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1 Chapter 1
1.1 Folland 1.2

Prove the following Proposition:

Proposition. 1.1:

Br is generated by each of the following:

(a
(b

the open intervals: £ = {(a,b) | a < b},
the closed intervals: €2 = {[a,b] | a < b},

d

)

)
(c) the half-open intervals: €5 = {(a,b] | a < b} or &4 = {[a,b) | a < b},
(d) the open rays: &5 = {(a,00) | a € R} or &g = {(~00,a) | a € R},

)

(e) the closed rays: €7 = {[a,0) | a € R} or £g = {(—00,a] | a € R},

\.

Proof. Most of the proof is already completed by Folland. What was shown is that M(E;) C Bg Vj =

,8. To finish the proof and show Br = M(E;) Vj, we can simply show that Br C M(E;) Vj.
By 1nv0k1ng Lemma 1.1, if the family of open sets lie in M(&;), then it must be that Br C M(E ).
Furthermore, it is actually sufficient to only show that all the open intervals lie in M(E;) since every
open set in R is a countable union of open intervals. Thus, we complete our proof by directly showing
the following:

1. (a,b) € & = (a,b) € M(Ey).

2. (a,b) =U*[a+n~tb—n"1] € M(E2)

3. (a,b) = U®(a,b—n"1] € M(E3)

4. (a,b) = Us°[a+n~1b) € M(Ey)

5. (a,b) = (a,00) N (=00, b) = (a,00) N [b,00)¢ = (a,00) N (N (b—n"",00))" € M(Es)

6. (a,b) = (a,00) N (—00,b) = (=00, a]* N (—00,b) = (NF° (—00,a+n""))* N (—00,b) € M(Eq)
7. (a,b) = (a,00) N (—00,b) = (U [a +n~1, 00)) N [b, 00)° € M(E7)

8. (a,b) = (a,00) N (—00,b) = (—00,a)" N (U3 (~00,b —n~]) € M(Es)

1.2 Folland 1.4

Prove the following proposition:

Proposition. 1.2:

An algebra A is a g-algebra <= A is closed under countable increasing unions (i.e., if { E£;}7° C A
and £y C By C oo then U(l)oEj < .A)




Proof. The forward direction (o-algebra = closed under countable increasing unions) is by the definition
of o-algebra (closed under countable unions ). The backward direction (closed under countable increasing
unions = closed under countable increasing unions = g-algebra) is slightly more involved:

If {F;}3° € A, then let us define E; := U] F};. Since countable unions of countable unions is countable,
and since {E;}{° has the property of By C Ep C ---, then we know that U°E; € A. However, since
it is also the case that U{°F; = U°E;, we can conclude that U°F; € A as well, and thus proving the
backward direction. O

1.3 Folland 1.5

Prove the following Proposition:

Proposition. 1.3:

If M(€&) is the o-algebra generated by &, then M(&) is the union of the o-algebras generated by
F. as F, ranges over all countable subsets of €.

Proof. We use the notation F, to denote a countable subset of €, and we let F := {F, | « € A} denote
the (likely uncountable) set of all countable subsets of &. Let us also define M := UgyeaM(Fo). We
proceed now by first showing that M is indeed a o-algebra by showing that M is closed under countable
unions and compliments:

Suppose {E;}$° € M. Since M is simply the union of a many o-algebras, we know immediately that VE;
3 at least one F; s.t. E; € M(F;). Since a countable union of countable elements is countable, if we define
H := U®F; where E; € M(F;), we know that H is also countable subset of €. We can now look at the
properties of the following o-algebra: M(H).

(1) Since F; ¢ H C M(H) = M(F;) C M(H) (by Lemma 1.1), and since E; € M(F;), we can say that
{Ei}T° € M(H).

(2) Since H is a countable subset of &, we know that 33 s.t. H = F4, and hence M(H) C M.

Therefore, since M(H) is by construction a o-algebra and from (1) ({E;}5° € M(H)) it = U E; € M(H),
and by (2) (M(H) € M) = UFE; € M.

To now show M is closed under compliments, suppose E € M. By the same argument already used,
there must exist a countable subset F, C € s.t. E € M(F,), and obviously since M(F,) is a o-algebra,
E° € M(F,). Therefore, since M(F,) € M = E¢ € M. We have thus shown that M is is closed under
countable unions and compliments, and hence a o-algebra.

