds: OC1 = 51.84 Mbps; OC3 = 155.52 Mbps; OC12 = 622.08 Mbps
- T1/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps
- unstructured: just cells (busy/idle)

IP-Over-ATM (1)

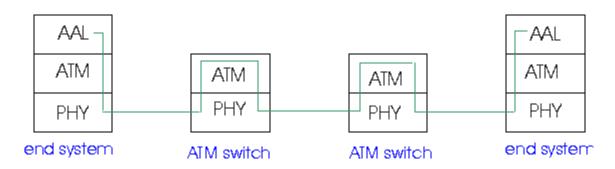
Classic IP only

- 3 "networks" (e.g., LAN segments)
- MAC (802.3) and IP addresses
- Replace "network" (e.g., LAN segment) with ATM network
- ATM addresses, IP addresses



IP-Over-ATM (2)

Issues:


- ☐ IP datagrams into ATM AAL5 PDUs
- ☐ From IP addresses to ATM addresses
 - Just like IP addresses to 802.3 MAC addresses!

Datagram Journey in IP-over-ATM Network

• At Source Host:

- IP layer finds mapping between IP, ATM dest address (using ARP)
- Passes datagram to AAL5
- AAL5 encapsulates data, segments to cells, passes to ATM layer
- ATM network: moves cell along VC to destination
- At Destination Host:
 - AAL5 reassembles cells into original datagram
 - If CRC OK, datgram is passed to IP

ARP in ATM Nets

- ATM network needs destination ATM address
 - Just like Ethernet needs destination Ethernet address
- IP/ATM address translation done by ATM ARP (Address Resolution Protocol)
 - ARP server in ATM network performs broadcast of ATM ARP translation request to all connected ATM devices
 - Hosts can register their ATM addresses with server to avoid lookup

Outline

- Point-to-Point Protocol (PPP)
- Asynchronous Transfer Mode (ATM)
- X.25
- Frame Relay

X.25(1)

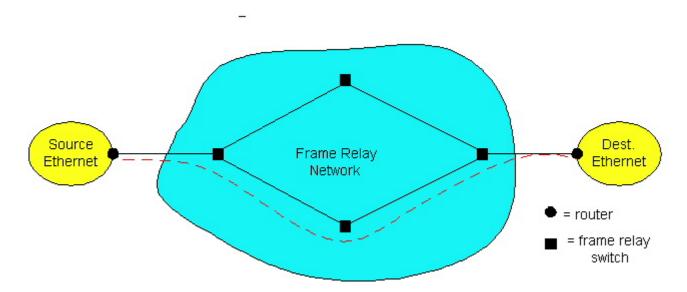
Like ATM:

- Wide area network technologies
- Virtual circuit oriented
- Origins in telephony world
- Can be used to carry IP datagrams
 - Can thus be viewed as Link Layers by IP protocol

X.25(2)

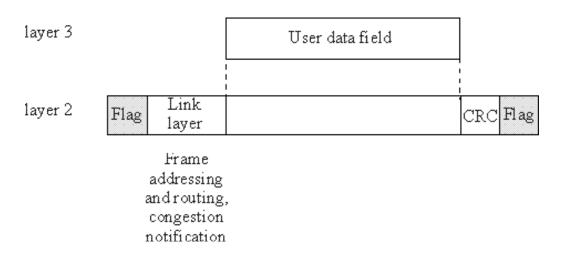
- X.25 builds VC between source and destination for each user connection
- Per-hop control along path
 - Error control (with retransmissions) on each hop using LAP-B
 - Variant of the HDLC protocol
 - Per-hop flow control using credits
 - Congestion arising at intermediate node propagates to previous node on path
 - Back to source via back pressure

IP versus X.25


- X.25: reliable in-sequence end-end delivery from end-to-end
 - "intelligence in the network"
- IP: unreliable, out-of-sequence end-end delivery
 - "intelligence in the endpoints"
- Gigabit routers: limited processing possible
- 2000–: IP wins

Outline

- PPP
- ATM
- X.25
- Frame Relay


Frame Relay (1)

- Designed in late 1980s, widely deployed in the 1990s
- Frame relay service:
 - No error control
 - End-to-end congestion control

Frame Relay (2)

- Designed to **interconnect** corporate customer LANs
 - Typically permanent VCs: "pipe" carrying aggregate traffic between two routers
 - Switched VCs: as in ATM
- Corporate customer **leases** FR service from public Frame Relay network (eg, Sprint, AT&T)

Summary: Link Layer Technologies

- Point-to-Point Protocol (PPP)
- Asynchronous Transfer Mode (ATM)
- X.25
- Frame Relay