
Part I

Introduction and General
Concepts

1



Chapter 1

An Introduction to System
Administration

system administrator, n.:
one who, as a primary job function, manages computer and net-

work systems on behalf of another, such as an employer or client.

Figure 1.1: System Administrators: well ca↵einated and always happy to

serve you.

2



CHAPTER 1. INTRODUCTION 3

1.1 What exactly does a System Administra-
tor do?

Every semester I start my class with this simple question: “What exactly

does a System Administrator do?” My audience consists of undergradate

and graduate students of Computer Science or Computer Engineering; some

of them have experience working as a System Administrator or IT support

(either part-time or full-time), while others may maintain their own home

network or otherwise perform some of the tasks commonly associated with

the job of a System Administrator. Some may have no practical experience

in this area, but all do have an idea of what the job entails.

As a result, the responses are varied, ranging from very specific (“Use

tcpdump to troubleshoot network problems.”) to the more general (“Main-

tain the network.”), quickly illustrating that there is no one concise descrip-

tion of the professional duties of System Administrators; rather, we identify

a number of tasks that are expected to be performed by people holding this

title. The broad range of these tasks – especially when put in context of

the size and goals of di↵erent organizations and their deployment footprint

– makes obvious the fact that a System Administrator in one company may

not do the same thing as one in a di↵erent company. In fact, even within a

single organization we usually find that two people may well both be called

“SysAdmin”, but perform rather di↵erent duties.

So what does a System Administrator do? It seems that most people agree

that this job has to do with computers in some capacity, but that really is

already where the definitions start to become fuzzy: System Administrators

are in charge of “servers” as well as of personal computers, desktop machines,

laptops and, increasingly, mobile devices. With the evolution of computing

coming full circle, we find that the migration from the mainframe computer

to the personal and independent computing device to the networked server

back to the central Infrastructure as a Service model inherent in today’s

Cloud Computing concepts places the System Administrator in the middle

of it all.

So perhaps the main focus of a System Administrator’s job is then really

the central connection between the independent systems, the network itself?

Hmmm, System Administrators surely are involved in the deployment and

installation of the computers in a datacenter (or is that the task of spe-

cific Datacenter Technicians?) and connecting all the di↵erent components



CHAPTER 1. INTRODUCTION 4

certainly involves a lot of cables. But then, don’t we have Network Adminis-

trators, or is that a more specialized subcategory of System Administrators?

System Administrators seem to spend as much time typing cryptic com-

mands into dark terminal windows as they do running cables and labelling

hardware, and while they may no longer shu✏e punch cards, they frequently

do write programs to help them complete their tasks. System Administrators

are known to get woken up in the middle of the night when things go “bump”,

and as a result they are also known to have a fondness for ca↵einated drinks.

They are able to kickstart a generator, assess the required cooling power for

their server room, use duct tape in creative and unexpected ways, assemble

servers out of mysterious looking parts, and may end up handling a circu-

lar saw or other heavy machinery when their Leatherman multi-tool cannot

complete the task.

System Administrators plan, budget and design networks and backup

or storage systems, add and delete users (well, user accounts, anyway

1
),

install and update software packages, draft policy documents, fight spam

with one hand while rebuilding a corrupted revision control system with

the other. They have access to all systems in the organization, may un-

dergo retina- and fingerprint scanners to access “Mission Impossible”-style

protected datacenters and spend countless hours in front of a multitude of

computer screens, typing away on oddly shaped keyboards consuming not

entirely healthy amounts of co↵ee and energy drinks.

Well... in some places, a System Administrator might do all of this. In

others, there might be di↵erent, more specialized people for the various tasks:

there might be datacenter technicians and “SiteOps”, Network Administra-

tors, System Programmers, System Architects, Operators, Service Engineers,

Storage Engineers, Site Reliability Engineers, Virtual Operations, Infrastruc-

ture Architects... the number of di↵erent job titles for things that might

otherwise fall into the more general “SysAdmin” category seems endless.

The various areas of expertise included in the day to day routine such as

system design, infrastructure architecture, system fault diagnosis, hardware

benchmarking, and others eventually require experience in a number of re-

lated fields; a lot of them involve more than just a little bit of programming

experience and in some cases complex infrastructure tools based on solid

1There is a strong love/hate relationship between System Administrators and their
users. Much as the SA may joke that they wish they could make users disappear, without
users the systems they are in charge of might well hum along uninterrupted, but would
ultimately be entirely useless.



CHAPTER 1. INTRODUCTION 5

software engineering practices need to be built. This illustrates that just as

it is hard to clearly define where System Administration begins, we often

can’t quite put our finger on where it ends and another discipline becomes

the primary job function.

Even if job descriptions and duties di↵er significantly, there are a lot of

people who simply identify as System Administrator regardless of job title.

We all have something in common: we manage and maintain computer and
network systems.

A typical bug
At one place of employment we had a tool that would add users to

a given host by gathering the login information for all the users,

ssh(1) to each host and update /etc/passwd using the host’s

native tools (such as useradd(8), etc.). Many a system admin-

istrator has written a similar tool, and for the most part, this

program worked reasonably well. (We will discuss how to better manage

user accounts across large numbers of machines later in this book.)

