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Abstract

Partial Evaluation for Optimized Compilation of Actor-Oriented Models

by

Gang Zhou

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

One major achievement of traditional computer science is systematically abstracting

away the physical world. The Von Neumann model provides a universal abstraction

for sequential computation. The concept is so simple and powerful for transforma-

tional systems (vs. reactive systems [Berry1989]) that any traditional program can

run regardless of underlying platform —- whether it is a supercomputer or a desktop.

Embedded software systems, however, engage the physical world. Time, concurrency,

liveness, continuums and reactivity must be remarried to computation [Lee2006]. In

order to reason about these properties, a programming model must be able to express

these properties directly.

The traditional techniques for doing concurrent programming on top of sequen-

tial programming languages like C use threads complemented with synchronization
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mechanisms like semaphores and mutual exclusion locks. These methods are at best

retrofits to the fundamentally sequential formalism and are hard to understand, dif-

ficult to debug, brittle and error-prone.

Actor-oriented design presents a high level abstraction for composing concurrent

components. There is a rich variety of concurrency formalisms that span the whole

spectrum from most expressive to most analyzable. In particular, I will focus on one

particular model of computation called heterochronous dataflow (HDF) which strikes

a nice balance between expressiveness and analyzability.

However, high level abstraction often introduces overhead and results in slower

systems. In component based design, generic components are highly parameterized for

reusability and thus are less efficient. The well-defined interface between components

results in flexible composition but increases the cost of inter-component communica-

tion through the interface.

In the second part of this thesis, I will address the problem of generating an ef-

ficient implementation from a high level specification. I use partial evaluation as an

optimized compilation technique for actor-oriented models. Compared with tradi-

tional compiler optimization, partial evaluation for embedded software works at the

component level and heavily leverages domain-specific knowledge. Through model

analysis—the counterpart of binding-time analysis in the use of partial evaluation

for general purpose software [Jones1993], the tool can discover the static parts in

the model including data types, buffer sizes, parameter values, model structures and
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execution schedules, etc. and then exploit the already known information to reach a

very efficient implementation. I use a helper-based mechanism, which leads to flexible

and extensible code generation framework. The end result is that the benefit offered

by high level abstraction comes with (almost) no performance penalty.

The code generation framework described in this dissertation has been released in

open source as part of Ptolemy II and can be downloaded from http://ptolemy.org/.

Professor Edward A. Lee
Dissertation Committee Chair
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Chapter 1

Introduction

The first operational, electronic, general purpose computer called ENIAC (Elec-

tronic Numerical Integrator and Calculator) was built during World War II for com-

puting artillery tables. Ever since then computers have become faster and more

powerful, due to technology (Moore’s law) and architecture (caches and pipelining,

etc.) advancements on the hardware side. On the software side, high level program-

ming languages (C++, Java, among the most popular) were designed over the years

to improve programmers’ productivity. These inventions are fundamentally rooted

in the abstraction for sequential computation. That is, computation is a series of

data transformations, which can be done in a faster and more efficient way with the

inventions of new computer architectures, new algorithms, new language features.

One only needs to make sure the end result of the computation remains the same.

So, in this sense, general purpose computing still tries to solve the same problem the
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ENIAC was built for. However, as the technology progresses, we are not satisfied

with just computing artillery tables; instead, we are much more interested in auto-

matically controlling the whole process of artillery firing in real-time. In this case,

the computer system needs to engage the physical world and we arrive at the world

of embedded computing.

Embedded software has been traditionally viewed as software running on small

computers with scarce resources. Therefore it is written with assembly language to

maximize efficiency and predictability. Programming languages like C are also used

to improve productivity and portability. These imperative programming languages

abstract how a Von Neumann computer operates in a sequential manner. They

are good matches for general-purpose software applications, which are essentially a

series of data transformations. However, in the embedded world, the computing

system constantly engages the physical system. Thus the physical system becomes

an integral part of the design and the software must operate concurrently with the

physical system.

The basic techniques for doing concurrent programming on top of traditional pro-

gramming languages like C and Java use threads (for C there are various thread

libraries such as pthreads; for Java threading is built into the language), comple-

mented with synchronization mechanisms like semaphores and mutual exclusion locks.

These methods are at best retrofits to the original fundamentally sequential formal-

ism. Therefore they are difficult to reason about and guarantee correctness [Lee2006].
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• Timeliness
• Concurrency
• Reactivity
• Liveness

Environment

Sensors
Embedded 
systems Actuators

These properties CANNOT be abstracted away 
for the correctness of the embedded systems. 

They have to be “first class citizens” in the 
design of embedded systems.

Figure 1.1: Characteristics of embedded systems.

In fact, according to a survey [WDF] conducted by the Microsoft Windows Driver

Foundation team, the top reason for driver crashes is concurrency and race condi-

tions. This is not acceptable for embedded applications that are real-time and often

safety-critical. We need alternative concurrency formalisms to match the abstractions

with the embedded applications.

Besides concurrency there are other equally important issues a designer must

consider when designing embedded systems (see Fig. 1.1). Unlike general-purpose

computing where improving average performance is the key, embedded systems usu-
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ally must guarantee the timeliness each time they execute. Unlike general-purpose

computing where non-terminating programs are considered defective programs, em-

bedded systems continuously interact with the physical processes through sensors

and actuators and thus liveness of programs must be assured. Unlike general-purpose

computing which can be abstracted as pure data transformations, embedded systems

react at their environment’s speed and thus have real-time constraints; and embedded

systems usually react to multiple sources of stimuli and thus are concurrent. As one

can see, timeliness, concurrency, liveness and reactivity are all related. These prop-

erties cannot be abstracted away for the correctness of the embedded systems. They

have to be“first class citizens” in the design of embedded systems. In another words,

programming models for embedded systems must be able to directly express these

properties if they want to reason about these properties. Retrofitting with external

means such as priority and semaphores will only lead to designs that are hard to

understand, difficult to debug, brittle and error-prone.

The Ptolemy group has been advocating actor-oriented design as the programming

model for the embedded systems. The actor model was originally proposed by Hewitt

to describe the concept of autonomous reasoning agents [Hewitt1977] and extended by

Agha and others to describe a formalized model of concurrency [Agha1986]. Agha’s

actors each have an independent thread of control and communicate via asynchronous

message passing. Lee evolved the term to embrace a larger family of models of

concurrency that are often more constrained than general message passing. Lee’s
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Qualifying Exam  3

Problem statement

Designs expressed through 
programming model

Implementations

User’s view of systems to be 
designed

Figure 1.2: A simplified view of design process.

actors are still conceptually concurrent, but unlike Agha’s actors, they need not have

their own thread of control, and communication is still through message passing but

need not be strictly asynchronous.

My thesis can be separated into two parts. The first part corresponds to the top

arrow in Fig. 1.2. It’s about expressing designs through programming model with

appropriate concurrency formalism. The programming model should provide useful

modeling properties that the designer cares about. It should be easy to reason about
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those properties. Furthermore, it should yield static analyzability whenever possible

so that some form of correctness can be guaranteed during design time.

Ptolemy II is a platform to try out programming models with different concur-

rency formalisms. Unlike other design frameworks, the Ptolemy project is unique in

the breadth of exploration of semantic alternatives. A rich variety of concurrency

formalisms span the whole spectrum from most expressive to most analyzable. In

particular, I will focus on one particular model of computation called heterochronous

dataflow (HDF) which strikes a nice balance between expressiveness and analyzability.

A good programming model with abstraction properties that match the applica-

tion space only solves half of the problem. For it to succeed, it is imperative that

an efficient implementation be derived from a design described in the programming

model. In component based design (we use the terms “actor” and “component” in-

terchangeably in this thesis), modular components make systems more flexible and

extensible. Different compositions of the same components can implement different

functionality. However, component designs are often slower than custom-built code.

The cost of inter-component communication through the component interface intro-

duces overhead, and generic components are highly parameterized for reusability and

thus less efficient.

Since the beginning the Ptolemy II design environment emphasizes flexibility over

efficiency. E.g., in order to support run-time reconfiguration of Ptolemy models,

many operations have extra levels of indirection. The overhead from this indirection
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Qualifying Exam  26

Ptolemy II: a software lab for experimenting with 
multiple concurrency formalisms

Observation: great as a prototyping environment, but 
the resulting inefficiency induced by indirection 
overhead is unacceptable for embedded system 
implementation.

•Generic components

•Well-defined interface

•Highly specialized components

•No communication overhead

Design Implementation

Solution: 

Partial evaluation based compilation (code generation).Figure 1.3: From design to implementation.

is incurred in all models, even if a particular model does not use reconfiguration

[Neuendorffer2004]. Ptolemy II introduces the notion of domain-polymorphic and

data-polymorphic actors so that they can be used for different models of computation

and with different data types. Like any generic components, actors designed this way

trade efficiency for flexibility. All these features contribute to the ease of use of

Ptolemy II as a rapid prototyping environment. The question is how to get back

the efficiency so that we can turn a design prototype into an implementation (see

Fig. 1.3), which is the theme of the second part of this thesis, corresponding to the

bottom arrow in Fig. 1.2.

To regain the efficiency for the implementation, the users could write big mono-

lithic components to reduce inter-component communication, and write highly spe-

cialized components rather than general ones. However, manually implementing these

solutions is not an option. Partial evaluation [Jones1993] provides a mechanism to

automate the whole process. The basic idea is that given a program and part of

this program’s input data, a partial evaluator can execute the given program as far
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as possible producing a residual program that will perform the rest of computation

when the rest of the input data is supplied. It usually involves a binding-time analysis

phase to determine the static parts and the dynamic parts of a program, followed by

an evaluation phase. The derived program is usually much more efficient by removing

computation overhead resulting from the static parts.

Partial evaluation has been in use for many years and applied in a variety of pro-

gramming languages including functional languages [Gomard1991], logic languages

[Lloyd1991], imperative languages like C [Anderson1992] and object-oriented lan-

guages [Schultz2001]. Its use in embedded software has been more recent, as seen in

Click component framework [Kohler2002], Koala component model [Ommerling2000],

etc. Compared with previous examples, Ptolemy II does not focus on specific appli-

cations. Its emphasis is on choosing appropriate concurrent MoC’s for embedded

system design and generating efficient implementation for the chosen MoC’s.

In my research, partial evaluation is used as a code generation technique, which

is really a compilation technique for transforming an actor-oriented model into the

target code while preserving the model’s semantics. However, compared with tradi-

tional compiler optimization, partial evaluation for embedded software works at the

component level and heavily leverages domain-specific knowledge. Through model

analysis—the counterpart of binding-time analysis in traditional use of partial evalu-

ation for general purpose software—the tool can discover the static parts in the model

including data types, buffer sizes, parameter values, model structure and model ex-
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ecution schedules, etc. and then evaluate all the known information to reach a very

efficient implementation. The end result is that the benefit offered by the high level

abstraction comes with (almost) no performance penalty.
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Chapter 2

Model-based Design

In [Poore2004] Poore compared the fields of circuit engineering and software en-

gineering.1 He noted that the field of circuit engineering fully exploits the Boolean

algebra associated with circuits; in fact, the entire process of circuit design is a math-

ematical activity, and the hardware mirrors the algebraic operations AND, OR, and

NOT. A designer starts the design by formulating the new function at the highest

level of abstraction and proceeds by refining and assembling pre-defined components.

The final generated implementation is correct by design, equivalent to the original

rigorous mathematical formulation. In another words, it works correctly the first time

it is used (or tested) because it is designed and built right. Only rank amateurs in

their home radio shacks would construct devices without first sketching diagrams or

scribbling functions. Therefore they have to resort to trial and error to make sure

1The other discipline in the paper is genetic engineering. However, discussing the difference
between the two disciplines, i.e., circuit engineering and software engineering, serves the purpose for
this thesis.
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constructed devices work. Unfortunately the way software is usually written is a bit

like how amateurs construct their devices. Instead of generating correct-by-design im-

plementation from a rigorous mathematical formulation, the software is constructed

from bottom up and extensive tests are needed to make sure components in a software

system work together. The situation is even worse for multi-threaded software, where

some small change often requires extensive re-testing.

Like circuit engineering, model-based design takes a top-down approach and is

based on a strict mathematical formulation. Taking Simulink [Simulink] for an ex-

ample, its design framework incorporates the four phases of a design cycle: model a

plant; analyze and synthesize a controller for the plant; simulate and verify the cor-

rectness of the controller; deploy the controller. This model-based design framework

is significantly different from the traditional design methodology. Instead of starting

design by writing software code, designers can now start building models by defining

advanced functional characteristics based on underlying mathematical formulation of

the framework. These built models along with some simulation and verification tools

can lead to rapid prototyping, software testing, hardware-in-the-loop simulation and

verification.

However, there are differences. Circuit engineering is based on one mathematical

formulation, the Boolean algebra. Embedded software, on the other hand, is often

domain-specific and highly specialized. An appropriately chosen formalism can help a

designer focus on the functional aspect of a design instead of accidental issues imposed
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by the formalism. For example, a signal processing application is naturally described

by a dataflow formalism. On the other hand, FSM’s are best used to express control

logic. A mismatch between the application and the formalism will lead to an awkward

design process.

Thus choosing a good design framework with an appropriate formalism is the

prerequisite for doing a good design. In [Lee2005] Lee outlines the criteria for a

good framework: it expresses the important properties of a design; it supports mod-

ularity and abstraction which scales; it complies (or code generates) to cost-effective

solutions; and designs built using it are understandable and analyzable.

2.1 Actor-Oriented Design and Concurrent Mod-

els of Computation

A number of design frameworks have emerged over the years that offer differ-

ent concurrency models for the applications they support. For example, StreamIt

[Thies2002] has a dataflow formalism nicely matched to streaming media applica-

tions. Simulink [Simulink] has roots in control system modeling, and time is part of

its formal semantics. All these frameworks have formal concurrent models of compu-

tation (MoC’s) that match their application spaces. They often use block diagram

based design environments (e.g., see Fig. 2.1) and the design usually starts with as-

sembling preexisting components in the library. This kind of model-based design
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Simulink: time-based block diagram

• Physical plant is modeled by continuous time dynamics
• Controller is model by discrete time systemFigure 2.1: A Simulink block diagram modeling a plant and a controller.

style has also been called domain specific design, or component based design, each

emphasizing different aspects of the design.

Many of these design frameworks employ an actor-oriented approach, where actor

is an encapsulation of parameterized actions performed on input data to produce out-

put data. Input and output data are communicated through well-defined ports. Ports

and parameters form the interface of an actor. Fig. 2.2 gives a comparison between

object-oriented design and actor-oriented design [Lee2005]. In object-oriented design,

the interactions between objects are method-call based and what flows through an ob-

ject is sequential control. In actor-oriented design, the interactions between actors are

message-passing based and what flows through an actor is streams of data. Although

both object-oriented design and actor-oriented design emphasize data encapsulation
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objected oriented:

actor oriented:

What flows through 
an object is 
sequential control

What flows through 
an actor is      
streams of data

Figure 2.2: object-oriented design vs. actor-oriented design [Lee2005].

and make the data of one object/actor inaccessible to other objects/actors, they are

fundamentally different. In object-oriented design, the calling object still manipulates

the data of the called object through method calls and object activation is sequential-

ized. In actor-oriented design, the upstream actor sends a message to the downstream

actor and it’s up to the downstream actor to decide how to consume the passed mes-

sages. This emphasis of data flow over control flow leads to conceptually concurrent

execution of actors.

Under the umbrella of actor-oriented design, there is a rich variety of models of

computation that deal with concurrency and time in different ways. Each gives an in-
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teraction mechanism for components. In the introduction chapter of [Brooks2007-1],

it gives a nice summary of the way various models of computations are used. It

states that the utility of a model of computation stems from the modeling properties

that apply to all similar models. For many models of computation these properties

are derived through formal mathematics. Depending on the model of computation,

the model may be determinate [Kahn1974], statically schedulable [Lee1987-2], or time

safe [Henzinger2002]. Because of its modeling properties, a model of computation rep-

resents a style of modeling that is useful in any circumstance where those properties

are desirable. In other words, models of computation form design patterns of compo-

nent interaction, in the same sense that design patterns are used in object-oriented

languages [Gamma1994].

