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Community ecologists face a special set of statistical problems in attempting to 

characterize and measure the properties of communities of plants and animals.  

Some community studies, such as energetic analyses, need only apply the general 

principles discussed in Part I to estimate the abundances of the many species that 

comprise the community.  But other community studies need to utilize new 

parameters applicable only at the community level.  One community parameter is 

similarity, and Chapter 12 discusses how to measure the similarity between 

communities.  Similarity is the basis of classification, and this chapter discusses 

cluster analysis as one method of objectively defining the relationships among many 

community samples.  

Plant ecologists in particular have developed a wide array of multivariate 

statistical techniques to assist in the analysis of community patterns and to help in 

defining the environmental controls of community patterns.  Gradient analysis and 

ordination techniques are part of the statistical tool-kit of all community ecologists.  

Although these methods are briefly mentioned in Chapter 11, I do not treat them in 

this book because there are several good texts devoted specifically to multivariate 

statistical methods in ecology (Pielou 1984, Digby and Kempton 1987). 

Species diversity is one of the most obvious and characteristic feature of a 

community.  From the earliest observations about the rich diversity of tropical 

communities in comparison with impoverished polar communities, ecologists have 

tried to quantify the diversity concept.  Chapter 13 summarizes the accumulated 

wisdom of ways to measure biological diversity in plant and animal communities. 
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Niche theory has been one of the most powerful methods for analyzing 

community structure after the pioneering work of MacArthur (1968).  Analyses of the 

structure of a community and the dynamic interactions of competing species all 

depend on the measurement of the niche parameters of species.  Chapter 14 

presents the methods developed for the measurement of niche breadth and niche 

overlap in natural communities.  The measurement of dietary preference is similar to 

the problem of measuring niche breadth, and Chapter 13 discusses the measures 

that have been suggested for quantifying the simple idea of preference in animals. 

Other community concepts such as trophic structure and succession are 

analyzed by various combinations of the methods outlined in the earlier parts of this 

book. 

Community dynamics is an important area of analysis in modern ecology and a 

challenging focus of experimental work.  To study communities rigorously, ecologists 

must use a wide array of population and community methods, all arranged in an 

experimental design that will satisfy a pure statistician.  To achieve this goal is 

perhaps the most challenging methodological problems in modern ecology. 



CHAPTER 12 

SIMILARITY COEFFICIENTS 
AND CLUSTER ANALYSIS 

(Version 5, 14 March 2014)   Page 
 

12.1  MEASUREMENT OF SIMILARITY ................................................................ 486 
12.1.1 Binary Similarity Coefficients ........................................................... 487 

12.1.2  Distance Coefficients ....................................................................... 492 

12.1.3  Correlation Coefficients ................................................................... 502 
12.1.4  Other Similarity Measures ............................................................... 503 

12.2 DATA STANDARDIZATION ........................................................................... 508 

12.3 CLUSTER ANALYSIS .................................................................................... 513 

12.3.1 Single Linkage Clustering ................................................................. 514 
12.3.2 Complete Linkage Clustering ........................................................... 518 
12.3.3 Average Linkage Clustering ............................................................. 520 

12.4 RECOMMENDATIONS FOR CLASSIFICATIONS ......................................... 523 

12.5 OTHER MULTIVARIATE TECHNIQUES ........................................................ 525 

12.6 SUMMARY ...................................................................................................... 525 

SELECTED REFERENCES .................................................................................... 526 

QUESTIONS AND PROBLEMS ............................................................................. 527 
 

In many community studies ecologists obtain a list of the species that occur in each of 

several communities, and, if quantitative sampling has been done, some measure of 

the relative abundance of each species. Often the purpose of this sampling is to 

determine if the communities can be classified together or need to be separated. For 

the designation of conservation areas we will often wish to ask how much separate 

areas differ in their flora and fauna. As a start to answering these complex questions 

of community classification, we now ask how we can measure the similarity between 

two such community samples. 
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12.1  MEASUREMENT OF SIMILARITY 

There are more than two dozen measures of similarity available (Legendre and 

Legendre 1983, Wolda 1981, Koleff et al. 2003) and much confusion exists about 

which measure to use. Similarity measures are peculiar kinds of coefficients because 

they are mainly descriptive coefficients, not estimators of some statistical parameter. 

It is difficult to give reliable confidence intervals for most measures of similarity and 

probable errors can be estimated only by some type of randomization procedure 

(Ricklefs and Lau 1980; see Chapter 15, page 000). 

There are two broad classes of similarity measures. Binary similarity coefficients 

are used when only presence/absence data are available for the species in a 

community, and are thus appropriate for the nominal scale of measurement. 

Quantitative similarity coefficients require that some measure of relative abundance 

also be available for each species. Relative abundance may be measured by number 

of individuals, biomass, cover, productivity, or any measure that quantifies the 

"importance" of the species in the community. Table 12.1 illustrates data on the 

relative abundance of 11 species of sea birds on two islands.  

TABLE 12.1   NUMBER OF SEABIRDS NESTING ON TWO OF THE PRIBILOF 
ISLANDS OF THE BERING SEAa    
  

 St. Paul Island  St. George Island 

Seabird No. of 
individuals 

 
Proportion 

 No. of 
individuals 

 
Proportion 

Northern fulmar 700 0.0028  70,000 0.0278 
Red-faced cormorant 2,500 0.0099  5,000 0.0020 
Black-legged kitiwake 31,000 0.1221  72,000 0.0286 
Red-legged kitiwake 2,200 0.0087  220,000 0.0873 
Common murre 39,000 0.1537  190,000 0.0754 
Thick-billed murre 110,000 0.4334  1,500,000 0.5955 
Parakeet auklet 34,000 0.1340  150,000 0.0595 
Crested auklet 6,000 0.0236  28,000 0.0111 
Least auklet 23,000 0.0906  250,000 0.0992 
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Horned puffin 4,400 0.0173  28,000 0.0111 
Tufted puffin 1,000 0.0039  6,000 0.0024 

Total 253,800 1.0000  2,519,000 0.9999 
a Data from Hunt et al., 1986.   

There are two desirable attributes of all similarity measures. First, the measure 

should be independent of sample size and of the number of species in the community 

(Wolda 1981). Second, the measure should increase smoothly from some fixed 

minimum to a fixed maximum, as the two community samples become more similar. 

Wolda (1981), Colwell and Coddington (1994), and Chao et al.(2006) have done an 

extensive analysis of the properties of similarity coefficients to see if they all behave 

desirably, and their work forms the basis of many of the recommendations I give here. 

12.1.1 Binary Similarity Coefficients 

The simplest similarity measures deal only with presence-absence data. The basic 

data for calculating binary (or association) coefficients is a 2x2 table: 

  Sample A 
  No. of species 

present 
No. of species 

absent 

Sample B No. of species present a b 

 No. of species absent c d 

where: 

  Number of species in sample A and sample B (joint occurences)
  Number of species in sample B but not in sample A
  Number of species in sample A but not in sample B
  Number of species absent 

a
b
c
d

=
=
=
= in both samples (zero-zero matches)

 

There is considerable disagreement in the literature about whether d is a biologically 

meaningful number. It could be meaningful in an area where the flora or fauna is well 

known and the absence of certain species is relevant. But at the other extreme, 

elephants are always absent from plankton samples and clearly they should not be 

included in d when plankton are being studied. For this reason most users of similarity 

measures ignore species that are absent in both samples.  
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There are more than 20 binary similarity measures now in the literature 

(Cheetham and Hazel 1969) and they have been reviewed by Clifford and 

Stephenson (1975, Chapter 6) and by Romesburg (1984, Chapter 10). I will describe 

here only two of the most often used similarity coefficients for binary data.  

Jaccard’s Index: 

  j
aS

a b c
=

+ +
 (12.1) 

where: 

Jaccard's similarity coefficient
, ,  As defined above in presence-absence matrix

jS
a b c

=
=

 

This index can be modified to a coefficient of dissimilarity by taking its inverse: 

Jaccard's dissimilarity coefficient 1 jS= −    (12.2) 

Sorensen’s Index:  This measure is very similar to the Jaccard measure, and was 

first used by Czekanowski in 1913 and discovered anew by Sorensen (1948): 

2
2S

aS
a b c

=
+ +

 (12.3) 

where  SS = Sorensen’s similarity coefficient 

This index can also be modified to a coefficient of dissimilarity by taking its inverse: 

  Sorensen's dissimilarity coefficient 1 sS= −  (12.4) 

This coefficient weights matches in species composition between the two samples 

more heavily than mismatches. Whether or not one thinks this weighting is desirable 

will depend on the quality of the data. If many species are present in a community but 

not present in a sample from that community, it may be useful to use Sorensen's 

coefficient rather than Jaccard's. But the Sorensen and Jaccard coefficients are very 

closely correlated (Baselga 2012, Figure 4).  

Simple Matching Coefficient: This is the simplest coefficient for binary data that 

makes use of negative matches as well as positive matches. It is not used very 
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frequently because for most data sets negative matches are not biologically 

meaningful.  

SM
a dS

a b c d
+

=
+ + +

 (12.5) 

where  SSM = Simple matching similarity coefficient 

Baroni-Urbani and Buser Coefficient:  This is a more complex similarity coefficient 

that also makes use of negative matches. 