To neatly finish up our proof, let us first note that Voo € A, F, C &€ = M(F,) C M(E), and thus we
can also say M C M(&). To show the opposite relation, let ¢ € €, then ¢ is trivially countable, so 35
s.t. e = Fp = ¢ € M. Now since this is true Ve € €, we can say that € C M, which therefore (again by

Lemma 1.1) = M(E) € M. By showing both opposite relations, we can thus conclude that M(E) = M.
O



1.4 Boxes vs cylinder sets w.r.t. o-algebras

Let A be an index set, { X4 }aca a family of non-empty sets and for each o € A, M,, be a o-algebra
on X,. Consider the product space:
X =1]] Xa

acA

Let M be the o-algebra generated by the cylinder sets C := {7 ' (E,) | Ea € Ma,a € A}, and
M* be the one generated by boxes B := {[[, .4 Ea | Ea € My}. Show that M C M*, but in
general M # M*

Hint 1: Proposition 1.3 implies that if A is countable then M = M*; we should thus take A to be
not countable.)

a€cA

Hint 2: You might find useful to first prove the following intermediate result. For any A’ C A, let
Ma = M{nYEL) | Ea € Mo, a € A'}); let now

e U o
A’CA countable

Then show that M = M. (Hint?: show that M is a o-algebra which contains the cylinders...) The
above can be loosely stated as “any set in M is determined by countably many coordinates”

**Please note the notation used for the box and cylinder sets above.

Answer: To show M C M*, note that 7,1 (E,) = HﬂeA Eg, where Eg = X5 V 8 # a. In this form, it
is clear that € C B ¢ M* = M C M* (by Lemma 1.1).

Next, let us prove that M = M:

Proof. Suppose {F;}5° € M. Then since M is a union of o-algebras, it must be that F; € M4 for at least
one A’. Taking A” to be the union of one of the A’s which satisfies F; € My, for each i. Thus, A” will
naturally also be a countable set. Since A” is a countable set, Mar C M = U E; € M by Lemma 1.1.

Next, suppose F' € M, then A’ s.t. F € M/, which implies F'° € M4/, and since MA’ C M, = F° e M,
and hence M is indeed a o-algebra.

Next, since A’ C A, = My C M(= M4) VA, and thus since My € M VA’ = M C M. To show the

opposite inclusion, we know that Va € A 3 a countable subset A’ C A s.t. o € A’, namely {a}. In this

form, it is perfectly clear that 7' (E,) C M, since 7' (E,) € Ma/— {a} = MC M And thus M = M.
O]

Let us now turn our attention to the form in which the generating family of sets for M 4, takes. Each set
is in the form 77! (Ea) = ([T5c 4 Ep) X (IT,c 4\ 4 X+), where A" is a countable set, and Eg = X V3 # a.
In this form, it is clear that after countably many intersections, compliments and unions, VE € Ma/,
E will still be in the form of ([[gc 4 E£5) x (I, 4\ar X+), where A" is a countable set, and Es € Mg.

However, when looking at the boxes, it is clear that 3£ € M(B) s.t. £ = ([[zep Es) x (I ea\5 X4,
where B is an uncountable set, and Eg € Mg.

1.5 Folland 1.7

Prove the following Proposition:



Proposition. 1.4:

If p1,..., 1, are measures on (X, M) and ay,...,a, € [0,00), then > ] a;ju; is a measure on
(X, M).
Proof. Since p; i € {1,...,n} are measures, we know that u;(@) = 0 Vi = 1,...,n, and therefore

wi=> 1 aju;(#) = 0. Next, suppose {E;};° € M and {E;}5° disjoint, then:

(1) =32 (s (115)) =35 (o Som(5)) =55 (S () ) - S

j=1 i=1 j=1 \i=1

1.6 Folland 1.8

Prove the following Proposition:

Proposition. 1.5:

If (X,M,p) is a measure space and {E;}7° C M, then p(liminf F;) < liminfu(E;). Also,
p(limsup E;) > limsup u(E;) provided that p(UPE;) < oo.

Proof. We first recall the definitions of lim inf and lim sup for a sequence of sets as:
o0

liminf(F,) := (ﬂ Fn> , and limsup(F),) := <U Fn>
n—oo
1 \n=k 1

n—oo

We now quickly prove the following Lemma:

Lemma. 1.1: A Corollary of Monotonicity and Subadditivity - (Again!)