But all software fails eventually, and for one reason or another I had to

debug the tool. Groveling through a few hundred lines of perl that had

clearly been written by di↵erent people in di↵erent stages of their career,

I came across a code block that included the following call:

chmod(0666, "/dev/null");

Asking around, it became clear that somehow some of the systems ended

up in a state where /dev/null was unreadable or -writable by normal

users, which leads to a number of complications. But nobody had been

able to track down just how exactly this happened until one day we were

lucky enough to witness the change in permissions, but the only activity

by a user with su�cient privileges to make such a change was a sudo(8)
invocation of less(1).

less(1) happens to make use of a history file to remember search com-

mands between invocations, much like your shell may use a history file

(such as ~/.bash_history). less(1) is aware of the fact that the his-

tory file might contain sensitive information, and it actively changes the

permissions on that file to only allow read/write access to the owner. But



CHAPTER 1. INTRODUCTION 6

for the root user, we explicitly symlinked all common such history files

to /dev/null to avoid accidental leaking of secrets to disk.

And therein lies the bug: less(1) was invoked by the super user, it would

check the permissions on the file /root/.lesshst, follow the redirection

to /dev/null find that they’re not 0600 and call chmod(2), yielding

and unreadable/unwritable /dev/null. We were able to confirm this be-

haviour and identified a code change in later versions of less(1) that

fixed this problem.

Understanding such failures and identifying their root causes requires a

deep understanding of the operating system and its tools, but tracking

down bugs like this[1] is just one of the many aspects of a System Ad-

ministrator’s daily routine.

1.2 The Profession of System Administration

Most professions have a fairly clear and formal definition as well as an obvi-

ous career path and background requirements. In fact, for a person to take

on a particular line of work, it frequently is a requirement to undergo a spe-

cific, regulated education, to perform a certain amount of practical training

(such as an apprenticeship), to subscribe to specific professional ethics and

guidelines, and eventually to obtain a license to practice the given profes-

sion. Doctors, scientists and lawyers all have well-defined professions, as do

engineers of most disciplines.

2

System Administration, on the other hand, does not (yet) have any of the

criteria given above: there is no specific, regulated training, and as we have

seen in Section 1.1 not even agreement on what precisely the job definition

ought to be. The The USENIX Special Interest Group for Sysadmins (LISA)

attempts to fill this void to some degree by providing for an informal but

professional community. Still, due to the nature of the changing environment,

any attempt to create a concise job description invariably fails by resorting to

2Software Engineering, another young discipline related to System Administration and
technically a specialized branch of Computer Engineering, di↵ers in that it does not have
strict licensing regulations. Anybody can call themselves a “Software Engineer”, just as
anybody can call themselves a “System Administrator”.



CHAPTER 1. INTRODUCTION 7

very general terms. Consider the following description given by the Buerau

of Labor Statistics[2]:

Systems administrators design, install, and support an organiza-

tion’s computer systems. They are responsible for LANs, WANs,

network segments, and Internet and intranet systems. They work

in a variety of environments, including large corporations, small

businesses, and government organizations. They install and main-

tain network hardware and software, analyze problems, and mon-

itor networks to ensure their availability to users. These work-

ers gather data to evaluate a system’s performance, identify user

needs, and determine system and network requirements.

While this captures in general the common job duties of a System Ad-

ministrator, it does not answer the question we asked initially: Just what

exactly does a System Administrator do?

In order to better grasp the generic description, I’ve found it useful to

break down the title into its components, System and Administrator. What,

then, is a “System”? Any dictionary will give you a reasonable definition

along the lines of:

system, n: A group of interacting, interrelated, or interdependent

elements that together form a complex whole.

In this context we will focus on computer-human systems[3] consisting
of any number of computing devices, the network(s) connecting them, the

users utilizing these resources, and of course the impact of the goals of the

organization running such systems.

What about “Administrator”? Merriam-Webster’s Collegiate Dictionary

defines the term “to administer” as:

administer, v: to manage or supervise the execution, use, or con-

duct of

The profession of System Administration should therefore be described

as one in which practitioners “manage or supervise the execution, use, or

conduct of a group of interacting, interrelated, or interdependent computer-

human elements”, leaving us, in terms of specificity, about where we began!

We find slightly more formal definitions of actual job titles, desired skills



CHAPTER 1. INTRODUCTION 8

and a rather useful distinction between “small uniform”, “complex”, and

“large and complex” sites in the LISA booklet “Job Descriptions for System

Administrators”[5], but in searching for a suitably clear definition of the

profession, we realize that the formal education as a System Administrator

is almost completely lacking.

Job descriptions and postings normally list a degree in Computer Science

or Computer Engineering as “desirable”; more frequently you will find a

requirement expressed as “BS, MS or PhD in Computer Science or equivalent

work experience”. Computer Scientists will wonder just how, exactly, “work

experience” can be mapped, treated as equivalent to their formal education

– all too often, “Computer Science” in this context is equated with “knows

how to program, understands TCP/IP”.

As invaluable as actual hands-on experience is, it is no substitute for a

formal degree in the area of Computer Science. (Nor is having such a degree

a substitute for practical experience.) Rare is the candidate who can fully

understand the average and worst-case runtime of his or her programs and

scripts without having learned Big-O Notation; rare the system programmer

who completely grasps the elegance of modularization provided by, say, func-

tion pointers without having learned the �-calculus. Becoming a proficient

System Administrator without this background is certainly possible, but it

makes it significantly harder to advance beyond a certain level.

