Partial Differential Equations

Exercise 1. Verify that both $u=\log \left(x^{2}+y^{2}\right)$ and $u=\arctan (y / x)$ are solutions of Laplace's equation $u_{x x}+u_{y y}=0$.

If $u=\log \left(x^{2}+y^{2}\right)$, then by the chain rule

$$
u_{x}=\frac{2 x}{x^{2}+y^{2}} \Rightarrow u_{x x}=\frac{\left(x^{2}+y^{2}\right)(2)-(2 x)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}},
$$

and by the symmetry of u in x and y,

$$
u_{y y}=\frac{2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

Clearly then $u_{x x}+u_{y y}=0$ in this case.
If $u=\arctan (y / x)$, then by the chain rule again

$$
u_{x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}} \Rightarrow u_{x x}=\frac{\left(x^{2}+y^{2}\right)(0)-(-y)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} .
$$

Likewise

$$
u_{y}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{1}{x}\right)=\frac{x}{x^{2}+y^{2}} \Rightarrow u_{y y}=\frac{\left(x^{2}+y^{2}\right)(0)-(x)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

so that once again we have $u_{x x}+u_{y y}=0$.

Exercise 2. Solve the boundary value problem.
a. $r \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=e^{3 x}, \quad(x, y) \in \mathbb{R} \times(0, \infty), \quad u(x, 0)=f(x)$

Because the coefficients of the derivatives are constants (r and 1), we perform the linear change of variables

$$
\begin{align*}
\alpha & =a x+b y, \tag{1}\\
\beta & =c x+d y, \tag{2}\\
a d & -b c \neq 0 . \tag{3}
\end{align*}
$$

The usual application of the chain rule yields

$$
\begin{align*}
& \frac{\partial u}{\partial x}=a \frac{\partial u}{\partial \alpha}+c \frac{\partial u}{\partial \beta} \tag{4}\\
& \frac{\partial u}{\partial y}=b \frac{\partial u}{\partial \alpha}+d \frac{\partial u}{\partial \beta} \tag{5}
\end{align*}
$$

so that the original PDE becomes

$$
(r a+b) \frac{\partial u}{\partial \alpha}+(r c+d) \frac{\partial u}{\partial \beta}=e^{3 x}
$$

Taking $a=0, b=1, c=-1$ and $d=r$, and noting that in this case (1) and (2) imply $r \alpha-\beta=x$, we obtain

$$
\frac{\partial u}{\partial \alpha}=e^{3(r \alpha-\beta)}
$$

Integration with respect to α gives

$$
\begin{equation*}
u=\frac{1}{3 r} e^{3(r \alpha-\beta)}+g(\beta)=\frac{1}{3 r} e^{3 x}+g(-x+r y) \tag{6}
\end{equation*}
$$

We now impose the initial condition to solve for g. Setting $y=0$ we find that

$$
f(x)=u(x, 0)=\frac{1}{3 r} e^{3 x}+g(-x)
$$

Solving for g and replacing x with $-x$ tells us that

$$
g(x)=-\frac{1}{3 r} e^{-3 x}+f(-x)
$$

Substituting this into the general solution (6) we finally arrive at

$$
u(x, y)=\frac{1}{3 r} e^{3 x}-\frac{1}{3 r} e^{3(x-r y)}+f(x-r y) .
$$

b. $\frac{\partial u}{\partial x}-3 y \frac{\partial u}{\partial y}=0, \quad(x, y) \in(0, \infty) \times \mathbb{R}, \quad u(0, y)=y^{4}-2$

Because this PDE has the form

$$
\frac{\partial u}{\partial x}+p(x, y) \frac{\partial u}{\partial y}=0
$$

we may appeal to the naïve method of characteristics. The characteristic curves are given by

$$
\frac{d y}{d x}=-3 y \Rightarrow y=C e^{-3 x} \Rightarrow C=y e^{3 x}
$$

The general solution therefore has the form

$$
u(x, y)=f\left(y e^{3 x}\right)
$$

As for the initial condition, we simply set $y=0$:

$$
y^{4}-2=u(0, y)=f\left(y e^{0}\right)=f(y)
$$

Hence

$$
u(x, y)=y^{4} e^{12 x}-2
$$

c. $\frac{\partial u}{\partial x}-2 u \frac{\partial u}{\partial y}=0, \quad(x, y) \in(0, \infty) \times \mathbb{R}, \quad u(0, y)=y$