If {B;}° € M, then:
(a) u(NB;) < u(By) (or p(By) by switching By for By).
(b) p(UB;) > u(B1) (or u(By) by switching B; for By).

Note: Isorta forget these were either covered or corollaries from Thm 1.8 in Folland, hence why I included
it here - oh well (but I did give a slightly more concise proof for (b) :) )

\. 4

Proof.
(a) Since (N°B;) U (B1\N° B;) = B1 = p(B1) = p(N°B;) + p(B1\ NT° B;) = p(N°B;) < pu(By).
(b) Since (By) U (U3*Bi\B1) = U°B; = p(Ut°B;) = pu(B1) + p(Us*Bi\B1) = p(U°B;) = u(Bi).



We now have all the necessary tools to prove the proposition as follows:

p(liminf E;) = p U ﬂ E; klirgou ﬂ E; hkrglorgfu ﬂ E;| < hklglcgfﬂ (Ej)
k=1 \j=k j=k j=k
Where = is by u’s “Continuity from below” since N2, Ej C N2y B VE €N, and % is by Lem 2.1 (a).
o o0 o0 o0 "
. * . . . . .
p(limsup Ej) = p pl LJkEJ klgrolou LJkEJ lllclggfu LJk E;| > hkrggf,u (Ej)
=1 \j= j= j=

Where = is by u’s “Continuity from above” since U, B C U E; VE € N, and < is by Lem 2.1 (b).
O

1.7 Folland 1.9

Prove the following Proposition:

Proposition. 1.6:

If (X, M, i) is a measure space and E, F € M, then p(E) + u(F) = w(EUF) + u(ENF).

Proof. Firstly, let us make the following observations:
(E\F)UF=(EUF), and (ENF)U(E\F)=F
Therefore, since u is countably additive and therefore finitely additive, we can now see that:
H(E) + pu(F) = p((E 0 F) U (E\F)) + u(F)
= wWENF)+p(E\F) + p(F)
=u(ENF)+ pu((E\F)UF)
=wENF)+u(EUF)

1.8 Folland 1.10

Prove the following Proposition:

Proposition. 1.7:

Given a measure space, (X, M, u) and E € M, define pug(A) = u(ANE) for A € M. Then pg is
a measure.

Proof. We first confirm that pg(2) = 0 since ug(2) = u(g NE) = u(2) = 0. Next, let {F;}7° C M and
{F;}5° disjoint. Then:

R () e

Where = since if {F;}$° is a disjoint family of sets, then {F; N E}$° will be as well. Thus, we have shown
pg is indeed a measure. O



1.9 Folland 1.13

Prove the following Proposition:

Proposition. 1.8:

Every o-finite measure is semi-finite.

Proof. Let p be a o-finite measure on the measurable space (X, M). Firstly, if u(X) < oo, p will trivially
be semi-finite. Therefore, suppose p is o-finite, but not finite. Now, let us arbitrarily pick £ € M s.t.
w(E) = oo (we know at least one such element exists, namely X, since otherwise p would be finite). From
the definition of u being o-finite, we know that 3 {F;}5° C M s.t. X = UF; and p(F;) < oo Vi € N.
One can easily see the following:

oo

p(E) = p(ENX) = p (U(Emﬂ)) <S WENF)
i=1

i=1
And since u(E) = oo
oo < Z,u(EﬂFi) iZﬂ(EOFZ-) =00
i=1 i=1

Furthermore, since E # & (since otherwise u(E) = 0 < o) and u(E) = p (U;=; (E N X;)), we know there
must exist at least one k € N s.t. u(E N Fy) > 0. On the other-hand, since p(F)) < oo by construction,
so too will u(E N Fy) < oo. Therefore, since trivially £ N Fy, C E, we have shown that for an arbitrary
EecMst pE)=o00 Jk € Nst. FyNE C E and p(F; N E) < oo; Le., all o-finite measures are
semi-finite.

