Part I : Introduction to Polyglot with SwapJ

Raoul-Gabriel Urma - Imperial College London

This is a tutorial written for researchers and students getting started with using
Polyglot to modify or extend Java. Many thanks to Prof. Sophia Drossopoulou,
Prof. Nathaniel Nystrom and Prof. Andrew Myers for encouraging and reviewing
this tutorial.

1 Polyglot

1.1 Introduction

Polyglot is a highly extensible compiler construction framework developed
by Nystrom, Clarkson and Myers at Cornell University [I]. It performs
parsing and semantic checking on a language extension and the compiler
outputs Java source code. It is implemented as a Java class framework
using design patterns to promote extensibility.

Several projects have successfully used Polyglot to extend the Java pro-
gramming language; they range from large-to middle-scale projects. For
example, Jif [2] is a language modification that extends Java with support
for information flow control and access control, SessionJ introduces session-
based Distributed Programming in Java [3] and Jy is a subset of Java used
for education [4].

Language modifications follow the same pattern: they are implemented
by extending the base grammar, type system and defining new code trans-
formations on top of the base Polyglot framework. The result is a compiler
that outputs Java source code. We can then compile the output with the
standard Java compiler javac to generate bytecode runnable by the JVM.

Currently, Polyglot only supports Java version 1.4, but a language ex-
tension supporting most Java version 5.0 features has been developed [5].

Polyglot comes with the Polyglot Parser Generator (PPG), a customised
Look-Ahead LR Parser based on CUP [0, [7]. It is specially developed for
the language extension developer to easily extend the Java base grammar
defined with CUP by specifying the required set of changes [I]. In fact,
PPG provides grammar inheritance, which enables the language extension
developer to augment, modify or delete symbols and production rules from
the Java base grammar.

The architecture of Polyglot follows standard compiler construction tech-
niques. First of all, it first uses JFlex, a lexical analyzer generator [§], to



perform lexical analysis on the source language. This step transforms the
sequence of characters from the source code file into tokens. This chain
of tokens is then parsed by PPG, which creates an abstract syntax tree
(AST). An AST is a tree data structure that reflects the syntactic structure
of a program. During the Polyglot process, this data structure is visited
by several passes; the default set of passes include for example type check-
ing, ambiguities removing and translation. In addition, Polyglot enables
the introduction of extra passes in order to perform operations related to
the compiler purposes: for example, optimising the AST. Finally, if no ex-
ceptions are thrown during the Polyglot process, the created compiler is
expected to produce valid Java source code that can be compiled into Java
bytecode.

Figure 1: Polyglot high-level process
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1.2 1In Details

In practice, implementing new language modification requires some knowl-
edge about the Polyglot structure and internals. In this section, we explore
Polyglot at a deeper level.

The latest revision of Polyglot can be fetched from the project SVN [9].
The Polyglot distribution contains several directories:

e /bin/ : contains Polyglot base compiler and script newezt.sh that
generates the skeleton for a new language extension

/doc/ : various documentation about Polyglot

/examples/ : source codes of sample language extensions using Poly-
glot

/skel/ : skeleton directory hierarchy and files used for building new
language extensions

/src/ : complete source code of Polyglot framework

/tools/java_cup/ : source code of tweaked version of Java CUP

/tools/ppg/ : source code of PPG



To create a language extension called [extname], the first step is to run
/bin/nexext.sh, which creates the necessary skeleton package hierarchy

and files:

e [extname]|/bin/[extname]c : compiler for [extname]

¢ [extname]/compiler/src/[extname]/ : source code for language

extension

— ast : AST nodes specific to [extname]

— extension : Extension and delegate objects specific to [extname]

— types : type objects and typing logic specific to [extname]

— visit : visitors specific to [extname]

— parse : symbols table, lexer and parser for [extname|, PPG gram-
mar file ([extname|.ppg), lexer grammar file([extname].flex) The
newext.sh script takes several parameter:

Listing 1: newext.sh Parameters

1 Usage: ./newext.sh dir package LanguageName ext

2 where dir - name to use for the top-level
directory

3 and for the compiler script

4 package - name to use for the Java

package
5 LanguageName - full name of the language
6 ext - file extension for source files

In addition, a class ExtensionInfo.java defines how the language ex-

tension will be parsed and type-checked.