For a particular application, an appropriate model of computation does not impose

unnecessary constraints, and at the same time is constrained enough to result in

useful derived properties. For example, by restricting the design space to synchronous

designs, Scenic [Liao1997] enables cycle-driven simulation [Hansen1988], which greatly

improves execution efficiency over more general discrete-event models of computation

(such as that found in VHDL). However, for applications with multirate behavior,

synchronous design can be constraining. In such cases, a less constrained model

of computation, such as synchronous dataflow [Lee1987-2] or Kahn process networks

[Kahn1974] may be more appropriate. One drawback of this relaxation of synchronous

design constraints is that buffering becomes more difficult to analyze. On the other
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2 Ptolemy II

The Kernel

1.2  Non-Hierarchical Topologies

The classes shown in figure 1.2 support non-hierarchical topologies, like that shown in figure 1.1.
Figure 1.2 is a UML static structure diagram (see appendix A of chapter 1).

1.2.1  Links

An entity contains any number of ports; such an aggregation is indicated by the association with an
unfilled diamond and the label “0..n” to show that the entity can contain any number of ports, and the
label “0..1” to show that the port is contained by at most one entity. This association uses the Named-
List class shown at the bottom of figure 1.2 and defined fully in figure 1.4. There is exactly one
instance of NamedList associated with Entity used to aggregate the ports.

A port is associated with any number of relations (the association is called a link), and a relation is
associated with any number of ports. Link associations use CrossRefList, shown in figure 1.4. There is
one instance of CrossRefList associated with each port and each relation. The links define a web of
interconnected entities.

On the port side, links have an order. They are indexed from 0 to n, where n is the number returned
by the numLinks() method of Port.

1.2.2  Consistency

A major concern in the choice of methods to provide, and in their design, is maintaining consis-
tency. By consistency we mean that the following key properties are satisfied:
• Every link between a port an a relation is symmetric and bidirectional. That is, if a port has a link 

to a relation, then the relation has a link back to that port.
• Every object that appears on a container’s list of contained objects has a back reference to its con-

tainer.
In particular, the design of these classes ensures that the _container attribute of a port refers to an entity
that includes the port on its _portList. This is done by limiting the access to both attributes. The only
way to specify that a port is contained by an entity is to call the setContainer() method of the port. That
method guarantees consistency by first removing the port from any previous container’s _portList,
then adding it to the new container’s port list. A port is removed from an entity by calling setCon-

FIGURE 1.1.  Visual notation and terminology.

Port

Entity Entity

PortRelation

Link Link

Connection

Entity

Port

Connection Connection

L
in

k

Figure 2.3: Abstract syntax of Ptolemy II models.

hand, techniques exist for synchronous dataflow that allow co-optimization of memory

usage and execution latency [Teich1999] that would otherwise be difficult to apply to

a multirate system. Selecting an appropriate model of computation for a particular

application is often difficult, but this is a problem we should embrace instead of

avoiding.

2.2 Ptolemy II: a Software Environment for Ex-

perimenting with MoC’s

The Ptolemy project studies modeling, simulation, and design of concurrent, real-

time, embedded systems. The focus is on assembly of concurrent components. The
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key underlying principle in the project is the use of well-defined models of compu-

tation that govern the interaction between components. Unlike most system design

environments which have one or a limited number of built-in models of computation

(e.g., Simulink is originally based purely on continuous time semantics2 and later

added Stateflow, which has finite state machine semantics, and SimEvents, which has

discrete event semantics [Simulink]; StreamIt is based purely on dataflow semantics

[Thies2002]), the Ptolemy kernel has no built-in semantics. Instead the kernel package

defines a small set of Java classes that implement a data structure supporting a gen-

eral form of uninterpreted clustered graphs (see Fig. 2.3 taken from [Brooks2007-2]),

which provide an abstract syntax that is not concerned with the meaning of the

interconnections of components, nor even what a component is.

The semantics is introduced in the actor package which provides basic support

for executable entities. However, it makes a minimal commitment to the semantics

of these entities by avoiding specifying the order in which actors execute and the

communication mechanism between actors. These properties are defined in each

MoC where the director controls the execution of actors and the receiver controls the

communication between actors (see Fig. 2.4)

In Ptolemy II, an MoC is called a domain.3 The domains currently implemented

include: Component Interaction (CI), Communicating Sequential Process (CSP),

2Simulink’s discrete time signal is actually piecewise constant continuous time signal.
3Note the different usage of the term domain. Here domain is PtII-specific, referring to an MoC.

In domain-specific modeling, domain refers to a specific application area. They can be loosely related
though, considering that different domain-specific modeling environment may need different MoC’s
(PtII domains).
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Qualifying Exam  8

Actor-oriented design: 
a formalized model of concurrency

producer
actor

consumer
actor

IOPort

Receiver

Director object oriented actor oriented

• Actor-oriented design hides the states of each actor and makes them 
inaccessible from other actor

• The emphasis of data flow over control flow leads to conceptually 
concurrent execution of actors

• The interaction between actors happens in a highly disciplined way 
• Threads and mutexes become implementation mechanism instead of part 

of programming model

Figure 2.4: The semantics of a Ptolemy II domain is defined by director and receiver.

Continuous Time (CT), Distributed Discrete Event (DDE), Dynamic Dataflow (DDF),

Discrete Event (DE), Discrete Time (DT), Finite State Machines (FSM), Giotto,

Graphics (GR), Heterochronous Dataflow (HDF), Process Networks (PN), Parame-

terized Synchronous Dataflow (PSDF), Synchronous Dataflow (SDF), Synchronous

Reactive (SR), and Timed Multitasking (TM).

An essential difference between concurrent models of computation is their mod-

eling of time [Lee2006]. Some are very explicit by taking time to be a real number

that advances uniformly, and placing events on a time line or evolving continuous

signals along the time line (such as CT, DE). Others are more abstract and take time

to be discrete (such as DT, SR). Others are still more abstract and take time to be

merely a constraint imposed by causality (such as PN, CSP, SDF, DDF). The last

interpretation results in time that is partially ordered, which provides a mathematical
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                          Figure 1.2 Vergil --- a graphical user interface for Ptolemy II 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Vergil — a graphical user interface for Ptolemy II.

framework for formally analyzing and comparing models of computation [Lee1998].

There is a large actor library in Ptolemy II. Some actors are written to be domain-

polymorphic, i.e., they can operate in any of a number of domains. They are the result

of the principle of separation of function and communication. Some actors can only

be used in specific domains because they deal with functionalities specific to those

domains. Fig. 2.5 shows a graphical user interface in Ptolemy II called Vergil where

designers compose models by assembling pre-built actors and choosing appropriate

directors.
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There are three big volumes of design documents [Brooks2007-1][Brooks2007-2]

[Brooks2007-3] for Ptolemy II. Volume I gives an overview of the Ptolemy II design

environment and serves as a user’s manual. Volume II covers details of the software

architecture and serves as a developer’s manual for those who want to extend Ptolemy

II design environment. Volume II covers various domains implemented in Ptolemy II.

These documents are usually updated with each software release.
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Chapter 3

HDF: a Decidable Dataflow

Formalism

3.1 Motivation for Dataflow Computing

The Dataflow model of computation is most popularly used in digital signal pro-

cessing (DSP). Dataflow programs for signal processing are often described as directed

graphs where each node represents a function and each arc represents a signal path.

Compared with imperative programs, which do not often exhibit the concurrency

available in the algorithm, dataflow programs automatically break signal processing

tasks into subtasks and thus expose the inherent concurrency as a natural consequence

of programming methodology. In a dataflow graph, each function node executes con-

currently conceptually with the only constraint being data availability. Therefore it
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greatly facilitates efficient use of concurrent resources in the implementation phase.

Dataflow programming has come a long way since its use in the signal processing

community. Various programming environments based on this model of computation

have been developed over the years. Various specialized dataflow models of com-

putation have been invented and studied. Various scheduling algorithms based on

different criteria pertinent to specific applications have been proposed. It is still a

fruitful area of active research due to its expressive way to represent concurrency for

embedded system design.

Over the years, a number of dataflow models of computation (MoC) have been

proposed and studied. In the synchronous dataflow (SDF) MoC studied by Lee and

Messerschmitt [Lee1987], each dataflow actor consumes and produces fixed number

of tokens on each port in each firing. The consequence is that the execution order

of actors can be statically determined prior to execution. This results in execution

with minimal overhead, as well as bounded memory usage and a guarantee that

deadlock will never occur. The cyclo-static dataflow MoC [Engels1994] extends SDF

by allowing each actor’s consumption and production rates to vary in a cyclic but

predetermined pattern. It does not add more expressiveness to SDF, but turns out

to be more convenient to use in some scenarios. The heterochronous dataflow MoC

(HDF) proposed by Girault, Lee and Lee [Girault1999] extends SDF by using so-

called modal model to compose FSM with SDF. It allows actors to change their

rate signatures between global iterations of a model. In case of a finite number of
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rate signatures, properties like consistency and deadlock are still decidable. Bhat-

tacharya and Bhattacharya proposed a parameterized synchronous dataflow (PSDF)

MoC [Bhattacharyaand2000], which is useful for modeling dataflow systems with re-

configuration. In this domain, symbolic analysis of the model is used to generate a

quasi-static schedule that statically determines an execution order of actors, but dy-

namically determines the number of times each actor fires. Buck proposed a Boolean

dataflow (BDF) MoC [Buck1993] which allows the use of some dynamic actors such

as BooleanSelect and BooleanSwitch. He extends the static analysis techniques used

in SDF and in some situations a quasi-static schedule can be pre-computed. But fun-

damentally since BDF is Turing-complete, it does not guarantee that the scheduling

algorithm will always succeed. If it fails, a dynamic dataflow (DDF) MoC [Parks1995]

should be used to execute the model. DDF uses only runtime analysis and thus makes

no attempt to statically answer questions about deadlock and boundedness. Since

this section only serves as a brief review, it suffices to say that the list here does not

include every variant of dataflow ever conceived.

3.2 HDF

Almost all general purpose programming languages in widespread use, such as Java

and C, are Turing-complete. One well known result in computability theory is that

the halting problem is undecidable over Turing machines [Sipser1996]. Furthermore,

Rice’s theorem states that any nontrivial property about the language recognized by
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a Turing machine is undecidable. Fundamentally, that is the reason why debugging is

always a difficult task since there are no general algorithms for doing that. In practice,

programmers mostly rely on testing to uncover bugs in the software and achieve some

degree of quality assurance. However, software testing remains a dark art [Myers2004].

Myers et al stated in their book The Art of Software Testing [Myers2004] that “at

the time this book was first published, it was a well-known rule of thumb that in a

typical programming project approximately 50 percent of the elapsed time and more

than 50 percent of the total cost were expended in testing the program or system

being developed; today, a quarter of the century later, the same is still true”.

In fact, things could get much worse when testing the embedded software, which

has seen a drastic increase in complexity in recent years. For one thing, timing prop-

erties are at least as important as the function (as implemented on a Turing machine)

in determining the correctness of an embedded system. However, the timing proper-

ties of a system are notoriously difficult to test, often with a small deviation from the

expected operating condition resulting in missing deadlines and catastrophic failures.

Furthermore, a recent trend of embedded systems is to move from closed “boxes” that

do not expose the computing capability to the outside, to deeply embedded network

systems. Such networking poses considerable technical challenges in a networked envi-

ronment, and it becomes impossible to test the software under all possible conditions

[Lee2008].

On the other hand, reliability standards for embedded software are much higher
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than general-purpose software. In desktop computing, if a program is deadlocked, or

runs out of memory, restarting the program has become an acceptable way of “fixing”

the problem, no matter how inconvenient it is. In embedded computing, people

have much higher expectations. They expect programs simply to work and expect

them to run continuously for years without problems. With software embedded into

many devices today—including high confidence medical devices and systems, assisted

living, traffic control and safety, advanced automotive systems, process control, energy

conservation, environmental control, avionics, instrumentation, critical infrastructure

control, distributed robotics, defense systems, manufacturing, and smart structures

[Lee2008]—software failure causes more than inconvenience. It could cause human

fatalities, or affect a large population, or result in huge financial loss. Even for the

embedded systems as simple as those as in household appliances, such as microwave

ovens, washing machines and dishwashers, people expect them to work each time.

(It’s interesting to see that people set the bar much higher for those that are not

first-and-foremost computers than the computers sitting on the desktop.) So is there

an alternative way to design such system to meet high reliability standards?

One solution to solve the difficulty of comprehensive testing is to be correct by

design. Unlike traditional general purpose programming languages, which strive to

provide all-inclusive one-stop solution for all applications, embedded system design is

domain-specific and highly specialized. Designers can choose a formalism appropriate

for the specific applications to more effectively express the design (this is the essence
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of the previous chapter on model-based design). Moreover designers can carefully

choose a decidable formalism, which makes it possible to check certain key properties

during compilation time. Some important properties for embedded systems, such as

deadlocks, a bound on memory consumption and a bound on execution time, can be

statically analyzed if these properties are indeed decidable from the formalism.

For example, synchronous languages, including Esterel [Boussinot1991], Lustre

[Halbwachs1991] and Signal [Le Guernic1991], have been established as a technology

of choice for modeling, specifying, validating, and implementing real-time embed-

ded applications [Halbwachs1993][Benveniste1991][Benveniste2003]. They have best

found their way in the design of embedded control systems. Since they are based

on a decidable formalism, designers can formally reason about the key properties

of the system during the design stage. Taking Esteral as an example, he/she could

determine whether a program is deadlock-free by doing so-called causality analysis.

Furthermore, an Esterel program is equivalent to a finite state machine and therefore

verification techniques can be used to prove the correctness of the program.

The SDF formalism is another decidable MoC amenable to static analysis. SDF is

a multi-rate dataflow language. Each actor in an SDF diagram has a certain number

of input and output ports, each labeled with the number of data tokens the actor

consumes (hence called consumption rate) or produces (hence called production rate)

on the port each time the actor fires. The set of production rate of all output ports

and consumption rate of all input ports for an actor is called the rate signature of
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rA rB

A B

Figure 3.1: A simple SDF block diagram.

this actor. The decidability of the SDF formalism lies in the fixed rate signature of

each actor.

In the simple SDF block diagram shown in Fig. 3.1, actor A has a production rate

of 2 for its output port and actor B has a consumption of 3 for its input port:

rA = 2, rB = 3.

Ports are connected by first-in first-out buffers. By solving the following balance

equation, which actually is a constraint imposed by the relative consumption and

production rates on the buffer:1

fArA = fBrB,

we can determine the number of firings for actor A (fA) and actor B (fB) in one

periodic firing schedule:

1For a general SDF diagram, one needs to solve multiple balance equations since each connection
imposes a constraint and thus results in one equation.
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fA = 3, fB = 2.

The next step is to construct the actual executable schedule that follows data prece-

dence given the solution to the balance equations. In this particularly simple example,

there are two feasible schedules: AAABB or AABAB. Each schedule requires different

code size and buffer size. For a complicated SDF graph, one could imagine there is

great scheduling flexibility and much work has been done on scheduling it efficiently

[Bhattacharyya1996]. By repeating the schedule (we call one firing of the schedule

one complete iteration), the system will never deadlock and the consumed memory

will always be bounded.

On the other hand, if there is no non-zero solution to the balance equations, or if

there is non-zero solution to the balance equations but no correspondent schedule to

realize it, then the system either cannot be executed in bounded memory due to rate

inconsistency or the system will deadlock due to the lack of initial data tokens. Thus

designs can be improved upon and errors can be corrected while the system is still in

the initial design stage so that there is no surprise at run time.

The important lesson learned here is we limit expressiveness in exchange for con-

siderable advantages such as compile-time predictability. The SDF formalism pro-

vides such an advantage when the system under design can be expressed as such—no

dynamic behavior, no reconfiguration. Otherwise more expressive formalisms are

needed. However, going to the other side of the spectrum with a Turing-complete
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language will lose all the advantage of decidability. The key is to find a sweet spot

where we could accommodate both in some form.

Finite state machines (FSM’s) have been the subject of a long history of research

work and are often used to describe and analyze intricate control sequences. Due to

their finite nature, a designer can enumerate the set of reachable states to ascertain

that a particularly dangerous state cannot be reached. In [Girault1999] Girault, Lee

and Lee propose combining FSM’s with multiple concurrency models to form so-called

*charts. Other approaches to combine FSM’s with concurrent models of computa-

tion include the original statecharts [Harel1987], the Argos language [Maraninchi1991]

combining FSM’s with a Synchronous/Reactive (SR) concurrency model, the Speci-

fication and Description language (SDL) [Belina1991] combining FSM’s with Process

Networks (PN), the codesign finite state machine (CFSM) [Chiodo1994] combining

FSM’s with a discrete-event (DE) concurrency model, the Hybrid systems [Alur1995]

combining FSM’s with concurrent continuous-time models etc. These approaches

tightly intertwine the concurrency model with the automata semantics, and most of

them have limited compositionality in that they permit automata only in the leaf cells

or at the top of the hierarchy. The innovation in the *charts approach is to decouple

the concurrency model from the hierarchical FSM semantics so that designers can

choose an appropriate concurrency model to match the problem at hand. Moreover,

the hierarchy in *charts can be arbitrarily deep, and concurrency models and FSM’s

can be placed anywhere within it. An FSM can be nested within a module in a con-
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Refinement A

Refinement B

Refinement C

Modal model

Figure 3.2: A modal model showing refinement for each state.

currency model, with the interpretation that the FSM describes the behavior of the

module. Conversely, a subsystem in some concurrency model can be nested within a

state of an FSM, with the meaning that the subsystem is active if and only if the FSM

is in that state. The latter is particularly well suited to describing modal systems,

where modes of operation are modeled as states of an FSM.