Be that as it may, the focus on many years of real-world experience as the

primary qualification is both cause and e↵ect. In the past, there really existed

no formal training whatever: technically skilled people found themselves in

the position of being the go-to guy to fix the computers, to make things work.

Perhaps they ended up working with a more senior administrator in a sort

of informal apprenticeship, but for the most part their skills were learned

by experience, through trial by fire. The lack of any formal program in this

area necessitates and then further encourages self-learning, and many things

simply can only really be understood by experience. It’s a cliché, a platitude

that you learn the most from your worst mistakes – it is also entirely true.

As a result, many of the senior people in hiring positions do not have

an academic background and are hesitant to require what was not available

then to fill current openings. System Administrators are also still frequently

treated as – and at times view themselves as fulfilling – a “janitorial” role. If

no industry standard exists by which to measure a candidate’s accomplish-

ments in the field, how can we require formal education for a job that eludes

definition in the first place?



CHAPTER 1. INTRODUCTION 9

Therein, however, lies a fallacy. Practical experience and formal training

do not make up for one another; they complement each other. It is true that
we learn the most from our worst mistakes (and thus need a chance to make

them); it is also true that we frequently are only able to learn due to a deeper

understanding of the problem.

The profession of System Administration is incredibly interesting pre-

cisely because it eschews a fixed definition, a formal governing body, a static

career path, or a licensing exam. It attracts and invites interesting people

from all sorts of backgrounds; it allows phenomenal potential for job growth

and it is – must be, due to the advances in the industry – fast-paced and

continually evolving. But it has become more mature: professional organiza-

tions like LISA have contributed significantly to the status of the profession

by formalizing the requirements and duties as well as providing a Code of

Ethics

3
, and over the last few years more and more universities have started

to o↵er classes and degree programs in this area.

System Administrators may not need to be licensed by a central board

anytime soon – and people will continue to argue about whether or not that

is desirable or even possible in this field – but what a few years ago still was

best described as “a job” certainly has grown up to become a career, a craft,

a profession.

1.3 System Administration Education

System Administration is rarely taught as an academic discipline in large

part due to its perceived “blue-collar” status: from the top of the scholarly

ivory tower, it must be hard to distinguish where an entry-level job like

“Tech Support” or the “Help Desk” ends and where a profession demanding

a significant background in Computer Science and Engineering begins.

System Administrators are highly skilled information technology special-

ists shouldering significant responsibility in any organization. As we dis-

cussed in the previous sections, the variety of job descriptions and di↵erences

in what a System Administrator actually may be doing make it di�cult to

provide simple step-by-step instructions on how to enter this field. As a

3For a more detailed discussion of both the (lack of a) definition of the profession and
the ethical obligations we face, please refer to [15].



CHAPTER 1. INTRODUCTION 10

result, System Administration has long been a profession that is learned pri-

marily by experience, where people grow into a position in order to fulfill the

requirements of an organization rather than follow a career path well-defined

by courses, degrees, and meaningful certifications.

The industry has responded by producing a large number of practical

certification exams that hope to attest to the student’s proficiency in the

subject matter. Practically, most of these certifications appear to primarily

test a person’s ability to memorize specific commands, further reinforcing the

notion that System Administration can be reduced to empirical knowledge,

making practical experience indeed equivalent, if not superior to one of those

scholastic degrees.

But certification that one remembers a specific vendor’s unique configu-

ration file syntax does not imply actual learning has taken place; holding a

one-week “boot camp” – the name itself is revealing of it’s educational inten-

tion – to drill enough information into the participants’ heads such that they

pass an exam at the end of the week does not guarantee long-term retention

of that knowledge. Furthermore, there is no oversight of the topics taught in

such classes, no review of suitability or correctness.

System Administrators who excel at their jobs do so not because they

have accumulated arcane tribal knowledge about obscure pieces of hardware

and odd software systems (useful as that is), but because they understand

fundamental underlying principles and combine that knowledge with their

concentrated experience.

System Administration – its principles, fundamentals and practice – should

be taught. Since you are reading this book, chances are that you are cur-

rently taking a class in System Administration as a student or perhaps you

are teaching such a class. But we cannot teach an entire profession in a single

class or even using a few select courses. It is necessary to develop academic

degree granting programs that comprehensively prepare students for the var-

ied and wide requirements imposed on them when they enter the industry.

Such programs should be combined with extensive real-world and hands-on

experience wherever possible, perhaps by including internships, cooperative

education and apprenticeships provided by industry leaders. As students

you are entitled to practical and useful exercises; as educators we have an

obligation to create these and make available the required resources.

We need classes that combine the academic mission of fostering indepen-

dent research with the factual requirements posed by the positions o↵ered in

the marketplace. We need instructors who have years of experience in var-



CHAPTER 1. INTRODUCTION 11

ied environments, who understand the practical restrictions that may make

the ideal theoretical solution utopian but who are consciously aware of these

boundaries and able to teach their students the awareness of them. At the

same time, we need scholars willing to further this profession through re-

search and build a theoretical body of knowledge to become the foundation

of future programs.

