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INTRODUCTION 

One of the important uses of computers in clinical medicine is for the classi- 
fication or screening of data. Examples abound where high speed and inex- 
pensive but reliable automatic classification is desired. Electrocardiographs 
must be classified as healthy or abnormal. Differential white blood cell counts 
require the ability to discriminate between the various types of cells. Cancer- 
detecting smears must be sorted as normal or abnormal. It has become common- 
place to speak of these kinds of sorting tasks as pattern-recognition problems 
and to advocate the application of pattern-recognition techniques for their 
solution. A wide range of such techniques exists. Some of them have been used 
by statisticians for years; others have been developed only recently as a result 
of the availability of high-speed computers. In this paper I shall describe some 
of the more common pattern-recognition methods. 

Although I shall cite some clinical applications of pattern recognition as 
illustrative examples, it is not my purpose to report on these in detail. An ex- 
tensive literature'" already exists that provides numerous examples of the 
successful use of these methods. Indeed, many of the papers in this monograph 
will report the results of automatic classification experiments. I only hope that 
I can explain in this paper some of the unifying ideas that underlie many of the 
pattern-recognition methods already being applied. (See also a very good in- 
troductory article by Rosen.*) 

In order to apply pattern-recognition techniques, the phenomenon to be 
classified must be represented in some "computer-acceptable" form. Further- 
more, the representation method used depends critically on the type of phe- 
nomenon. Thus, for photomicrographs of chromosomes, we might use complex 
picture-processing methods to represent the picture as a list of numbers, whereas, 
for a medical history record, it may only be possible to represent the data on 
the form as a list of nonnumerical symbols. 

The phenomenon to be classified is called the event and its representation 
is called the data in order to distinguish between them. In this paper, I shall be 
primarily concerned with those pattern-recognition techniques for sorting 
numerical data, that is, representations that are in the form of a list of numbers. 
First, I shall describe several data-classifying methods (assuming that the event 
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has been appropriately represented as data) and then I shall retrace to discuss 
some examples of the way in which events can be represented as data. 

METHODS FOR CLASSIFYING DATA 

Fundamental Ideas 

Suppose the event we wish to classify can be represented by a set of d num- 
bers. Let the values of these numbers be denoted by the symbols xl, x2, . . . , q. 
We shall call such a set of values a pattern. It is convenient to think of a pattern 

as a point X in d-dimensional space. The coordinates of the point are the values 
x,, xp, . . . , xd. Alternatively, it will sometimes be convenient to think of the 

pattern by the vector X with components xl, x2, . . . , x,,. 

+ 

-t 

--t 

Once an event has been represented by the pattern X, we can speak of the 

problem of classifying the point X and hence the event. Suppose the event can 
belong to one of R categories. Now if all of the events belonging to a single 
category produced exactly the same set of d numbers, classification would be 

simple. A unique set of d numbers or vector X would correspond to each cate- 
gory. Classification of any event would then entail only a determination of 
which one of R unique vectors was identical to the vector representation of the 
event. 

Unfortunately, our methods for numerical representation of events are not 
sophisticated enough to produce the same vector for every instance of an event 
of a given category. There is always a scatter of vectors in d-dimensional space 
representative of each class of event. In many pattern-recognition problems 
of practical interest, this scatter is quite extensive indeed, and the vectors r e p  
resenting different event categories may or may not intermingle. 

As an example, consider the two-dimensional patterns illustrated in FIGURE 
1, in which instances of white blood cells are represented by the values of two 
numerical parameters, cytoplasmic area and nuclear-cytoplasmic contrast. (The 
latter parameter is defined as the difference in optical density between the 
nuclear and cytoplasmic areas.) Note the scatter of points belonging to each 
of four types of cells: neutrophils, eosinophils, lympocytes, and monocytes. Also, 
note the scatter overlap between the monocytes and lymphocytes. 

Most attempts to formalize the pattern-classification problem5 begin by 
proposing techniques to deal with this scatter of pattern points. One fundamental 
assumption made about the representation method is that even though the 
pattern points are scattered, pattern points that are “close” together tend to 
belong to the same category. This assumption does not necessarily imply, how- 
ever, that all of the patterns belonging to a given category are close together. 
(The distance by which “closeness” is measured is usually Euclidean distance.) 