  B
ad aS

a b c ad
+

=
+ + +

 (12.6) 

where  SB = Baroni-Urbani and Buser similarity coefficient 

This was proposed by Baroni-Urbani and Buser (1976). Faith (1983) proposed a very 

similar binary similarity index. Both these coefficients can also be turned into 

dissimilarity measures by taking their inverse (as above). 

The range of all similarity coefficients for binary data is supposed to be 0 (no 

similarity) to 1.0 (complete similarity). In fact, this is not true for all coefficients. Wolda 

(1981) investigated how sample size and species richness affected the maximum 

value that could be obtained with similarity coefficients. He used a simulated 

community of known species richness with 100,000 individuals whose species 

abundances were distributed according to the log series (see Krebs 2009 Chapter 

23). Figure 12.1 shows how the coefficient of Sorensen and the Baroni-Urbani 

coefficient are affected by sample size and by species richness. Sample size effects 

are very large indeed. For example, the maximum value of the Sorensen coefficient 

when 750 species are present in the community and each community sample 

contains 200 individuals is 0.55 not 1.0 as one might expect. 
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Figure 12.1  Expected maximum values of two commonly used binary coefficients of 
similarity as a function of sample size. The number of individuals in the smaller of the two 
community samples is given on the X axis, and the lines connect samples of equal size for 
the larger community sample (n = 5000 (black), 1000 (red), 500 (green), and 200 (yellow); a 
different symbol is used for each of these sample sizes). A highly diverse community is 
shown on the left and a lower-diversity community on the right.  Although the theoretical 
maximum value of each of these coefficients is 1.0, the expected maximum is much less than 
1.0 when samples are small.  (From Wolda, 1981.) 

Wolda (1981) did not investigate the sampling properties of the Jaccard 

coefficient, but they would probably be similar to those for the Sorensen coefficient 

(Fig. 12.1). Wolda (1981) showed graphically that there were similar sampling 

problems with almost all the available measures of similarity, and this has led to an 

attempt to reformulate similarity measures to circumvent the bias problems illustrated 

in Figure 12.1 from samples of different sizes.  
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Binary similarity coefficients are crude measures available for judging similarity 

between communities because they do not take commonness and scarcity into 

consideration. Binary coefficients thus weight rare species the same as common 

species, and should be used whenever one wishes to weight all species on an equal 

footing. More commonly, binary similarity measures are used because only lists of 

species names are available for particular communities and comparisons are possible 

only at this lower level of resolution. 

Box 12.1  CALCULATION OF TRADITIONAL SIMILARITY MEASURES FOR 
BINARY DATA 

The crustacean zooplankton of the Great Lakes were sampled by Watson 
(1974), who obtained these data: 

  Lake Erie 
  No. of species 

present 
No. of species 

absent 

Lake Ontario No. of species present 18 1 

 No. of species absent 1 5 

A total of 25 species of crustacean zooplankton occur in all the Great Lakes, and 
of these 5 species do not occur in either Lake Erie or Lake Ontario. 
Jaccard’s Index: 

  

18        0.90
18 + 1 + 1

J
aS

a b c
=

+ +

= =
 

Sorensen’s Index: 
2  

2
2(18)        0.95

2(18) + 1 + 1

S
aS

a b c
=

+ +

= =
 

Simple matching coefficient: 

18 5         0.92
18 1 1 5

SM
a dS

a b c d
+

=
+ + +

+
= =

+ + +

 

Baroni-Urbani and Buser coefficient: 
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( )( )
( )( )

  

18 5  + 18 27.487          0.93
29.48718 1 1 18 5

B
ad aS

a b c ad
+

=
+ + +

= = =
+ + +

 

The unsatisfactory performance of all binary similarity indices has led to a 

reformulation of their calculation by Chao et al. (2005, 2006). The problem lies in 

species that are shared species between the two samples but are not seen in the 

sampling. Figure 12.2 illustrates the problem of shared species in two quadrats. By 

reformulating these data in a probabilistic format Chao et al. (2006) were able to bring 

together indices based on presence-absence data and indices based on relative 

abundance or biomass. Table 12.2 gives the reformulation for the Jaccard and the 

Sorensen indices. 

The first step is to redefine the traditional binary counts as follows: 

1

2

12

12

1 12

2 12

 total number of species in sample 1
 total number of species in sample 2
 number of species present in both samples

S
S
S
a S
b S S
c S S

=
=
=

=
= −
= −

 

 
Table 12.2  REFORMULATION OF THE JACCARD AND SORENSEN INDICES FOR 
PRESENCE-ABSENCE DATA AND ABUNDANCE DATA. (From Chao et al. 2006).  
 
Index Presence/absence 

based with a, b, c 

Presence/absence based 

with S1, S2, S12 

Abundance based 

(see definitions below) 

Jaccard a
a b c+ +

  12

1 2 12

S
S S S+ −

  
UV

U V UV+ −
  

Sorensen 
( )

2
2

a
a b c+ +

  12

1 2

2S
S S+

  
2UV
U V+
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Figure 12.2  A schematic illustration of the meaning of shared species for two community 
samples. Sample 1 is green, Sample 2 is pink. The green dots represent a species selected 
at random from sample 1, and the red dots represent a species selected at random from 
sample 2. In Case 1 both species are shared species (i.e. they occur in both samples). In 
Case 2 the species chosen at random from sample 1 is a shared species but the species 
chosen at random from sample 2 is not a shared species. The reverse is true for Case 3. In 
Case 4 neither of the chosen species is a shared species. (Modified from Chao et al. 2006).  

Then Chao et al. (1986) generalized these variables to include abundance data rather 

than just presence-absence data as follows: 

 total relative abundances of the shared species in sample 1
 total relative abundances of the shared species in sample 2

where:
count or biomass in sample relative abundance 

total count or biomass

U
V

x

=
=

=
 in sample x
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Note that for the definition of U and V we use only the shared species in the two 

samples. We now have reformulated the Jaccard and Sorensen indices to include 

quantitative data on abundance, as shown in Table 12.2.  

The problem now is that both U and V are negatively biased because of the 

missed shared species. Chao et al. (2006) derived sample estimates of U and V that 

corrects for unseen shared species, and these sample estimates can then be used in 

the calculations in Table 12.2. 

( ) ( )
( ) ( )

1

1 12

1

1 12

1ˆ 1
2

1ˆ 1
2

a a
i i

i
i i
a a

i i
i

i i

mX f XU I Y
n m f n

nY f YV I X
m n f m

+

= =+

+

= =+

−
= + =

−
= + =

∑ ∑

∑ ∑
  (12.7) 

where 

 number of shared species between samples 1 and 2
 number of individuals (or biomass) of species  in sample 1
 total number of individuals (or biomass) in sample 1
 total number of individuals 

i

a
X i
n
m

=
=
=
=

1

2

(or biomass) in sample 2
 observed number of the shared species that occur once in sample 1
 observed number of shared species that occur twice in sample 1
 indicator function ( 1 if the expre

f
f

I I

+

+

=
=
= =

1

2

ssion is true, 0 if false)
 number of individuals (or biomass) of species  in sample 2
 observed number of the shared species that occur once in sample 2
 observed number of shared species 

i

I
Y i
f
f
+

+

=
=
=
= that occur twice in sample 2

  

The first term in these equations gives the original unadjusted estimator for the 

similarity function and the second term corrects the estimator for the number of 

unseen shared species.  

The recommendation of Chao et al. (2006) is to use these adjusted estimates of 

U and V in the formulas in eq. (12.7) in Table 12.2 to calculate the adjusted Jaccard 

and adjusted Sorensen indices for abundance data.  

ˆ ˆ
Adjusted Jaccard index of similarity ˆ ˆ ˆ ˆ

UV
U V UV

=
+ −

 (12.8) 

ˆ ˆ2Adjusted Sorensen index of similarity ˆ ˆ
UV

U V
=

+
 (12.9) 
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where Û  and V̂  are as defined in equation (12.7) above 

Box 12.3 illustrates these calculations for two samples of beetles. The program 

SPADE from Anne Chao (http://chao.stat.nthu.edu.tw/softwarece.html) and the 

program EstimateS from Robert Colwell 

(http://viceroy.eeb.uconn.edu/estimates/index.html) calculate these adjusted indices 

from Chao et al. (2006).  