1.3.1 Challenges in System Administration Education

Formal classes in System Administration as part of a Computer Science

or Engineering curriculum are still uncommon, but in the past few years

more and more institutions have recognized the industry’s need for academic

courses that adequately prepare students for the multitude of responsibili-

ties within this field and have started to o↵er such classes (and in some cases

complete degree programs). But the history of this profession brings with it a

number of unique challenges when it comes to formally teaching its principles

and practices.

To really understand and appreciate some of the most general aspects of

System Administration, you need to be exposed to actual running systems.

Practical experience is so integral to this profession that it cannot be sepa-

rated from the theoretical knowledge and postponed until the student enters

his or her first job or apprenticeship. But therein lies a significant hurdle to

traditional teaching methods: students need to administer a system, to have

superuser access, to have a chance to configure a system for a specific ser-

vice, and to make the kind of spectacular mistakes that experienced System

Administrators value (if only in hindsight).

This normally conflicts with the requirements of the IT department at

your university: students would require access to a number of di↵erent OS

when the school’s system administrators strive for a certain level of homo-

geneity. In order to understand OS installation concepts, file system tuning,

and other low-level principles, students need to perform these tasks them-

selves. Learning to debug network connectivity issues or being able to ac-

tually see the payload of captured network tra�c requires access to raw

sockets, which the sta↵ responsible for the security of the campus network

would certainly rather not provide.

After years of struggling to give all students equal access to the resources

required for the diverse assignments and frequently having to change the as-

signments to be able to make use of available resources, I finally decided to



CHAPTER 1. INTRODUCTION 12

do what many companies do: I outsourced the resource provision problem

into “the Cloud” – specifically, to Amazon’s EC2

4
.[6] Similar results can be

achieved by granting students access to a dedicated laboratory environment

or by providing another on-demand infrastructure via virtualization of the

local compute resources. If you are a student, it is worth your time to inves-

tigate all possible resources available to you; if you are an instructor, consult

with your IT department as to the availability (or perhaps development) of

such systems.

But teaching System Administration should also combine the practical

elements noted above with topics from other academic fields. As an area of

specialization, System Administration fits in well within the current Com-

puter Science curricula, since the profession’s requirements draw heavily from

many of the same subjects. Shared requirements include Operating Systems,

Networking, Database Systems, Distributed Systems, Cryptography and of

course Software Engineering; at the same time, System Administrators ben-

efit from deep insights in Computer Architecture and Systems Engineering

as well as Project Management and of course “the 5 elements of adminis-

tration” (Planning, Organizing, Command (directing people), Coordination,

Control, also listed as Budgeting)[7], usually covered in Business Adminis-

tration classes.

To advance the practice of System Administration, the two existing pro-

fessional organizations LISA and the League of Professional System Admin-

istrators (LOPSA) are already promoting best practices and important com-

munities. Still, we are missing strong proponents of System Administration

as an academic discipline

5
But there are more and more of us who believe

that it’s time for the profession to be recognized as both requiring a theoret-

ical background in addition to extensive practical experience and benefitting

from the opportunities of dedicated research opportunities and the develop-

ment of universally accepted degree granting requirements. Some even write

books to further this goal...

4In this book, I will frequently make reference to or cite examples from this experience.
At the same time, I also will suggest exercises that cannot be done in a cloud environment
and that may require access to dedicated hardware.

5Mark Burgess, previously of the Oslo University College in Norway, one of the only
universities o↵ering a Master’s degree in Network and System Administration, deserves
explicit mention as one of the few exceptions.



CHAPTER 1. INTRODUCTION 13

1.4 The Three Pillars of Exceptional System
Design

More than just maintain computers and infrastructure components, System

Administrators control entire systems. With more experience and seniority,

they are ultimately in charge of building these systems, of designing the

infrastructure and its components so that the job title frequently morphs

into that of a Systems or Network “Architect”. It seems that people can’t

help but draw parallels to the so-called “real” world, where engineers and

architects have well defined roles (and status). This does not come as a

surprise; as Brooks[8] illustrates masterfully, the parallels between designing

and building a house, a computer or a complex piece of software are plentiful.

Billy Hollis points out[9] that the title of the “Software Architect” is a

misleading analogy, that the duties traditionally performed by people hold-

ing this title are much more akin to those of a structural engineer than those

of a (traditional) architect. The role of the System Administrator is likewise

frequently comparable to that of the structural engineer in the mechani-

cal world, but the advanced senior System Administrator – who ultimately

steps into the role of planning, designing and overseeing the construction of

complex systems – might better known as “Systems Architect”. Structural

systems engineers are then needed to aide in the final design and implemen-

tation of the system in question.

Conceiving of and designing systems as complex as those System Admin-

istrators are in charge of, with their myriad pieces, the unpredictable human

element and the rather unfortunate tendency of computers to do precisely

what they were instructed to do rather than what we intended them to do

requires expert in-depth knowledge in a broad range of topics. Exceptional

System Administrators are generalists – they have been trained in a wide

area of topics, deepened their understanding of several and perhaps have be-

come subject matter experts in a few, but ultimately back into a role that

allows them to apply their ability to connect the dots, to see the big picture

and the connections between and e↵ects of multiple systems on each other.