Fig. 3.2 shows a modal model actor with three states where each state contains a

refinement that describes the behavior of the modal model actor when it is in that

state. With each state refined by an SDF sub-model, we have a convenient, compact
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Figure 3.3: Select and Switch actor.

and understandable way to express modal behavior by combining FSM with SDF.

The next question is whether we lose compile-time predictability if we express system

design using this formalism.

To answer this question, let’s analyze two actors in Fig. 3.3. The Select actor first

reads a boolean token from its control port. Depending on the value of the boolean

token, it either reads a data token from its T port (if the boolean token is true) or

from its F port (if the boolean token is false) and then sends the data token to its

output port. The Switch actor has a similar behavior. It first reads a boolean token

from its control port. Depending on the value of the boolean token, it reads a data

token from the other input port and sends the data token either to its T port (if the

boolean token is true) or to its F port (if the boolean toke is false).

We can model the behavior of Select and Switch actors with modal models. Fig. 3.4
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Figure 3.4: Switch actor as a modal model.
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provides an equivalent implementation for the Switch actor. In the refinement for the

initial “state”, the control port has rate 1 and all other ports have rate 0, so only

one token is read from the control port. The next step is to evaluate all guard

expressions for the state transitions from the initial “state” and take the transition

to either “state2” or “state3”. According to their rate signatures, the refinement for

“state2” reads one token from the input port and sends it to T port; the refinement

for “state3” reads one token from the input port and sends it to F port. Eventually

the state machine takes the transition back to the initial “state” since the guard

expression is always true for the transition from “state2” or “state3”. And so begins

the next cycle. The Select actor can be modeled similarly.

To answer the compile-time predictability question, we need the following theorem:

Theorem 1 [Buck1993] BDF (boolean data flow) models consisting the Select and

Switch actors, together with actors for performing addition, subtraction, and compari-

son on the integers, plus a source actor that produces constant stream of integer-valued

tokens and a fork actor, are Turing equivalent.

Since we have shown that with the composition of FSM and SDF we can implement

the Select and Switch actors, it naturally follows that:

Corollary 1 The composition of FSM and SDF creates a Turing-complete language.

Since for a Turing-complete language, deadlock and bounded memory consump-

tion are undecidable, we also have:
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Corollary 2 For designs that are expressed with FSM + SDF formalism, deadlock

and bounded memory consumption are undecidable.

Then the next natural question is what constraint it takes for the formalism to be

decidable. For a model that is a composition of FSM and SDF, when each FSM takes

a transition to a certain state, we can replace the FSM with the refinement for that

state. So if we take a snapshot after any state transition, the model would look like

an SDF graph. Since it takes a complete iteration of an SDF graph to return buffers

to their original size, the key to retain decidability is to only allow state transitions to

occur after one complete iteration. With this constraint, the resulting MoC is called

heterochronous data flow (HDF), first proposed in [Girault1999].

Fig. 3.5 show a typical HDF model. At each level of the hierarchy, the name

inside the green box represents the director (Ptolemy II terminology) implementing

the MoC at that level of the hierarchy. At the top level is an HDF model. Two

actors at that level are refined by FSM’s. For the FSM on the right hand side, the

two states are refined by SDF sub-models. For the FSM on the left hand side, one

state is refined by SDF sub-model and the other state is refined by HDF sub-model.

The actor in the HDF sub-model is further refined an FSM and so it goes on. The

execution of the HDF model goes as the following: after the top level model finishes

one complete iteration, each active2 FSM evaluates the guard expressions for the arcs

2An FSM is not active if it descends from the state φ of another FSM’ and φ is not the current
state of FSM’. For example, in Fig. 3.5 the two FSM’s right below the top level are always active.
The third FSM below can be active or not depending on the current state of the FSM above it.
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Heterochronous Dataflow (HDF)
= SDF + FSM + transition constraints
(Girault, Lee, Lee, 97) 

HDF

HDFSDF

SDF SDF

SDF SDF

HDFFSM HDFFSM

HDFFSM

Figure 3.5: A hierarchical HDF model.
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emanating from the current state and makes the transition if the corresponding guard

expression evaluates to true. The rate signatures of some actors may change after

making the state transitions and a new SDF schedule is generated or retrieved (if pre-

calculated). The next iteration continues with the new schedule and the cycle repeats.

Due to the finite nature of FSM’s, we can pre-analyze all possible SDF schedules and

determine deadlock and memory-consumption for each schedule. Therefore we have

the following theorem:

Theorem 2 HDF is not Turing-complete.

Proof In HDF, deadlock is decidable, which means the halting problem for HDF

is decidable. Since for any Turing-complete formalism the halting problem is not

decidable, HDF cannot be Turing-complete.

3.3 Configuration Analysis

Fig. 3.6 shows an execution trace for an HDF model. It alternates between doing

one complete iteration and making state transtions. Between state transitions, it

can be reduced to an SDF model. If the SDF model has a non-zero solution to its

balance equations and there exists corresponding schedule, we say the model is in a

well-defined configuration.

Since an HDF model can have an arbitrary number of levels of hierarchy, there

must be a systematic way to find out the number of configurations and derive the
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Execution trace and configurations

State transitions

Between state transitions, the model 
is in a well-defined configuration.

Configuration i Configuration i+1 Configuration i+2 Configuration i+3 Configuration i+4…… ……

For code generation purpose, there must be a systematic way to 
statically analyze and derive all possible configurations for a given 
model. Figure 3.6: An execution trace for HDF model.

schedule for each configuration. The approach taken here uses the following defini-

tions.

For each opaque actor (i.e., atomic actor or opaque composite actor3), let N be

the number of configurations of this actor. For each configuration of the actor, it has

a corresponding local SDF schedule.

Let rij be the rate of the jth port of this actor in the ith configuration, where

i = 0, . . . , N − 1, j = 0, . . . , P − 1, and P is the number of ports of this actor.

Let Ri = {rij|j = 0, . . . , P − 1} be the rate signature of this actor in the ith

configuration.

During code generation, N and Ri, i = 0, . . . N − 1, for each opaque actor are

3An opaque composite actor is a composite actor containing a local director. Thus the MoC used
inside an opaque composite actor can be different from the MoC’s used higher up in the hierarchy. It
is the mechanism for building models with hierarchically coupling heterogeneous MoC’s in Ptolemy
II.
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N =1    

R0 = the port rates of the atomic actor

Configuration analysis

Figure 3.7: Configuration analysis for an atomic actor.

derived in a recursive bottom-up fashion:

1) Atomic actor (see Fig. 3.7):

N = 1

R0 = the rate signature of the atomic actor

Comments: an atomic actor has a degenerate form of local SDF schedule: fire

itself once.

2) Composite actor with a local SDFDirector (see Fig. 3.8):

N = 1

R0 = the rate signature of the composite actor

inferred from the local SDF schedule

Comments: each contained actor can only have one rate signature (i.e., one con-

figuration). Otherwise the local director should be a HDFDirector. In Fig. 3.8, after
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Configuration analysis

1 2
3 1

1 1

3 2
6

Figure 3.8: Configuration analysis for a composite actor with a local SDFDirector.

determining the local schedule, we can determine the number of data tokens con-

sumed and produced by the composite actor to complete a local iteration, and that

is the rate signature for the composite actor.

3) Modal model with a local HDFFSMDirector (see Fig. 3.9):

N =
M−1∑
j=0

Nj

where Nj is the number of configurations of the refinement for the jth state, and M

is the number of states.

For i = 0, . . . , N − 1,

Ri = the rate signature of the kth refinement

in its qth configuration
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N0 = 1

N1 = 3

N2 = 1

N= 5

state0

state1 state2

Figure 3.9: Configuration analysis for a modal model.

where k is derived from

i−
k−1∑
j=0

Nj ≥ 0

and

i−
k∑

j=0

Nj < 0

q is derived from

q = i−
k−1∑
j=0

Nj

Comments: in HDF, a modal model is controlled by a HDFFSMDirector, which

is responsible for making the state transition after one complete iteration at the top

level. In Fig. 3.9, the modal model has three states with refinements of 1, 3 and

1 configurations respectively (i.e., M = 3, N0 = 1, N1 = 3, N2 = 1). The modal

model has “or” semantics, meaning it can be in only one of the states at any time,
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therefore the total number of configurations for the modal model takes the form

of summation—5 in this case (i.e., N = 5), and the set of rate signatures for the

modal model is the union of the set of rate signatures of each refinement. Assume we

want to compute R3—the signature of the 3rd configuration of the modal model. By

substituting i = 3 into the above equations, we get k = 1 and q = 2. That means R3

is equal to the rate signature of the 2nd configuration (q = 2) of the refinement for

state1 (k = 1).4 Similarly, R0 is equal to the rate signature of the 0th configuration

of the refinement for state0. R1 is equal to the rate signature of the 0th configuration

of the refinement for state1. And so it goes on.

4) Composite actor with a local HDFDirector (see Fig. 3.10):

N =
M−1∏
j=0

Nj

where Nj is the number of configurations of the jth contained actor, and M is the

number of contained actors.

For i = 0, . . . , N − 1,

Ri = the rate signature of the composite actor

inferred from the local SDF schedule

when the jth contained actor, for j = 0, . . . ,M − 1, presents its rate signature in its

kjth configuration, where kj is derived from

i =
M−1∑
j=0

(kj

M−1∏
q=j+1

Nq)

4all enumerations start from 0.
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Qualifying Exam  24

Configuration analysis

N0 = 1

N1 = 3

N2 = 3

N = 9

Figure 3.10: Configuration analysis for a composite actor with a local HDFDirector.

= k0N1N2 . . . NM−1 + k1N2 . . . NM−1 + . . .+ kM−2NM−1 + kM−1

Comments: In Fig. 3.10, the composite actor has three contained actors with 1, 3

and 3 configurations respectively (i.e., M = 3, N0 = 1, N1 = 3, N2 = 3). A composite

actor with a local HDFDirector has “and” semantics, meaning the configuration of the

composite actor is determined by the configurations of all contained actors together,

therefore the total number of configurations for the composte actor takes the form of

product—9 in this case (i.e., N = 9), and the set of rate signatures for the composite

actor are determined by local SDF schedules for all combinations of the rate signatures

of all contained actors. Assume we want to compute R4—the rate signature of the 4th
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configuration of the composite actor. By substituting i = 4 into the above equation,

we get k0 = 0, k1 = 1 and k2 = 1. That means R4 is the rate signature of the

composite actor when the 0th contained actor presents its rate signature in its 0th

configuration (k0 = 0), the 1st contained actor presents its rate signature in its 1st

configuration (k1 = 1) and the 2nd contained actor presents its rate signature in its

1st configuration (k2 = 1). Similarly, R0 is the rate signature of the composite actor

when the 0th contained actor presents its rate signature in its 0th configuration ,

the 1st contained actor presents its rate signature in its 0th configuration and the

2nd contained actor presents its rate signature in its 0th configuration. R1 is the

rate signature of the composite actor when the 0th contained actor presents its rate

signature in its 0th configuration , the 1st contained actor presents its rate signature

in its 0th configuration and the 2nd contained actor presents its rate signature in its

1st configuration. And so it goes on.

Looking back at Fig. 3.5, the HDF model has a total of 6 configurations.

3.4 The Complexity Issue

The product form in Fig. 3.10 leads to potential exponential explosion in the num-

ber of configurations (thus schedules) for HDF models. Under some circumstances,

if a design is done appropriately, a submodel does not change its rate signature pre-

sented to the outside when it changes its configuration. In this case, the submodel can

be considered an SDF composite actor as far as other outside actors are concerned.
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∏
1M-

0=j
jN = N potential exponential explosion

1 1 01

∑
1M-

0=j
jN+1 = N

1

1

Figure 3.11: The complexity issue in HDF scheduling.

In Fig. 3.11 CompositeActor3 keeps a constant rate of 1 for its input port when its

contained modal model makes state transitions. If other composite actors behave the

same way, then schedules for the whole model can be decomposed into the schedule

for the top level composite actor and the schedules of individual contained composite

actors. In another words, the number of schedules required to describe the whole

model is reduced from a product form to a sum form.
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Chapter 4

Previous Work on Partial

Evaluation

Kleene’s s−m−n theorem [Kleene1952] establishes the theoretical foundation for

partial evaluation techniques. Formally, the theorem states that for any two integers

m,n ≥ 1, there exists a primitive recursive function Smn that takes as arguments a

code p for a function of m + n arguments, and m additional integer values, returns

a code for a function of n arguments, and satisfies the following lambda calculus

equation for all arguments

ϕ
(n)
Smn(p,x1,...,xm) = λy1, . . . , yn.ϕ

(m+n)
p (x1, . . . , xm, y1, . . . , yn)

where ϕ(k)
p represents a recursive function with k parameters and described by code

p, Smn represents the partial evaluator, and Smn(p, x1, . . . , xm) represents the new

code after applying the partial evaluator to the original code p and m arguments:
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x1, . . . , xm.

In practical terms, this means given any programming language and integers

m,n ≥ 1, there is an algorithm with the following property: given the source code for

a function with m + n arguments and values for the first m as input, it outputs the

source code for a function that effectively hardcodes the first m arguments to those

values.

In principle, all partial evaluation techniques are no more than trying to find

a way to implement this algorithm. In Kleene’s constructive proof of the s−m−n

theorem, he’s only concerned with the existence of the residual program and efficiency

is irrelevant. But in practice, we are more interested in using partial evaluation as

optimization techniques and efficiency is the key for the generated residual program.

In fact, finding out what part of a program is fixed and finding out the algorithm for

doing partial evaluation for the given context and generating highly efficient program,

and also the question of how to do it systematically, really depends on a lot factors

such as programming languages, applications, and so on—that is the major research

problem for a lot of researchers as reviewed in this chapter. And that is also my topic

in this thesis, in essence.
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4.1 Partial Evaluation in General Purpose Soft-

ware

4.1.1 Partial Evaluation in Imperative Languages

Partial evaluation was originally formulated for small imperative languages (see

[Ershov1977][Bulyonkov1988]). Following that, an off-line partial evaluator for a flow

chart language was developed [Gomard1991-2]. A practical partial evaluator for the

C programming language that transfered academic results to a realistic context was

implemented in [Anderson1994].

The review in this section mostly follows Jones et al [Jones1993]. It uses a very

simple flow chart language to explain the basic principles of partial evaluation so

that it does not bring up the complexity associated with a real language. In fact the

core techniques carry over to more complete imperative languages like C as well as

functional and logic languages.

Fig. 4.1 is the syntax of the flow chart language with variables, assignment state-

ments, gotos and tests. A program written in this language consists of a number of

basic blocks. A label pp is attached to each basic block, which consists of a sequence

of assignments and a jump statement at the end. A program execution starts with

reading the values of input variables. Then the first basic block starts executing.

Inside each basic block, the execution is sequential. At the end of each basic block,

the execution either jumps to another basic block or returns an expression. In the
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70 Partial Evaluation for a Flow Chart Language

4.2.1 The 
ow chart language

In this chapter, L is a simple 
ow chart language with variables, assignment state-

ments, gotos and tests. The syntax is shown in Figure 4.1. This is almost the

language described in Section 3.3.3, but the syntax has been changed to make

single-entry blocks explicit. The main modi�cation to the language is that the set

of constants is that of Lisp S-expressions, and operations work on S-expressions.

For brevity we shall write the constant expression (quote value) as 'value.

hProgrami ::= read hVari, . . . , hVari; hBasicBlocki+

hBasicBlocki ::= hLabeli: hAssignmenti� hJumpi

hAssignmenti ::= hVari := hExpri;

hJumpi ::= goto hLabeli;

j if hExpri goto hLabeli else hLabeli;

j return hExpri;

hExpri ::= hConstanti

j hVari

j hOpi hExpri . . . hExpri

hConstanti ::= quote hVali

hOpi ::= hd j tl j cons j . . .

plus any others needed for writing

interpreters or program specializers

hLabeli ::= any identi�er or number

Figure 4.1: Syntax of L-programs.