Box 12.2  CALCULATION OF ADJUSTED SIMILARITY MEASURES FROM 
CHAO et al. (2006) 

Two insect community samples were taken from grassland communities in 
prairie remnants in Saskatchewan. Beetle abundance was estimated by captures 
of individuals in pitfall traps and the following data recorded:: 
Species 1 2 3 4 5 6 7 8 9 
Sample A 17 1 121 16 10 5 6 6 0 
Sample B 4 38 3 0 27 2 0 21 19 
Species 10 11 12 13 14 15 16 17 18 
Sample A 73 2 4 17 0 11 2 0 9 
Sample B 19 0 17 7 1 1 16 1 15 
Species 19 20 21 22 23 24 25 26 27 
Sample A 17 2 4 0 7 20 0 5 2 
Sample B 0 14 1 12 1 0 9 1 0 
Species 28 29 30 31 32 33 34   
Sample A 0 6 0 1 0 1 17   
Sample B 1 18 1 0 8 0 7   
From these data, we obtain: 
Grasslands A 

and B 
 No. of species 

present 
No. of species 

absent 

 No. of species present 18 8 

 No. of species absent 8 unknown 

A total of 34 species of beetles were captured. 
Unadjusted Jaccard Index: 

http://chao.stat.nthu.edu.tw/softwarece.html
http://viceroy.eeb.uconn.edu/estimates/index.html
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18        0.5294
18 + 8 + 8

J
aS

a b c
=

+ +

= =
 

Unadjusted Sorensen Index: 
2  

2
2(18)        0.6923

2(18) + 8 + 8

S
aS

a b c
=

+ +

= =
 

Sample estimates of U and V: (eq. 12.7) 
To calculate these estimates we require these parameters: 

1

18 number of shared species between samples 1 and 2
382  total number of individuals in sample 1
264  total number of individuals in sample 2
4  observed number of the shared species that occur

a
n
m
f+

= =
= =
= =
= =

2

1

2

 once in sample 1
1  observed number of shared species that occur twice in sample 1
1  observed number of the shared species that occur once in sample 2
2  observed number of shared species t

f
f
f

+

+

+

= =
= =
= = hat occur twice in sample 2

 

( ) ( )

[ ]

1

1 12

1ˆ 1
2

0.8298 0.9962 * 2 * 0.07068 0.9707

a a
i i

i
i i

mX f XU I Y
n m f n

+

= =+

−
= + =

= + =

∑ ∑  

( ) ( )

[ ]

1

1 12

1ˆ 1
2

0.8030 0.9974 * 0.25 * 0.1439 0.8389

a a
i i

i
i i

nY f YV I X
m n f m

+

= =+

−
= + =

= + =

∑ ∑  

Adjusted Jaccard and Sorensen abundance indices: 
From equation (12.8), the adjusted Jaccard abundance Index is given by: 

( )
0.9707 * 0.8389

0.9707 0.8389 0.9707 * 0.8389
0.8182

UV
U V UV

=
+ − + −

=
 

And the adjusted Sorensen abundance index is from equation (12.9): 
2 2 * 0.9707 * 0.8389 0.9000

0.9707 0.8389
UV

U V
= =

+ +
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12.1.2  Distance Coefficients 

Distance coefficients are intuitively appealing to an ecologist because we can 

visualize them. Note that distance coefficients are measures of dissimilarity, rather 

than similarity. When a distance coefficient is zero, communities are identical. We can 

visualize distance measures of similarity by considering the simplest case of two 

species in two community samples. Distance coefficients typically require some 

measure of abundance for each species in the community. Figure 12.3 illustrates the 

simplest case in which number of individuals in the samples is used to measure 

abundance. The original data are: 

 

  Sample A Sample B 

Number of Species 1 35 18 
individuals of Species 2 12 

 
29 

Euclidean Distance  The distance between these two samples is clearly seen from 

Figure 12.3 as the hypotenuse of a triangle, and is calculated from simple geometry 

as: 

( ) ( )

2 2

2 2

Distance = 

               = 35 - 18  + 29 - 12  = 24.04 (indiv.)

x y+
 

This distance is formally called Euclidian distance and could be measured off Figure 

12.3 with a ruler. More formally: 

( )2

1
  

n

jk ij ik
i

X X
=

∆ = −∑  (12.10) 

where: 

 Euclidean distance between samples  and 
 Number of individuals (or biomass) of species  in sample 
 Number of individuals (or biomass) of species  in sample 
 Total number of specie

jk

ij

ik

j k
X i j
X i k

n

∆ =
=
=
= s
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Figure 12.3  Hypothetical illustration of the Euclidean distance measure of similarity.  Two 
communities A and B each with two species are shown to illustrate the concept. As more 
species are included in the community, the dimensionally increases but the basic principle 
does not change. Note that the smaller the distance, the more similar the two communities, 
so that Euclidean distance is a measure of dissimilarity. 

Euclidean distance increases with the number of species in the samples, and to 

compensate for this the average distance is usually calculated: 

2

  jk
jkd

n
∆

=  (12.11) 

where: 

  Average Euclidean distance between samples  and 
  Euclidean distance (calculated in equation 12.10)
  Number of species in samples

jk

jk

d j k

n

=
∆ =

=
 

Both Euclidean distance and average Euclidean distance vary from 0 to infinity; the 

larger the distance, the less similar the two communities. 

Euclidean distance is a special case of a whole class of metric functions, and 

just as there are many ways to measure distance on a map, there are many other 

distance measures. One of the simplest metric functions is called the Manhattan or 

city-block metric: 
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( )
1

,   
n

M ij ik
i

d j k X X
=

= −∑  (12.12) 

where: 

( ),   Manhattan distance between samples  and 
,   Number of individuals in species  in each sample  and 

  Number of species in samples

M

ij jk

d j k j k
X X i j k

n

=
=
=

 

This function measures distances as the length of the path you have to walk in a city, 

hence the name. Two measures based on the Manhattan metric have been used 

widely in plant ecology to measure similarity. 

Bray-Curtis Measure  Bray and Curtis (1957) standardized the Manhattan metric so 

that it has a range from 0 (similar) to 1 (dissimilar). 

( )
1

1

 

n

ij ik
i
n

ij ik
i

X X
B

X X

=

=

−
=

+

∑

∑
 (12.13) 

where: 

  Bray-Curtis measure of dissimilarity
,   Number of individuals in species  in each sample ( , )

  Number of species in samples
ij jk

B
X X i j k

n

=
=
=

 

Some authors (e.g. Wolda 1981) prefer to define this as a measure of similarity by 

using the complement of the Bray-Curtis measure (1.0-B). 

The Bray-Curtis measure ignores cases in which the species is absent in both 

community samples, and it is dominated by the abundant species so that rare species 

add very little to the value of the coefficient. 

Canberra Metric Lance and Williams (1967) standardized the Manhattan metric 

over species instead of individuals and invented the Canberra metric: 

1

1  
n

ij ik

i ij ik

X X
C

n X X=

  −
  =

 +   
∑  (12.14) 

where: 
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  Canberra metric coefficient of dissimilarity between samples  and 
  Number of species in samples

,   Number of individuals in species  in each sample ( , )ij jk

C j k
n

X X i j k

=
=
=

 

The Canberra metric is not affected as much by the more abundant species in the 

community, and thus differs from the Bray-Curtis measure. The Canberra metric has 

two problems. It is undefined when there are species that are absent in both 

community samples, and consequently missing species can contribute no information 

and must be ignored. When no individuals of a species are present in one sample, 

but are present in the second sample, the index is at maximum value (Clifford and 

Stephenson 1975). To avoid this second problem many ecologists replace all zero 

values by a small number (like 0.1) when doing the summations. The Canberra metric 

ranges from 0 to 1.0 and, like the Bray-Curtis measure, can be converted into a 

similarity measure by using the complement (1.0-C). 

Box 12.3 illustrates the calculation of these three distance measures for two 

small mammal communities in Colorado. 

Box 12.3  CALCULATION OF DISTANCE COEFFICIENTS 

Armstrong (1977) trapped nine species of small mammals in the Rocky 
Mountains of Colorado and obtained relative abundance (percentage of total 
catch) estimates for two habitat types (“communities”) as follows: 

 Small mammal species 

Habitat type Sc Sv Em Pm Cg Pi Ml Mm Zp 

Willow overstory 70 58 5 0 4 0 31 5 35 
No overstory 10 

 
11 20 20 9 8 11 46 44 

Euclidean Distance 
From equation (12.8): 

( )
( ) ( ) ( )

2

2 2 2

  

        70-10  58 11 5 20  + 
        8685  93.19

jk ij ikX X∆ = −

= + − + −

= =

∑
  

Average Euclidean distance (from equation 12.11): 
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2

  

8685         31.06
9

jk
jkd

n
∆

=

= =

 

Bray-Curtis Measure 
From equation (12.13): 

( )
( ) ( ) ( ) ( ) ( )

  

70-10 58 11 20 5  20 0  9 4   
     

70 10 58 11 20 5 
225     0.58
387

ij ik

ij ik

X X
B

X X

−
=

+
+ − + − + − + − +

=
+ + + + +

= =

∑
∑





 

To use as a measure of similarity calculate the complement of B:: 
1   1 0.58  0.42B− = − =  

Canberra Metric 
From equation (12.14): 

1

1 

1 70 10 58 11 5 20 0.1*  20           
9 70 10 58 11 5 20 0.1 20
1    (5.775) 0.64
9

n
ij ik

i ij ik

X X
C

n X X=

  −
  =

 +   
− − − − = + + + + + + + − 

= =

∑

  

To use the Canberra metric as a measure of similarity calculate its complement: 
1 1 0.64 0.36C− = − =  

Both the Bray-Curtis measure and the Canberra metric measure are strongly 

affected by sample size. Wolda (1981, see also Krebs 1999 Chapter 11) showed that 

in diverse communities with large sample sizes these two distance coefficients are 

particularly poor because their expected maximum value is low. They would appear to 

be best used in situations with low species diversity and small sample size and are 

not generally recommended as measures of similarity. 
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12.1.3  Correlation Coefficients 

One frequently used approach to the measurement of similarity is to use correlation 

coefficients of the standard kind described in every statistics book (e.g. Sokal and 

Rohlf 2012, Chap. 15; Zar 2010, Chap. 18). In the terminology used in this chapter, 

the Pearson correlation coefficient is given by: 

2 2

xy
r

x y
= ∑
∑ ∑

 (12.15) 

where 

2

2 2

2

2 2

Sum of cross products

Sum of squares of 

Sum of squares of 

, Number of individuals of species   in each sample ( , )

ij ik
i i

ij ik
i

ij
i

ij
i

ik
i

ik
i

ij ik

X X
xy X X

n

X
x x X

n

X
y y X

n
X X i j k

= = −

 
 
 = = −

 
 
 = = −

=

∑ ∑
∑ ∑

∑
∑ ∑

∑
∑ ∑

 

In order to use the Pearson product-moment correlation coefficient r as a similarity 

measure, one must make the usual assumption of a linear relationship between 

species abundances in the two communities. If you do not wish to make this 

assumption, you can use Spearman's rank correlation coefficient rs or Kendall's tau 

instead of r. Both these correlation coefficients range from -1.0 to +1.0. 