--t 

--t 
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FIGURE 1.  White blood cells represented by two parameters. (Based on FIGURE 9 
in Prewitt & Mendelsohn) .37 

Given this assumption, it appears useful to employ the statistical notion of a 
probability-density function to describe the scatter of pattern points. Thus, let 
us assume that the patterns belonging to any category, say i, are random var- 

iables governed by a probability-density function p( Xli) . 
Once these probability-density functions are known, straightforward statis- 

tical analysis can be used to derive optimum methods for deciding to which 

category any given pattern X should be assigned. The optimum method is most 
often defined as that method which minimizes &he probability of classifying a 
pattern in error. It is easy to show5 that in this case the optimum method for 

classifying a pattern X calls for computing the quantities 

4 

+ 

+ 

+ 
p(xl i )  p ( i )  for i = 1 , .  . . , R 

+ 
and assigning X to that category i, corresponding to the largest of these quan- 

tities; p(i), i = 1, . . . , R are the a priori probabilities that X belongs to 
category i. 

--b 
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Consider, as an example, the three probability-density functions describing 
the scatter illustrated in FIGURE 2. There we have assumed the a priori prob- 
abilities p( 1) = p(2)  = p(3) = !h so the boundaries between classification 
regions are determined solely by the intersections of the three probability 
surfaces. The boundary lines represent the classification rule: Any pattern point 
to be classified is tested against these boundaries to determine whether it shall be 
called an instance of category 1, category 2, or category 3. 

When the scatter of patterns belonging to a single category is governed by 
a multivariate normal distribution (an ideal situation, unfortunately not always 
seen in practical classification problems), the procedure for optimum classifica- 
tion can be thoroughly described by analytical methods.6 I shall state the gen- 
eral procedure here and then mention some special cases. 

Let us assume that for each i = 1, . . . , R, p(X1i) is normal with covari- 

ante matrix K, and mean vector Pi. Then the optimum classifier (minimum 
probability of error) computes the functions: 

+ 

+ 

+ - 4 

g,(X) = - !h Xt K,-* X (second-order terms) - + + Xt K,-I Pi 

- !h Pit K1-l Pi + log p( i )  - M log IK1l 

(linear terms) - 4 

(constant terms) 

for i = 1, . . . , R, where 

Ki-l is the inverse of K,, 

X is a column vector, 

Xt is the row vector form of X, and 
IK1l is the determinant of K,. 

+ 

+ 4 

+ 
The g, (X) in this case are quadric functions. They contain second-order 

terms such as ai,xix,, linear terms such as b,x,, and constant terms. The optimum 

classifier assigns X to that category i, corresponding to the largest g,(X). This 
decision rule is equivalent to partitioning the pattern space with quadric (second- 

degree) surfaces. These surfaces separate those patterns X which are assigned to 
one category from patterns assigned to the other categories. 

The example illustrated in FIGURE 2 is, in fact, one with three multivariate 
normal distributions. The second degree boundary surface in this two- 
dimensional case is a hyperbola. 

Some special cases are worth considering. Suppose first that the scatter of 
points for each category has the same shape. For the normal distribution we 

--t + 

+ 
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FIGURE 2. Three probabilitydensity functions and the resulting classification 
boundaries. 

mean then that each category has the same covariance matrix, K. In this case, 

the gl(X) are linear functions: 
+ 

+ +  4 

gl(X) = Xf K-1 PI (linear terms) 
+ - 

- '/fr P,f K-1 P, + log p(i) (constant terms). 

The boundary surfaces between any pair of categories are also linear. Such 
surfaces are called hyperplanes. Their orientation is determined by the location 
of the means and the shape of the scatter about each mean. 

Another, very simple, special case results in a simple classification rule. 
Suppose the a priori probabilities are all equal and the scatters are all of the 
same magnitude and spherical (i.e., completely symmetrically distributed about 

the center). Then the gl(X) for the optimum classification method are: 
+ 

g,(X) = x * PI - x? PI . PI 
+ +  + +  

where X . PI is the inner or dot product of X and PI. In this case, the pattern 
space is partitioned by hyperplanes that bisect the line segments joining pairs 
of mean vectors. This partitioning seems reasonable in this simple instance in 
which the scatter of patterns is spherically symmetrical and of the same extent 
for each category. A two-dimensional illustration for a four-category classifi- 
cation problem is shown in FIGURE 3. 

Let me discuss some of the inadequacies of the multivariate normal model 
just presented and propose some possible remedies. In the first place, the exact 
probability densities can seldom be deduced a priori. We must usually observe 
a large sample of patterns resulting from many events in each category to get 
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an idea of the nature of the scatter. So even if we could know a priori that the 
form of the density functions was normal, we would still have to estimate from 
pattern samples the mean vector and covariance matrix for each category in 
any given pattern-recognition problem. * 

Our methods for representing events numerically do not produce scatters 
of normal form in all cases of interest, however. For example, since there are 

*See Abramson and Braverman' and KeehnR for discussions of methods for esti- 
mating mean vectors and covariance matrices. 