This is a quasilinear PDE , but because of the coefficient $-2 u$ multiplying the y derivative, the naïve method of characteristics is out. So we begin by parametrizing the initial curve, essentially taking y as the parameter:

$$
x_{0}(a)=0, \quad y_{0}(a)=a, \quad z_{0}(a)=a
$$

The characteristic ODEs are therefore

$$
\begin{array}{ll}
\frac{d x}{d s}=1, & \frac{d y}{d s}=-2 z, \\
x(0)=0, & y(0)=a, \\
z(0)=a
\end{array}
$$

The first immediately yields $x=s$ and the last that $z=a$. The second the yields $y=-2 a s+a$. Since $x=s$ we can solve the equation for y to obtain a :

$$
a=\frac{y}{1-2 s}=\frac{y}{1-2 x} .
$$

Hence

$$
z=u(x, y)=a=\frac{y}{1-2 x}
$$

d. $4 x \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=2 y, \quad(x, y) \in \mathbb{R} \times(0, \infty), u(x, 0)=\log \left(8+x^{2}\right)$

This is a quasilinear PDE , and If we first divide through by $4 x$ we can apply the naïve method of characteristics. However, we prefer to use the full strength method. The initial curve is given by

$$
x_{0}(a)=a, \quad y_{0}(a)=0, \quad z_{0}(a)=\log \left(8+a^{2}\right)
$$

so that the characteristic ODEs are

$$
\begin{aligned}
& \frac{d x}{d s}=4 x, \quad \frac{d y}{d s}=1, \quad \frac{d z}{d s}=2 y \\
& x(0)=a, \quad y(0)=0, \quad z(0)=\log \left(8+a^{2}\right)
\end{aligned}
$$

The first equation is an exponential growth equation with solution $x=a e^{4 s}$, and the second is readily integrated to yield $y=s$. This means the third becomes $\frac{d z}{d s}=2 s$ so that $z=s^{2}+\log \left(8+a^{2}\right)$. To invert the $(x, y)-(a, s)$ system, simply note that $a=x e^{-4 s}=x e^{-4 y}$. Thus

$$
z=u(x, y)=s^{2}+\log \left(8+a^{2}\right)=y^{2}+\log \left(8+x^{2} e^{-8 y}\right)
$$

Exercise 3. Show that the general solution to $u_{x y}+u_{x}=0$ has the form $u(x, y)=F(y)+$ $e^{-y} G(x)$. [Suggestion: Notice that $u_{x y}+u_{x}=\left(u_{y}+u\right)_{x}$.]

Since $0=u_{x y}+u_{x}=\left(u_{y}+u\right)_{x}$, we can integrate at once with respect to x to obtain $u_{y}+u=f(y)$. This is a first order linear "ODE" in the variable y. Introducing the integrating factor $\mu=\exp \left(\int 1 d y\right)=e^{y}$, it becomes

$$
\frac{\partial}{\partial y}\left(e^{y} u\right)=e^{y} f(y)
$$

Integrating with respect to y this time yields

$$
e^{y} u=\int e^{y} f(y) d y+G(x)
$$

Finally, dividing by e^{y} gives

$$
u(x, y)=e^{-y} \int e^{y} f(y) d y+e^{-y} G(x)=F(y)+e^{-y} G(x),
$$

where we have replaced the arbitrary function $e^{-y} \int e^{y} f(y) d y$ with another we call F for convenience.

Exercise 4. Solve the wave equation subject to the initial conditions

$$
u(x, 0)=x e^{-x^{2}}, \quad u_{t}(x, 0)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

According to Exercise of Assignment 2, the solution of the wave equation in this case is given by

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

where

$$
\begin{aligned}
& F=\frac{x e^{-x^{2}}}{2}+\frac{1}{2 c} \int \frac{1}{1+x^{2}} d x=\frac{x e^{-x^{2}}}{2}+\frac{1}{2 c} \arctan x \\
& G=\frac{x e^{-x^{2}}}{2}-\frac{1}{2 c} \int \frac{1}{1+x^{2}} d x=\frac{x e^{-x^{2}}}{2}-\frac{1}{2 c} \arctan x
\end{aligned}
$$

Hence

$$
u(x, t)=\frac{1}{2}\left((x+c t) e^{-(x+c t)^{2}}+(x-c t) e^{-(x-c t)^{2}}\right)+\frac{1}{2 c}(\arctan (x+c t)-\arctan (x-c t)) .
$$

Exercise 5. Suppose we want to find a solution of the (unbounded) wave equation that consists of a single traveling wave moving to the right with shape given by the graph of $f(x)$. What initial conditions are required to cause this to happen?