Correlation coefficients have one desirable and one undesirable attribute. 

Romesburg (1984, p. 107) points out that the correlation coefficient is completely 

insensitive to additive or proportional differences between community samples. For 

example, if sample A is identical to sample B but contains species that are one-half 

as abundant as the same species are in sample B, the correlation coefficient gives 

the same estimate of similarity, which is a desirable trait. All of the distance measures 

we have  discussed (except for the adjusted Jaccard and the adjusted Sorensen 

indices of Chao et al. 2006) are sensitive to additive and proportional changes in 

communities. Table 12.3 illustrates this problem with some hypothetical data. 
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TABLE 12.3   EFFECTS OF ADDITIVE AND PROPORTIONAL CHANGES IN 
SPECIES ABUNDANCES ON DISTANCE MEASURES AND 
CORRELATION COEFFICIENTS. Hypothetical comparison of number 
of individuals in two communities with four species 

 Species 

 1 2 3 4 
Community A 50 25 10 5 
Community B 40 30 20 10 
Community B1 (proportional change 2X) 80 60 40 20 
Community B2 (additive change +30) 70 60 50 40 
     
 Samples compared 

 A - B A - B1 A - B2 
Average Euclidean distance 7.90 28.50 33.35 
Bray-Curtis measure 0.16 0.38 0.42 
Canberra metric 0.22 0.46 0.51 
Pearson correlation coefficient 0.96 0.96 0.96 
Spearman rank correlation coefficient 1.00 1.00 1.00 
CONCLUSION:  If you wish your measure of similarity to be independent of proportional or additive 
changes in species abundances, you should not use a distance coefficient to measure similarity. 

Correlation coefficients may be undesirable measures of similarity because they 

are all strongly affected by sample size, especially in high diversity communities. Field 

(1970) recognized this problem and recommended that, when more than half of the 

abundances are zero in a community sample, the correlation coefficient should not be 

used as a measure of similarity. Wolda (1981) showed the large bias in correlation 

coefficients as a measure of similarity because of variations in sample sizes. 

12.1.4  Other Similarity Measures 

Many other measures of similarity have been proposed. I select here only three to 

illustrate the most useful measures of similarity for quantitative data on communities. 

Percentage Similarity  This measure was proposed by Renkonen (1938) and is 

sometimes called the Renkonen index. In order to calculate this measure of similarity, 
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each community sample must be standardized as percentages, so that the relative 

abundances all sum to 100% in each sample. The index is then calculated as: 

( )1 2 minimum ,i i
i

P p p= ∑  (12.16) 

where: 

1

2

  Percentage similarity between sample 1 and 2
  Percentage of species  in community sample 1
  Percentage of species  in community sample 2

i

i

P
p i
p i

=
=
=

 

In spite of its simplicity, the percentage similarity measure is one of the better 

quantitative similarity coefficient available (Wolda 1981). Percentage similarity is not 

affected by proportional differences in abundance between the samples, but is 

sensitive to additive changes (c.f. page 502). Box 12.3 illustrates the calculation of 

percentage similarity. This index ranges from 0 (no similarity) to 100 (complete 

similarity).  

Box 12.3   CALCULATION OF PERCENTAGE SIMILARITY, MORISITA, AND HORN 
INDICES OF SIMILARITY 

Nelson (1955) gave the basal areas of the trees in a watershed of western North 
Carolina for two years before and 17 years after chestnut blight had removed most of 
the chestnuts: 
 Tree species Basal area (ft2) Percentage composition  

  1934 1953 1934 1953  
 Chestnut 53.3 0.9 49.2 1.1  
 Hickory 18.8 20.7 17.3 25.1  
 Chestnut oak 10.5 14.2 9.7 17.2  
 Northern red oak 9.8 5.2 9.0 6.3  
 Black oak 9.6 17.9 8.9 21.7  
 Yellow poplar 2.9 13.0 2.7 15.8  
 Red maple 2.0 3.7 1.8 4.5  
 Scarlet oak 1.5 6.9 1.4 8.4  

 Total 108.4 82.5 100.0 100.1  
The first step is to express the abundances of the different species as relative 
abundances (or percentages) which must sum to 100%. 

Percentage Similarity 

From equation (12.16): 
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( )1 2PS  minimum ,
1.1  17.3  9.7  6.3  8.9  2.7  1.8  1.4
 49.2%

i ip p=
= + + + + + + +
=

∑
 

Morisita’s Index of Similarity 

From equation (12.17): 

( )1 2

2 
  ij ik

j k

X X
C

N Nλ λ λ
=

+
∑  

1
(53.3)(52.3)  (18.8)(17.8)  (10.5)(9.5)  (9.8)(8.8)  

108.4 (107.4)
0.292

λ + + + +
=

=



 

2
(0.9)(0)  (20.7)(19.7)  (14.2)(13.2)  0.167

82.5 (81.5)
λ + + +

= =
  

( )( ) ( )( ) ( )( )
( )( )( )

2 53.3 0.9 18.8 20.7 10.5 14.2 1728.96 0.42
0.292 0.167 108.4 82.5 4104.837

Cλ

 + + + = = =
+



 

From equation (12.20) we can calculate the Morisita-Horn index as: 

( ) ( )2 2 2 2

2
  

/   /
ij ik

MH
ij j ik k j k

X X
C

X N X N N N
=

 + 

∑
∑ ∑

 

( ) ( ) ( )( )
2 2 2 2

2 2

1728.96 
53.3 18.8 0.9 20.7

108.4 82.5108.4 82.5
1728.96 0.41
4257.55

MHC =
 + + + +

+ 
  

= =

 

 

Horn’s Index of Similarity 

From equation (12.21) using the raw data on basal areas and using logs to base 10: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0

log    log    log 
  

 log    log    log 
ij ik ij ik ij ij ik ik

J K J K J J K K

X X X X X X X X
R

N N N N N N N N

 + − − =
 + + − − 

∑ ∑ ∑  

Breaking down the terms of summation in the numerator: 
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( ) ( )log
(53.3 0.9)(log 54.2)  (18.8  20.7)(log 39.5) (10.5 14.2)(log 24.7) 
279.846

ij ik ij ikX X X X + 
= + + + + + +
=

∑
  

( )log 53.3(log 53.3) 18.8(log 18.8) 10.5(log 10.5)  148.062ij ijX X = + + + =∑   

( )log 0.9(log 0.9)  20.7(log 20.7)  14.2(log 14.2)  92.083kj kjX X = + + + =∑   

0
279.846  148.062  92.083 0.70

(108.4 82.5)(log 190.9) 108.4(log 108.4) 82.5(log 82.5)
R − −

= =
+ − −

 

  

Morisita's Index of Similarity  This measure was first proposed by Morisita (1959) to 

measure similarity between two communities. It should not be confused with 

Morisita's index of dispersion (page 000). It is calculated as: 

( )1 2

2 
  ij ik

j k

X X
C

N Nλ λ λ
=

+
∑  (12.17) 

where: 

  Morisita's index of similarity beetween sample  and 
,   Number of individuals of species  in sample  and sample 

     Total number of individuals in sample 
     Total n

ij ik

j ij

k ik

C j k
X X i j k

N X j
N X

λ =
=
= =
= =
∑

umber of individuals in sample k∑
 

( )
( )1

1

1
ij ij

j j

X X

N N
λ

 − =
−

∑
 (12.18) 

( )
( )2

1
1

ik ik

k k

X X
N N

λ
 − =

−
∑  (12.19) 

The Morisita index is most easily interpreted as a probability: 

{ }
{ }

Probability that an individual drawn from sample  and one
drawn from sample  will belong to the same species

Probability that two individuals drawn from either
 or  will belong to the same species

j
k

C

j k
λ =  

The Morisita index varies from 0 (no similarity) to about 1.0 (complete similarity). Box 

12.3 illustrates the calculation of the Morisita index. The Morisita index was 
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formulated for counts of individuals and not for other abundance estimates based on 

biomass, productivity, or cover. Horn (1966) proposed a simplified Morisita index (= 

Morisita-Horn index) in which all the (-1) terms in equations (12.17) and (12.18) are 

ignored: 

( ) ( )2 2 2 2

2
  

/   /
ij ik

MH
ij j ik k j k

X X
C

X N X N N N
=

 + 

∑
∑ ∑

 (12.20) 

where   = Morisita-Horn index of similarity (Horn, 1966)MHC  

and all other terms are as defined above. This formula is appropriate when the 

original data are expressed as proportions rather than numbers of individuals and 

should be used when the original data are not numbers but biomass, cover, or 

productivity (see page 000). 

The Morisita index of similarity is nearly independent of sample size, except for 

samples of very small size. Morisita (1959) did extensive simulation experiments to 

show this, and these results were confirmed by Wolda (1981), who recommended 

Morisita's index as the best overall measure of similarity for ecological use. 