FIGURE 3. Fourcategory classification problem with spherically symmetrical normal 
scatters. 
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many different subclasses of cardiac malfunction,g the sample values of abnor- 
mal EKG waveforms are not normally distributed. Neither are the numerical 
representations of leukocytes based on integral geometric methods proposed 
by Brain.10 In many problems, a more accurate density function would have 
many local maxima rather than the single one of the normal distribution. 
Nevertheless, even though many proposed representations do not produce 
normal scatters, the scatters, for all their complexity, are often separably distinct. 

For these reasons, we need classification techniques that can simply estimate 
complex density functions from a large sample of patterns whose categories are 

known, and then use these densities in the computation of p(Xli) p(i)  to assign 
patterns to the appropriate categories. The set of sample patterns on which 
the density estimates are based is often called the design set. 

- 

The Fix and Hodges Method 

In this and the following sections, several related classification techniques 
are discussed. These techniques attempt either to estimate directly the values 
of probability-density functions from a design set of sample patterns, or to 
circumvent the explicit estimation of density functions by some roughly equiv- 
alent classification procedure. A representative list is presented. 

One method for classifying patterns based on estimates of the values of 
probability-density functions is the Fix and Hodges method.11 The Fix and 

Hodges method uses the patterns in the design set to classify a new pattern, X, 
as follows: Select an integer k, and collect the k design patterns closest to 

X (“closeness” can be measured by Euclidean distance). Suppose that of these 
k closest patterns, n, patterns belong to category 1, n2 to category 2, . . . , and 

nR to category R, and nl + n2 + . . . + nR = k. Then assign X to that cate- 
gory, i,, corresponding to the largest of these numbers. 

The Fix and Hodges method is clearly an attempt to estimate a set of 
numbers proportional to p(X1i) p(i) for i = 1, . . . , R around the point X. 
If such a set of numbers is well approximated by the set n,, n2, . . . , nR, then 
the Fix and Hodges method will lead to nearly optimum (minimum error 
probability) classifications. 

Selection of the integer k is important in the application of the Fix and 
Hodges procedure. If k is too small, the resulting decision rule might be too 
sensitive to the particular spatial locations of the design patterns. If k is 
too large, the rule will not be sensitive enough to the actual variations of the 

unknown probability distributions with X. If the design set is large, it has been 
shown that the Fix and Hodges method leads to the same classifications as 
would be made if the (unknown) probability distributions were known and 

+ 

-+ 

+ 

+ + 
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used. In general, the value of k should increase without limit with increasing 
N, if N is the total number of patterns in the design set. The value of k/N, 
however, should decrease toward zero with increasing N. 

The Nearest-Neighbor Method 

Even when k is extremely small, however, the Fix and Hodges method still 
leads to classifications comparing favorably with those made by the optimum 
(minimum probability of error) classifier in the limit of very large design sets. 
This comparison is still quite favorable even when k = 1. When k = 1, the 

Fix and Hodges method places an unknown pattern, X, in the same category as 
that of the closest pattern in the design set. Such a rule results in what is 
called the nearest-neighbor method. The nearest-neighbor method can be shown 
to be reasonably effective compared with the optimum classifier. Specifically, 
Cover and Hart12 have shown that if PE* is the theoretical minimum proba- 
bility of error of the optimum classifier using the true (but unknown) 
probability-density functions, and if PE is the probability of error resulting 
from the nearest-neighbor method, then PE is bounded by 

--i 

PE* 6 PE 6 PE* 2 - - PE*) ( R - 1  

in the limit of an infinitely large design set. Certainly, in the limit, PE is never 
greater than twice PE*. In this sense it may be said that half the classification 
information in an infinite design set is contained in the nearest neighbor. 

The Fix and Hodges and nearest-neighbor methods appear superficially to 
be reasonable answers to the problem of pattern classification. They suffer one 

important drawback, however. To classify any pattern, X, the distance between 

X and each of the patterns in the design set must be computed. If these compu- 
tations are to be performed rapidly, each of the design patterns must be stored 
in some rapid-access memory. Because the methods work best when the number 
of design patterns is large, the rapid-access storage requirements are often 
excessive. This disadvantage has motivated a search for other methods that 
preserve some of the features of the Fix and Hodges classifier without requiring 
the individual storage of every design pattern in a rapid-access memory. 