The program's store (memory) is a function from the program's variables into

their current values. Input to a program p is a list of values d = (v1 . . . vn), ini-

tially bound to var1,. . . , varn. All the non{input variables varn+1,. . . , varn+k
have as initial values the empty list (), so the initial store is the �nite function:

[var1 7!v1,. . . , varn 7! vn, varn+1 7! (),. . . ,varn+k 7! ()]

Base functions are assumed free of side e�ects on the values of the variables.

Assignments, conditionals, and goto are executed in the usual way, and return

expression terminates execution, yielding the value of expression as the value

of the program execution [[p]]
L
d .

Syntactic sugar

For the sake of readability we shall write programs freely using Pascal-like con-

structs such as begin . . . end, while . . . do . . . and repeat . . . until . . . to be

regarded as structured ways of writing programs in the syntax given above.

Figure 4.1: Syntax of a flow chart language [Jones1993].

latter case, the execution ends and the value of the returned expression is the result

of the program execution.

Now given a program and only part of this program’s input data, a partial evalu-

ator will attempt to execute the given program as far as possible yielding as result a

residual program that will perform the rest of the computation when the rest of the

input data are supplied. So the question is how to hard-code the partial input data

in the residual program.

An imperative language has a notion of state during the program execution. In

the flow chart language, the state is a pair (pp, v) where pp is the label of a basic

block representing the current control point during the execution and v is the set

of program variables holding their current values. The execution of an imperative
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program is essentially a sequence of state transitions: (pp, v) => (pp’, v’).

When only part of the input data are available, we can divide the set of input

variables into static part and dynamic part (those known are static and those unknown

are dynamic). Next we can classify the set of all program variables into static part (vs)

and dynamic part (vd) through a process called binding-time analysis. Essentially

this analysis determines those variables that only depend on other static variables or

constants as static and otherwise as dynamic. Such a classification is called a division.

Given a division, the state transitions can be decomposed into (pp, (vs, vd)) =>

(pp’, (vs’, vd’)). By re-associating, we get ((pp, vs), vd)) => ((pp’, vs’),

vd’). In another words, we can incorporate the values of the static variables into the

control point during partial evaluation, and the generated residual program is usually

more efficient.

Suppose during partial evaluation we discover that if the program had been ex-

ecuted normally with all input data supplied, the computation might eventually be

in a state with control at point pp and with vs as the values of the static variables.

Then the pair (pp, vs) is made a specialized program point in the residual program.

The code that (pp, vs) labels in the residual program is an optimized version of

the code at pp in the original program. The potential for optimization is due to the

availability of the values of the static variables. A program point pp may appear in

several residual versions, each with different values of the static variables. The set of

all specialized program points (pp, vs) that are reachable during partial evaluation
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80 Partial Evaluation for a Flow Chart Language

Code generation for a conditional: if exp goto pp0 else pp00

Done at specialization time Generated code
(if exp is dynamic) reduced exp := reduce(exp,vs) if reduced exp

goto(pp0,vs)

else(pp0 0,vs)

(if exp is static and val := eval(exp,vs) goto (pp0, vs)

val = true)

(if exp is static and val := eval(exp,vs) goto (pp00,vs)

val = false)

Computing poly

Let pp0 be the �rst label in the program and let vs0 be the initial values of the static

data. It is clear that (pp0, vs0) should be in poly. Moreover, if any specialized

program point (pp, vs) is in poly, all specialized program points reachable from

(pp, vs) should be there. That is, poly is the closure of vs0 under the relation

`reachable from'.

We now address this more carefully. Consider specialized program point (pp,

vs), where pp is attached to a basic block of commands in the subject program: a

sequence of assignments ended by a `passing of control'. Some assignments might

reassign static variables, thus forcing the entry list of statically known values, vs,

to be updated, so a new specialized program point has form (pp', vs'). The

set of successors naturally depends on the form of control passage. Let us write

successors(pp, vs) for the set of possible successors (it has two elements for a

dynamic conditional, none for a return and otherwise one). In the earlier example,

successors(search,(z, (x y z))) = f (cont, (z, (x y z))) g

successors(search,(z, (z))) = f (found, (z, (z))) g

successors(cont, (z, (x y z))) = f (search,(z, (y z))) g

and so on. A �rst approximation to the overall structure of mix can now be given

(Figure 4.6).

poly := f (pp0, vs0) g;

while poly contains an unmarked (pp, vs) do

begin

mark (pp, vs);

generate code for the basic block starting at pp using the values in vs;

poly := poly [ successors(pp, vs)

end

Figure 4.6: A simple specialization algorithm.

Rules for computing successors are easily given. If the basic block labelled by ppFigure 4.2: A simple partial evaluation algorithm [Jones1993].

is called poly. Thus the partial evaluation involves computing poly and generating

the residual program given poly.

Fig. 4.2 gives a simple algorithm for computing poly and generating code, where

poly starts with the first label in the program and the initial values of the static data.

For any specialized program point (pp, vs) in poly, a sequence of assignments is

followed by a “passing of control”. Some assignments might reassign static variables,

thus forcing vs to be updated, so a new specialized program point has form (pp’,

vs’). The set of successors naturally depends on the form of control passage and

rules for computing successors are given by Fig. 4.3.

The generated code for a basic block is the concatenation of the reduced code for

the sequence of assignments and the final jump statement. Fig. 4.4 and Fig. 4.5 show

the reduction rule for each statement. They use two helper functions: eval(exp,

vs), which returns the value of a static expression exp; and reduce(exp, vs), which

performs constant folding of static parts of a dynamic expression.

Take the following program as an example
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Program specialization techniques 81

transforms the static store vs into vs0, then use:

Code generation for a conditional: if exp goto pp0 else pp00

control component of pp successors(pp, vs)

return fg

goto pp0 f(pp0, vs0)g

if exp f(pp0, vs0)g if exp evaluates to true

goto pp0 else pp00 f(pp00, vs0)g if exp evaluates to false

f(pp0, vs0), (pp00, vs0)g if exp is dynamic

4.4.4 Transition compression

When the subject program in Figure 4.2 is slavishly specialized using the algorithm

in Figure 4.6, the following residual program is produced:

(search, (z, (x y z))): goto (cont, (z, (x y z)));

(cont, (z, (x y z))): valuelist := tl (valuelist);

goto (search, (z, (y z)));

(search, (z, (y z))) : goto (cont, (z, (y z)));

(cont, (z, (y z))) : valuelist := tl (valuelist);

goto (search, (z, (z)));

(search, (z, (z))) : goto (found, (z, (z)));

(found, (z, (z))) : value := hd (valuelist);

Though correct this result is not very pleasing. We therefore apply the technique

called transition compression to eliminate the redundant gotos.

De�nition 4.5 Let pp be a label occurring in program p, and consider a jump goto

pp. The replacement of this goto by a copy of the basic block labelled pp is called

transition compression. 2

When we compress the above program to remove super
uous jumps, we obtain

the natural residual program, except that the composite label (search, (z, (x

y z))) should be replaced by a simple one (a number or an identi�er):

(search, (z, (x y z))): valuelist := tl (valuelist);

valuelist := tl (valuelist);

value := hd (valuelist);

The bene�ts of the compression are evident: the code becomes neater and more

e�cient. However, indiscriminate use of transition compression o�ers two pitfalls:

code duplication and in�nite compression. Code duplication can occur when two

distinct transitions to the same program point are both compressed. When the

residual program contains a loop, the compression can even be continued in�nitely.

Figure 4.3: Rules for computing successors [Jones1993].

Program specialization techniques 79

vs. In the residual program the value of vs is `built in' to the specialized program

point (pp, vs), and not explicit as it is at program specialization time.

De�nition 4.4 The set of all specialized program points (pp, vs) that are reach-

able during program execution is called poly. 2

Note that poly thus represents the set of points of control in the residual pro-

gram; in our example:

poly = f (search, (z,(x y z))),(search,(z,(y z))),(search,(z,(z))),

(cont, (z,(x y z))),(cont, (z,(y z))),

(found, (z,(z))) g

In the next sections we show how to compute poly and how to generate a residual

program given poly. We address the latter question �rst.

4.4.3 Generating code for the various commands

Suppose we are given a specialized program point (pp, vs). In the subject pro-

gram the label pp is attached to a basic block consisting of a sequence of commands.

The generated code for a basic block is the concatenation of the code generated

for the commands.

In the following we assume a rich library of basic functions. In particular, suppose

exp is an expression and vs is a list of values of the program's static variables. We

need two functions: eval(exp, vs), which returns the value of a static expression

exp; and reduce(exp, vs), which performs constant folding [4] of static parts of

a dynamic expression. If vs, for example, says that b = 2, the expression b � b +

a can be replaced by 4 + a.

Command Done at specialization time Generated code
X := exp reduced exp := reduce(exp, vs) X := reduced exp

(if X is dynamic)

X := exp val := eval(exp, vs);

(if X is static) vs := vs[X 7! val]

return exp reduced exp := reduce(exp, vs) return reduced exp

goto pp0 goto (pp0, vs)

Figure 4.4: Reduction rules for code generation (part I) [Jones1993].

80 Partial Evaluation for a Flow Chart Language

Code generation for a conditional: if exp goto pp0 else pp00

Done at specialization time Generated code
(if exp is dynamic) reduced exp := reduce(exp,vs) if reduced exp

goto(pp0,vs)

else(pp0 0,vs)

(if exp is static and val := eval(exp,vs) goto (pp0, vs)

val = true)

(if exp is static and val := eval(exp,vs) goto (pp00,vs)

val = false)

Computing poly

Let pp0 be the �rst label in the program and let vs0 be the initial values of the static

data. It is clear that (pp0, vs0) should be in poly. Moreover, if any specialized

program point (pp, vs) is in poly, all specialized program points reachable from

(pp, vs) should be there. That is, poly is the closure of vs0 under the relation

`reachable from'.

We now address this more carefully. Consider specialized program point (pp,

vs), where pp is attached to a basic block of commands in the subject program: a

sequence of assignments ended by a `passing of control'. Some assignments might

reassign static variables, thus forcing the entry list of statically known values, vs,

to be updated, so a new specialized program point has form (pp', vs'). The

set of successors naturally depends on the form of control passage. Let us write

successors(pp, vs) for the set of possible successors (it has two elements for a

dynamic conditional, none for a return and otherwise one). In the earlier example,

successors(search,(z, (x y z))) = f (cont, (z, (x y z))) g

successors(search,(z, (z))) = f (found, (z, (z))) g

successors(cont, (z, (x y z))) = f (search,(z, (y z))) g

and so on. A �rst approximation to the overall structure of mix can now be given

(Figure 4.6).

poly := f (pp0, vs0) g;

while poly contains an unmarked (pp, vs) do

begin

mark (pp, vs);

generate code for the basic block starting at pp using the values in vs;

poly := poly [ successors(pp, vs)

end

Figure 4.6: A simple specialization algorithm.

Rules for computing successors are easily given. If the basic block labelled by pp

Figure 4.5: Reduction rules for code generating (part II) [Jones1993].



52

while name != hd (namelist) do

begin

valuelist := tl (valuelist);

namelist := tl (namelist)

end;

value := hd (valuelist);

which searches the value in the valuelist for the corresponding name in the namelist1.

Suppose the partial evaluator is given the initial values of the variables name and

namelist, for example name = z and namelist = (x y z) but the valuelist is

unknown. By converting the above program to a desugared version written in the

flow chart language, we get

search: if name = hd(namelist) goto found else cont;

cont : valuelist := tl(valuelist);

namelist := tl(namelist);

goto search;

found : value := hd(valuelist);

return value;

Starting with poly = (search, (z,(x y z))) and applying the algorithm in

Fig. 4.2 and reduction rules in Fig. 4.4 and Fig. 4.5, the following residual program

is produced:

(search, (z, (x y z))): goto (cont, (z, (x y z)));

(cont, (z, (x y z))): valuelist := tl (valuelist);

goto (search, (z, (y z)));

(search, (z, (y z))) : goto (cont, (z, (y z)));

(cont, (z, (y z))) : valuelist := tl (valuelist);

goto (search, (z, (z)));

(search, (z, (z))) : goto (found, (z, (z)));

(found, (z, (z))) : value := hd (valuelist);

return value;

1hd is the abbreviation for head and tl is the abbreviation for tail.
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By applying a technique called transition compression which replaces goto(pp,

vs) with a copy of the corresponding basic block labeled (pp, vs), the residual

program becomes

(search, (z, (x y z))): valuelist := tl (valuelist);

valuelist := tl (valuelist);

value := hd (valuelist);

return value;

For this simple program, one can easily see the equivalence with the original program

given the partial input data.

The above description illustrates the basic principles of partial evaluation. In

practice a lot of details need to be dealt with, which I summarized below for interested

readers. For example, indiscriminate use of transition compression may lead to code

duplication and infinite compression; it may be desirable do the compression along

with the code generation (i.e., on the fly) to avoid superfluous gotos; a technique

called generalization to classify unbounded static variables as dynamic is needed to

avoid non-terminating or useless partial evaluation; in online partial evaluation (the

partial evaluation just described is offline), the concrete values computed on the spot

can affect the choice of action taken so that more static information can be exploited

to yield better residual programs, although at the cost of increased complexity for the

partial evaluator; if a dynamic variable only takes finite many values, one can use the

trick to generate code for each value, thus effectively converting the dynamic variable

into a static variable; instead of making a uniform division of static and dynamic

variables in the binding-time analysis, pointwise divisions (i.e., the division can be
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different for each basic block) can lead to better result in the generated code; a live

variable analysis [Aho1986] can be performed to exclude dead static variables which

lead to duplicate code blocks; a polyvariant division can assign to each label a set of

divisions depending on how the program point is reached while pointwise divisions

only depend on the program point. In a real programming language such as C, even

more issues need to be considered. Interested readers may read references in this

section and even more referred to in those references.

4.1.2 Partial Evaluation in Functional Languages

Many of the ideas and principles that worked for the simple flow chart language

in the previous section can be adapted to functional programming languages.2

Fig. 4.6 shows a first-order subset of Scheme language. Compared with the flow

chart language, there are a lot of similarities that can be taken advantage of dur-

ing partial evaluation. A flow chart program is a collection of labeled basic blocks;

a Scheme program is a collection of named function definitions. In the flow chart

program, a program point is the label of a basic block; in a Scheme program, a pro-

gram point is the name of the defined function. In the flow chart language, values

are bound to global, mutable variables and the bindings are created or changed by

assignments, and the language has a notion of current state. In Scheme, values are

bound to function parameters and the bindings are created by function application

2The review in this section also mostly follows Jones et al [Jones1993] although I re-formulated
the binding-time analysis in a slightly different way using a fixed-point theorem.
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102 Partial Evaluation for a First-Order Functional Language

program takes its input through the (formal) parameters of the �rst function. It
has call-by-value semantics and is statically scoped. Partial function applications

are not allowed, and the language contains no nameless functions (that is, lambda
abstractions). There is no assignment operation, and base function applications

(Op . . . ) have no side-e�ects, so Scheme0 programs are purely applicative. The
expression hExpri in a function de�nition hEquationi is called the function body.
The �rst function in a program is called its goal function.

hProgrami ::= (hEquationi . . . hEquationi) Function de�nitions
hEquationi ::= (define (hFuncNamei hVarlisti) hExpri)

hVarlisti ::= hVari . . . hVari Formal parameters
hExpri ::= hConstanti Constant

j hVari Variable

j (if hExpri hExpri hExpri) Conditional
j (call hFuncNamei hArglisti) Function application
j (hOpi hExpri . . . hExpri) Base application

hArglisti ::= hExpri . . . hExpri Argument expressions
hConstanti ::= hNumerali

j (quote hValuei)
hOpi ::= car j cdr j cons j = j + j . . .

Figure 5.1: Syntax of Scheme0, a �rst-order functional language.

Programs and program points. A 
ow chart program (Chapter 4) is a collection
of labelled basic blocks; a Scheme0 program is a collection of named function
de�nitions. In the 
ow chart program, a program point is the label of a basic

block; in a Scheme0 program, a program point is the name of the de�ned function.
During ordinary program execution, control passes from program point to program
point; by jumps in a 
ow chart program and by function calls in Scheme0.