We want the solution to take the form $u(x, t)=f(x-c t)$. This requires $u_{t}(x, t)=$ $-c f^{\prime}(x-c t)$. To obtain the initial conditions we simply set $t=0$:

$$
\begin{aligned}
& u(x, 0)=f(x), \\
& u_{t}(x, 0)=-c f^{\prime}(x) .
\end{aligned}
$$

Exercise 6. This problem concerns the partial differential equation

$$
\begin{equation*}
u_{x x}+4 u_{x y}+3 u_{y y}=0 \tag{7}
\end{equation*}
$$

a. If F and G are twice differentiable functions, show that

$$
\begin{equation*}
u(x, y)=F(3 x-y)+G(x-y) \tag{8}
\end{equation*}
$$

is a solution to (7).
We have

$$
u_{x}=3 F^{\prime}(3 x-y)+G^{\prime}(x-y) \Rightarrow\left\{\begin{array}{l}
u_{x x}=9 F^{\prime \prime}(3 x-y)+G^{\prime \prime}(x-y) \\
u_{x y}=-3 F^{\prime \prime}(3 x-y)-G^{\prime \prime}(x-y)
\end{array}\right.
$$

and

$$
u_{y}=-F^{\prime}(3 x-y)-G^{\prime}(x-y) \Rightarrow u_{y y}=F^{\prime \prime}(3 x-y)+G^{\prime \prime}(x-y)
$$

Hence

$$
\begin{aligned}
u_{x x}+2 u_{x y}+3 u_{y y}= & \left(9 F^{\prime \prime}(3 x-y)+G^{\prime \prime}(x-y)\right)+4\left(-3 F^{\prime \prime}(3 x-y)-G^{\prime \prime}(x-y)\right) \\
& +3\left(F^{\prime \prime}(3 x-y)+G^{\prime \prime}(x-y)\right) \\
= & (9-12+3) F^{\prime \prime}(3 x-y)+(1-4+3) G^{\prime \prime}(x-y) \\
= & 0+0=0
\end{aligned}
$$

as claimed.
b. Use a linear change of variables to show that every solution to (7) has the form (8). Defining α and β as in (1) and (2), and applying the chain rule six times eventually leads us to

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =a^{2} \frac{\partial^{2} u}{\partial \alpha^{2}}+2 a c \frac{\partial^{2} u}{\partial \alpha \partial \beta}+c^{2} \frac{\partial^{2} u}{\partial \beta^{2}} \\
\frac{\partial^{2} u}{\partial x \partial y} & =a b \frac{\partial^{2} u}{\partial \alpha^{2}}+(a d+b c) \frac{\partial^{2} u}{\partial \alpha \partial \beta}+c d \frac{\partial^{2} u}{\partial \beta^{2}} \\
\frac{\partial^{2} u}{\partial y^{2}} & =b^{2} \frac{\partial^{2} u}{\partial \alpha^{2}}+2 b d \frac{\partial^{2} u}{\partial \alpha \partial \beta}+d^{2} \frac{\partial^{2} u}{\partial \beta^{2}} .
\end{aligned}
$$

Substituting these into (7) and collecting common terms we arrive at the new PDE

$$
\left(a^{2}+4 a b+3 b^{2}\right) \frac{\partial^{2} u}{\partial \alpha^{2}}+(2 a c+4 a d+4 b c+6 b d) \frac{\partial^{2} u}{\partial \alpha \partial \beta}+\left(c^{2}+4 c d+3 d^{2}\right) \frac{\partial^{2} u}{\partial \beta^{2}}=0
$$

If we take $a=3, b=-1, c=1$ and $d=-1$ then $a d-b c=-3+1=-2 \neq 0$ and the new PDE becomes

$$
-4 \frac{\partial^{2} u}{\partial \alpha \partial \beta}=0 \Longleftrightarrow \frac{\partial^{2} u}{\partial \alpha \partial \beta}=0
$$