--t 

+ 

Nearest-Prototype Methods 

Several alternative methods can be discussed at this point. One might decide 
to use the design patterns differently to estimate the values of the probability- 
density functions. For example, S e b e ~ t y e n * ~ * l ~  has proposed a process which 
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synthesizes an estimate of each probability-density function by adding together 
a number of component multivariate normal density functions. The locations 
and extents of the component functions are determined from the design pat- 
terns by an iterative process which does not require rapid-access storage of all 
of the design patterns. 

Alternatively, one might abandon the idea of obtaining an explicit estimate 
of the values of the probability-density functions. Instead, one could attempt 
to use the design patterns in a way which would lead to the same category 
decisions for most unknown patterns as those which would be made by the Fix 
and Hodges or nearest-neighbor rules. Such a procedure might be nearly equiv- 
alent to one based on estimating probability-density functions, even though it 
does not explicitly estimate them. These equivalent procedures are considered in 
more detail in the remainder of this section. 

The first of these equivalent procedures can best be explained as a “scaled- 
down” nearest-neighbor rule. I shall call it the nearest-prototype method. 
Rather than storing all of the design patterns, we might store only a few typical 
patterns called prototypes. Each prototype selected for storage might actually 
represent many design patterns which cluster around it in the pattern space. 

Classification of an unknown pattern X is then accomplished by assigning it 
to the category of the closest prototype. If there are a sufficient number of pro- 

totypes, it is reasonable to assume that the prototype closest to X will usually 

be of the same category as the design pattern closest to X. Thus, the nearest- 
prototype method will usually assign patterns to the same category as does the 
nearest-neighbor method. The problem now is to discover a method for finding 
a reasonable number of prototypes to represent the design patterns. 

One simple method is to provide only one prototype for each category and 
set that prototype equal to the center of gravity of all of the design patterns in 
the category. In some classification problems, in which the scatter of patterns 
belonging to each category is small, one prototype per category adequately 
represents all of the patterns belonging to that category, and a single-prototype- 
per-category method may produce excellent results. As soon as we encounter 
situations in which a wide variety of events might belong to the same category, 
and representation methods are unable to respond with relative uniformity to 
this variety, it becomes important to provide several prototypes per category. 

At the other extreme, if we are assuming that the design set is large enough 
to represent accurately the inherent scatter in the problem, the design patterns 
could not be so completely intermixed as to require as many prototypes as 
design patterns. If such were the case, we certainly could not expect that any 
other new patterns would be likely to lie close to any of the prototypes, and the 
category of the nearest prototype would probably be irrelevant anyway. In this 
case, the design set is certainly too small a set on which to base the design of a 
classifier. Thus, in realistic situations, we should be able to find some number 

-+ 

-t 
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of useful prototypes smaller than the number of design patterns and greater 
than or equal to the number of categories. 

Several procedures have been suggested to find adequate prototypes or 
centers of clusters of patterns. Okajima et al.,D Firschein and Fischler,15 Ball 
and Hall,le Bonner,'T and Mattson and Damon'* are among those that have 
proposed methods. Ball has reviewed several of these in a survey article.lQ The 
basis of many of these cluster-seeking techniques is a simple process. First, a 
number of trial points are proposed as possible cluster centers. Since the process 
iteratively adjusts these trial points, let us call them cluster-seekers. The process 
consists of two steps: 

--t + 
1. For each cluster-seeker PI, the set Y, of design patterns closer to Pi than 

to any other cluster-seeker is determined. These sets Yi are thus disjoint 
and exhaustive. 

2. For each set Yi determined in Step 1, the center of gravity P,' of the 

set is computed. Each cluster-seeker is then changed from Pi to P,' and 

- 
+ +  

the process returns to Step 1. 

To use this process in a workable cluster-seeking method requires the addition 
of a way to allow new cluster-seekers to be born and others to coalesce. The 
reader is referred to the literature for more details of the various methods. 

On the Structure of Nearest-Prototype Classification Methods 

Let me digress for a moment to discuss the types of boundaries employed 
by the nearest-prototype classification methods and the kinds of structures that 
implement these boundaries. Suppose the prototypes are given by the points 

P,, P2, . . . , PI, . . . , P, where there are M prototypes distributed over the R 
categories of patterns (M R). To classify a new pattern X by the nearest- 
prototype method, we must calculate the distance to every prototype and find 
the smallest distance. Finding the smallest squared distance results in the same 
assignment, so we can instead calculate the quantities: 

+ +  - --* 

+ 

+ - - +  
IX - Pl12 for i = 1, . . . , M. 