Global variables versus function parameters. In the 
ow chart language, values
are bound to global, mutable variables. The bindings are created or changed by

assignments, and the language has a notion of current state. In Scheme0, values are
bound to function parameters. The bindings are created by function application

and cannot be modi�ed; they are immutable and the language has no notion of
current state.

Divisions. In the 
ow chart language, each global variable is classi�ed as static
or dynamic; such a classi�cation is called a division. Similarly, in Scheme0 a
division is a classi�cation of each function parameter as static or dynamic. During

specialization, a static parameter can never be bound to a residual expression, only
to ordinary values; a dynamic parameter may be bound to residual expressions as

well as ordinary values.

Figure 4.6: Syntax of a first-order subset of Scheme language [Jones1993].

and cannot be modified; they are immutable and the language has no notion of cur-

rent state. During program execution, control passes from program point to program

point; by jumps in a flow chart program and by function calls in Scheme. During

partial evaluation, labeled blocks are specialized with respect to static global vari-

ables; similarly, function definitions can be specialized with respect to static function

parameters.

In the flow chart language, each global variable is classified as static or dynamic

given partial input data; such a classification is called a division. Similarly, in Scheme

a division is a classification of each function parameter as static or dynamic, given the

values of part of the input parameters of the first function (called the goal function

since program execution starts with applying the first function).

Interestingly, the binding time analysis can resort to a fixed-point theorem to find
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a division. Consider the following program

(define (f1 x11 . . . x1a1) e1)

...

(define (fn xn1 . . . xnan) en).

A division is a mapping from all function parameters to the abstract values {S, D}:

div : {x11 . . . x1a1 . . . xn1 . . . xnan} → {S, D}.

By introducing a partial order on the set {S, D} : S < D, we can induce a partial order

on the set of all divisions:

div1 ≤ div2 ⇔ div1(x) ≤ div2(x) for any input parameter x.

We can define a function F : {div} → {div} the following way: given a division,

for any function fi, i = 1 . . . n, find all applications of fi in e1, . . . , en. For each

application of fi, we can decide a new division for fi’s input parameters: for each

input parameter, if the corresponding expression used in the application contains any

dynamic parameter in the original division, then this input parameter is dynamic in

the new division; otherwise it is static. Then we take the least upper bound (LUB)

of all new divisions for the input parameters of fi as the result of applying F to the

original division.3 It can be shown that the function F thus defined is monotonic.

Given a least division div0 which classifies the input parameters for the first function

3Strictly, the result should be projected onto the the input parameters of fi.



57

as pre-given and the rest as static, F is a continuous function on a CPO with the

least element div0 as there are only finite many divisions. By using the fixed-point

theorem, F has a least fixed point, which can be derived by applying F repetitively,

starting with div0, for a finite number of times. The least solution satisfies our goal

of finding a least dynamic solution (thus more opportunity for partial evaluation) to

the fixed-point equation.

The partial evaluation algorithm for Scheme is very similar to that for flow charts.

It has a set pending of functions yet to be specialized, and a set marked of those al-

ready specialized. As long as pending is non-empty, it repeatedly selects and removes

a member (f, vs) from pending, and constructs a version of function f, specialized

to the values vs of its static parameters. The specialization of f’s body with respect

to vs may require new functions to be added to pending, namely those called from

the specialized body. As in the flow chart partial evaluator, the residual program is

complete when pending is empty. A Scheme function body is specialized by reducing

it symbolically, using the values of static variables.

Like the previous section, this one only touches the basics of partial evaluation

for functional languages. Interested readers may refer to [Bondorf1990][Bondorf1991]

[Bondorf1992][Bondorf1991-2] for more details, including a partial evaluator called

Similix, which can deal with high-order functions and side effects.
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4.1.3 Partial Evaluation in Object-Oriented Language

Object-oriented programming (OOP) has become more commonly used in main-

stream software application development, as a way to manage the ever increasing com-

plexity of modern software projects. OOP uses encapsulation to hide implementation

details of a class from other objects and uses abstraction to build generic, reusable

components with techniques such as ever popular design patterns [Gamma1994].

However, OOP achieves flexibility and reusability—the gold standard of good

programming—at the expense of efficiency. Encapsulation isolates individual program

components and increases the cost of data access. Method invocation is implemented

using virtual dispatching/late binding, resulting in run-time overhead. Moreover, it

obscures program control flow and blocks traditional hardware and software optimiza-

tions. Compiler optimization techniques for OOP have advanced considerably and

can eliminate some of these overheads. However, compared with partial evaluation

techniques, compilers apply optimizations in a more restricted manner, with the goal

of producing a program that performs well in a normal usage context. Partial evalua-

tors are more aggressive in propagating inferred information. They propagate values

of any type, including partially known objects, throughout the program and reduce

any computation that is based solely on known information. Thus a partial evaluator

can achieve more pervasive optimization than a typical compiler [Schultz2000].

The execution of an object-oriented program can be seen as a sequence of inter-

actions between the objects that constitute the program. Specifying particular parts
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abstract class Binary {
abstract int eval(int x,int y);
abstract int neutral();

}
class Add extends Binary {

int eval(int x,int y) {
return x+y;

}
int neutral() { return 0; }

}
class Mult extends Binary {

int eval(int x,int y) {
return x*y;

}
int neutral() { return 1; }

}

class Power {
int exp; Binary op;
Power(int exp,Binary op) {

this.exp = exp;
this.op = op;

}
int raise(int base) {

int result = op.neutral();
int e = exp;
while( e-- > 0 )

result = op.eval(result,base);
return result;

}
}

Figure 4.7: Binary operators and a power function [Schultz2003].

of the program context can fix certain parts of this interaction. Partial evaluation

simplifies the object interaction by evaluating the static interactions, leaving behind

only the dynamic interactions.

Take the favorite example in [Schultz2003], which uses a strategy design pattern.

Fig. 4.7 shows a collection of four classes: Binary, Add, Mult, and Power. The

abstract class Binary is the superclass of the two concrete binary operators Add and

Mult (the strategies). The Power class can be used to apply a Binary operator a

number of times to a base value, as illustrated by the following expression:

(new Power(3, new Mult())).raise(x)

which computes x3. The object interaction of this program is shown on the left side

of Fig. 4.8.

Invoking the method raise(x) of the Power object gives rise to a series of object
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……

Figure 4.8: Object interactions before and after partial evaluation [Schultz2003].

interactions between the Power object and the Mult object that results in the return

value x*x*x. To optimize for this case, we can enable the Power object to produce

the result x*x*x directly. Specifically, we can add a method

int raise_cube(int base) {

return base * base * base;

}

to the class Power, and clients can use this new method to compute the result more

efficiently. The resulting interaction is shown on the right side of Fig. 4.8. Partial

evaluation can derive such a specialized method automatically, using constant propa-

gation, loop unrolling, and virtual function call elimination. Some of these techniques

are derived directly from imperative languages.
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4.2 Partial Evaluation in Embedded Software

The use of partial evaluation in embedded software has been more recent. Em-

bedded software is usually highly domain-specific and has its own idioms/patterns for

expressing a design, therefore a partial evaluator can expand its techniques to take

advantage of this special knowledge. After all, the spirit of partial evaluation is that

the more that is known, the more it can do to generate efficient program.

One example is the Click component framework for PC router construction (see

[Kohler2002]). Click achieves its flexibility and extensibility by building routers and

other packet processors from fine-grained packet processing modules called elements

(see Fig. 4.9). Even though component systems make networking software easier to

program, component techniques introduce inefficiencies that monolithic software can

avoid, as networks get faster at an even greater rate than processors, making the

efficiency of networking software ever more important.

One solution is to apply partial evaluation techniques at the level of networking

components. The Click optimization kits include tools called click-fastclassifier, click-

devirtualize, click-xform, click-undead, etc.

For example, classifiers are generic elements for classifying packets based on a

decision tree built from textual specifications. The click-fastclassifier tool would gen-

erate new source code for a classifier based on the specific decision tree and replace

the generic element with this more specific element. The click-devirtualize tool ad-

dresses virtual function call overhead. It changes packet-transfer virtual function calls
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Figure 1—A Click IP router with two network interfaces.

Among the relevant design choices: C++, our imple-
mentation language, has low inherent overhead and hap-
pily coexists with operating system kernels. The Click
packet abstraction is a thin veneer over the Linux ker-
nel’s sk_buff; extensive use of inline functions makes it
as efficient as sk_buff while providing a friendlier inter-
face. To avoid overhead, elements perform only rudimen-
tary input checking. For example, they often assume that
received packets have the expected protocol, so protocol
dispatch must be made explicit in router configurations.
Click replaces the host operating system’s interrupt-driven
network stack with polling device drivers and a constantly-
active kernel thread. This important change eliminates re-
ceive livelock [10], where receive interrupt processing oc-
cupies all CPU resources and drives the forwarding rate to
zero, and raises a Click IP router’s peak forwarding rate to
over four times that of unmodified Linux.

Nevertheless, sources of overhead remain.

• Virtual functions and packet transfer. Packets are
transferred between elements via dynamic dispatches, or

ARPQuerier

ARPQuerier

RED

Figure 2—A configuration fragment that stresses the branch predictor.

virtual function calls in C++ terminology. This is much
cheaper than alternatives like implicit queues between
components, but it still has inefficiencies. We investigated
the cost of virtual function calls relative to conventional
function calls on a Pentium III processor. The Pentium
caches the targets of indirect branch instructions; when
correctly predicted, a virtual function call takes about 7
cycles, comparable to a conventional function call. Incor-
rectly predicted calls, however, take dozens of cycles. A
Click IP router’s forwarding path takes 1160 cycles on this
processor, making the cost of misprediction significant in
percentage terms.

Unfortunately, the branch predictor performs poorly
on Click routers. For example, two elements with the same
class may connect to elements with different classes, as
in Figure 2. Packet transfers from the two ARPQueriers
share one call site, since the two elements have the same
class; however, the elements transfer packets to different
targets, so if packets alternate between the ARPQueriers,
the branch predictor is always wrong.1

Of course, even well-predicted virtual function calls
are more expensive than no function calls at all. Click’s
fine-grained components are easy to work with, but lead
to routers with many elements on the forwarding path—
sixteen, in the case of our standards-compliant IP router.
At a conservative seven cycles per packet transfer, 9% of
this router’s forwarding path cost is due to function call
overhead.

• General-purpose elements. Click elements should
be as general-purpose as possible. This makes it easier to
reuse elements, design router configurations, and analyze
configurations written by others. It also tends to make the
elements themselves less efficient.

For example, many packet classification tasks in Click
use programmable generic classifiers called Classifier, IP-
Filter, and IPClassifier. These elements compile textual fil-
ter specifications, such as “src 10.0.0.2 && tcp src port 25”,
into decision tree structures traversed on each packet. Al-
most every configuration we’ve written involves one or
more of these elements, and initially, they were by far the
slowest elements in our configurations. We sped up their

1Furthermore, simpler Click elements often use syntactic sugar called
simple_action that can halve their code size, but confuses the pre-
dictor.

3

Figure 4.9: A Click IP router built by composing elements [Kohler2002].
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into conventional function calls by finding the downstream component and explicitly

calling the method on that component. Again this involves transforming the source

code so that method binding can be done in the compile time. The click-xform tool

reads a router configuration and a collection of pattern and replacement subgraphs.

It replaces general-purpose element collection with the corresponding combination

element through pattern matching. It thus lowers function call costs by reducing

the number of elements in a forwarding path, and reduces the overhead of general-

purpose code. All these tools are partial evaluation techniques taking advantage of

the knowledge in a specific configuration.

The Koala component model for consumer electronics software [Ommerling2000]

is another example of applying partial evaluation for generating more efficient imple-

mentation.
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Chapter 5

Code Generation for

Actor-Oriented Design with Partial

Evaluation

5.1 Related Work

There have been a few design frameworks with code generation functionality.

Simulink with Real-Time Workshop (RTW), from the Mathworks, is probably in

the most widespread use as a commercial product [Simulink]. It can automatically

generate C code from a Simulink model and is quite innovative in leveraging an un-

derlying preemptive priority-driven multitasking operating system to deliver real-time

behavior based on rate-monotonic scheduling. However, like most design frameworks,
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Simulink defines a fixed MoC: continuous time is the underlying MoC for Simulink,

with discrete time treated as a special case. It can be integrated with another Math-

works product called Stateflow, used to describe complex logic for event-driven sys-

tems, for simulation and code generation. The platform I worked on, Ptolemy II, is

a software lab for experimenting with multiple concurrency formalisms for embedded

system design. It does not have a built-in MoC. The code generation framework built

on Ptolemy II is flexible and extensible. It is capable of generating code for multiple

MoC’s. In particular, I am most interested in code generation for the MoC’s whose

schedulability is decidable.

There has been previous work on code generation for the Ptolemy II system

[Tsay2000]. The approach there involves transformation of the existing source code

(i.e. Java code) in each actor of a model, which results in simplified and hence more

efficient Java code. Then a generic Java-to-C converter is used to produce compil-

able C code. The generated code is not efficient enough though. Following a similar

approach, Neuendorffer created a component-specialization framework, codenamed

Copernicus [Neuendorffer2004], to transform a Ptolemy model into self-contained Java

code for efficient execution. The advantage of the Copernicus approach is that it uses

the same Java code as used in simulation for code generation and thus guarantees the

original model designed and the final code generated are semantically equivalent (if

code generation is performed correctly).

There are several ways to execute generated self-contained Java code, either
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through Java Real Machine or Java Virtual Machine. A Java Real Machine processes

bytecodes (JVM instructions) directly in hardware. Sun Microsystems initially proved

the concept in the late 1990s with its PicoJava chip. Since then several independent

Java hardware implementations have hit the market. They come in two different

configurations. Chips of the first type, such as Nazomi Communications’ JA108 Mul-

timedia Application Processor, operate as Java coprocessors in conjunction with a

general-purpose microprocessor, in much the same way that graphics accelerators are

used. Java chips in the other category, such as Imsys’s Cjip Processor, aJile’s aJ-100

and Parallax’s Javelin Stamp Interpreter Chip, replace the general-purpose CPU. It

will be interesting to see how this market will develop.

However, the majority of today’s embedded microprocessors have their own in-

struction set. They are either programmed with assembly languages or high level

programming languages, mostly C. In order to execute Java code, a Java Virtual

Machine has to be ported to these platforms. Even with efficient Java code gener-

ated from Copernicus, it still suffers inefficiency inherent in the bytecode interpreter

in the JVM. JIT (Just-In-Time) compilers, which compile bytecode on the fly dur-

ing execution, generally aren’t suitable for embedded applications. They produce

good performance improvements in desktop Java applications, but the large memory

requirement places JIT compilers out of reach for many categories of embedded ap-

plications. Even if these speedup techniques can be applied, there is still the critical

obstacle to many embedded applications requiring real-time processing due to the
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Garbage Collector (GC). The GC thread works in the background to manage the al-

location of memory, and the resulting uncertainty as to when the GC will run and for

how long is unacceptable. The Real Time Specification for Java (RTSJ) was created

to specifically deal with this problem [Bollella2000][Sun][Timesys]. In particular, the

Metronome project’s real-time garbage collection technology provides sub-millisecond

worst-case latency and deterministic scheduling with guaranteed worst-case utiliza-

tion [Bacon2005]. The work along this path has potential, but it remains to be seen

whether it will have a large impact in the area of embedded applications.

In this thesis I take an alternative and more aggressive approach. The goal is

to generate code with similar performance as handwritten code so that the benefit

offered by the high level abstraction comes with no performance penalty [Zhou2007].

5.2 Overview of Code Generation Framework

Ptolemy II is a graphical software system for modeling, simulation, and design

of concurrent, real-time, embedded systems. Ptolemy II focuses on assembly of con-

current components with well-defined MoC’s that govern the interaction between

components. Many features in Ptolemy II contribute to the ease of its use as a rapid

prototyping environment. For example, domain polymorphism allows one to use the

same component in multiple MoC’s. Data polymorphism and type inference mech-

anisms automatically take care of type resolution, type checking and type conver-

sion, and make users unaware of their existence most of the time. A rich expression
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language makes it easy to parameterize many aspects of a model statically or dy-

namically. However, these mechanisms add much indirection overhead and therefore

cannot be used directly in an implementation.

The code generation framework takes a model that has been shown to meet cer-

tain design specifications through simulation and/or verification. Through model

analysis—the counterpart of binding-time analysis in the traditional use of partial

evaluation for general purpose software, it can discover the execution context for the

model and the components contained within. It then generates the target code spe-

cific to the execution context while preserving the semantics of the original model.