A file Version.java specifies

the version of the language extension. Finally, the class Main.java
brings all the parts together and performs the compilation.

e [extname]|/tests/ : sample [extname] source code test files

The second step is to define the language modifications. This is done
by modifying the [extname].ppg file, which is processed by PPG. It specifies
the changes to the base Java grammar required to generate a parser for
the new language extension. Sometime the developer has to updated the
lexer grammar file [extname].flex too, if new tokens are added. The full list
of available instructions for the PPG grammar can be found on the PPG

Project page [6]. They include:

e extend S ::= productions

the specified productions are added to the nonterminal S.

e override S ::= productions

the specified productions completely replace S



The PPG file also specifies how the parsed information is used to create
a new AST. New AST nodes are instantiated through the language exten-
sion’s NodeFactory, which has factory methods to create each AST node.
This NodeFactory typically extends Polyglot’s Java node factory, which is
defined by the class NodeFactory_c class and implements the NodeFactory
interface. This interface specifies all the factory methods for each node.
Figure [2| depicts a UML diagram explaining the different classes involved in
the node factory.
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Figure 2: Language extension NodeFactory UML diagram
A language extension’s node factory mechanism is split into two parts: an
interface implementing the base node factory and a concrete class node
factory extending the base concrete node factory.

The node factory can be accessed within the PPG file through the
parser.nf instance. Listing [2| shows as an example the parsing and creation
of an Assert Java base node.

Listing 2: Parsing and Creation of Assert AST Node

assert_statement ::=
ASSERT :x expression:a COLON expression:b SEMICOLON:d

{:

RESULT = parser.nf.Assert(parser.pos(x, d), a, b);
:};

This snippet defines the production rule assert_statement. It is defined by an assert
symbol and an expression representing the assert condition, a colon and another
expression representing the error message followed by a semicolon. For example:

assert(size == 0) is a valid assertion. If the parsing is successful, a new Assert AST
node is created through the parser.nf.Assert(Position,Expr) node factory method.
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After defining the syntactic changes through the grammar and defining
the new AST node classes for the language modification, the next step is to
specify the new semantic changes. New passes can be defined by defining and
including them in FExtensions.java. Most of the time, semantic changes can
be implemented directly as part of the type-checking pass. Note that each
node has a method visitChildren(NodeVisitor v) that is called before
the type-checking process in order to disambiguate the types of the Node’s
fields. New nodes defined for the language extension must therefore also
execute the visit on each fields. This is done by overriding visitChildren
(NodeVisitor v) and passing the instance of the visitor to each field using
the method visitChild(Node,Visitor). For the sake of completeness,
Listing |3] illustrates this mechanism and shows the method visitChildren
of the Assert node.

Listing 3: Assert node’s visitChildren(NodeVisitor) method

/** Visit the children of the statement. */

public Node visitChildren(NodeVisitor v) {
Expr cond = (Expr) visitChild(this.cond, v);
Expr errorMessage = (Expr) visitChild(this.errorMessage, Vv);
return reconstruct(cond, errorMessage);

}

The Swap node has two fields: the condition expression (this.cond) and the error
message (this.errorMessage). Both are passed to the visitChild method. The node is
then reconstructed using the returned instances.

Type checking is done in each node by the method typeCheck (ContextVisitor

tc) of a Node. If a type error exists the method throws a SemanticException.
To continue with our example of the Assert node, Listing [4] illustrates type
checking for an assert statement.



Listing 4: Assert node’s type checking

1 public Node typeCheck(ContextVisitor tc) throws
SemanticException {

2 if (! cond.type().isBoolean()) {
3 throw new SemanticException("Condition of assert
statement " +
4 "must have boolean type
‘":
5 cond.position());
6 }
7
8 if (errorMessage != null && errorMessage.type().isVoid
0O) {
9 throw new SemanticException("Error message in
assert statement " +
10 "cannot be void.",
11 errorMessage .position ()
)
12 }
13
14 return this;
15 }

The method type-checks if the expression cond is of type boolean qnds if the expression
errorMessage is defined and not void.