These quantities can be written 
4 -  - 4 - 4  x . x - 2x P, + Pi * PI. 

Now, to find the smallest of these is equivalent to finding the largest of the 
following expressions: 

+ +  - - + +  
X . PI - % Pi * PI for i = 1 ,  . . . , M 
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FIGURE 4. Dot product unit (DPU). 

4 -  

since X X occurs in all of the expressions and multiplication by - Vi 
reverses the ordering. 

Therefore, we can employ very simple calculations in using the nearest- 
prototype method. The dot product of the pattern vector to be classified with 
each of the prototypes is computed, and a bias equal to one-half the squared 
length of each prototype is subtracted from each dot product. 

Let us assume that each of these dot product calculations is computed by 
a device we shall call a dot product unit (DPU). The DPU is shown in FIGURE 
4. A DPU may correspond to special-purpose electronic circuitry (e.g., a 
resistance adder) or to a digital computer subroutine. For patterns with d 
components, the DPU has (d + 1)  “weights” wl, w2, . . . , Wdr W d + l  and 
computes a weighted sum, 

of the pattern components. The first d weights correspond to the d pattern 
components, and the extra (d + 1)th weight allows a bias term to be added 
to the sum. It is often convenient to imagine that this (d + 1)th weight multi- 
plies a fictitious (d + 1)th pattern component, which is set permanently equal 
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c 

* 

- 
X-- m 

0 

c 

to some convenient value such as + 1. If the (d + 1) pattern components are 

represented by the (d + 1)-dimensional vector X, and the (d + 1) weights 

are represented by the (d + 1)-dimensional vector W, then the output of the 

DPU can be simply represented by the dot product X * W. A classifier that 
employs DPU’s is shown in FIGURE 5. In general, it may have M DPU’s where 
M R. For the nearest-prototype method, a DPU computation is made for 
every prototype. Each DPU has its first d weights set equal to the components 
of one of the prototype vectors and its (d + 1)th weight set equal to minus 
one-half the squared length of the prototype vector. 

The surfaces in the pattern space which separate the patterns assigned to 
different categories by the nearest-prototype method are composed of segments 
of hyperplanes. These hyperplane segments are the perpendicular bisectors of 
line segments connecting prototype points belonging to different categories. 

+ 

+ 

+ +  

MAX. DECISION - 
SELECTOR 

1 

Error Correction Methods 

Suppose we have a classification problem in which it is known that some 
techniques exist that can classify the patterns with a very low probability of 
error. For example, a trained clinician may be able to classify data representing 

FIGURE 5.  Classifier composed of DPU’s. 
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white blood cells with 98 percent accuracy. Therefore, we know that the scatters 
representing each category cannot possibly overlap much, otherwise the clinician 
would have been incapable of such accurate classification. Whatever the prob- 
ability-density functions might be, we know that the optimum boundaries sep- 
arating the various classes are in regions of the space where patterns are sparse. 
Several methods exist which force “adjustable boundaries” into these sparse 
regions until the resulting classification rule makes an acceptably small number 
of errors on the patterns in the design set. Because the adjustments are prompted 
by errors made using trial boundaries, these methods are called error-correction 
methods. 

Consider the classifier structure shown in FIGURE 5 .  It is called a piecewise- 
linear (PWL) machine because it implements boundaries which are composed 
of sections of hyperplanes. Since the PWL machine is such a simple structure, 
it is of interest to find methods for adjusting its boundaries until it classifies a 
representative sample of patterns in a design set with an acceptably small num- 
ber of errors. The weight adjusting methods that I shall discuss involve the 
following steps: ( 1 )  selection of arbitrary initial weights of a PWL machine; 
(2) trial tests of the ability of this PWL machine to classify patterns in the 
design set correctly; and (3) adjustment of the weights in response to errors 
made by the PWL machine on the design patterns. For obvious reasons, methods 
employing these steps are called error-correction training methods. 

Although an error-correction training method6 has been proposed for a 
general PWL machine, I shall discuss a method for an important special case, 
the linear machine. A linear machine is a PWL machine with only one DPU 
for each pattern category (i.e., M = R). The linear machine is probably the 
most common of all pattern-classification devices. When its weights are set to 
implement a nearest-prototype classification method, there can be but one 
prototype per category. Even so it has been usefully employed in many recogni- 
tion devices. When its weights are allowed to have arbitrary values, its range 
of usefulness is probably even greater. Highleyman20 has discussed methods 
for setting the weights, as have Griffin, King, and Tunis.21 Steinbuch and Piske2? 
have employed essentially the same structure, calling it a learning matrix. 