See Fig. 5.1, which follows notions used in [Jones1993].

In this thesis, C is the primary target language. In the generated target code, the

variables representing the buffers in the input ports of each actor are defined with the

data types discovered through type resolution. At the same time, if the model has a

static schedule, then buffer sizes can be predetermined and defined too (as arrays),

thus eliminating the overhead of dynamic memory allocation. Through model anal-

ysis, the framework can also classify parameters into either static or dynamic. Static

parameters have their values configured by users and stay constant during execution.

Therefore there is no need to allocate memory for them and every time a static pa-

rameter gets used in the generated code, it gets evaluated at the code generation

time. On the other hand, dynamic parameters change their values during execution.

Therefore a corresponding variable is defined for each of them in the generated code.
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Figure 5.1: Code generation with partial evaluation for actor-oriented programs.
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Most of models have static structures. The code generation framework takes advan-

tage of this and eliminates the interfaces between components. In the generated code,

instead of using a dozen or so indirection function calls to transfer data between com-

ponents, a simple assignment is used, resulting in very efficient execution. For the

MoC’s that have static schedules, instead of dispatching actors based on the schedule,

the schedule is hard-coded into the generated code, i.e., the code flow directly reflects

the execution sequence, thus making it run much faster. Finally, for each actor that

supports code generation, there is a corresponding helper which reads in pre-existing

code blocks written in the target language. These target code blocks are functionally

equivalent to the actor written in Java, the language used for Ptolemy II. The helper

mechanism is elaborated in the next section.

5.3 A Helper-based Mechanism

A helper is responsible for generating target code for a Ptolemy II actor. Each

Ptolemy II actor for which code will be generated in a specific language has one

associated helper. An actor may have multiple helpers to support multiple target

languages (C, VHDL, etc.).

To achieve readability and maintainability in the implementation of helpers, the

target code blocks (for example, the initialize block, fire block, and wrapup block)

of each helper are placed in a separate file under the same directory. So a helper

essentially consists of two files: a java class file and a code template file. This not only
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decouples the writing of Java code and target code (otherwise the target code would

be wrapped in strings and interspersed with java code), but also allows using a target

language specific editor while working on the target code blocks. For example, in

the Eclipse Integrated Development Environment, the C/C++ Development Toolkit

(CDT) provides C and C++ extensions to the Eclipse workbench as a set of Eclipse

plug-ins. The convenient features such as keyword highlights in the C/C++ specific

editor could help the writing of C code, resulting in improved productivity.

For each helper, the target code blocks contained in the code template file are

hand-coded, verified for correctness (i.e., semantically equivalent to the behavior of

the corresponding actor written in Java) and optimized for efficiency. They are stored

in the library and can be reused to generate code for different models. Hand-coded

templates also retain readability in the generated code. The code generation ker-

nel uses the helper java class to harvest code blocks from the code template file.

The helper java class may determine which code blocks to harvest based on actor’s

instance-specific information (e.g., port type, port width, and parameter value). The

code template file contains macros that are processed by the kernel. These macros

allow the kernel to generate customized code based on actor’s instance-specific infor-

mation.
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5.3.1 What is in a C Code Template File?

A C code template file has a .c file extension but it is not C-compilable due to its

unique structure. A CodeStream class is implemented to parse and use these files.

The following are the C code template files for the Pulse actor and CountTrues actor.

// Pulse.c

/***preinitBlock***/

int $actorSymbol(iterationCount) = 0;

int $actorSymbol(indexColCount) = 0;

unsigned char $actorSymbol(match) = 0;

/**/

/***fireBlock***/

if ($actorSymbol(indexColCount) < $size(indexes)

&& $actorSymbol(iterationCount) == $ref(indexes,

$actorSymbol(indexColCount))) {

$ref(output) = $ref(values, $actorSymbol(indexColCount));

$actorSymbol(match) = 1;

} else {

$ref(output) = 0;

}

if ($actorSymbol(iterationCount) <= $ref(indexes, $size(indexes) - 1)) {

$actorSymbol(iterationCount) ++;

}

if ($actorSymbol(match)) {

$actorSymbol(indexColCount) ++;

$actorSymbol(match) = 0;

}

if ($actorSymbol(indexColCount) >= $size(indexes) && $val(repeat)) {

$actorSymbol(iterationCount) = 0;

$actorSymbol(indexColCount) = 0;

}

/**/

// CountTrues.c

/*** preinitBlock ***/

int $actorSymbol(trueCount);

int $actorSymbol(i);
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/**/

/*** fireBlock ***/

$actorSymbol(trueCount) = 0;

for($actorSymbol(i) = 0; $actorSymbol(i) < $val(blockSize);

$actorSymbol(i)++) {

if ($ref(input, $actorSymbol(i))) {

$actorSymbol(trueCount)++;

}

}

$ref(output) = $actorSymbol(trueCount);

/**/

A C code template file consists of one or more C code blocks. Each code block

has a header and a footer. The header and footer tags serve as code block separators.

The footer is simply the tag “/**/”. The header starts with the tag “/***” and

ends with the tag “***/”. Between the header tags are the code block name and

optionally an argument list. The argument list is enclosed by a pair of parentheses

“()” and multiple arguments in the list are separated by commas “,”. A code block

may have arbitrary number of arguments. Each argument is prefixed by the dollar

sign “$” (e.g., $value, $width), which allows easy searching of the argument in the

body of code blocks, followed by straight text substitution with the string value of

the argument. Formally, the signature of a code block is defined as the pair (N, p)

where N is the code block name and p is the number of arguments. A code block

(N, p) may be overloaded by another code block (N, p′) where p 6= p′.1 Furthermore,

different helpers in a class hierarchy may contain code blocks with the same (N, p).

1All arguments in a code block are implicitly strings. So unlike the usual overloaded functions
with the same name but different types of arguments, overloaded code blocks need to have different
number of arguments.
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So a unique reference to a code block signature is the tuple (H,N, p) where H is the

name of the helper.

A code block can also be overridden. A code block (H,N, p) is overridden by

a code block (H̃,N, p) given that H̃ is a child class of H. This gives rise to code

block inheritance. Ptolemy II actors have a well-structured class hierarchy. The

code generation helpers mirror the same class hierarchy. Since code blocks represent

behaviors of actors in the target language, the code blocks are inherited for helpers

just as action methods are inherited for actors. Given a request for a code block, a

CodeStream instance searches through all code template files of the helper and its

ancestors, starting from the bottom (leaves) of the class hierarchy. This mirrors the

behavior of invoking an inherited method for an actor.

5.3.2 What is in a Helper Java Class File?

All helper classes are inherited from the CodeGeneratorHelper class directly or in-

directly. The CodeGeneratorHelper class implements the default behavior for a set of

methods that return code strings for specific parts of the target program (init(), fire(),

wrapup(), etc.), using the default code block names (initBlock, fireBlock, wrapup-

Block, etc.). Each specific helper class can either inherit the behavior from its parent

class or override any method to read code blocks with non-default names, read code

blocks with arguments, or do any special processing it deems necessary.
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5.3.3 The Macro Language

In the generated code, the input and output ports no longer hold tokens, but

instead correspond to data memory where token values will be stored (for example,

global variables in C code generation). A helper can also define new variables as

needed. A helper, however, does not have the knowledge of the context where these

code blocks will be used. Therefore instance-specific information such as the width of

actor ports or the full variable names can only be resolved during the code generation

time. For helper writers, a set of macros are provided for this purpose.

The macro language allows helpers to be written once, and then used in different

context where the macros are expanded and resolved. All macros used in code blocks

are prefixed with the dollar sign “$” (as in “$ref(input)”, “$val(width)”, etc.), followed

by specific macro names (such as “ref”, “val”, etc.). The arguments to the macros are

enclosed in parentheses “()”. Macros can be nested and recursively processed by the

code generation helper. The use of the dollar sign as prefix is based on the assumption

that it is not a valid identifier in the target language (“$” is not a valid identifier in

C). The macro prefix can be configured for different target languages. Different macro

names specify different rules of text substitutions. Since the same set of code blocks

may be shared by multiple instances of the same helper class, the macros mainly serve

the purpose of producing unique variable names for different instances and generating

instance-specific port and parameter information. The following is a list of macros

used in the C code generation.
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$ref(name) Returns a unique reference to a parameter or a port in the global scope.

For a multiport which contains multiple channels, use $ref(name#i) where i is

the channel number. During macro expansion, the name is replaced by the full

name resulting from the model hierarchy.

$ref(name, offset) Returns a unique reference to an element in an array parameter

or a port with the indicated offset in the global scope. The offset must not be

negative. $ref(name, 0) is equivalent to $ref(name). Similarly, for multiport,

use $ref(name#i, offset).

$val(parameter-name) Returns the value of the parameter associated with an ac-

tor in the simulation model. The advantage of using $val() macro instead of

$ref() macro is that no additional memory needs to be allocated. $val() macro

is usually used when the parameter is constant during the execution.

$actorSymbol(name) Returns a unique reference to a user-defined variable in the

global scope. This macro is used to define additional variables, for example, to

hold internal states of actors between firings. The helper writer is responsible

for declaring these variables.

$size(name) If the given name represents an ArrayType parameter, it returns the

size of the array. If the given name represents a port of an actor, it returns the

width of that port.
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5.3.4 The CountTrues Example

Fig. 5.2 shows a very simple model named CountTrues (notice the name of the

model is the same as that of the CountTrues actor used in the model) in the syn-

chronous dataflow (SDF) domain (In Ptolemy II, a domain realizes an MoC). Each

time the Pulse actor fires, it produces one token with the value “true” or “false” and

the output pattern is determined by its parameters. Each time the CountTrues actor

fires, it consumes a certain number of tokens (specified by its “blockSize” parameter)

and counts how many “true” tokens are consumed during this firing and then pro-

duces one token with the counting value. The Display actor consumes one token and

displays the value of the token in each firing. For this simple model, we can easily

determine the number of firings for each actor in one periodic firing schedule of the

model: fPulse = blockSize, fCountTrues = 1, fDisplay = 1. When the model is simulated

in the Ptolemy II framework, the produced result is shown on the right hand side of

Fig. 5.2 (the model is fired 4 times because the SDFDirector’s “iterations” parame-

ter is set to 4). The following is the main function of the generated stand-alone C

program.

......

static int iteration = 0;

main(int argc, char *argv[]) {

init();

/* Static schedule: */

for (iteration = 0; iteration < 4; iteration ++) {
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Simulation result 

CountTrues 

Pulse 

Figure 5.2: The CountTrues model and its simulation result.
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/* fire Composite Actor CountTrues */

/* fire Pulse */

if (_CountTrues_Pulse_indexColCount < 2

&& _CountTrues_Pulse_iterationCount ==

Array_get(_CountTrues_Pulse_indexes_ ,

_CountTrues_Pulse_indexColCount).payload.Int) {

_CountTrues_CountTrues_input[0] =

Array_get(_CountTrues_Pulse_values_ ,

_CountTrues_Pulse_indexColCount).payload.Boolean;

_CountTrues_Pulse_match = 1;

} else {

_CountTrues_CountTrues_input[0] = 0;

}

if (_CountTrues_Pulse_iterationCount

<= Array_get(_CountTrues_Pulse_indexes_ ,

2 - 1).payload.Int) {

_CountTrues_Pulse_iterationCount ++;

}

if (_CountTrues_Pulse_match) {

_CountTrues_Pulse_indexColCount ++;

_CountTrues_Pulse_match = 0;

}

if (_CountTrues_Pulse_indexColCount >= 2 && true) {

_CountTrues_Pulse_iterationCount = 0;

_CountTrues_Pulse_indexColCount = 0;

}

/* fire Pulse */

// The code for the second firing of the Pulse actor is

// omitted here.

.....

.....

/* fire CountTrues */

_CountTrues_CountTrues_trueCount = 0;

for(_CountTrues_CountTrues_i = 0; _CountTrues_CountTrues_i < 2;

_CountTrues_CountTrues_i++){

if (_CountTrues_CountTrues_input[(0 +

_CountTrues_CountTrues_i)%2]) {

_CountTrues_CountTrues_trueCount++;
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}

}

_CountTrues_Display_input[0] = _CountTrues_CountTrues_trueCount;

/* fire Display */

printf("Display: %d\n", _CountTrues_Display_input[0]);

}

wrapup();

exit(0);

}

In the code the $ref() and $actorSymbol() macros are replaced with unique variable

references. The $val() macro in the code block of the CountTrues actor is replaced by

the parameter value of the CountTrue instance in the model. When the generated C

program is compiled and executed, the same result is produced as from the Ptolemy

II simulation:

Display: 1

Display: 1

Display: 1

Display: 1

5.4 Software Infrastructure

My code generation framework has the flavor of CG (i.e., Code Generation) do-

mains in Ptolemy Classic [Pino1995]. However, in Ptolemy Classic, code generation

domains and simulation domains are separate and so are the actors (called stars in

Ptolemy Classic terminology) used in these domains. In Ptolemy Classic, the ac-

tors in the simulation domains participate in simulation whereas the actors in the
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code generation domains participate in code generation. Separate domains (simu-

lation vs. code generation) make it hard to integrate the model design phase with

the code generation phase and streamline the whole process. Separate actor libraries

make it difficult to maintain consistent interfaces between simulation actors and code

generation actors.

In Ptolemy II, there are no separate code generations domains. Once a model

has been designed, simulated and verified to satisfy the given specification in the

simulation domain, code can be directly generated from the model. Each helper

doesn’t have its own interface. Instead, it interrogates the associated actor to find

its interface (ports and parameters) during the code generation. Thus the interface

consistency is maintained naturally. The generated code, when executed, should

present the same behavior as the original model. Compared with Ptolemy Classic

approach, this new approach allows the seamless integration between the model design

phase and the code generation phase.

In addition, my code generation framework takes advantage of new technologies

developed in Ptolemy II such as the truly polymorphic type system, richer variety of

MoCs including hierarchical concurrent finite-state machines [Girault1999] which are

well suited for embedded system design.

To gain an insight into the code generation software infrastructure, it is worthwhile

to take a look at how actors are implemented for simulation purposes. Fig. 5.3 shows

a simplified UML diagram of key classes to support execution (i.e., model simulation)
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ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Average

AddSubtract

Accumulator

+input:: TypedIOPort
+output: TypedIOPort
+reset: TypedIOPort
+init: Parameter

HDFDirector

FSMDirector

SDFDirector

Figure 5.3: Key classes to support execution in Ptolemy II.
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in the ptolemy.actor package. (ComponentEntity and CompositeEntity are located

in the ptolemy.kernel package. They are included here to give a global picture of class

inheritance relations.) As one can see, the Executable interface2 defines how an actor

can be invoked. The preinitialize() method is assumed to be invoked exactly once

during the lifetime of an execution of a model and before the type resolution. The

initialize() method is assumed to be invoked once after the type resolution. It may be

invoked again to re-initialize a (sub)model. For example, when a modal model makes

a transition and the reset parameter of the transition is true, the submodel associated

with the new state is re-initialized. The prefire(), fire(), and postfire() methods are

usually invoked many times, with each sequence of method invocations defined as one

iteration. The wrapup() method is invoked exactly once per execution at the end of

the execution.

The Executable interface is implemented by two types of actors: AtomicActor,

inherited from ComponentEntity, is a single entity; CompositeActor, inherited from

CompositeEntity, is an aggregation of actors. The Executable interface is also im-

plemented by Director classes. A Director class implements an MoC and governs the

execution of actors contained by an (opaque) CompositeActor.

Fig. 5.4 shows a simplified UML diagram of key classes to support code generation,

located in the subpackages under ptolemy.codegen (In Ptolemy II architecture, all the

2One must distinguish the use of the term interface. Here interface is a Java terminology used in
object-oriented design. Previously interface in component interface is a terminology used in actor-
oriented design. It is unfortunate the term is used in different places to have different meaning. But
its use is well-established in each field and one can usually tell from its context.
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CodeGenerator

+generateInitializeCode() : String
+generatePreinitializeCode() : String
+generateWrapupCode() : String
+getComponent() : NamedObj
+setCodeGenerator(CodeGenerator)

«Interface»
ComponentCodeGenerator

«Interface»
ActorCodeGenerator

CodeGeneratorHelper

CCodeGeneratorHelper
StaticSchedulingCodeGenerator

Director

CompositeActor

+generateFireCode() : String

HDFDirector

FSMDirector

SDFDirector

Average

AddSubtract

Accumulator

Figure 5.4: Key classes to support code generation in Ptolemy II.
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package paths start with “ptolemy”). As one can see, the helper class hierarchy and

package structure mimic those of regular Ptolemy II actors. The counterpart of the

Executable interface is the ActorCodeGenerator interface. This interface defines the

methods for generating target code in different stages corresponding to what happens

in the simulation. These methods include generatePreinitializeCode(), generateIni-

tializeCode(), generateFireCode(), generateWrapupCode(), etc.