In addition, the language developer can access the TypeSystem instance
through the ContextVisitor. The TypeSystem instance defines the types
of the language and how they are related. For example, it is used to compare
the equality between two types, set new types on the expressions or check
if a type can be cast to another type. Listing |5 shows an example of using
the TypeSystem from the ContextVistor.



Listing 5: Switch_c’s node typechecking

1 /**x Type check the statement. */
public Node typeCheck(ContextVisitor tc) throws
SemanticException {

V]

3 TypeSystem ts = tc.typeSystem();

4 Context context = tc.context();

5

6 if (!ts.isImplicitCastValid(expr.type(), ts.Int(), context)

7 &% 'ts.isImplicitCastValid (expr.type(), ts.Char(),
context))

8 {

9 throw new SemanticException("Switch index must be an
integer.", position());

10 }

11 return this;

12 }

The index of a switch statement (switch(index)) can only be a char type or an integer
type. However, any type that can be cast to an int or a char is also allowed. For
example, an Integer or a short is valid but a String isn’t. The Switch_c’s typeCheck
method gets the type system from the instance tc of the ContextVisitor and then calls
the method isImplicitCastValid(Type, Type, Context) to perform the casting checks.

The final step after the semantic analysis of each AST node is to pro-
duce valid Java code. There are several options available to the language
extension developer.

First, the most extensible way is to introduce a separate pass that trans-
forms the language extensions AST nodes to valid Java AST nodes and
then rely on the default Java AST translation pass to output valid Java
source code. New passes can be added by extending the default Polyglot
scheduler: JLScheduler. One would then have to create a pass by extend-
ing an appropriate Polyglot visitor class and schedule the pass before the
CodeGenerated pass, which is responsible for translation. The created pass
will be responsible for rewriting language extensions AST nodes into Java
AST nodes using the NodeFactory methods. In addition, one can also use
the Polyglot quasiquoting feature, which enables the generation of Java AST
nodes from a String (polyglot.qq. QQ). This standard technique ensures that
the output is well-formed Java code.

Secondly, another way to translate to Java code is to simply override the
method prettyPrint(CodeWriter, PrettyPrinter) of each new Node.
This method is responsible for printing the generated code to the output file

and is called by the default implementation of the method translate(CodeWriter,

Translator), which is called during the Translation pass. Although this is
a quick and easy way to perform code generation, it makes it harder to ex-
tend the modified language later. Furthermore, Polyglot won’t check that
the generated Java code is valid, so errors may show up when the code is
compiled.
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As an example, Listing [6] shows the code generation for the Assert AST
node and Listing [7] shows the code generation for the Throw AST node.

Listing 6: Assert node translation

/** Write the statement to an output file. */
public void prettyPrint(CodeWriter w, PrettyPrinter tr) {
w.write("assert ");
print (cond, w, tr);
if (errorMessage != null) {
w.write(": ");
print (errorMessage, w, tr);
}
w.write(";");
}

public void translate(CodeWriter w, Translator tr) {
if (! Globals.Options().assertions) {

w.write(";");
}
else {

prettyPrint (w, tr);
}

The translate method from the Assert node by default calls the prettyPrint method
which handles the code generation to the output file. Note that the print(Node child,
CodeWriter w, PrettyPrinter pp) method will handle the code generation for the Node

instance child. Essentially it calls its prettyPrinter method.

Finally, the language extension compiler is ready and can be used by
running Main.java.

Listing 7: Throw node translation

/** Write the statement to an output file. */

public void prettyPrint(CodeWriter w, PrettyPrinter tr) {
w.write("throw ");
print (expr, w, tr);
w.write(";");

}

Similarly to the Assert node, the Throw node’s prettyPrint method handles code
generation and writes code to the output file.



2 SwaplJ

In this section, we bring the concepts introduced about Polyglot together to
show how to create a compiler for a language extension. We create SwapJ,
a language that extends Java with a swap functionality. The modification
made to Java is simple: we introduce a new swap(x,y) keyword that swaps
the contents of the arguments x and y if they are of the same type. We
don’t support swapping array accesses and field accesses, for simplicity.

We start by formally defining the syntax changes to the Java base gram-
mar and also provide the semantics and type systems for the swap operation.
After, we work step by step and implement the SwapJ compiler.