I shall discuss a particularly simple training method for the linear machine. 
First, the weights of the linear machine are set at arbitrary initial values. A 
pattern is then selected from the design set and tested on this initial version of 
the linear machine. If it is correctly classified, another pattern is selected and 

tested. When a pattern, say X, is not correctly classified, the weights of two 
of the DPU’s are adjusted. Suppose the (d + 1)-dimensional weight vectors 

prior to adjustment are denoted by W,, W2, . . . , W,. Let the integer i be the 
actual category of the erroneously classified pattern, and let the integer j # i 

be the category decision of the machine. Then only the weight vectors W, and 

W, are modified. Let their new values be given by the symbols W,’ and W{. 

4 

4 4  4 

4 

-+ 4 4 
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The prescribed modifications in this case are 

--+ + + w,' = w, + c x  

and 
+ --I + w; = w, - c x  

where c is an arbitrary constant held fixed? at the same value during training. 
This rule is a straightforward attempt to correct the error in the classification 

of X. Obviously W, . X was smaller than W, . X when it was required that 

W, . X be the largest output over all DPU's. Addition of CX to W, will certainly 

increase the output of the ith DPU, and subtraction of CX from W, will decrease 
the output of the jth DPU. These adjustments may or may not completely 
correct the error (depending on the value of c, relative to the magnitude of 

the difference between W, . X and W, . X),  but nevertheless they are steps 
in the right direction. 

After a weight-vector adjustment, training continues by testing the linear 
machine on the design patterns, one at a time. The design patterns can be 
selected for test in fixed order, cycling through the set over and over, or in 
any random order that ensures that each pattern would be tested an infinite 
number of times if training were to continue for an infinite length of time. 

Suppose it is known that there exists some setting of the weights of the 
linear machine that will correctly classify all of the design patterns. Then, 
the application of this error-correction training rule will, after only a finite 
number of corrections, produce a linear machine which does indeed classify 
all of the design patterns correctly. This result and its proof were first stated 
by Kessler (see Reference 5 ,  Chapters 4 & 5 ) .  A subsequent proof by Duda and 
FossumZ3 covers a somewhat more general version of the rule. This rule has 
been applied successfully in many experiments. Of these I might mention the 
ones conducted by Duda and Fossum'3 and the one reported by Casey et a1.24 

A further interesting specialization of the PWL machine can be made. 
Consider the case of a linear machine for R = 2. Then there are only two 
DPU's. These compute the quantities 

+ + +  + +  

- +  - 4  

4 + 

+ -  + +  

4 -  

s1 = w1 . x 
and 

- + +  
S' = w, . x. 

tActually it is possible to relax the requirement that c be fixed (see Reference 23). 
In some experiments better results are obtained if c is decreased slowly during training. 
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The linear machine in this case must decide only which is larger, S1 or S,. 
Such a simple comparison can also be made by testing to see if (S, - S,) is 
positive or negative. Let S denote the difference (S1 - S,). S can be computed 
as follows 

+ + +  
s = (W, - W,) * x 

+ + + 
or setting W = (W, - W,) 

+ +  s = w * x .  

+ .  
+ 
X 

h 

MAX.  DECISION 
SEL. 

DECISION + 

w = w, -w*  

FIGURE 6. Threshold logic unit (TLU). 

Therefore, for the R = 2 linear machine, a single DPU will suffice. This 

DPU can be followed by a “threshold element” to determine if W 3 X is positive 
or negative. Such a structure, called a “threshold logic unit” (TLU) is illustrated 
in FIGURE 6. The TLU is identical with the pattern-classifying device called 
ADALINE by Widrow.25 It is also identical to the final decision element of 
the simple a-perceptron of Rosenblatt.26 It divides the space of patterns into 
two classes by a single hyperplane. When the two-category classification prob- 

- +  
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lem is simple enough for such a surface to suffice, the TLU has been employed 
with excellent results. 

The error-correction training rule for linear machines has a simple form 

for the TLU. If X is classified in error, one of two adjustments is made to 

the weight vector W at that stage. If W 3 X was erroneously negative (a 
category 1 pattern was assigned by the TLU to category 2),  then the new 
weight vector is given by 

--t 

+ - 4  

+ + +  
W’ = w + c x .  

- 4  

If W * X was erroneously positive ( a  category 2 pattern was assigned by the 
TLU to category l ) ,  then the new weight vector is given by 

+ - +  
W’ = w - c x .  