CodeGeneratorHelper, the counterpart of AtomicActor, is the base class imple-

menting the ActorCodeGenerator interface and provides common functionality for all

actor helpers. Actors and their helpers not only have the same class hierarchy and

package structure, but the same names so that the Java reflection mechanism can be

used to load the helper for the corresponding actor during the code generation. For

example, there is a Ramp actor in the package ptolemy.actor.lib. Correspondingly,

there is a Ramp helper in the package ptolemy.codegen.c.actor.lib (see Fig. 5.5). Here

c represents the fact that all the helpers under ptolemy.codegen.c generate C code.

Assume we would like to generate code for another target language X, the helpers

for generating X code could be implemented under ptolemy.codegen.x. This would

result in extensible code generation framework. Developers could not only contribute

their own actors and helpers, but also extend the framework to generate code for a

new target language.

To generate code for hierarchically composed models, helpers for composite actors

are created. The most commonly used composite actor is TypedCompositeActor in
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ptolemy.actor.lib
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Figure 5.5: Actor libraries and corresponding helpers.
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the package ptolemy.actor. A helper with the same name is created in the package

ptolemy.codegen.c.actor. The main functionality of this helper is to generate code

for the data transfer through the composite actor’s interface and delegate the code

generation for the composite actor to the helper for the local director or the helpers

for the actors contained by the composite actor. Other composite actors include

ModalModel, Refinement, etc. and corresponding helper is created for each of them.

These composite actors and helpers are used in code generation for modal models.

Since a director implements an MoC (or a domain in Ptolemy II terminology),

a helper is created for each director that supports code generation (see Fig. 5.6).

These director helpers generate target code that preserves the semantics of MoC’s.

Currently, the synchronous dataflow domain (SDF), finite state machines (FSM), and

heterochronous dataflow domain (HDF) support code generation. More details will

follow in the next section.

Finally the StaticSchedulingCodeGenerator class is used to orchestrate the whole

code generation process. An instance of this class is contained by the top level

composite actor (represented by the blue rectangle in Fig. 5.2). The code generation

starts at the top level composite actor and the code for the whole model is generated

hierarchically, much similar to how a model is simulated in Ptolemy II environment.

The flow chart in Fig. 5.7 shows each step of the code generation process. The

details of some steps are MoC-specific. Notice that the steps outlined in the figure

do not necessarily follow the order in the final code. For example, only dynamic
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ptolemy.domains.fsm.kernel
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MultirateFSMDirector
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ptolemy.domains.fsm.modal
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HDFDirector
HDFFSMDirector

SDFDirector
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ModalController
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SampleDelay

ptolemy.codegen.c.domains.sdf.lib

Figure 5.6: Directors, domain-specific actors and corresponding helpers.
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parameters need to be defined as variables. However, whether a parameter is static or

dynamic can only be determined through model analysis after processing all the code

blocks. Therefore the variable definitions for the dynamic parameters are generated

last and then placed at the beginning of the code.

The helper based code generation framework actually serves as a coordination

language for the target code. It leverages the huge legacy code repository. This is

especially relevant for embedded system design since it can easily incorporate pre-

existing wrapper code around hardware. It takes advantage of many years and many

researchers’ work on compiler optimization techniques for the target language, such

as C. My partial evaluation techniques are mostly applied at the component level.

As pointed out by [Schultz2003], compilers apply a wider range of optimizations,

at the language level, such as copy propagation and loop invariant removal that do

not necessarily depend on statically determined constants. Partial evaluation is thus

dependent on a compiler for traditional intra-procedural optimizations such as copy

propagation, common subexpression elimination, loop invariant removal, etc. that are

essential for good performance. Furthermore, optimizations that are not expressible

at the language level, such as register allocation and array bounds check elimination,

cannot be performed by a partial evaluator, and must be handled by a compiler.

My code generation framework also has the advantage of being accessible to a

huge base of programmers. Often new languages fail to catch on not because it is

technically flawed, but because it is very difficult to penetrate the barrier established
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Generate Include files

Generate shared code

Collect modified variables

Generate preinitialize code

Generate offset variables

Generate initialize code
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Generate wrapup code
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fied by actors, e.g., during mode transitions.
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ple times,e.g.,after a reset transition in an FSM.

The code generated here performs major
functions, corresponding to actor firings.

The code generated here does some wra-
pup work, e.g., closing open files.

These variables are those resulting from
ports and parameters. Some can only be deter-
mined towards the end of the code generation.

The code generated here is necessary to
support dynamic type conversion.

Figure 5.7: The flow chart of the code generation process.
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by the languages already in widespread use. With the use of the helper class combined

with target code template written in a language programmers are familiar with, there

is much less of a learning curve to use such an environment.

5.5 Domains

5.5.1 SDF

The synchronous dataflow (SDF) domain [Lee1987] is one of the most mature do-

mains in Ptolemy II. Under the SDF domain, the execution order of actors is statically

determined prior to execution. This opens the door for generating some very efficient

code. In fact, the SDF software synthesis has been studied extensively. One book

[Bhattacharyya1996], several Ph.D. dissertations [Bhattacharyya1994][Murthy1996]

and numerous papers have been written. Many optimization techniques have been

designed according to different criteria such as minimization of program size, buffer

size, or actor activation rate. Hardware synthesis from SDF specification has also

been studied by many researchers, e.g., see [Horstmannshoff2000]. I built the support

for SDF code generation to test my framework and use it as a starting point to explore

code generation for other domains.

The helper for the SDFDirector allows to plug in any optimizing SDFScheduler.

The maximum size of each buffer is determined by the SDFScheduler and the helper

uses that to determine the array size in the generated code (for buffer size 1, only
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a simple variable instead of an array is defined). There are two modes for the gen-

erated code. In the inline mode, actor firing code is stacked on top of each other.

In the non-inline mode, the firing code of each actor is wrapped in its own individ-

ual function. The inline version may run faster without call-return overhead. The

non-inline version may reduce memory footage when there is no single appearance

schedule [Bhattacharyya1994][Murthy1996] or when the reduction of buffer size of-

fered by multiple appearance schedule is more effective than the reduction of program

size using single appearance schedule.

5.5.2 FSM

Finite state machines (FSM’s) have been the subject of a long history of research

work. There has been more recent work on hierarchical concurrent finite state ma-

chines [Girault1999]. In Ptolemy II, an FSM actor serves two purposes: for traditional

FSM modeling or for building modal models. In traditional FSM modeling, an FSM

actor reacts to the inputs by making state transitions and sending data to the output

ports like a regular Ptolemy actor.

The FSM domain also supports the hierarchical concurrent finite state machines

with modal models. In Fig. 5.8, M is a modal model with two operation modes.

Modes are represented by states (rendered as circles in the figure) of an FSM actor

that controls mode switching. Each mode has one or more refinements that specify

the behavior of the mode. A modal model is constructed in a ModalModel actor
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M
Top-level Domain

Refinement A Refinement B

Figure 5.8: A modal model example.

having the *FSMDirector as the local director. The ModalModel actor contains a

ModalController (essentially an FSM actor) and a set of Refinement actors that model

the refinements associated with states and possibly a set of TransitionRefinement

actors that model the refinements associated with transitions.

The *FSMDirector (which could be FSMDirector, MultirateFSMDirector, or HDFF-

SMDirector) mediates the interaction with the outside domain, and coordinates the

execution of the refinements with the ModalController. A modal model controlled by

FSMDirector can only consume and produce at most one token at each port. A Mul-
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tirateFSMDirector supports multi-token syntax and therefore can control multi-rate

modal models. Both FSMDirector and MultirateFSMDirector try to make a state

transition after each firing of the modal model, which results in Turing-completeness.

Therefore a model designed using these two directors are generally not statically

schedulable. However, as discussed in Section 3.4, if a modal model has the same

rate signature at different states, it could not only generate static schedules but also

reduce the scheduling complexity. If a modal model has different rate signatures at

different states, we need to constrait state transitions to happen only between global

iterations to have a statically schedulable model and HDFFSMDirector does exactly

that.

In order to generate code for a modal model, I created a helper class for FSMActor

which can take both roles of a standalone actor and a modal controller.3 I designed the

helper so that it can generate appropriate code according to its context. Specifically,

it implements a method

generateTransitionCode(StringBuffer, TransitionRetriever)

where TransitionRetriever is a Java interface with a method

Iterator retrieveTransitions(State).

When the FSMActor is used as a standalone actor, the TransitionRetriever argu-

ment is given an instance of an anonymous class that implements the retrieveTransi-

tions(State) method in such a way that it returns an Iterator of all transitions from

3For the use and implementation of the FSMActor itself, refer to Chapter 4 of [Brooks2007-3].
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the given State; when the FSMActor is used as a modal controller, the Transition-

Retriever argument is given an instance of an anonymous class that implements the

retrieveTransitions(State) method in such a way that it returns an Iterator of either

preemptive or non-preemptive transitions from the given State.4 The code generated

in the generateTransitionCode(StringBuffer,TransitionRetriever) method follows ex-

actly the same execution sequence as in the simulation model. For each state and the

transitions from that state, it generates the code for guard expression, choice action

(which can only produce output and cannot change actor state), transition refine-

ment, commit action (which can do both), new state updating and re-initialization

(if required).

5.5.3 HDF

An HDF model allows changes in rate signatures between iterations of the whole

model. Within each iteration, rate signatures are fixed and an HDF model behaves

like an SDF model. This guarantees that a schedule can be executed to the com-

pletion. Between global iterations, a modal model can make a state transition and

derives its new rate signature from the refinement associated with the new state. The

HDF domain recomputes the schedule as necessary.

The HDF domain can be used to model a variety of interesting applications that

4A modal controller distinguishes between preemptive transitions (which can be taken before
executing the refinement for the current state) and non-preemptive transitions (which can only be
taken after executing the refinement for the current state) while a standalone FSMActor does not
have such concept.
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the SDF domain cannot easily model. For example, in control applications, the

controlled plant can be in a number of operational states, requiring a number of

control modes. In communication and signal processing, adaptive algorithms are

used to achieve optimal performance with varying channel conditions. In all these

applications, the HDF domain can be used to model their modal behaviors, leading

to implementations that can adjust operation modes according to the received inputs,

while still yielding static analyzability due to the finite number of schedules.

Since it’s expensive to compute the schedule during the run time, all possible

schedules are precomputed during code generation. The structure of the generated

code is hard-coded in such a way that it reflects all possible execution paths for

different schedules.

The first step in the code generation for HDF models is to do configuration analy-

sis as presented in section 3.3 in a bottom-up fashion. When the analysis is complete,

each actor has recorded the number of internal configurations, the rate signature

presented to the outside in each configuration, and the SDF schedule in each con-

figuration. During this step, the maximum capacity required of each buffer among

all configurations is also recorded, except the input buffers of the modal controller.

Remember that the modal controller processes all received data only after one global

iteration and determines whether it needs to make a transition at that point. There-

fore it needs to buffer all received data from one global iteration. However, how many

data tokens are received in one global iteration depends on how many times the modal
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model containing the controller is fired. That information is not available yet in the

bottom-up traversal since it depends on the schedules higher up in the hierarchy.

The next step is to traverse the model structure in a top-down fashion. Each com-

posite actor is associated with an integer array firingsPerGlobalIteration. The

length of the array equals the number of internal configurations of that actor. Each

element in the array represents the maximum number of times the actor can be fired

in one global iteration when the actor is in the corresponding internal configuration.

It is computed the following way. If a composite actor is internally controlled by an

HDFDirector, each contained actor derives its firingsPerGlobalIteration from

that of its container and the number of times this actor is fired in a local SDF sched-

ule. If a composite actor is internally controlled by an HDFFSMDirector (i.e., it is a

ModalModel), each contained refinement derives its firingsPerGlobalIteration

directly from that of its container. The number of tokens a modal controller receives

in one global iteration could be potentially large, implying a large chunk of memory

must be allocated in the generated code. One way to optimize this is to directly

analyze the guard expression and find out how far back the controller needs to access

the received tokens and only allocate the necessary amount of memory. This should

be easy if constant array indexes are used to access the received tokens, which is the

normal usage. However, if array indexes are variables, the analysis would be difficult

or even impossible. The current implementation allocates the maximum amount of

memory needed for one global iteration, therefore correctness is guaranteed.
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I’ll use the HDF model in Fig. 5.9 to explain many aspects of the partial evalu-

ation techniques used in the code generation framework. The HDF model contains

a modal model with two states. The refinement associated with state1 has a rate

signature of {1,1} and the refinement associated with state2 has a rate signature of

{1, repeatFactor} where repeatFactor is a parameter that can be configured by users.

The modal model implicitly contains an HDFFSMDirector.

Ptolemy II actors are type-polymorphic, which means the same actor can operate

on different data types—not only scalar data types but also structured data types.

This capability comes at the cost of performance—a simple addition can involve

about a dozen function calls. The partial evaluation technique transforms a type-

polymorphic specification to a specification that only operates on a single type. In

Fig. 5.9, the parameters of the Ramp actor are configured as double data type. The

type-resolution mechanism could propagate this information throughout the model.

In the generated code, all the variables are defined with specific data types (see

Fig. 5.10) and all the operations are specific to these data types.

In the simulation environment memory can be dynamically allocated since the

underlying framework must support those concurrency formalisms that are statically

schedulable as well as those that are not. In code generation if a model is statically

schedulable, the scheduling analysis could determine the buffer size and the generated

code could pre-allocate the required memory. In Fig. 5.9, the value of the parameter

repeatFactor in fact determines the size of the buffer receiving data from Repeat
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Figure 5.9: An HDF model used for code generation.
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actor. In the generated code, the buffers are defined in the form of arrays of fixed

sizes or scalar variables if size is 1 (see Fig. 5.10).

Through the model analysis we could divide parameters into static and dynamic.

In Fig. 5.9, the scaleFactor parameter is defined in the top level actor and used

in the Scale actor contained in the refinement for state2. This parameter can only

be configured by users and stay constant during execution. Therefore it is static

and directly used in the generated code (see Fig. 5.11). On the other hand, the

scaleFactor parameter defined inside the refinement for state1 is dynamic because

it can be modified each time there’s a transition from state2 to state1.5 A variable

needs to be generated for the dynamic parameter (see Fig. 5.12).

Ptolemy II actors have well-defined interfaces, which provide abstraction for the

properties of actors. Different actors can work together as long as the interfaces are

compatible. When passing tokens between actors, an actor does not directly reference

the downstream actor. Instead, the message passing is through the interface methods.

However, most models have static structures. The partial evaluation technique takes

advantage of this and replaces interface methods with direct reference to the buffer

variables (see Fig. 5.11).