O
1.10 Folland 1.17
Prove the following Proposition:
Proposition. 1.9:
If p* is an outer measure on X and {A;}{° is a sequence of disjoint p*-measurable sets, then
p(EN(UPA))) =3 w*(ENA,j) forany E C X.
Proof. Firstly, since u* is an outer measure, we know that:
WH(EN(UFA) = 1 (UFENA) < 3 (BN 4))
j=1
Now, let us define B,, := UT'E;. Now, since A; is p*-measurable Vj € N, we know that Vn > 1:
W (ENB,)=p (ENBy)NA,) +p" (ENB,)NAL) =p*(ENA,) +p*(ENB,_1)
Therefore, iteratively using the above formula (by induction) for B,,..., B2, and countable additivity

being trivial for n = 1, we have shown that:

n

w|EnlJA; | =) _u(En4;), vneN
j=1 j=1



Now, by monotonicty, we can easily see that:
o0 n n
w{EnAj | 2w |EnJA ] =D w (EN4)), ¥neN
j=1 j=1 j=1

And hence p* (E N U;’il Aj> > Z;’;l p* (ENA;). And thus since we shown both > and <, we can
conclude that p*(E N (U A;)) = Y77 p*(ENA4;). O

1.11 Folland 1.18

Prove the following Proposition:

Proposition. 1.10:

Let A C P(X) be an algebra, A, the collection of countable unions of sets in A, and A,s the
collection of countable intersections of sets in A,. Let po be a premeasure on A and p* the induced
outer measure.

a) For any F C X and € > 0, there exists B € A, with E C B and p*(B) < u*(F) + ¢

b) If u*(E) < oo, then E is p*-measurable <= there exists C € A,s with E C C and
p*(C\E) = 0.

c) If pp is o-finite, the restriction p*(E) < oo in (b) is superfluous.

\

Proof.

a) Let us recall the definition of p*(E) as:

i=1 i=1
Therefore, by the definition of inf, Ve > 0 3{B;}{° s.t. E C UPB; and > 7" po(B;) < p*(E) + e
Therefore, if we define B := {B;}{° (same seq. as before), we note that B € A,, and also that:

i (B) < D o(Ai) < (E) e

Where ; because po(B;) = p*(B;), and B is p*-measruable.

b) Let us begin with the forward direction (u*(E) < oo, and E is p*-measurable). From part (a),
we know 3 {C;} C Ay st. E C Cy and p*(Cx) < p*(E) + 1+ Vk € N. Let us now define
C = N{C;, to which we notice that C € Ays5 and E C C since E C Cy Yk € N, and hence
w*(E) < p*(C). Furthermore, we note that since Cj is p*-measurable, so too will Cf, and hence
UPeCs = (N5°C;)° = C° is p*-measurable, and hence C' is p*-measurable. Now, the following
observation becomes apparent:

p(C) = p (ﬂ Ci) = lim p* ( Ci) < lim p*(Cn) = p"(E)
=1 =1

7



Moreover, using the fact that E C C the above now actually implies that p*(E) = p*(C). We also
recall that since E° is pu*-measurable, and since we already showed that C' was p*-measurable, we
can now also say that C' N E¢ = B\E is p*-measurable, and also note that hence:

W (C\E) = 1" (C) — i (C N B) = p'(C) — " (B) = 0

For the backward direction (there exists C € A,5 with E C C and p*(C\E) = 0), first note that
since E C C), C = (B\E)UE. Next, since u* is the Carathéodory extension, C\ E is p*-measurable.
Therefore, we can easily conclude that £ = B\(B\E) is also u*-measurable.

c) Firstly, since g is o-finite, we know that 3 a disjoint set {X;}3° C A s.t. X = UX; and po(Xy) <
oo Vk € N. Next, since F C X is measurable, so too will £y := EN X, Vk € N, and by
above and since {E N E;}$° is disjoint, we know that E = U®(E N X;) = U°E;, and naturally
o(E N Xy) < oo Vk € N. Since we are able to write E in this construction, F is p*-measurable.
We can now figure out the following line of reasoning;:

Eu*-measurable <= E;u*-measurable

— JC; € Ast. E; CCip” i) =

(C\E
—rco={Ja-=J ﬁ([’j k) N ﬁ(mAm> e Aus
i=1 =1 =1 \k=1 k=1

=1 j =

Where p*(C\E) = p*(UPC\E;) < 3277w (C\E;) = >°7°0 = 0. And hence p * (E) < oo did not
matter if pg is o-finite.