They are well-equipped to model new components of an infrastructure or to

redesign a system from scratch to meet the new requirements.

For a system to be suitable both for the immediate requirements today

and for a few years down the road, when the current needs have changed,

it must embody two basic principles: Scalability and Security. Neither of



CHAPTER 1. INTRODUCTION 14

these can be added to a system after it has been built: trying to apply

“security” after the system interfaces have been defined yields restrictions,

limitations; trying to make a system with inherent limitations perform under

circumstances it was not designed for yields hacks and workarounds – the

end result frequently resembles a fragile house of cards more than a solid

reliable structure.

The third fundamental feature of expertly designed systems, Simplicity,

is simultaneously obvious and counter-intuitive. Simplicity underlies both

scalability and security, since reduced complexity implies better defined in-

terfaces, minimized ambiguity in communications or data handling and in-

creased flexibility. As with the other two core aspects, simplicity cannot be

added after the fact; it must be inherent in the architecture. Simplicity is

the enabler of both scalability and security.

An exceptional system exhibits inherent structural integrity (another

wonderful analogy to the world of bricks and mortar), and this integrity is

provided by these three pillars. Our focus on these components may initially

seem arbitrary: meeting requirements across di↵erent teams with di↵erent

priorities has long been the bane of many a program manager due to each

team focusing on di↵erent qualities, of which we could have picked any num-

ber. However, upon more detailed analysis and with some years of experience

we have time and again found Simplicity, Security and Scalability to be the

core qualities enabling a harmonious development- and deployment process.

Throughout this book, we will analyze the systems we discuss with special

focus on these crucial criteria. You will find that we will frequently talk in

broad abstracts or surprising detail about the implications of our design

decision.

1.4.1 Scalability

In recent years, the word “scalability” has become one of the defining re-

quirements for virtually all technical solutions. Providers of infrastructure

services and products throw it around in an attempt to impress their cus-

tomers by how much load their systems can handle. It typically seems near

synonymous with “high performance”, the ability to handle large amounts

of data, tra�c, connections, and the like. This may be misleading, as people

might be inclined to believe that such capabilities come at no additional (or

incremental or proportional) cost. In fact, scalability does not relate to the

costs of the running system, but to its architecture. A scalable system may



CHAPTER 1. INTRODUCTION 15

well require additional resources and throwing money at a problem actually

is a perfectly viable solution in many cases. However, a scalable architecture

is one that does not require a refactoring of the whole system, a restruc-

turing of how data is handled based on changing circumstances. Instead, it

abstracts data from process flow and simply adapts.

System Administrators frequently su↵er from Goldilocks Syndrome, striv-

ing to provide a solution that is just right; wasting resources is just as anath-

ema to their definition of a correct solution as not providing adaequate ca-

pabilities. Therefore, we tend to focus not only on the ability to scale up
– to accommodate larger amounts of data or more requests per minute, for

example – but also to scale down, to free up unused resources based on the

demands. As such, our definition of “scalability” leans more towards the

overall flexible nature of a scalable system, its ability to adapt to changing

requirements at run time; a term frequently associated with Cloud Comput-

ing, “elasticity”, perhaps more aptly describes this feature, yet it fails to

quite capture as well the sense of meeting extreme requirements. We shall

continue to use the term “scalability” for that reason.

While many systems are flexible, few are able to handle input or require-

ments an order of magnitude di↵erent from those initially conceived of when

the system was designed. In order to accomodate such changes, systems

are said to either scale vertically – that is, one system is able to handle the

added load, possibly by addition of certain resources (network bandwidth,

CPU power, memory, disk space, ...) – or to scale horizontally – that is, a sin-
gle system is replicated and demands are spread across them evenly. Either

approach has certain implications on the overall architecture. For horizontal

scaling to be beneficial, for example, the problem space needs to be such

that a distribution is both possible and algorithmically feasible. However,

this adds communication overhead, as interfaces and data flow becomes more

complex.

Whether by vertical or horizontal means, a scalable system is one that

readily adapts to changing demand. The designer may not know what will

be required of it in the future, but will make choices that permit the system

to grow and shrink without bumping into arbitrary limits.

We will take a closer look at the implications of this idea on the software

development practices and overall Unix Philosophy in Chapter 2; for the time

being, let us consider the Unix tradition of simple tools operating on streams

of text as a wonderful example of a clear interface definition. Anybody de-



CHAPTER 1. INTRODUCTION 16

veloping a tool that accepts input only from a file restricts the flexibility of

the tool; this frequently goes hand in hand with an implicit limitation on

the amount of data that can be handled (think maximum file size, bu↵ers

frequently allocated to read in the entire file, the ability to seek(2) on the

file handle, ...). By choosing text rather than a binary format, any future

use of the output is not limited by the original author’s imagination of what

future users might wish to accomplish. Given su�ciently large or, rather,

diverse datasets, building more complex systems that perform equally well

under heavy load using complicated, yet limited interfaces so frequently de-

veloped by major software companies easily becomes a frustrating exercise

in determining these boundaries.