Ptolemy II actors are designed to be domain-polymorphic, meaning they can be

used in different MoC’s. The partial evaluation technique takes advantage of the

specific MoC and reduces the generated code for the actor to the bare minimum

5Like scoping rule in general purpose languages such as C and Java, the inner parameter shadows
the outer parameter in Ptolemy II. When an actor uses a parameter, it searches up in the hierarchy
and uses the first matched parameter.
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#include <stdio.h> 
static double _model_ModalModel_state1_scaleFactor_; 
static double _model_ModalModel_state2_input; 
static double _model_ModalModel_state2_output[3]; 
static double _model_ModalModel_state2_Repeat_input; 
static double _model_ModalModel_state2_Scale_input[3]; 
static double _model_ModalModel_state1_input; 
static double _model_ModalModel_state1_output; 
static int _model_currentConfiguration; 
static int _model_ModalModel_output_readoffset = 0; 
static int _model_ModalModel_output_writeoffset = 0; 
static int iteration = 0; 
................. 
main(int argc, char *argv[]) { 
    _model_ModalModel_state1_scaleFactor_ = 1; 
    _model_ModalModel_currentConfiguration = 1; 
    _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
    /* Static schedule: */ 
    for (iteration = 0; iteration < 4; iteration ++) {         
        switch (_model_currentConfiguration) { 
        case 0: 
            _model_ModalModel_input = _model_Ramp_state; 
            _model_Ramp_state += 1.0; 
            _model_ModalModel__Controller_input = _model_ModalModel_state2_input = _model_ModalModel_input;     
            _model_ModalModel_state2_Repeat_input = _model_ModalModel_state2_input; 
            _model_ModalModel_state2_Scale_input[0] = _model_ModalModel_state2_Scale_input[1] =        
                    _model_ModalModel_state2_Scale_input[2] = _model_ModalModel_state2_Repeat_input; 
            _model_ModalModel_state2_output[0] = 4 * _model_ModalModel_state2_Scale_input[0]; 
            _model_ModalModel_state2_output[1] = 4 * _model_ModalModel_state2_Scale_input[1]; 
            _model_ModalModel_state2_output[2] = 4 * _model_ModalModel_state2_Scale_input[2]; 
             ………….. 
        case 1:  
             ................. 
             _model_ModalModel_state1_Scale_input = _model_ModalModel_state1_input; 
             _model_ModalModel_state1_output = _model_ModalModel_state1_scaleFactor_ *  
                    _model_ModalModel_state1_Scale_input; 
             _model_ModalModel_output[(_model_ModalModel_output_writeoffset + 0)&3] =  
                     _model_ModalModel__Controller_output[(_model_ModalModel__Controller_output_writeoffset + 0)&3] = 
                     _model_ModalModel_state1_output; 
             _model_ModalModel_output_writeoffset = (_model_ModalModel_output_writeoffset + 1)&3; 
             _model_ModalModel__Controller_output_writeoffset = (_model_ModalModel__Controller_output_writeoffset + 1)&3; 
             ............... 
        } 
         
        if (_model_ModalModel_fired) { 
            switch (_model_ModalModel__Controller_currentState) { 
                case 0: 
                    if ((_model_ModalModel__Controller_input > 0)) { 
                        _model_ModalModel_state1_scaleFactor_ = _model_ModalModel__Controller_input; 
                        _model_ModalModel__Controller_currentState = 1; 
                        _model_ModalModel_currentConfiguration = 1; 
                    }  
                    break; 
                case 1: 
                    if (true) { 
                        _model_ModalModel__Controller_currentState = 0; 
                        _model_ModalModel_currentConfiguration = 0; 
                    }  
                    break; 
            } 
            _model_ModalModel_fired = 0; 
        } 
        if (_model_fired) { 
            _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
            _model_fired = 0; 
        } 
    } 
    exit(0); 
} 
 

Figure 5.10: Data type and memory allocation in code generation.
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#include <stdio.h> 
static double _model_ModalModel_state1_scaleFactor_; 
static double _model_ModalModel_state2_input; 
static double _model_ModalModel_state2_output[3]; 
static double _model_ModalModel_state2_Repeat_input; 
static double _model_ModalModel_state2_Scale_input[3]; 
static double _model_ModalModel_state1_input; 
static double _model_ModalModel_state1_output; 
static int _model_currentConfiguration; 
static int _model_ModalModel_output_readoffset = 0; 
static int _model_ModalModel_output_writeoffset = 0; 
static int iteration = 0; 
................. 
main(int argc, char *argv[]) { 
    _model_ModalModel_state1_scaleFactor_ = 1; 
    _model_ModalModel_currentConfiguration = 1; 
    _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
    /* Static schedule: */ 
    for (iteration = 0; iteration < 4; iteration ++) {         
        switch (_model_currentConfiguration) { 
        case 0: 
            _model_ModalModel_input = _model_Ramp_state; 
            _model_Ramp_state += 1.0; 
            _model_ModalModel__Controller_input = _model_ModalModel_state2_input = _model_ModalModel_input;     
            _model_ModalModel_state2_Repeat_input = _model_ModalModel_state2_input; 
            _model_ModalModel_state2_Scale_input[0] =    
               _model_ModalModel_state2_Scale_input[1] =        
               _model_ModalModel_state2_Scale_input[2] =    
               _model_ModalModel_state2_Repeat_input; 
 
       _model_ModalModel_state2_output[0] = 4 *  
              _model_ModalModel_state2_Scale_input[0]; 
            _model_ModalModel_state2_output[1] = 4 * _model_ModalModel_state2_Scale_input[1]; 
            _model_ModalModel_state2_output[2] = 4 * _model_ModalModel_state2_Scale_input[2]; 
             .............. 
        case 1:  
             ............... 
             _model_ModalModel_state1_Scale_input = _model_ModalModel_state1_input; 
             _model_ModalModel_state1_output = _model_ModalModel_state1_scaleFactor_ * 
                     _model_ModalModel_state1_Scale_input; 
             ............... 
        } 
         
        if (_model_ModalModel_fired) { 
            switch (_model_ModalModel__Controller_currentState) { 
                case 0: 
                    if ((_model_ModalModel__Controller_input > 0)) { 
                        _model_ModalModel_state1_scaleFactor_=_model_ModalModel__Controller_input; 
                        _model_ModalModel__Controller_currentState = 1; 
                        _model_ModalModel_currentConfiguration = 1; 
                    }  
                    break; 
                case 1: 
                    if (true) { 
                        _model_ModalModel__Controller_currentState = 0; 
                        _model_ModalModel_currentConfiguration = 0; 
                    }  
                    break; 
            } 
            _model_ModalModel_fired = 0; 
        } 
        if (_model_fired) { 
            _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
            _model_fired = 0; 
        } 
    } 
    exit(0); 
} 
 
 
 

static parameter 

model structure 

Figure 5.11: Static parameter and model structure in code generation.
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dynamic parameter 

#include <stdio.h> 
static double _model_ModalModel_state1_scaleFactor_; 
static double _model_ModalModel_state2_input; 
static double _model_ModalModel_state2_output[3]; 
static double _model_ModalModel_state2_Repeat_input; 
static double _model_ModalModel_state2_Scale_input[3]; 
static double _model_ModalModel_state1_input; 
static double _model_ModalModel_state1_output; 
static int _model_currentConfiguration; 
static int _model_ModalModel_output_readoffset = 0; 
static int _model_ModalModel_output_writeoffset = 0; 
static int iteration = 0; 
................. 
main(int argc, char *argv[]) { 
    _model_ModalModel_state1_scaleFactor_ = 1; 
    _model_ModalModel_currentConfiguration = 1; 
    _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
    /* Static schedule: */ 
    for (iteration = 0; iteration < 4; iteration ++) {         
        switch (_model_currentConfiguration) { 
        case 0: 
            _model_ModalModel_input = _model_Ramp_state; 
            _model_Ramp_state += 1.0; 
            _model_ModalModel__Controller_input = _model_ModalModel_state2_input = _model_ModalModel_input;     
            _model_ModalModel_state2_Repeat_input = _model_ModalModel_state2_input; 
            _model_ModalModel_state2_Scale_input[0] = _model_ModalModel_state2_Scale_input[1] =        
                    _model_ModalModel_state2_Scale_input[2] = _model_ModalModel_state2_Repeat_input; 
             ………….. 
        case 1:  
             ................. 
             _model_ModalModel_state1_Scale_input = _model_ModalModel_state1_input; 
             _model_ModalModel_state1_output   
                       =_model_ModalModel_state1_scaleFactor_ *  
                       _model_ModalModel_state1_Scale_input; 
             _model_ModalModel_output[(_model_ModalModel_output_writeoffset + 0)&3] =  
                     _model_ModalModel__Controller_output[(_model_ModalModel__Controller_output_writeoffset + 0)&3] = 
                     _model_ModalModel_state1_output; 
             _model_ModalModel_output_writeoffset = (_model_ModalModel_output_writeoffset + 1)&3; 
             _model_ModalModel__Controller_output_writeoffset = (_model_ModalModel__Controller_output_writeoffset + 1)&3; 
             ............... 
        } 
         
        if (_model_ModalModel_fired) { 
            switch (_model_ModalModel__Controller_currentState) { 
                case 0: 
                    if ((_model_ModalModel__Controller_input > 0)) { 
                        _model_ModalModel_state1_scaleFactor_ =  
                    _model_ModalModel__Controller_input; 
                        _model_ModalModel__Controller_currentState = 1; 
                        _model_ModalModel_currentConfiguration = 1; 
                    }  
                    break; 
                case 1: 
                    if (true) { 
                        _model_ModalModel__Controller_currentState = 0; 
                        _model_ModalModel_currentConfiguration = 0; 
                    }  
                    break; 
            } 
            _model_ModalModel_fired = 0; 
        } 
        if (_model_fired) { 
            _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
            _model_fired = 0; 
        } 
    } 
    exit(0); 
} 
 

Figure 5.12: Dynamic parameter in code generation.
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MoC-specific scheduling 

#include <stdio.h> 
static double _model_ModalModel_state1_scaleFactor_; 
static double _model_ModalModel_state2_input; 
static double _model_ModalModel_state2_output[3]; 
static double _model_ModalModel_state2_Repeat_input; 
 
static double _model_ModalModel_state1_input; 
static double _model_ModalModel_state1_output; 
static int _model_currentConfiguration; 
static int _model_ModalModel_output_readoffset = 0; 
static int _model_ModalModel_output_writeoffset = 0; 
static int iteration = 0; 
................. 
main(int argc, char *argv[]) { 
    _model_ModalModel_state1_scaleFactor_ = 1; 
    _model_ModalModel_currentConfiguration = 1; 
    _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
    /* Static schedule: */ 
    for (iteration = 0; iteration < 4; iteration ++) {         
        switch (_model_currentConfiguration) { 
      case 0: 
            _model_ModalModel_input = _model_Ramp_state; 
            _model_Ramp_state += 1.0; 
            _model_ModalModel__Controller_input = _model_ModalModel_state2_input = _model_ModalModel_input;     
            _model_ModalModel_state2_Repeat_input = _model_ModalModel_state2_input; 
            _model_ModalModel_state2_Scale_input[0] = _model_ModalModel_state2_Scale_input[1] =        
                    _model_ModalModel_state2_Scale_input[2] = _model_ModalModel_state2_Repeat_input; 
            _model_ModalModel_state2_output[0] = 4 * _model_ModalModel_state2_Scale_input[0]; 
            _model_ModalModel_state2_output[1] = 4 * _model_ModalModel_state2_Scale_input[1]; 
            _model_ModalModel_state2_output[2] = 4 * _model_ModalModel_state2_Scale_input[2]; 
             ………….. 

           case 1:  
             ................. 
             _model_ModalModel_state1_Scale_input = _model_ModalModel_state1_input; 
             _model_ModalModel_state1_output = _model_ModalModel_state1_scaleFactor_ *  
                    _model_ModalModel_state1_Scale_input; 
             _model_ModalModel_output[(_model_ModalModel_output_writeoffset + 0)&3] =  
                     _model_ModalModel__Controller_output[(_model_ModalModel__Controller_output_writeoffset + 0)&3] = 
                     _model_ModalModel_state1_output; 
             _model_ModalModel_output_writeoffset = (_model_ModalModel_output_writeoffset + 1)&3; 
             _model_ModalModel__Controller_output_writeoffset = (_model_ModalModel__Controller_output_writeoffset + 1)&3; 
} 
         
        if (_model_ModalModel_fired) { 
            switch (_model_ModalModel__Controller_currentState) { 
        case 0: 
          if ((_model_ModalModel__Controller_input > 0)) { 
                        _model_ModalModel_state1_scaleFactor_ = _model_ModalModel__Controller_input; 
                        _model_ModalModel__Controller_currentState = 1; 
                        _model_ModalModel_currentConfiguration = 1; 
                    }  
                    break; 
                case 1: 
          if (true) { 
                        _model_ModalModel__Controller_currentState = 0; 
                        _model_ModalModel_currentConfiguration = 0; 
                    }  
                    break; 
            } 
            _model_ModalModel_fired = 0; 
        } 
        if (_model_fired) { 
            _model_currentConfiguration = 0 + _model_ModalModel_currentConfiguration * 1 + 0; 
            _model_fired = 0; 
        } 
    } 
    exit(0); 
} 
 

firing 
sequence 

firing 
sequence 

state 
transition 

Figure 5.13: MoC-specific scheduling in code generation.
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needed for that MoC. The partial evaluation technique also takes advantage of MoC-

specific scheduling and the schedules are hard-coded directly into the flow of the

generated code (see Fig. 5.13).

5.6 Performance

I compared the execution time of Ptolemy simulation and the corresponding gen-

erated C code. In Fig. 5.14, the first model is a simple producer and consumer pair;

the second model is the one discussed in the previous section; the third one models a

communication system using Hamming coder and decoder over a noisy channel.6

In each case, I recorded the number of iterations and the corresponding running

time. Since C code execution is much faster than Java simulation, I adjusted the iter-

ation number in each case so that the running time is always in the scale of 1 second.

Then for each model, I computed the the ratio of model simulation time over C code

execution time per iteration. As one can see from the table, the generated C code ex-

ecutes three orders of magnitude faster than the simulation in each case. Admittedly,

part of performance difference comes from using partial evaluation techniques and

part of performance difference comes from using two different languages—C being

natively executed as machine code and Java being interpreted by JVM as bytecode.

However, nowadays JVM implements just-in-time (JIT) technology which compiles

the bytecode into platform-specific executable code. In the experiment I measured

6This model is created by Ye Zhou.
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Figure 5.14: Performance comparison of the original model and generated code.

the simulation time only after running the same simulation a number of times so that

JIT can kick in. In the future, I hope to do further experiments to determine more

precisely the performance improvement from using partial evaluation techniques.
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Chapter 6

Conclusion

6.1 Summary of Results

The first part of this thesis studied using actor-oriented design as a high level

abstraction for composing concurrent components. Under the umbrella of actor-

oriented design, there are a rich variety of concurrency formalisms that span the

whole spectrum from most expressive to most analyzable. I focused on one particular

model of computation called heterochronous dataflow (HDF) which strikes a nice

balance between expressiveness and analyzability. I studied the configurations in

HDF modeling paving a way for code generation. I also studied the complexity issues

in HDF modeling.

In the second part of this thesis, I confronted the abstraction penalty problem un-

der the context of actor-oriented design. To generate an efficient implementation from
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a high level specification, I used partial evaluation as an optimized compilation tech-

nique for actor-oriented models. Compared with traditional compiler optimization,

partial evaluation for embedded software works at the component level and heavily

leverages domain-specific knowledge. Through model analysis—the counterpart of

binding-time analysis for general purpose software—the partial evaluator I developed

can discover the static parts in a model including data types, buffer sizes, parameter

values, model structures and execution schedules, etc. and then exploit the known

information to reach a very efficient implementation.

I used a helper-based mechanism, which leads to a flexible and extensible frame-

work and achieves modularity, maintainability, portability and efficiency in code gen-

eration. I demonstrated that design using high level abstraction can be achieved

without sacrificing performance.

The code generation framework is part of Ptolemy II release. It can be downloaded

in open source from the Ptolemy project website at EECS, UC Berkeley.1 The soft-

ware release includes various demos highlighting the features of the code generation

framework.

1Go to http://ptolemy.eecs.berkeley.edu/ or http://ptolemy.org/
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6.2 Future Work

There remains much to be explored.2 Ptolemy II is a graphical design environ-

ment and throughout the thesis I used graphical specifications for HDF models, which

has the advantage of being intuitive about the design. However, the most obvious

weakness of graphical design is the issue of scalability. A textual specification handles

better a large design. Therefore the open question is how to design a language with

HDF semantics. One starting point is to adapt Cal [Eker2003], which is an actor def-

inition language. The research challenge is to come up with a language that is built

on sound design principles and leverages technology the Ptolemy project has made

mature or has been experimenting with over the years, such as functional array op-

erations, higher-order components, state machines, static schedulers, synchronization

optimizers, etc.

This thesis did not touch upon the subject of parallel scheduling. In Ptolemy

classic—the predecessor to Ptolemy II—a number of parallel scheduling algorithms

for SDF models were realized. The research opportunity here is to build upon those

results and take advantage of the functional expression language in Ptolemy II, which

supports Matlab-like array operations, for exploiting the parallelism in HDF models.

In this thesis I have realized code generation for SDF, FSM and HDF domains.

Since the beginning the framework is purposely designed to be flexible and extensible

and allow code generation for multiple concurrency formalisms. Naturally the next

2Some ideas here come from Edward A. Lee’s Parlab contributions email.
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step is to explore code generation for other MoC’s suited to embedded system design.

E.g., Man-Kit Leung is building a C code generator for Process Network (PN) domain

that will produce native multithreaded C code from Ptolemy II models.

Another direction to steer the code generation framework towards more practical

use is to test the capabilities of the framework with more complicated applications.

E.g., we could get some reference implementation for mpeg coding/decoding in C. We

could do the same design in our actor-oriented environment and then automatically

generate C code for that. Then we could compare the performance of generated code

with that of the reference implementation.
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