O

1.12 Folland 1.26
Prove the following Proposition (by using Folland, Theorem 1.19):

Proposition. 1.11:

If E e M, and u(F) < oo, then Ve > 0 3 a set A that is a finite union of open intervals such that
w(EAA) < oo

Proof. We recall that by Theorem 1.18, JU°P*" s.t. E C U and p(U) < u(E) + 4. Furthermore, by the
inequality just stated, we know that u(U), u(E) < oo, and hence:
1
PUNE) = p(U) — w(E) < e

Now, by recalling that all open sets in R can be written as U$U;, we know that 3 {U;}$° s.t. UU; = U.
We now prove that actually:

1
3N € Nst. p(U) = p (WU =U) < p (LYU;) + 3¢

To see this, since {U;}5° is disjoint:

10



Therefore, the series > p (U;) must converge, and hence, by the definition of convergent series’, IN € N
s.t. Z?VOH (W) < %e, and thus the inequality we sought to prove has now been shown.

Carrying on, let us define U := {U;}¥. Since U € U = p(U) < p(U) < oo and also = U\E C U\E,
hence:

~ 1
PUNE) < p(U\E) < e
Now, also since p(U) < oo, and since U € U = E\U € U\U, we can see that:

oo

W(B\T) < p(0T) = p() — u(@) = 3 p1) < e
i=N+1

Therefore, by combining the last two main inequalities, we have found a set A = U which is a finite union
of open intervals such that:

WEAT = p(E\T) + p(I\E) < %e + %e — e

1.13 Folland 1.28

Prove the following Proposition:

Proposition. 1.12:

Let F be increasing and right continuous, and let pupr be the associated measure. Then:

Proof.

a) We first note that we may construct {a} from a countable intersection of h-intervals as follows:

oo

{a} = (a-1/n.d

n=1

Furthermore, since (a — 1/n,a] D (a —1/(n + 1),a] ¥n € N, we may invoke continuity from above
in that:

*

ur({a}) = lim pr((a—1/n,a)) = lim (F(a) - F(a—1/n))

n—oo n—o0

F(a) = F(a-)
Where = can be rigorously shown by noting that since F is an increasing function:

lim F(a—1/n) =sup{F(z) | x < a} = F(a—)

n—oo

11



b) We first note that we may construct [a,b) from a union of countable intersections and unions of
h-intervals as follows:

[a,b) = [a, (a+b)/2] U (a,b) = (ﬂ(a— 1/n, (a+b)/2]> u (U (a,b— 1/m]>

n=1 m=1

Like in part a):

|
=
=
s

ur(la,(a+5)/2) = lim (ﬂ (a—1/n,(a+ b>/21>

n=1

= lim (F((a+1b)/2) - F(a —1/n))
= F((a+1b)/2) — F(a—)

Where = is reasoned exactly as in a). Furthermore, since (a,b—1/m) C (a,b—1/(m+1)) ¥m € N,
we may invoke continuity from below in that:

pr((a,b)) = lim pp (U 1/m>
= lim (F(b—1/m) — F(a))

n—oo

Z F(b—) — F(a)
Where = can be rigorously shown by noting that since F is an increasing function:

lim F(b—1/m)=sup{F(z) | z < b} = F(b—)

n—roo

Therefore, since all the sets we’ve been dealing with so far have been bounded, we can see now that:

pr([a.b)) = pr(la, (a+)/2]) + pr (b)) = pr((a,0) N a, (a +0)/2])
= pr(la, a+b/2)+uF((a, )) = e ((a, (a +b)/2])
[F(a+b/2) a=)|+[Fo-) = Fa)] - [F((a+8)/2) - F(a)]
= [FO-) - Fla)] + [F«a +6)/2) = F((a+0)/2)| + [F(a) - F(a)]
= F(b—) - F(a—)

c) We first note that we may construct [a,b] from countable intersection of h-intervals as follows:

oo

[a,b] = ﬂ(a— 1/n,b]

n=1

Thus, by making the change of variables of (a4 b)/2 — b, from the first half of b), we have already
shown that pr([a,b]) = F(b) — F(a—).

d) We first note that we may construct (a,b) from a countable union of h-intervals as follows:

U@ b-1/n]

Thus, from the second half of b), we have already shown that pup((a,b)) = F(b—) — F(a).
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1.14 Folland 1.30

Prove the following Proposition:

Proposition. 1.13:

If E € £ and m(E) > 0, for any o < 1 3 an open interval I such that m(E N I) > am(I).