Integration with respect to β gives

$$
\frac{\partial u}{\partial \alpha}=f(\alpha)
$$

for an arbitrary f and integration with respect to α then gives

$$
u=F(\alpha)+G(\beta)
$$

where F is an antiderivative of f. Since $\alpha=3 x-y$ and $\beta=x-y$, we finally find that

$$
u(x, y)=F(3 x-y)+G(x-y)
$$

as desired.
c. Find the solution to (7) that satisfies the initial conditions

$$
u(x, 0)=\frac{x}{x^{2}+1} \text { and } u_{y}(x, 0)=0 \text { for all } x
$$

Using the general solution obtained in part \mathbf{b}, we find that

$$
u_{y}(x, y)=-F^{\prime}(3 x-y)-G^{\prime}(x-y)
$$

Hence the initial conditions require that

$$
\begin{aligned}
\frac{x}{x^{2}+1} & =u(x, 0)=F(3 x)+G(x) \\
0 & =u_{y}(x, 0)=-F^{\prime}(3 x)-G^{\prime}(x)
\end{aligned}
$$

The second equation implies that $G^{\prime}(x)=-F^{\prime}(3 x)$ so that $G(x)=-F(3 x) / 3+C$. Substituting this into the first yields

$$
\frac{2}{3} F(3 x)+C=\frac{x}{x^{2}+1} \Rightarrow F(x)=\frac{9 x}{2\left(x^{2}+9\right)}-\frac{3}{2} C .
$$

Thus

$$
G(x)=-\frac{1}{3} F(3 x)+C=\frac{-x}{2\left(x^{2}+1\right)}+\frac{3}{2} C .
$$

Hence we finally have

$$
u(x, y)=F(3 x-y)+G(x-y)=\frac{9(3 x-y)}{2\left((3 x-y)^{2}+9\right)}+\frac{y-x}{2\left((x-y)^{2}+1\right)} .
$$

Exercise 7. Show that the functions

$$
\cos x, \cos 3 x, \cos 5 x, \cos 7 x, \ldots,
$$

are pairwise orthogononal relative to the inner product $\langle f, g\rangle=\int_{0}^{\pi / 2} f(x) g(x) d x$. [Suggestion: Use the identity $\cos (A+B)+\cos (A-B)=2 \cos A \cos B$.]

If $m, n \in \mathbb{N}$ are both odd (and distinct), then using the given identity we have

$$
\begin{aligned}
\langle\cos m x, \cos n x\rangle & =\int_{0}^{\pi / 2} \cos m x \cos n x d x \\
& =\frac{1}{2} \int_{0}^{\pi / 2} \cos (m+n) x+\cos (m-n) x d x \\
& =\frac{1}{2}\left(\frac{\sin (m+n) x}{m+n}+\left.\frac{\sin (m-n) x}{m-n}\right|_{0} ^{\pi / 2}\right) \\
& =\frac{1}{2}\left(\frac{\sin (m+n) \pi / 2}{m+n}+\frac{\sin (m-n) \pi / 2}{m-n}-\frac{\sin 0}{m+n}-\frac{\sin 0}{m-n}\right) \\
& =\frac{1}{2}\left(\frac{\sin (m+n) \pi / 2}{m+n}+\frac{\sin (m-n) \pi / 2}{m-n}\right)
\end{aligned}
$$

since $\sin 0=0$. Because m and n are both odd, $m+n$ and $m-n$ are both even, so that $\frac{m+n}{2}=k$ and $\frac{m-n}{2}=\ell$ are both integers. Hence

$$
\frac{\sin (m+n) \pi / 2}{m+n}=\frac{\sin k \pi}{m+n}=0
$$

and

$$
\frac{\sin (m-n) \pi / 2}{m+n}=\frac{\sin \ell \pi}{m+n}=0
$$

as well, and the integral evaluates to zero, which is what we needed to show.

Exercise 8. Let

$$
\begin{aligned}
f_{1}(x) & =1 \\
f_{2}(x) & =2 x-1 \\
f_{3}(x) & =6 x^{2}-6 x+1 \\
f_{4}(x) & =20 x^{3}-30 x^{2}+12 x-1
\end{aligned}
$$

a. Verify that the polynomials f_{1}, f_{2}, f_{3} and f_{4} are pairwise orthogonal relative to the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.