But scalability is not only of concern when tools are developed; as we de-

sign infrastructure components, we need to be acutely aware of the interfaces

between them and what kind of data can flow back and forth. Frequently we

have no control over the input (both type and amount), so our systems need

to be fault tolerant of many unenvisioned circumstances. Even though some-

what counter-intuitive at first, I argue throughout this book that a robust

system will remain resilient to overall failure by being comprised of infras-

tructure components that themselves may fail quickly (and explicitly) and

that such well-defined behaviour underlies true scalability.

Hindsight being 20/20, scalability related issues often can be traced back

to a lack of imagination or confidence in the system. What if our initial use

case increases not by a factor of two or three, but hundredfold? Suppose our

system is still in use in five years – will average input be likely to remain the

same? In our discussions, exercises and problems we will encourage students

to consider how a system performs if circumstances and inputs change by

an order of magnitude. The ability to anticipate extraordinary change in

requirements requires some practice and experience by the System Adminis-

trators in charge of the infrastructure; reacting in well-defined ways to such

change is one of the core features of a reliable system, and the principles that

make a system scalable – fault tolerance, data abstraction, clearly defined

interfaces – must be applied at all stages. We will reinforce these axioms

throughout all chapters in this book.

1.4.2 Security

All too frequently, the software or information technology industry treats

system security as an afterthought, as something that can be added to the



CHAPTER 1. INTRODUCTION 17

final product once it has met all the other functional requirements, after the

user interface has been determined and after all code has been written. It is

then not surprising that the old adage that security and usability are directly

and inversely related seems to hold true. Nevertheless, I would argue that

the very problem statement – “the more secure you make something, the less

usable it becomes”

6
– reflects a fundamental misunderstanding, as it implies

that usability is present first and security “added” afterwards.

This approach suggests that the only way to reduce risks is to take away
functionality; but any time you do that or otherwise restrict the users, they

will either stop using the product/system altogether or come up with a cre-

ative solution that works around your newly imposed restrictions. To be

e↵ective, security needs to be built into the system from the design phase on.

That is, rather than starting out with a solution that provides the desired

functionality and then attempting to figure out how to get it to a secure

state, we should instead begin with a secure albeit restricted state and then

slowly add functionality – without compromising safety – until the desired

capabilities are available. That is, we need to view security as an enabling

factor present at the design’s conception.

Much like software, a system infrastructure is usually developed with

much looser an idea of what one wishes to accomplish than people are will-

ing to admit. In order to achieve maximum functionality and the widest

possible use, people tend to design interfaces with few restrictions. Often

it is the role of the security-minded engineers to ask questions that require

the developers or designers to revisit their requirements; proactive security

imposes restrictions on what the system is able to do. That is a good thing!

General-purpose systems are much harder to design than special-purpose

sytems (“Constraints are friends”[8] whitelists provide significantly better

and more reliable security than blacklists.

Any parent can tell you that it is nearly impossible to take away a toy

from a child, even if the toy has not been used in months or years. The very

idea of something being taken away seems to trigger in people (of all ages) a

“but I might need it some day” response. Giving users access to a resource

(network access, disk space, physical access, CPU power, ...) is trivial – re-

stricting the use once access has been granted is near impossible; the genie

cannot be put back into the bottle. It is therefore imperative to understand

6We will elaborate on the somewhat surprisingly accurate corrolary that “The more
secure you make something, the less secure it becomes.”[10] detail in a later chapter.



CHAPTER 1. INTRODUCTION 18

precisely what level of access to what resources you actually need and not

build a system for the most widest possible use. Well defined – restricted –

small components can still provide the flexibility to build scalable systems,

but each component needs to be designed from the beginning with security in

mind. Just as a chain is only as strong as its weakest link, an infrastructure

is only as secure as its most open or exposed component.

Rare is the software developer who dismisses “security” as of minor im-

portance, yet this mythical property everybody pays at least lip service to

has an incredibly wide definition and may mean di↵erent things in di↵erent

contexts. Generally speaking, we require risk management (we discuss this in
more detail in a later chapter); more specifically we will look at a number of

computer-human system specific aspects of security such as (but not limited

to):

• Cryptography, and the three main features that allow it to help miti-

gate risks:

– Secrecy or Confidentiality

– Accuracy or Integrity

– Authenticity

• Physical Security

• Service Availability

• Service Design

• Social Engineering and other aspects of human nature

• Trust

Throughout this book, we will allude to these components wherever ap-

propriate, and we encourage students to come up with possible threat sce-

narios as a regular exercise. Establishing and fostering a proactively de-

fensive, some may say “paranoid”, mindset is an important element of a

System Administrator’s development. Knowing that we cannot provide an

all-encompassing mantle of security after the system has been designed (much

less deployed!), we strive to integrate it in all stages, leading it to bolster our

infrastructure as an inherent feature.



CHAPTER 1. INTRODUCTION 19

1.4.3 Simplicity

As our discussion of scalability and security suggested, the practical applica-

tion of these principles yields a reduction of interfaces, end-points, use cases

and overall variance. In other words, scalable and secure systems are less

complex and – it is worth drawing this distinction explicitly – much less com-
plicated. A complex system may be well-organized and exhibit a clear, logical

structure yet require subtle or intricate connections or components. Compli-

cated systems, on the other hand, are irregular, unpredictable or di�cult to

follow.