Horn’s Index of Similarity  Horn (1966) developed another index of similarity based 

on information theory. It can be calculated directly from raw data (numbers) or from 

relative abundances (proportions or percentages). 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0

log  -  log  -  log 
 = 

 +  log  +  -  log  -  log 
ij ik ij ik ij ij ik ik

J K J K J J K K

X X X X X X X X
R

N N N N N N N N

 + 
  

∑ ∑ ∑   (12.21) 

where: 

0   Horn's index of similarity for samples  and 
,    Number of individuals of species  in sample  and sample 

    Total number of individuals in sample 
    Total number of 

ij ik

J ij

K ik

R j k
X X i j k

N X j
N X

=
=
= =
= =
∑
∑ individuals in sample k

 

and all summations are over all the n species. Horn's index can be calculated from 

this equation using numbers or using proportions to estimate relative abundances. 

Note that the value obtained for the Horn’s index is the same whether numbers or 
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proportions are used in equation (12.21) and is not affected by the base of logarithms 

used. 

The Horn’s index is relatively little affected by sample size (Figure 12.4), 

although it is not as robust as Morisita's index. Box 12.3 illustrates the calculation of 

Horn’s index. 
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Figure 12.4  Expected maximum values of Horn’s index of similarity. The number of 
individuals in the smaller of the two community samples is given on the X axis, and the lines 
connect samples of equal size for larger community sample (n = 5000, 1000, 500, 200; a 
different symbol is used for each of these sample sizes). A highly diverse community is 
shown on the left and a lower-diversity community on the right. Horn’s measure is relatively 
little affected by sample size and is recommended as possible alternatives to Morisita’s index.  
(From Wolda, 1981). 

12.2  WHICH SIMILARITY MEASURES ARE TO BE PREFERRED? 

With so many proposed measures of community similarity, the novice ecologist is 

easily perplexed about what to use for his or her data. I attempt here to state what 

appears to be a consensus among quantitative statisticians about these indices. 

With only presence-absence data the options are very limited, and either the 

Jaccard or the Sorensen indices seem the best choice. But when samples sizes are 

not large enough to capture all the species present, it is now well known that all these 

presence-absence indices are biased too low, and the bias is likely to be substantial 

for communities with high species numbers and many rare species (Chao et al. 2006, 

Magurran 2004). Equal sampling effort in the two communities does not remove this 
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bias. It is theoretically possible that the Jaccard and Sorensen indices could be 

upwardly biased but this seems to be most unusual.  

There are more choices among the abundance based similarity measures. Chao 

et al. (2006) carried out an extensive set of simulations on a set of rain forest tree 

data from Costa Rica. They sampled 5000 times at random from the data set of 86 

species given in her paper and estimated the average bias for a range of sampling 

intensities. Table 12.4 gives these results for 6 of the measures of similarity.   

Table 12.4 PERCENTAGE RELATIVE BIAS FROM SAMPLING OF A RAINFOREST 
SET OF QUADRAT DATA ON SEEDLINGS VERSUS LARGE TREES IN 
COSTA RICA. Individual trees in the original raw data were sampled with 
replacement at the specified sampling intensities, and the similarity indices 
calculated. The simulation was repeated 5000 times to obtain these averages. 

  Sampling fraction 
Index True 

value 
10% vs 

10% 
10% vs. 

60% 
50% vs 

50% 
40% vs 

90% 
90% vs 

90% 

Presence-absence 
based       

  Jaccard 0.30 -64a -43 -32 -23 -19 

  Sorensen 0.46 -58 -37 -27 -18 -15 

Abundance based       

  Bray-Curtis 0.24 -35 38 -14 45 -9 

  Morisita-Horn 0.74 -38 -15 -10 -7 -5 

  Adjusted Jaccard 0.40 -30 -5 4 2 3 

  Adjusted Sorensen 0.58 -26 -5 2 1 2 
a Negative values indicate an underestimate of the true value, positive values an overestimate of the true value 

Table 12.4 shows that at very low rates of sampling, all the estimators perform poorly. 

The presence-absence estimators of similarity always underestimate true similarity, 

as shown by Wolda (1981). The Bray-Curtis measure performs very poorly and 

should be used only when the sampling fractions are equal (Chao et al. 2006). The 

Morisita-Horn index (eq. 12.18) performs well, but for these simulations the adjusted 

Jaccard and the adjusted Sorensen indices (from Table 12.2) performed best of all 

the abundance-based similarity measures.  
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Obtaining confidence limits for all these estimators must be done with bootstrap 

techniques (see Chapter 16). Both of the computer programs devoted to biodiversity 

measurements can provide standard errors for each index. The program SPADE from 

Anne Chao (http://chao.stat.nthu.edu.tw/softwarece.html) and the program EstimateS 

from Robert Colwell (http://viceroy.eeb.uconn.edu/estimates/index.html) calculate 

these standard errors from bootstrapped samples. 

12.2  DATA STANDARDIZATION 

Data to be used for community comparisons may be provided in several forms, and 

we have already seen examples of data as numbers and proportions (or percentages) 

(Table 12.1). Here we discuss briefly some rules of thumb that are useful in deciding 

how data should be standardized and when. Romesburg (1984, Chap. 8) and Clifford 

and Stephenson (1975, Chap. 7) have discussed this problem in more detail.  

A considerable amount of judgment is involved in deciding how data should be 

summarized before similarity values are calculated. Three broad strategies exist: 

apply transformations, use standardization, and do nothing. No one strategy can be 

universally recommended and much depends upon your research objectives. 

Transformations1 may be applied to the numbers of individuals counted in each 

species. Typical transformations are to replace each of the original counts (X) with 

X  or 1X + , or in extreme cases by log (X+1.0). These transformations will reduce 

the importance of extreme values, for example if one species is extremely abundant 

in one sample. In general, transformations are also used to reduce the contributions 

of the common species and to enhance the contributions of the rare species. 

Transformations also affect how much weight is given to habitat patchiness. If a 

single patch contains one highly abundant species, fox example, this one patch may 

produce a strong effect on the calculated similarity values. A transformation can help 

to smooth out these variations among patches, if you wish to do this smoothing on 

ecological grounds. If a transformation is used, it is applied before the similarity index 

is calculated. 

http://chao.stat.nthu.edu.tw/softwarece.html
http://viceroy.eeb.uconn.edu/estimates/index.html
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Standardization of data values can be done in several ways. The most familiar 

standardization is to convert absolute numbers to proportions (Table 12.1). Note that 

in doing this all differences in population sizes between sites are lost from the data. 

Whether or not you wish to omit such differences from your analysis will determine 

your use of standardization. Romesburg (1984, Chap. 7) discusses other types of 

standardization. 

The two most critical questions you must answer before you can decide on the 

form your data should take are: 

1. Are a few species excessively common or rare in your samples such that these 
extreme values distort the overall picture? If yes, use a transformation. You will 
have to use ecological intuition to decide what "excessively" means. A ten-fold 
difference in abundance between the most common and the next most 
common species might be a rule of thumb for defining "excessively common". 

2. Do you wish to include the absolute level of abundance as a part of the 
measurement of similarity between communities? If no, use standardization to 
proportions to express relative abundances. If you do not use either of these 
strategies, you should remember that if you do nothing to your raw data, you 
are still making a decision about what components of similarity to emphasize in 
your analysis. 

One additional question about data standardization is when data may be deleted 

from the analysis. Many ecologists routinely eliminate rare species from their data 

before they apply a similarity measure. This practice is rooted in the general 

ecological feeling that species represented by only 1 or 2 individuals in a large 

community sample cannot be an important and significant component of the 

community (Clifford and Stephenson 1975, p. 86). It is important that we try to use 

only ecological arguments about eliminating species from data sets, and we try to 

eliminate as few species as possible (Stephenson et al. 1972). 

The most important point to remember is that data transformation changes the 

values of almost all of the coefficients of similarity. It is useful to decide before you 

begin your analysis on what type of data standardization is appropriate for the 

questions you are trying to answer. You must do this standardization for a priori 

 

1 See Chapter 16 (page 000) for more discussion of transformations.  
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ecological reasons before you start your analyses so that you do not bias the results. 

Table 12.5 illustrates how data standardization can affect the value of various 

similarity coefficients. This table shows that all measures of similarity except the 

Spearman rank correlation coefficient are affected by the decisions made about data 

standardization. Table 12.5 shows graphically why you must decide on the type of 

data standardization on ecological grounds before you begin your analysis rather than 

fishing around for the kinds of values that will verify your preconceptions. 