2.1 Formal Definition

We describe the syntax of our new build-in swap operation:

Listing 8: SwapJ BNF

<statement> ::= "swap" "(" <identifier> "," <identifier> ")"

n.n
3

| <statement >

We define the operational semantics of our swap operation. Swapping
the two variables x and y means to assign the content of y to z and assigning
the content of x to y in the store ¢:

Swapos

stmts, g[x > d(y),y — ¢(x)], x ~ v, x’

swap(x,y); stmts, &, x ~ v/, X/
We also define the type rule of our swap operation:
Swaprs

P,TEx:t
P,TFy:t

P, I F swap(x,y) : void
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Implementation

Build skeleton extension
As explained in the previous section, the first step is to run newezt.sh
to build the skeleton files and directories for our language extension:

Listing 9: Creation of SwapJ files structure

./newext.sh swapJ swapj SwapJ sj

The directory containing the skeleton file structure is SwapJ. The package name is
swapj, the language name is SwapJ and the extension file for our SwapJ source
files is .sj

PPG grammar specification

The next step is to specify the syntactic grammar differences to the
Java base grammar. We translate our BNF specification into PPG
grammar and specify the changes in swapJ.ppg (Listing as ex-
plained in the previous section. Since we are adding a new token swap
we also have to modify the lexer grammar file (Listing .

Listing 10: PPG grammar for SwapJ

terminal Token SWAP;
non terminal Stmt swap_stmt;

start with goal;

swap_stmt ::= SWAP:a LPAREN name:1 COMMA name:r RPAREN
SEMICOLON:b {:
RESULT = parser.nf.Swap(parser.pos(a,b),l.toExpr(), r.
toExpr ());
1}

extend statement_without_trailing_substatement ::=
swap_stmt:a {: RESULT = a; :};

We extend the Java statement and add a new Swap statement. Note that we also
added a token SWAP that is defined in the lexer grammar file.

Listing 11: Lexer grammar for SWAP token

keywords .put ("swap", new Integer (sym.SWAP));

NodeFactory and AST Nodes

The next step is to define the new SwapJNodeFactory and create the
necessary AST node. Listing shows that if parsing is successful,

10
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a node Swap will be created through the node factory. We now need
to specify the interfaces required, implement the concrete classes and
follow UML diagram [2] describing the AST node creations.

We create an interface Swap (Listing [12)), a concrete class Swap_c
(Listing providing the implementation, a new factory interface
SwapJNodeFactory (Listing which provides the template for a
swap node creation but also implements the base NodeFactory inter-
face and the concrete node factory SwapJNodeFactory_c (Listing
that handles the instantiation of concrete Swap nodes. UML diagram 3|
summarises the hierarchy and relations between the different classes.

Listing 12: Swap interface

public interface Swap extends Stmt{

}

A swap node is a statement and therefore implements the Stmt interface.

Listing 13: Swap_c concrete class constructor

public class Swap_c extends Stmt_c implements Swap{

private Expr left_e;
private Expr right_e;

public Swap_c(Position pos, Expr left_e, Expr right_e) {
super (pos) ;
this.left_e = left_e;
this.right_e = right_e;

The constructor of a Swap node takes the Position in the source file from the
parser and also two expressions representing the left variable and right variable to
swap. The Swap_c also extends the Stmt_c class, which encapsulates behaviour of

any Java statement.

Listing 14: SwapJNodeFactory interface

[ **
* NodeFactory for swapJ extension.
*/
public interface SwapJNodeFactory extends NodeFactory {
Swap Swap(Position pos, Expr left_e, Expr right_e);
}

11



Listing 15: SwapJNodeFactory_c concrete class

1 /%%
2 * NodeFactory for swapJ extension.
3 *x/

4 public class SwapJNodeFactory_c extends NodeFactory_c
implements SwapJNodeFactory {

6 public Swap Swap(Position pos, Expr left_e, Expr right_e

) {
7 return new Swap_c(pos, left_e, right_e);
8}
9
10 }

The factory method Swap(Position, Expr, Expr) returns a concrete node Swap_c

Figure 3: SwapJ class diagram
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4. Semantic changes
The next step is to perform type checking on the swap operation: we
need to ensure that the two arguments to swap are of the same type.
As explained in the previous section, type checking is performed by
the typeCheck(ContextVisitor) method of each node. We override
this method so it checks if the two expressions of the Swap node are
of the same type. Note that we also need to override the method
visitChildren(NodeVisitor) to ensure the types of the Swap node
arguments are disambiguated. Listing 16| shows how the Swap_c con-
crete class’ methods visitChildren and typeCheck are implemented.