“Complexity is the enemy.” This quote has been repeated endlessly in so

many contexts that it can almost be assumed common knowledge amongst

software engineers, cryptographers and other security experts[11]. But while

many people in the information technology industry may agree on this in

principle, I have found that, like so many aphorisms, the translation into the

real world – the actual application of its consequences – trails far behind the

good intentions.

In the world of System Administration reducing complexity is particularly

di�cult. As we discussed in Sections 1.1 and 1.2, managing large computer

networks has inherent complexity: multiple components must interface with

each other in many ways to help people – simultaneously the origin of true

entropy as far as computers are concerned and dangerously predictable –

accomplish their individual and collective goals. But it is important to dif-

ferentiate between required complexity and accidental complexity[12]. We

strive to reduce overall complexity by building ultimately intricate systems

out of smaller, simpler components.

To repeat an almost ubiquitous prime example of how simplicity enables

astounding flexibility and may allow you to build complex systems, we will

time and again draw the analogy to the concept of toy building blocks: them-

selves simple, nearly unbreakable and available in a reasonably limited num-

ber of shapes and sizes you can build just about anything with them.

Like these little blocks, the Unix operating system builds on the philoso-

phy of simple tools that “do one thing and do it well”, that work together,

commonly by being connected via the ubiquitous pipe, operating on text

streams[13]. We aim for solutions that exhibit comparable elegance. “Sim-

ple” does not, it should be noted, mean “trivial” or “easy”: it is so much

easier to add features, to increase the output, to justify additional input

than it is to reduce a component to its bare necessities. As Antoine de Saint



CHAPTER 1. INTRODUCTION 20

Exupéry, observed[14]:

Perfection is reached not when there’s nothing left to add, but
when there’s nothing left to remove.

But how do we design a simple infrastructure? The simple answer is: we

can’t. The end result will always be complex. But the systems we create will

be more fault tolerant, more performant, more flexible – in short: better –

if we remember that our building blocks need to resemble Lego blocks more

than swiss army knifes. In other words: we design for simplicity. We keep

interfaces internally consistent and logical. We use simplicity as a scalpel to

cut away the clutter.

The ability to resist the temptation to “enhance” your architecture or

software tool to implement additional features that, if at all necessary, might

better be provided by a separate component, usually only comes with strong

will power and years of experience. At the same time, simplicity is found

to underly all of the exemplary technologies you are likely to encounter and

some of which we will present in the coming chapters. Sometimes it takes a

second look to recognize and appreciate the genius of simplicity; hopefully

this book will help sharpen your awareness of this trait.

1.5 The Future of System Administration

The System Adminstrator’s job definition is diverse, and so is the rather

significant change the profession has undergone over the years. Gone are the

days of shu✏ing punch cards, of cycling magentic tapes, of connecting your

dumb terminals using RS-232 serial connections, of stringing ribbon cables

inside large computer cases... or are they?

Some things haven’t really changed all that much. Technologies come

and go, but certain principles have remained the same. Using fibre-optic

cables rather than twisted-pair, using Infiniband or Fibre Channel instead

of Ethernet or parallel SCSI, or using wireless networks instead of physically

connected systems does not fundamentally change the day-to-day operations.

Virtualization and Cloud Computing may seem to limit the need of an

organization to hire their own System Administrators, but I believe that

rather than a threat to the profession these technologies are simply one of

the ways in which we make progress as information technology specialists.

A chapter towards the end of the book discusses the future direction of



CHAPTER 1. INTRODUCTION 21

System Administration and revisits these topics as well as some of the latest

trends in how System Administration intertwines with other disciplines – the

terms “DevOps” and “Agile Infrastructure” (or “Agile Operations”) deserve

particular attention in that context.

A few years ago, the Personal Computer signified a paradigm change away

from the central Mainframe computer accessed remotely by users towards a

distributed storage and compute model. System Administrators found them-

selves supporting more and more individually powerful connected devices,

trying to centralize certain resources and services such as shared filespace or

regular backups, for example. In the recent past, the move towards software

and data storage services “in the cloud” has brought the evolution full circle:

once again, we are challenged to provide reliable central services that are

accessed by small, though increasingly mobile, devices.

The separation of systems from networks, if it ever really existed, is disap-

pearing. Standalone systems separated from the Internet are rare; systems

operating completely on their own without any network connectivity have

become largely impractical. Does this change the job of the System Admin-

istrator? Does it make things more or less interesting, di�cult, challenging,

exciting, di↵erent? Will we see another shift back towards a model where

data storage and processing happens again on the edge nodes of the network?

We don’t know. But we do know this: whatever happens, System Ad-

ministrators will be needed. Perhaps they will carry a di↵erent title and per-

form di↵erent practical tasks, but the concept of the profession will remain.

Organizations small and large will need somebody with the knowledge and

experience to analyze, troubleshoot and design new infrastructures; some-

body who builds and maintains scalable and secure systems; somebody with

an appreciation of the simple things in life.

Plus ça change, plus c’est la même chose. – Jean-Baptiste Alphonse
Karr



CHAPTER 1. INTRODUCTION 22

Figure 1.2: An IBM 704 mainframe. With cloud computing coming full

circle, we already live in the future!