Proof. If o <0, since m(E) > 0= 3F C E s.t. m(F) >0, and F = (a,b],a < b. If we thus take:
N 1 3
I = — —
<4(a—|—b), 4(a+b)>

We have m(ENI)=m(I) >0 > am().

Now suppose 0 < a < 1. Since m is semi-finite, if m(E) = 00, we can simply take E C Est 0<
m(E) < oo, and hence we actually restrict our problem to that of all E’s s.t. F € £ and 0 < m(E) < cc.
Let us also quickly note/recall that:

m({b}) =0 = m((a,b]) = m((a, b) U {b}) = m((a, b)) + m({b}) = m((a, b))

Now, for the sake of contradiction, assume VI = (a,b),a < b, we have: m(ENI) < am(I). Let us choose
€1 > 0 so that e, < =2 (and hence a(1 + ¢;) < 1). Moreover, from (Folland) Theorem 1.18, we know
that Ve, > 0 31 = U(a;,b;) s.t. E C I and m(I) = 37" m((a;, b)) < m(E) + e2. Next, from our
discussion on (a, b) v.s. (a,b], we can actually write I = LU$®(a;, b;], where T still satisfies everything that
it did beforehand. Now, if we let e = m(F)e;, (which we can certainly do since m(E) < oo), we see that:

m(I) = Z(ai, bi] <m(E)+m(E)e; = m(E)(1+¢€) < m(E) (1 + ! ;a) = m(E)é

= am(I) <1:m(E)

Therefore, by combining the above inequality with our assumption in that m(E N Ii) < am(l;) Vk € N,
and that £ C I, we see that:

m(E) =m(ENI) =Y m(ENL) <Y am(l;) = am(I) < m(E)
i=1 i=1

Which is obviously a contradiction on the requirement of m(FE) > 0, hence the converse must be true:
I.e. our Proposition is true. O

1.15 Folland 1.31

Prove the following Proposition:

Proposition. 1.14:

If E€ L, and m(F) > 0, the set {F — E} := {z —y | #,y € E} contains an interval centered at

0. (If I is as in (Folland) Exercise 1.30, with @ > 2, then {E — E} contains (—im(I), im(I)).)

Proof. From (Folland) 1.30, we know that 3 I s.t. 2m(I) < m(ENI). Let us now define F := ENI C E,
and naturally we will have {F — F'} C {E — E}, hence if 3 an interval centered at 0 in {F — F'}, so too
will that interval be in {F — E'}.

13



We now claim that F N{F + xo} # & = 29 € {F — F}. To see this, let y € FN{F + 20} = y €
Fand3dz e Fst.y=ax+axo=>x9=y—z,y,2 € F =29 {F—F}.

Trivially 0 € {F — F} since F # &. Let us now let zy € R s.t. |z < im(I) < 3m(I) < m(F). If we can
show that F N {F + 2z} # & = (— 3m(I),3m(I)) C {E — E}. Therefore, the remainder of this proof
will be dedicated to showing F N {F + 29} # & where || < 3m(I).

Firstly, we note that:
m(I\NF)=m(I) —m(F)=m(I) —m(ENI) <m(I) — -m(F)=-m(F)
Furthermore, by applying the useful fact that AN B = ((A\C) N B) U ((C\A) N B) twice, we find:
U

[((I\F) N{I + z0}]

Our strategy now will be to show that m(F N{F + zo}) > 0, which therefore would imply I N {I + zo}
also has positive measure, and hence cannot be empty. To see this first note the following four properties:

IN{I+2}=[FN{F+ 2z} U[Fn{I\F}+z)]

m(IN{I+z}) <m[FN{F + 2} +m[F N ({I\F} + 20)] + m[(I\F) N {I + z0}]

and: m[F N ({I\F} + z0)] < m[{(I\F) + 20}] = m[I\F] < —m(F) from previously

g

and: m[F N ({I\F} + 2)] < m(I\F) < im([) again
and: %m(I) <m(I) = |zo| =m[IN{I + z}]

And hence combing all these we see that:

%m([) <m[IN{I+2)} <m[FN{F+2}] +%m([) = m[FN{F+2z}] >0

1.16 Folland 1.33

Prove the following Proposition:

Proposition. 1.15:

There exists a Borel set A C [0, 1] such that 0 < m(ANI) < m(I) for every sub-interval I of [0, 1].
(Hint: Every sub-interval of [0, 1] contains Cantor-type sets of positive measure.)