12
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Listing 16: Swap node type checking

public Swap reconstruct (Expr expr_1l, Expr expr_r) {
if (this.left_e != expr_1 || this.right_e != expr_r) {
Swap_c n = (Swap_c) copy();
n.left_e = expr_1;
n.right_e = expr_r;
return n;
}
return this;
}
@0verride

public Node visitChildren(NodeVisitor v) {
Expr expr_1 = (Expr) visitChild(left_e, v);
Expr expr_r = (Expr) visitChild(right_e, v);

return reconstruct (expr_l, expr_r);

}

@0Override
public Node typeCheck(ContextVisitor tc) throws
SemanticException {

SwapJTypeSystem ts = (SwapJTypeSystem)tc.typeSystem() ;

Type left_t = left_e.type();
Type right_t = right_e.type();

if (!left_t.typeEquals(right_t))
{
throw new SemanticException("swap() arguments of
different types!");

return this;

The overriden visitChildren disambiguate the Swap_c’s fields and return a
disambiguated Swap node. The overriden typeCheck method uses the type
systems to verify the type equality between the two swap’s arguments.

Translation and code generation

The final step is translation. Since the swap translation to Java source
code is straightforward, we can override the prettyPrint (CodeWriter
w, PrettyPrinter tr) method directly and define code generation as
explained in the previous section. We also need a fresh variable name
to perform the swap, and Polyglot provides a helper static method for
this: Name.makeFresh(). Listing (17| shows how to perform the code

generation of a Swap node.

13
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Listing 17: Swap_c node’s code generation

@0verride
public void prettyPrint (CodeWriter w, PrettyPrinter tr) {

// fresh variable name
String fresh = Name.makeFresh().toString();

// int temp = y;

left_e.type () .print(w);
w.write(" " + fresh + " = ");
print (right_e ,w,tr);
w.write(";\n");

/!y = x;

print (right_e ,w,tr);
w.write(" = ");
print (left_e,w,tr);
w.write(";\n");

// x = y;

print (left_e,w,tr);
w.write(" = " + fresh);
w.write(";\n");

}

Testing

The SwapJ compiler is now operational, and we can test code gener-
ation. We create a swapTest class written in SwapJ and compile it
with the SwapJ compiler. Listing[18shows the class written in SwapJ
and Listing |19| shows the generated Java output.

Listing 18: swapTest class written in SwapJ

public class swapTest {
public static void main(String[] args) {

String x = "Swapj!";
String y = "Java'";

swap (x,y);

// Java Swapj!
System.out.println(x + " " +y);
swap (x,y);

// Swapj! Java
System.out.println(x + " " +y);

}

(-

14



Listing 19: swapTest class after compilation

1 public class swapTest {

2

3 public static void main(String[] args) {
4 String x = "Swapj!";

5 String y = "Java'";

6 java.lang.String id0 = y;

7 y = X3

8 x = 1idO0;

9

10 System.out.println(x + " " + y);
11 java.lang.String idl = y;

12 y = x;

13 x = id1;

14

15 System.out.println(x + " " + y);
16 }

17}

2.3 Summary

We showed how to quickly implement a simple language extension by using
Polyglot. This section was written as a tutorial for researchers and students
interested to develop language extensions. In the next part of the tutorial,
we will go in further depth and explore the scheduling of passes in Polyglot:
we will add an AST Rewriting pass to directly transform SwapJ nodes into
Java nodes. Table 2.3] summaries the lines of code added for each new class
introduced to implement the SwapJ language extension.

Figure 4: SwapJ code modifications summary
Classes Lines of code
SwapJNodeFactory 14
SwapJNodeFactory_c | 14

Swap 7
Swap_c 117
Total 152
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