TABLE 12.5  EFFECTS OF DATA STANDARDIZATION ON THE VALUE OF 
SIMILARITY MEASURES FOR A HYPOTHETICAL DATA SET 

 Sample A  Sample B 

   Transformation    Transformation 
 
 
 

Species 

No. of 
individuals 

ni 
(1) 

 
 

Proportion 
(2) 

 
 

in  

(3) 

 
 

log (ni + 1) 
(4) 

 No. of 
individuals 

ni 
(5) 

 
 

Proportion 
(6) 

 
 

in  

(7) 

 
 

log (ni + 1) 
(8) 

1 100 .388 10.0 2.004  10 .017 3.2 1.041 
2 60 .233 7.7 1.785  30 .051 5.5 1.491 
3 50 .194 7.1 1.708  60 .103 7.7 1.785 
4 20 .078 4.5 1.322  400 .684 20.0 2.603 
5 10 .039 3.2 1.041  50 .085 7.1 1.708 
6 10 .039 3.2 0.778  20 .034 4.5 1.322 
7 5 .019 2.2 0.041  0a 0 0.3 0.041 
8 0a 0 0.3 0.301  15 .026 3.9 1.204 
9 1 .004 1.0 0.301  0a .000 0.3 0.041 

10 1 .004 1.0 0.301  0a .000 0.3 0.041 
11 1 .004 1.0 0.301  0a .000 0.3 0.041 

 258     585    
If we assume two species are available but not present in either sample A or B, 
we obtain two tables: 
 1. All of sample included:  2. Excluding “singletons”:  
    A      A   
   +  -    +  -  

  + 6  1   + 6  1  
 B - 4  2  B - 1  2  
 

 Binary similarity All of sample Excluding “singletons”  
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coefficients included (species 9, 10, 11) 

 Jaccard 0.54 0.75  
 Sorensen 0.71 0.86  
 Simple matching 0.61 0.80  
 Baroni-Urbani and Buser 0.65 0.83  
For the quantitative measures of similarity and dissimilarity: 
 Type of data standardization 

 
Coefficient 

Raw data 
(1), (5) 

Proportions 
(2), (6) in  

(3), (7) 

log (ni + 1) 
(4), (8) 

Euclidean distance 118.88 0.22 5.48 0.70 
1 - Bray-Curtis 0.31 0.32 0.59 0.71 
1 - Canberra metric 0.26 0.26 0.50 0.51 
Pearson correlation 0.02 0.02 0.32 0.60 
Spearman correlation 0.60 0.60 0.60 0.60 
Percentage similarity -- 32 58b 72b 
Morisita’s index 0.26 0.26 0.65 0.85 
Horn index 0.56 0.56 0.81 0.85 
a Zero values replaced by 0.1 for calculations of transformations. 
b Percentages calculated on the transformed values instead of the raw data. 

12.3  CLUSTER ANALYSIS 

The measurement of similarity between samples from communities may be useful as 

an end in itself, especially when there are very few samples or only a few 

communities. In other cases we have many samples to analyze and we now discuss 

techniques for grouping samples which are similar to one another. 

Clustering methods are methods of achieving a classification of a series of 

samples. Classification may not be a desirable end goal for all ecological problems, 

and we may wish to treat variation as continuous instead of trying to classify samples 

into a series of groups. We will continue on the assumption that this methodological 

decision to classify has been made. There are four major questions we must answer 

before we can decide on a method of classification (Pielou 1969). The method of 

classification can be: 
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1. Hierarchical or reticulate: hierarchical classifications are like a tree, reticulate 
classifications overlap like a net; ordinary taxonomic classifications are hierarchical; 
everyone uses hierarchical classifications because they are easier to understand. 
2. Divisive or agglomerative: in a divisive classification we begin with the whole set of 
samples and divide it up into classes; in agglomerative classification we start at the 
bottom and work upward, beginning with the individual samples. Divisive techniques 
ought to be more accurate because chance anomalies with individual samples may 
start agglomerative techniques off with some bad combinations which snowball as 
more agglomeration proceeds. 
3. Monothetic or polythetic: in a monothetic classification two sister groups are 
distinguished by a single attribute, such as the presence of one species. In a 
polythetic classification over-all similarity is used, based on all the attributes (species). 
Monothetic classifications are simple to understand and easy to determine but can 
waste information and may be poor if we choose the wrong attribute. 
4. Qualitative or quantitative data: the main argument for using quantitative data is to 
avoid weighing the rare species as much as the common ones. This is a question of 
ecological judgment for each particular situation. In some cases only qualitative 
(binary) data are available. 

The most important point to note at this stage is that there is no one single kind 

of classification, no "best" system of grouping samples. We must rely on our 

ecological knowledge to evaluate the end results of any classification. 

Cluster analysis is the general term applied to the many techniques used to 

build classifications. Many of these are reviewed by Romesburg (1984), Hair et al. 

2010, and by Everitt et al. 2011). I will discuss here only a couple of simpler 

techniques, all of which are hierarchical, agglomerative, polythetic techniques. 

Virtually all of the techniques of cluster analysis demand a great deal of calculation 

and hence have become useful only with the advent of computers.  

12.3.1 Single Linkage Clustering 

This technique is the simplest form of hierarchical, agglomerative cluster analysis. It 

has been called the nearest neighbor method. We will use the data in Table 12.5 to 

illustrate the calculations involved in cluster analysis. 

Begin (as in all cluster analysis of an agglomerative type) with a matrix of 

similarity (or dissimilarity) coefficients. Table 12.7 gives the similarity matrix for the 

seabird data in Table 12.6, with the complement of the Canberra metric being used 

as the similarity measure.  
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Given this matrix in Table 12.7, the rules for single linkage clustering are as 

follows: 

1. To start, find the most similar pair(s) of samples - this is defined to be the first 
cluster. 

2. Next, find the second most similar pair(s) of samples OR highest similarity 
between a sample and the first cluster, whichever is greater. 

Definitions: For single linkage clustering - 

{ } { }
{ }

Similarity between  a sample Similarity between the sample and the  and an existing cluster  member of that cluster
Similarity between two Similarity between the two         existing clusters

nearest
near

=

= { }members of the clusters
est

 

3. Repeat the cycle specified in (2) until all the samples are in one big cluster. 
Box 12.4 illustrates the application of these rules to the data in Table 12.6. The 

advantage of single linkage clustering is that it is simple to calculate. Its major 

disadvantage is that one inaccurate sample may compromise the entire clustering 

process.
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TABLE 12.6    RELATIVE ABUNDANCES (PROPORTIONS) OF 23 SPECIES OF SEABIRDS ON 9 COLONIES IN 
NORTHERN POLAR AND SUBPOLAR AREASa 

 Cape 
Hay, 
Bylot 
Island 

Prince 
Leopold 
Island, 
eastern 
Canada 

Coburg 
Island, 
eastern 
Canada 

Norton 
Sound, 
Bering 
Sea 

Cape 
Lisburne,
Chukchi 
Sea 

Cape 
Thompson, 
Chukchi 
Sea 

Skomer 
Island, 
Irish Sea 

St. Paul 
Island, 
Bering 
Sea 

St. 
George 
Island, 
Bering 
Sea 

Northern fulmar 0 .3422 0 0 0 0 .0007 .0028 .0278 

Glaucous-winged gull .0005 .0011 .0004 .0051 .0004 .0007 0 0 0 

Black-legged kittiwake .1249 .1600 .1577 .1402 .1972 .0634 .0151 .1221 .0286 

Red-legged kittiwake 0 0 0 0 0 0 0 .0087 .0873 

Thick-billed murre .8740 .4746 .8413 .0074 .2367 .5592 0 .4334 .5955 

Common murre 0 0 0 .7765 .5522 .3728 .0160 .1537 .0754 

Black guillemot .0006 .02200. .0005 0 .0013 .00001 0 0 0 

Pigeon guillemot 0 0 0 0 0 .00003 0 0 0 

Horned puffin 0 0 0 .0592 .0114 .0036 0 .0173 .0111 

Tufted puffin 0 0 0 .0008 .0002 0 0 .0039 .0024 

Atlantic puffin 0 0 0 0 0 0 .0482 0 0 

Pelagic cormorant 0 0 0 .0096 .0006 .0001 .0001 0 0 

Red-faced cormorant 0 0 0 0 0 0 0 .0099 .0020 

Shag 0 0 0 0 0 0 .0001 0 0 

Parakeet auklet 0 0 0 .0012 0 0 0 .1340 .0595 

Crested auklet 0 0 0 0 0 0 0 .0236 .0111 

Least auklet 0 0 0 0 0 0 0 .0906 .0992 

Razorbill 0 0 0 0 0 0 .0130 0 0 

Manx shearwater 0 0 0 0 0 0 .7838 0 0 

Storm petrel 0 0 0 0 0 0 .0389 0 0 
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Herring gull 0 0 0 0 0 0 .0229 0 0 

Great black-backed gull 0 0 0 0 0 0 .0001 0 0 

Lesser black backed gull 0 0 0 0 0 0 .0603 0 0 
a Data from Hunt et al. (1986).    
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TABLE 12.7  MATRIX OF SIMILARITY COEFFICIENTS FOR THE SEABIRD DATA 
IN TABLE 12.6.  ISLANDS ARE PRESENTED IN SAME ORDER AS 
IN TABLE 12.6a  
 

 CH PLI CI NS CL CT SI SPI SGI 

CH 1.0 0.88 0.99 0.66 0.77 0.75 0.36 0.51 0.49 
PLI  1.0 0.88 0.62 0.70 0.71 0.36 0.51 0.49 
CI   1.0 0.66 0.78 0.75 0.36 0.50 0.48 
NS    1.0 0.73 0.64 0.28 0.53 0.50 
CL     1.0 0.76 0.29 0.51 0.49 
CT      1.0 0.34 0.46 0.45 
SI       1.0 0.19 0.20 
SPI        1.0 0.80 
SGI         1.0 
a The complement of the Canberra metric (1.0 - C) is used as the index of similarity.  Note that the matrix is 
symmetrical about the diagonal. 