This rule and the proof of its convergence were first stated by Rosenblatt.20 
Its convergence was later also proved by Ridgway27 and Novikoff.28 Although 
we have presented it as a special case of the general rule for linear machines, 
the specific case (as usual) preceded the general by a few years. Actually, an 
adjustment technique very similar to the TLU rule was proposed by Agrnon,29 
and Motzkin and Schoenberg30 for the iterative solution of a set of linear 
inequalities several years earlier. The Agmon-Motzkin-Schoenberg rule turned 
out to be almost identical to a training process for the TLU proposed later 
by Widrow and Hoff3* and called the minimum mean square error (MMSE) 
rule. Recently Koford and Groner”2 have shown that to the extent that the 
MMSE rule accomplishes its objective, the weight vector produced is identical 
to that prescribed for the optimum classifier when the patterns obey multivariate 
normal density functions with the same covariance matrix. 

Polynomial Classification Surfaces 

Error-correction classification techniques that have all used hyperplanes 
or surfaces composed of sections of hyperplanes as boundary surfaces to 
separate patterns belonging to different categories have been discussed. 
Techniques using more complex surfaces, such as surfaces described by 
polynomial equations, have also been employed in pattern-classification research. 
(Indeed, as we have already seen, second-degree or quadric surfaces are 
optimum for general multivariate normal probability-density functions.) It has 
been shown5J3 that the use of polynomial surfaces can be considered theoreti- 
cally as a simple extension of the use of linear surfaces. Error-correction training 
techniques can be used with “polynomial machines” with the result that in a 
finite number of steps the machine will make no errors on the training set if 
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the set is suitably separable by a polynomial surface within the power of the 
machine to implement. To use polynomial surfaces, however, one must calculate 
a large number of product terms such as x,x,xk. To determine which technique 
is preferable in any given situation, the expense of making these computations 
as a step toward more complex surfaces must be compared with the expense of 
adding a few more DPU’s to a PWL machine. 

REPRESENTATION OF EVENTS AS VECTORS 

The Need for Ad Hoc Methods 

There does not yet exist any general method for determining how various 
phenomena should best be represented as vectors for classification. So far each 
problem must be treated separately. Finding an appropriate numerical represen- 
tation is largely an empirical matter following different ad hoc rules found to 
be useful in each special situation. For this reason, the design of a pattern- 
recognition system for classifying EKG signals, say, requires the active 
participation of a skilled cardiologist who is likely to know those aspects of an 
EKG waveform that are crucial to diagnosis. Similarly, the automatic classifi- 
cation of white blood cells requires the knowledge of a cytomorphologist. In 
fact, to put matters in their true perspective, it should be said that for almost 
any automatic recognition problem, 95 percent of the design effort involves the 
search for an appropriate numerical representation of the event to be classified. 
The recognition techniques that we have discussed so far in this paper, although 
interesting, should not be thought of as the most critical element of successful 
automatic classification procedure. 

It would be impossible in a survey paper such as this to review all of the 
methods that have been used for representations. I shall discuss briefly here two 
simple examples and refer the reader to the literature for others. Notably, 
two earlier publications34*:3~ of The New York Academy of Sciences on auto- 
matic classification, and the many papers on this subject in this monograph. 

The examples come from two broad classes of classification problems. One, 
automatic classification of vectorcardiograms, illustrates phenomena whose 
primary data is in the form of a time-waveform. The second, automatic 
classification of white blood cells, illustrates phenomena whose primary data 
is in the form of a visual two-dimensional image. 

Simple Examples of Vector Representation 

The first example is based on a method for classifying vector-cardiograph 
waveforms as either normal or abnormal as reported by S p e ~ h t . ~ ~  The vector- 
cardiogram measured three components (right-left, head-foot, and anterior- 
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posterior), and the experiment was limited to an analysis of the “QRS com- 
plex” within the waveforms. Beginning after the onset of QRS, samples of 
each of the three waveforms were taken every five milliseconds up to 75 milli- 
seconds, giving a total of 45 numbers. A 46th was added to represent the 
duration of the QRS. 

Thus, each QRS complex was represented as a point in a 46-dimensional 
space. A classification method using polynomial surfaces was used to classify 
the 46-dimensional patterns. Even with such a simple representation method, 
classification accuracy was quite high. After training on 249 cases, the tech- 
niques correctly$ classified 97 percent of 32 normals and 90 percent of 31 ab- 
normals. Using information from the QRS complex alone, standard clinical 
diagnosis on the same cases achieved approximately 95 percent correct classifi- 
cation of the normals and only 53 percent correct classification of the abnormals. 