We have

$$
\begin{aligned}
& \left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{1} f_{1}(x) f_{2}(x) d x=x^{2}-\left.x\right|_{0} ^{1}=0 \\
& \left\langle f_{1}, f_{3}\right\rangle=\int_{0}^{1} f_{1}(x) f_{3}(x) d x=2 x^{3}-3 x^{2}+\left.x\right|_{0} ^{1}=0 \\
& \left\langle f_{1}, f_{4}\right\rangle=\int_{0}^{1} f_{1}(x) f_{4}(x) d x=5 x^{4}-10 x^{3}+6 x^{2}-\left.x\right|_{0} ^{1}=0 \\
& \left\langle f_{2}, f_{3}\right\rangle=\int_{0}^{1} f_{2}(x) f_{3}(x) d x=3 x^{4}-6 x^{3}+4 x^{2}-\left.x\right|_{0} ^{1}=0 \\
& \left\langle f_{2}, f_{4}\right\rangle=\int_{0}^{1} f_{2}(x) f_{4}(x) d x=8 x^{5}-20 x^{4}+18 x^{3}-7 x^{2}+\left.x\right|_{0} ^{1}=0, \\
& \left\langle f_{3}, f_{4}\right\rangle=\int_{0}^{1} f_{3}(x) f_{4}(x) d x=20 x^{6}-60 x^{5}+68 x^{4}-36 x^{3}+9 x^{2}-\left.x\right|_{0} ^{1}=0 .
\end{aligned}
$$

b. Let $p(x)=x^{3}-2$. Use part a to write p as a linear combination of f_{1}, f_{2}, f_{3} and f_{4}. [Suggestion: Recall that since the f_{i} are orthogonal, if

$$
p=a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}
$$

then $a_{j}=\left\langle p, f_{j}\right\rangle /\left\langle f_{j}, f_{j}\right\rangle$.]
According to the stated formulae

$$
\begin{aligned}
& a_{1}=\frac{\left\langle p, f_{1}\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle}=\frac{\int_{0}^{1} p(x) f_{1}(x) d x}{\int_{0}^{1} f_{1}(x) f_{1}(x) d x}=-\frac{7}{4}, \\
& a_{2}=\frac{\left\langle p, f_{2}\right\rangle}{\left\langle f_{2}, f_{2}\right\rangle}=\frac{\int_{0}^{1} p(x) f_{2}(x) d x}{\int_{0}^{1} f_{2}(x) f_{2}(x) d x}=\frac{9}{20}, \\
& a_{3}=\frac{\left\langle p, f_{3}\right\rangle}{\left\langle f_{3}, f_{3}\right\rangle}=\frac{\int_{0}^{1} p(x) f_{3}(x) d x}{\int_{0}^{1} f_{3}(x) f_{3}(x) d x}=\frac{1}{4}, \\
& a_{4}=\frac{\left\langle p, f_{4}\right\rangle}{\left\langle f_{4}, f_{4}\right\rangle}=\frac{\int_{0}^{1} p(x) f_{4}(x) d x}{\int_{0}^{1} f_{4}(x) f_{4}(x) d x}=\frac{1}{20},
\end{aligned}
$$

so that

$$
p=-\frac{7}{4} f_{1}+\frac{9}{20} f_{2}+\frac{1}{4} f_{3}+\frac{1}{20} f_{3},
$$

as is easily verified.
c. Explain why the procedure of part \mathbf{b} fails if we take $p(x)=x^{5}-2 x+1$.

Although the coefficients a_{1}, a_{2}, a_{3} and a_{4} can still be computed, the linear combination $a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}$ will have degree at most 4 and so cannot equal p, which in this case has degree 5 . The problem is that while the orthogonality of the set $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ guarantees its linear independence, it is not a basis for the space of polynomials of degree at most 5 since it does not have enough vectors, namely 5 .

Exercise 9. For each 2π-periodic function f given: i. carefully sketch three periods of f and ii. carefully sketch three periods of the the Fourier series of f.
a. $f(x)= \begin{cases}\lfloor 2 x / \pi\rfloor & \text { if }-\pi \leq x<\pi, \\ f(x+2 \pi) & \text { otherwise. }\end{cases}$

Here's a sketch of f

and a sketch of its Fourier series

b. $f(x)= \begin{cases}\min \{|3 x / \pi|, 1\} & \text { if }-\pi \leq x<\pi, \\ f(x+2 \pi) & \text { otherwise } .\end{cases}$

Here's a sketch of f

which is identical with its Fourier series since it is continuous everywhere.
c. $f(x)= \begin{cases}\pi / 2 & \text { if }-\pi \leq x<0, \\ \pi-x / 2 & \text { if } 0 \leq x<\pi, \\ f(x+2 \pi) & \text { otherwise. }\end{cases}$

Here's a sketch of f

and a sketch of its Fourier series