 

Box 12.4  SINGLE LINKAGE CLUSTERING OF THE DATA IN TABLES 12.6 
AND 12.7 ON SEABIRD COMMUNITIES 

1.     From these tables we can see that the most similar pair of communities is 
Cape Hay and Coburg Island, and they join to form cluster 1 at similarity 0.99. 
2.     The next most similar community is Prince Leopold Island, which is similar 
to Cape Hay and Coburg Island.  From the definition: 

{ } Similarity between the sampleSimilarity between a sample   and the  member ofand an existing cluster the cluster
nearest

  =  
  

 

this occurs at similarity 0.88, and we have now a single cluster containing three 
communities: Prince Leopold Island, Cape Hay, and Coburg Island. 
3.     The next most similar pair is St. Paul and St. George Islands, and they join 
to form a second cluster at similarity 0.80. 
4.     The next most similar community is Cape Lisburne, which joins the first 
cluster at similarity 0.78 (the similarity between Cape Lisburne and Coburg 
Island).  The first cluster now has four islands in it. 
5.     The next most similar community is Cape Thompson, which joins this large 
cluster at similarity 0.76 because this is the Cape Thompson-Cape Lisburne 
similarity.  This cluster now has five communities in it. 
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6.     Norton Sound joins this large cluster next because it has similarity 0.66 with 
both Coburg Island and Cape Hay. 
7.     The two clusters (CH, PLI, CI, NS, CL, CT) and (SPI, SGI) now join together 
at similarity 0.53, the similarity between the closest two members of these 
clusters (St. Paul Island and Norton Sound).  This large cluster now has eight 
communities in it. 
8.     Finally, the last joining occurs between Skomer Island and this large cluster 
at similarity 0.36, and all nine bird communities are now combined. 
        Figure 12.5 shows the tree summarizing this cluster analysis. 
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Figure 12.5  Tree diagram resulting from a single linkage cluster analysis of the seabird 
community data given in Table 12.6 (page 000) and analyzed in Box 12.4 (page 000). 

 

12.3.2 Complete Linkage Clustering 

This technique has been called farthest neighbor clustering. It is conceptually the 

exact opposite of single linkage clustering, although it proceeds in the same general 

way with the exception of the definitions of similarity. 
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Definitions For complete linkage clustering: 

{ } { }
{ }

Similarity between a sample Similarity between the sample and the   and an existing cluster  member of that cluster
Similarity between two Similarity between the two            existing clusters

farthest=

= { }members of the clusters
farthest

 

One of the possible difficulties of single linkage clustering is that it tends to produce 

long, strung-out clusters. This technique often tends to the opposite extreme, 

producing very tight compact clusters. Like single linkage clustering, complete linkage 

clustering is very easy to compute. 

Because neither of these two extremes is usually desirable, most researchers 

using cluster analysis have suggested modifications of single and complete linkage 

clustering to produce intermediate results. 

12.3.3 Average Linkage Clustering 

These techniques were developed to avoid the extremes introduced by single linkage 

and complete linkage clustering. All types of average linkage clustering require 

additional computation at each step in the clustering process, and hence are normally 

done with a computer (Romesburg, 1984). In order to compute the average similarity 

between a sample and an existing cluster, we must define more precisely the types of 

"averages" to be used. 

The most frequently used clustering strategy is called by the impressive name 

unweighted pair-group method using arithmetic averages, abbreviated UPGMA 

(Romesburg 1984). This clustering strategy proceeds exactly as before with the single 

exception of the definition: 

Definitions For arithmetic average clustering by the unweighted pair-group method: 

{ } Arithmetic mean of similaritiesSimilarity between a sample   between the sample and alland an existing cluster the members of the cluster

  =  
  

 

( )( )
1  J K JK

J K

S S
t t

= ∑  (12.22) 
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where: 

( )
( )

( )  Similarity between clusters  and 
 Number of samples in cluster  1
 Number of samples in cluster  2

J K

J

K

S J K
t J
t K

=
= ≥
= ≥

 

The same formula applies to dissimilarity coefficients, such as Euclidian distances. 

Box 12.5 illustrates the calculations for average linkage clustering by the 

UPGMA method. Normally one would not do all these tedious calculations but would 

let the computer do the analysis. There are many different clustering programs 

available for computers.  

There are several additional methods of cluster analysis available, and I have 

only scratched the surface of a complex technique in this chapter. It is encouraging 

that Romesburg (1984) after a detailed analysis of various methods of clustering 

comes out recommending the UPGMA method for most types of cluster applications. 

Cluster analysis should be used to increase our ecological insight and not to baffle 

the reader, and for this reason simpler methods are often preferable to very complex 

ones. 

Box 12.5   AVERAGE LINKAGE CLUSTERING OF THE DATA IN TABLES 
12.6 AND 12.7 USING THE UNWEIGHTED PAIR-GROUP METHOD 
(UPGMA) 

1.     From the data in Table 12.6 the most similar pair of communities is Cape 
Hay and Coburg Island, and they join at similarity 0.99 to make cluster 1. 
2.     We now recompute the entire similarity matrix for the seven remaining 
communities and cluster 1, using the definition in equation (12.19): 

( )( )
1

J K JK
J K

S S
t t

= ∑  

where: 

( )  Similarity between clusters  and 
 Number of samples in cluster 
 Number of samples in cluster  
 Observed similarity coefficients between 
each of the samples in  and 

J K

J

K

JK

S J K
t J
t K

S
J K

=
=
=
=

 

For example, the similarity between cluster J (Cape Hay + Coburg Island) and 
cluster K (St. George Island) is given by: 
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( ) ( ) ( )( )
1 1 0.49 0.48 0.485

2 1J K JK
J K

S S
t t

= = + =∑  

The largest similarity value in this recomputed matrix is that between Prince 
Leopold Island and cluster 1: 

( )( ) ( )( )
1 0.88 0.88

1 2
        0.88

J KS = +

=
 

3.  We recompute the entire similarity matrix for the seven groups.  The next 
largest similarity coefficient is that between St. Paul Island and St. George Island 
at similarity 0.80, forming cluster 2.  We now have two clusters and four 
remaining individual community samples. 
4.     We recompute the similarity matrix for the six groups, and the next largest 
similarity coefficient is for Cape Lisburne and Cape Thompson, which join at 
similarity 0.76, forming cluster 3.  We now have three clusters and two remaining 
individual community samples. 
5.     We again recompute the similarity matrix for the five groups, and the next 
largest similarity coefficient is for cluster 3 (CL, CT) and cluster 1 (CH, CI, and 
PLI): 

( )( ) ( )( )
1 0.77 0.78 0.70 0.75 0.75 0.71

2 3
         0.74

J KS = + + + + +

=
 

so cluster 1 now has five members formed at similarity 0.74. 
6.     We again recompute the similarity matrix for the four groups, and the 
largest similarity coefficient is for Norton Sound and cluster 1 (CH, CI, PLI, CL, 
CT): 

( )( ) ( )( )
1 0.66 0.62 0.66 0.73 0.64

1 5
         0.66

J KS = + + + +

=
 

so cluster 1 now has six members. 
7.     We recompute the similarity matrix for the three groups from equation 
(12.19) and obtain: 
  Cluster 1 Skomer Island Cluster 2  

 Cluster 1 1.0 0.33 0.49  
 Skomer Island -- 1.0 0.19  
 Cluster 2 -- -- 1.0  
For example, the similarity between cluster 1 and cluster 2 is 
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( )( )( )
1 (0.51 0.51 0.50 0.53 0.51 0.46 0.49

6 2
             0.49 0.48 0.50 0.49 0.45)

         0.493

J KS = + + + + + +

+ + + + +
=

 

Thus, clusters 1 and 2 are joined at similarity 0.49.  We now have two groups -- 

Skomer Island and all the rest in one big cluster. 

8.     The last step is to compute the average similarity between the remaining 
two groups: 

( )( ) ( )( )
1 0.36 0.36 0.36 0.28 0.29 0.34 0.19 0.20

1 8
        0.297

J KS = + + + + + + +

=
 

so the final clustering is at similarity 0.3. 
     The clustering tree for this cluster analysis is shown in Figure 12.6. It is very 
similar to that shown in Figure 12.5 for single linkage clustering. 
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Figure 12.6  Tree diagram resulting from average linkage clustering using the unweighted 
pair-group method (UPGMA) on the seabird community data given in Table 12.6 (page 
000)and analyzed in Box 12.5 (page 000). 
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12.4 RECOMMENDATIONS FOR CLASSIFICATIONS 

You should begin your search for a classification with a clear statement of your 

research goals. If a classification is very important as a step to achieving these goals, 

you should certainly read a more comprehensive book on cluster analysis, such as 

Romesburg (1984), or .Everitt et al. (2011).  

You must first decide on the type of similarity measure you wish to use. 

Measures of similarity based on binary data are adequate for some classification 

purposes but are much weaker than quantitative measures. Of all the similarity 

measures available the Morisita-Horn index of similarity is clearly to be preferred 

because it is not dependent on sample size (Wolda 1981). Most ecologists seem to 

believe that the choice of a similarity measure is not a critical decision but this is 

definitely not the case, particularly when one realizes that a joint decision about data 

standardization or transformation and the index to be used can greatly affect the 

resulting cluster analysis. If data are transformed with a log transformation, Wolda 

(1981) suggests using the Morisita-Horn index (equation 12.20) or the Percentage 

Similarity index (equation 12.16) 

In addition to all these decisions, the choice of a clustering algorithm can also 

affect the resulting tree. Romesburg (1984, p. 110-114) discusses an interesting 

taxonomic cluster analysis using bone measurements from several species of 

hominoids. Each similarity coefficient produced a different taxonomic tree, and the 

problem of which one is closer to the true phylogenetic tree is not immediately clear 

without independent data. The critical point is that, given a set of data, there is no one 

objective, "correct", cluster analysis. If you are to evaluate these different cluster 

analyses, it must be done with additional data, or ecological insight. 