The second example is based on an experiment conducted by Prewitt and 
Mendelsohnsi on the classification of white blood cells from photomicrographs. 
Representation schemes for visual data is a large subject of its own. For 
representative techniques, the reader is referred to the monograph Data 
Extraction and Processing of Optical Images in the Medical and Biological 
Sciences.”? 

Prewitt and Mendelsohn’s representation method involved essentially four 
stages: 

1. Scanning, sampling, and digitizing to convert a 50 x 50 micron field of a 
photomicrograph into a 200 x 200 array of optical density measurements 
with 256 gray levels. This array is then stored in a digital computer. 

2. Delineation of figure and ground to isolate a single white blood cell in 
the array. 

3. Computation of a histogram of optical density values for the area in the 
array within the boundary of the cell. 

4. Computation of as many as 35 parameters of the histogram. These 
parameters serve as the vector representation of the cell. 

In one experiment, Prewitt and Mendelsohn showed that just three param- 
eters derived from the histogram (nuclear area, cytoplasmic area, and nuclear- 
cytoplasmic contrast) were sufficient to permit classification of four types of 
leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. 

SOME OTHER METHODS FOR CLASSIFICATION 

The pattern-recognition methods which we have discussed in this paper 
might all be called parallel methods because each bases the classification of a 

SAs determined by medical history records. 
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vector on the values of all of the components of that vector simultaneously 
or in parallel. An alternative method, which might be called a sequential or 
“tree” method, might look first at just one component of the vector, then look 
at some other component determined by the value of the first, and so on. 
Finally, the value of one of the components will determine a classification 
decision. Each test of a component narrows the possible classification decision 
until only one remains. Sequential methods are similar to the game of Twenty 
Questions, in which the answer to each question determines the next one to be 

‘ asked. Parallel methods, in effect, ask all twenty questions at once and 
consider the answers in parallel to arrive at a decision. 

Sequential methods are usefully employed when each of the component 
“questions” are answered consistently for all of the members of a given cate- 
gory. However, in cases where there can be a “scatter” of answers, sequential 
methods take too many “wrong turns.” As a general rule, when the data are 
subject to scatter, it is usually wise to postpone any decision whatsoever until 
all the data are in, i.e., use parallel methods. 

A limitation of the methods we have discussed is that they are all designed 
to work on numerical data only. Sometimes the went to be classified can best 
be expressed in some nonnumerical,!j symbolic form. The answers to a medical 
history questionnaire can generally be coded solely in symbolic form. Often 
it is convenient to represent a photograph in terms of a symbolic sequence of 
its parts. The parts themselves may be classifiable by our numerical methods, 
but the sequence of these classifications, being symbolic, demands other 
methods for its classification. 

One approach to this problem is to list in a table all possible sequences 
of symbols together with the name or class we desire to assign to each one. 
Then when we want to classify a sequence, we look it up in the table to find 
its class. Obviously, this approach is often impossible because there would 
generally be an unmanageably large number of possible sequences. We are 
helped somewhat by the fact that typically many imaginable sequences are in 
fact impossible. (On a medical history form it is imaginable that a person 
mtght claim that his birthday was in 1940 and that he had the measles in 
1935, but we would say that this sequence is illegal.) But even after ruling out 
all the illegal sequences, there are usually too many left. However, methods exist 
for economically representing large numbers of legal sequences. These are called 
syntax methods and involve specifying simple rules for constructing legal 

5 0 f  course, any symbol can be represented by a unique number and in this way 
symbolic data can be converted into numerical data. What we really mean by numerical 
data is that a “metric” like Euclidean distance exists in the space of patterns by which 
we can measure the “closeness” of patterns. All of the pattern-recognition methods 
we have treated depend on the rule: Patterns that are close together generally belong 
to the same category. 
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sequences out of symbol alphabets. Using these rules, straightforward methods 
exist for checking to  see if an arbitrary sequence is legal, and if it is, what 
category of sequence it belongs to, but a full explanation of syntax methods is 
beyond the scope of this paper.! 

CONCLUSIONS 

Several methods for classifying data that may be  of use in clinical medicine 
have been discussed but pattern recognition should not be regarded as a magic 
new technique whose application will solve a lot of insoluble clinical problems. 
Rather, it consists primarily of a number of statistical methods for  handling 
data that the digital computer now renders feasible. Furthermore, it is absolutely 
necessary that the clinician bring his specialized knowledge t o  the problem of 
applying any of these methods to  a specific problem. In  computer science there 
is a saying, “Garbage in, garbage out.” Only the clinician can ensure that 
garbage is not going in. Then the computer scientist can struggle to see that 
none comes out. 
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