Problems and Exercises

Problems

1. Create a course notebook (electronic or otherwise). In it, write down

your notes about each chapter, add any links to additional informa-

tion, noteworthy insights, etc. After each chapter, write down lessons

learned. Di↵erentiate between those directly applicable to you and

those you consider worthwhile reviewing or investigating in the future.

2. Create a folder for your course work as a central place for all your doc-

umentation. Whenever you go through practical exercises, make sure

to write down how you solved a specific problem. Your documentation

will later on help you review the lessons you learned and can be used

as a practical how-to guide, so make sure to verify all steps before you

write them down.

3. Ask a System Administrator (for example: in your university, of an

open source project you participate in, at work) to describe their daily

routine. Compare notes with others.

4. Consider the current most popular websites and Internet businesses or

organizations. Try to find out details about their infrastructure and

how it is maintained.

5. Research available classes and degree granting programs in the field of

System Administration. Compare their contents to those of industry

standard certification courses.

6. Research professional organizations related to System Administration

(such as LISA and LOPSA).

23



CHAPTER 1. INTRODUCTION 24

(a) Review their mission and content and consider joining their mail-

ing lists. They provide a great way to keep up to date with real-

world experiences and itemlems.

(b) How do these organizations compare to the ACM, IEEE or ISOC?

7. Research common Internet standard bodies and practices. What is an

RFC? What do the IETF, IANA and ICANN do?

8. Consider the systems you have access to: what are their primary func-

tions, for what goals were they designed? Suppose they grew by an

order of magnitude – what itemlems would you foresee?

9. Consider the systems you have access to: what kind and how is access

granted? What kind of security itemlems can you imagine?

10. Research the terms “DevOps” and “SRE”SRE. In how far do the prac-

tices it represents change the typical job description of a System Ad-

ministrator?

Exercises

1. Practice basic system tasks in your virtualized environment by creating

di↵erent OS instances and run them. Once running, log in on the

virtual host and run the required commands to:

(a) display basic system information (uname, ifconfig, netstat, ...)

(b) display the partition table

(c) display the currently mounted file systems

(d) display available disk space

2. Repeat Exercise 1 for a di↵erent Unix flavor than what you are used

to. For example, if you used a Linux instance for Exercise 1, repeat it

using OpenSolaris or FreeBSD.

3. Determine the Unix commands you execute most frequently (for ex-

ample via analysis of your shell’s history file). Analyze the top three

commands for their complexity and interfaces.



CHAPTER 1. INTRODUCTION 25

4. Analyze your interactive shell usage.

(a) Change your login shell for at least a week to one that you are not

accustomed to. Make note of the changes in behaviour.

(b) Disable tab completion and any aliases you have defined in your

login shell for at least a week. How does this change your work-

flow?

(c) Review the detailed documentation of your login shell’s builtins.
Practice the use of those that you are not familiar with.



BIBLIOGRAPHY 26

Bibliography

[1] “less bug, more /dev/null”, Jan Schaumann, on the Internet at http:
//is.gd/NpihsH (visited November 29, 2015)

[2] Bureau of Labor Statistics, U.S. Department of Labor, Occupational
Outlook Handbook, 2010-11 Edition, Computer Network, Systems, and
Database Administrators, on the Internet at http://www.bls.gov/oco/
ocos305.htm (visited December 10, 2011)

[3] Mark Burgess, Analytical Network and System Administration: Manag-
ing Human-Computer Systems, Wiley & Sons, 2004

[4] Merriam-Webster’s Collegiate Dictionary, 10th Edition, Merriam-

Webster

[5] Tina Darmohray, Short Topics in System Administration: Job De-
scriptions for System Administrators, 3d Edition, USENIX Association,

Berkeley, CA, 2010

[6] Jan Schaumann, “Teaching System Administration in the Cloud” in

;login: The USENIX Magazine, October 2010, Volume 35, Number 5

[7] Fayol’s Elements of Management on the Internet at https://en.
wikipedia.org/wiki/Fayolism (visited December 17, 2011)

[8] Frederick P. Brooks, Jr., The Design of Design, Addison-Wesley Profes-

sional, 2010

[9] Billy Hollis Still Builds Apps, transcript of an interview with Billy Hol-

lis, “.NET Rocks”, on the Internet at http://is.gd/Suk2hr (visited

December 23, 2011)

[10] Donald A. Norman, “THE WAY I SEE IT: When security gets in the

way”, in Interactions, November 2009, Volume 16, Issue 6, ACM, New

York, NY

[11] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryptography
Engineering, John Wiley & Sons, March 2010



BIBLIOGRAPHY 27

[12] Frederick P. Brooks, Kr., The Mythical Man-Month: Essays on Soft-
ware Engineering, Anniversary Edition, Addison-Wesley Professional,

Anniversary edition (August 12, 1995)

[13] M. D. McIlroy, E. N. Pinson, and B. A. Tague Unix Time-Sharing Sys-
tem Forward, The Bell System Technical Journal. Bell Laboratories,

1978

[14] Antoine de Saint-Exupéry, Wind, Sand and Stars, Harcourt, 2002

[15] Jan Schaumann, Primum non nocere - Ethical Obligations in Inter-
net Operations, VelocityConf NYC 2015; on the Internet at https:
//www.netmeister.org/blog/primum-non-nocere.html (visited Jan-

uary 16th, 2017)