This is and must remain the central paradox of clustering methods - that each 

method is exact and objective once the subjective decisions have been made about 

the similarity index and data standardization. 

Finally, virtually none of the similarity measures has a statistical probability 

distribution and hence you cannot readily set confidence intervals on these estimates 
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of similarity. It is therefore not possible to assess probable error without taking 

replicate community samples. There is no general theory to guide you in the sample 

size you require from each community. Wolda (1981) suggests that more than 100 

individuals are always needed before it is useful to calculate a similarity index (unless 

the species diversity of the community is very low). A reasonable community sample 

would probably be 200-500 individuals for low diversity communities, and 10 times the 

number of species for high diversity communities. These are only rule-of-thumb 

guesses and a rigorous statistical analysis of sampling for similarity is waiting to be 

done. 

12.5  OTHER MULTIVARIATE TECHNIQUES 

Classification by means of cluster analysis is by no means the only way to analyze 

community data. Plant ecologists have developed a series of multivariate techniques 

that are useful for searching for patterns in community data. These methods have 

grown in complexity so that they are now best treated in a separate book. Legendre 

and Legendre (2012) have provided an excellent overview of these methods for 

ecologists, and students are referred to their book. Gradient analysis, ordination, and 

cluster analysis are important methods for community ecologists and require detailed 

understanding before being used.   

12.6 SUMMARY 

Communities may be more or less similar and ecologists often wish to express this 

similarity quantitatively and to classify communities on the basis of this similarity. 

Similarity measures may be binary, based on presence/absence data, or quantitative 

based on some measure of importance like populations size, biomass, cover, or 

productivity. There are more than two dozen similarity measures and I describe 4 

binary coefficients and 8 quantitative measures that are commonly used. Some 

measures emphasize the common species in the community, others emphasize the 

rare species. Many of the commonly used measures of similarity are strongly 

dependent on sample size, and should be avoided if possible. The Morisita-Horn 

index and the Adjusted Jaccard and Adjusted Sorensen indices of similarity are 
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recommended for quantitative data because they are not greatly affected by sample 

size. For all measures of similarity, large samples (>10 shared species between the 

samples) are recommended.  

Cluster analysis is a method for generating classifications from a series of 

community samples. Many different types of cluster analysis have been developed, 

and there is no one "correct" or ideal system. Most ecological data can be classified 

simply by average linkage clustering (UPGMA) and this technique is recommended 

for general usage. 

Data to be input into cluster analysis may be as raw numbers, transformed by 

square root or logarithmic transformations, or expressed as proportions (relative 

abundance). Decisions about the type of data to be used, the similarity index, and the 

clustering algorithm should be made before any analysis is done on the basis of the 

research objectives you wish to achieve. Cluster analysis and the measurement of 

ecological similarity are two parts art and one part science, and ecological intuition is 

essential to success. 
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QUESTIONS AND PROBLEMS 

12.1 A Christmas bird count in three areas of Manitoba in 1985 produced the 
following data: 

 No. of individuals counted 

 Brandon Delta Marsh Winnipeg 
Canada goose 0 0 2 
Mallard 0 0 5 
Northern goshawk 0 1 2 
Golden eagle 0 1 0 
American kestrel 0 0 3 
Merlin 2 0 1 
Gray partridge 29 45 112 
Ruffed grouse 4 0 0 
Sharp-tailed grouse 48 11 1 
Rock dove 907 8 6,179 
Mourning dove 0 0 2 
Great horned owl 6 1 5 
Snowy owl 3 1 2 
Barred owl 0 0 1 
Black-backed woodpecker 0 a 0 
Downy woodpecker 12 4 79 
Hairy woodpecker 13 8 51 
Horned lark 0 1 0 
Bluejay 29 18 99 
Black-billed magpie 89 28 31 
American crow 0 3 2 
Common raven 2 1 0 
Blackcapped chickadee 134 26 595 
Red breasted nuthatch 3 0 7 
White breasted nuthatch 36 11 169 
Brown creeper 0 0 1 
Golden crowned kinglet 2 0 0 
American robin 4 0 2 
Varied thrush 1 0 0 
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Bohemian waxwing 30 45 192 
Cedar waxwing 35 0 0 
Northern shrike 2 4 3 
European starling 55 52 982 
White throated sparrow 0 0 1 
Dark eyed junco 4 5 11 
Lapland longspur 0 3 63 
Snow bunting 2 4,019 68 
Red-winged blackbird 0 1 2 
Rusty blackbird 0 0 5 
Brewer’s blackbird 0 7 0 
Common grackle a 0 1 
Pine grosbeak 150 48 701 
Purple finch a 0 2 
Red crossbill 0 a 0 
White-winged crossbill 1 0 0 
Common redpoll 499 1,191 859 
Hoary redpoll 5 35 16 
Pine siskin 0 2 14 
American goldfinch 0 2 3 
Evening grosbeak 136 46 30 
House sparrow 3,024 855 11,243 

Total individuals 5,267 6,483 21,547 
Total species 30 31 40 
Total species in Manitoba = 61    

a Species known to be in the area but not seen on the day of the count. 
 

The amount of effort expended in these counts can not be assumed to be equal in 
the three areas. 

(a) Choose a binary coefficient that you think should be used for data of this 
type and calculate the similarity between these three winter bird communities. 
(b) Discuss what type of data standardization might be done before a 
quantitative similarity index is calculated. 
(c) Calculate the value of the most appropriate quantitative index of similarity 
for these three bird communities 
 

12.2 Calculate the Adjusted Sorensen index for the data in Table 12.1, page 000, and 
also the Morisita-Horn index. Why do these two measures differ in value? 
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12.3 Compare and contrast the evaluations of similarity indices by Huhta (1979) and 
Wolda (1981). 
 

12.4 Recalculate the similarity matrix in Table 12.6 using the Morisita-Horn index (eq. 
12.20) and use these data to prepare an average linkage cluster analysis 
similar to that in Box 12.5. How do your results differ from those reported in 
Figure 12.6? 
 

12.5 The species composition of the groundfish community off Nova Scotia was 
measured by Mahon et. al. (1984), who obtained these data for two parts of 
the Bay of Fundy: 
 

Species Average no. of individuals 
per tow 

Percent 

West Fundy area 
Redfish 12.7 14.1 
White hake 11.3 12.6 
Haddock 10.1 11.3 
Cod 9.8 10.9 
Spiny dogfish 9.3 10.4 
Thorny skate 5.8 6.5 
Plaice 4.9 5.5 
Witch 4.5 5.0 
Longhorn sculpin 4.2 4.7 
Pollock 2.6 2.9 
Sea raven 2.0 2.9 
Silver hake 2.6 2.9 
Winter flounder 2.2 2.5 
Ocean pout 2.0 2.2 
Smooth skate 1.8 2.0 
Little skate 1.1 1.3 
Winter skate 0.6 0.7 
Cusk 0.5 0.6 
Angler 0.3 0.3 
Wolffish 
 

0.2 0.3 

South Fundy area 
Haddock 125.1 58.4 
Cod 18.6 8.7 
Longhorn sculpin 17.9 8.3 
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Winter flounder 15.0 7.0 
Spiny dogfish 7.6 3.6 
Sea raven 5.9 2.8 
Pollock 2.7 1.2 
Thorny skate 3.3 1.5 
White skate 2.4 1.1 
Redfish 2.4 1.1 
Ocean pout 1.9 0.9 
Plaice 2.0 0.9 
Witch 1.6 0.8 
Winter skate 1.3 0.6 
Yellowtail 1.3 0.6 
Wolffish 1.0 0.5 

 
Discuss how best to measure similarity among the groundfish communities of 
these two regions. Can you use the Adjusted Jaccard index on these data? 
 

12.6 The following data were obtained on the proportions of different shrubs available 
for winter feeding by snowshoe hares on 9 areas of the southwestern Yukon: 

 
Plot name 

Salix 
glauca 

Picea 
glauca 

Betula 
glandulosa 

Shepherdia 
canadensis 

 
Other 

Silver Creek 0.34 0.55 0.00 0.00 0.10 
Beaver Pond 0.49 0.09 0.42 0.00 0.10 
Kloo Lake 0.63 0.31 0.02 0.03 0.00 
1050 0.57 0.08 0.35 0.00 0.00 
Microwave  0.21 0.00 0.79 0.00 0.00 
Jacquot North 0.14 0.73 0.00 0.10 0.03 
Jacquot South 0.50 0.33 0.00 0.02 0.14 
Gribble’s Gulch 0.26 0.38 0.29 0.01 0.06 
Dezadeash Island 
 

0.66 0.22 0.00 0.08 0.05 

Calculate a cluster analysis of these nine areas and plot the tree showing 
which areas are most similar. 
 

12.7 Discuss the relative value for the measurement of community similarity of having 
data on species presence or absence versus having data on species abundance 
from the sample plots.  
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