Proof. The first observation we need to make is that since |Q| = Xy = |Q x Q| = Rg (Xg := “countably
infinite”). Therefore, we can actually write the set of all closed sets I inside [0, 1] where Ij’s endpoints
are rational numbers as a countable list: I = {I;}°. By the hint, we know that every sub-interval of
[0,1] contains Cantor-type sets (which will certainly have rational endpoints). Our plan will therefore
be through induction, to explicitly describe a Borel set made up of necessary Cantor-like sets which will
satisfy the needed inequality.

Let Ay, By, be strict subsets of I, (which we can do because we're assuming I # &, and due to the density
of the rationals) s.t. A; N By = & and m(A;),m(B;) > 0 Vi,j < N. We can therefore define:

N
Cyn = IN\ |_|(AJ U Bj)

j=1

14



And therefore, we can find a Cantor-type set Dy and Dy s.t. m(Dy), D(Dy) > 0 VN € N. If we let
D :=U%_, Dy, then V sub-intervals I C [0, 1], 3N s.t. Iy C I and we will have:

0<m(Dy) <m(DNIy)<m(DNI)<m(DNI)+m(Dy) < m(I)

Le., by seeing that A= D 0 <m(I N D) < m(I). O

2 Chapter 2
2.1 Folland 2.1

Prove the following Proposition:

Proposition. 2.1:

Let f: X - Rand Y = f~}(R). Then f is measurable <= f~!({—o00}) € M, f~1({o0}) € M,
and f is measurable on Y.

Proof. To be clear on notation, if X = {£oo}, then either X = {00} or X = {—o0}, and naturally
{—00,00} # X.

For the forward direction, since f is measurable and {£oo} € Bg, it implies f~'({£o0}) € M. Fur-

thermore, again by f’s is measurability and since R € Bg, it implies f “1(R) € M. Therefore, we may

conclude that if B € Bg, then f~*(B) € Mand f~H(B)Nf~*(R) = f~(B)NY € M, Le., f is measurable
onY.

For the converse, if we let B € Bg, then we can see that:
7B = (71BN FTR) U (fTHB) N FTHR\R))
And since f~1(R) is measurable, naturally f~1(B)N f~}(R) = f~*(BNR) is as well. Next, we note that:
FHUB)NFHR\R) = f7H(B) N f7H({~00,00}) = f7H(B N {~00,00})

Which naturally is either f~1(2) = &, f~1({—00}), f71({o0}), or f71({—o0,00} = f~1({—00}) U
f1({oo}), all of which are measurable since f~1({—oo}) and f~!({oo}) are by assumption measurable.
Combining these two implications of our assumptions, we can see f is measurable since:

7B = (1B NFR) U (fTHB) N FTHR\R)) €M

2.2 Folland 2.2

Prove the following Proposition:

Proposition. 2.2:

Suppose f,g: X — R are measurable.

a) fg is measurable (where 0 - (+00) = 0).

b) Fix a € R, and define h(x) = a if f(z) = —g(x) = +o0, and h(x) = f(x) + g(z) otherwise.
Then h is measurable.
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Proof. We actually do this problem in reverse ordering.

b)

We prove this fact by separating the problem into 2 lemmas, and one final main result:

For the first mini-lemma, we note that A := {z € X | f(x) = —g(x) = £oo} is measurable since
f and g are measurable.

For the second mini lemma, we make the observation that:

“{oo}) = (/ + )" (oo}) = (£ ({oo}) Ng ™ (=00,00]) ) U (47 H (=00, 00]) N g™ ({o0)))

Since h(x) = oo <= either [f(z) = 0o and g(x) > —o0] or [g(z) = co and f(x) > —o0], or |

f(z) = g(x) = o0]. Similarly for the {—oo} (sub-) case:

“{=o0}) = (f+9) " ({=00}) = (7 ({=00})Ng~ ([=00,00)) ) U [~ ([=00,00)) g~ ({—o0}))
Since h(x) = —oo0 <= either [f(z) = —o0 and g(z) < oo] or [g(x) = —o0 and f(x) < o], or |
f(z) = g(x) = —o0]. We naturally recognize the above to certainly be measurable (again) since f

and g are measurable.
Now for the final main result. Let b € R, then:
h=H((b,00]) = (b, 00)) U AT ({o0)}

Since we already showed that h=1({oc}) is measurable, we now seek to show that h=1((b, 0)) is
measurable. This can be seen since:

“1((h o)) = (f +9) 71 ((b,0)) ifa<b
R, ))_{(f+g)‘1((b,a))u(h)‘l({a})u(f+g)‘1((a7<>0)) ifa>b
) ifa<b

9 (oo
A U(f+9)7H((b,o0)) ifa>b
Where we already showed that A., is measurable, and by f and g¢’s measurability, all the sets

above which make up h™!((boo)) are measurable, and hence h~!((b, oc]) is measurable; therefore,
h is measurable.

Let us define Q" :={r e Q| r >0} and Q™ := {r € Q | » < 0}, which is a subsets of Q and hence
countable. Suppose now that f,g > 0, if a > 0, then we will have:

(f9) "' ((a, o)) = {z € X | f(x)g(x) > a}
= U ({xGX | f(x)>r}ﬂ{x6X|g(m)>a/r}>
reQt

Furthermore, if a < 0, (since f,g > 0) we have:

(f9)~H((a,00) = {z € X | f(2)g(z) > a} =X
Therefore, since irregardless of a, (fg)~1((a,o0]) is a countable union of measurable sets, fg is

measurable for f,g > 0. Our strategy henceforth will be to write f = f* — f~ and g = ¢* — g,
where f* := max(0, f), fi := —min(0, f), and similarly for g. Therefore, we naturally have:

fo=(" =) —90) = (fTo" + o) + (= (ffos +frg"))
Now, by our previous work, since f*, g%, f.-, g > 0, it follows that the first half of the above ex-
pression is measurable (since by part b, we showed that the addition of two measurable functions as

defined in this question is measurable). And also recalling that f measurable <= — f measurable,
we can therefore conclude that fg is indeed measurable.

O
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2.3 Folland 2.3

Prove the following Proposition:

Proposition. 2.3:

If {f»} is a sequnce of measurable functions on X, then {z | lim f, () exists} is a measurable set.

Proof. We first recall that by (Folland) Proposition 2.7, when {f,,} is defined as in the question, gs(z) =
limsup,,_, ., fn(z) and g4(z) = liminf,,_, f,(x) are both measurable. If, as in Exercise 2.2, we let a = 1,
then function gs — g4 is measurable (and is equal to 1 when g3 = g4 = +00). Finally, by noting that
lim f,,(x) exists <= g3 = g4, we can actually write:

{z € X | lim f,(z) exists} = Kernel(gs — ga) = {x € X | g3(z) = ga(2)} = (935 — 94) 1 (0)

Which is most certainly measurable since g3 and g4 are measurable, and the difference of such measurable
functions is also measurable (Corollary of Exercise 4.2 by combining the fact that f measurable <=
— f measurable, and taking f —g = f + (—g)). O

2.4 Folland 2.4

Prove the following Proposition:

Proposition. 2.4:

If f: X - Rand f~1((r,00]) € M for each r € Q, then f is measurable.

Proof. Firstly, by the density of the rationals, (a,o0] = Urcoi (r,00], where a € R, and QF := {r €
Q | r > a}. Naturally since Q/ is countable and Bg is generated by the intervals in the form of (a, co],
and since:

F (a,00]) € | M o0]) €M

reQy

By (Folland) Proposition 2.1, it follows that f is measurable. O

2.5 Folland 2.7

Prove the following Proposition:

Proposition. 2.5:

Suppose that for each a € R we are given a set £, € M such that E, C Eg whenever a < f3,
UaerFEo = X, and NyerFo = &. Then there is a measurable function f : X — R such that
f(z) <aon E, and f(z) > a on ES for every a. (Use (Folland) Exercises 2.4).

Proof. We claim that f(x) :=inf{a € R | z € E,}, where E, has the same construction as given in the
Proposition, will satisfy the requirements of being measurable and the stated inequalities. We begin first
by showing the latter.

Suppose x € E,, then by the construction of f, we immediately have f(z) < a. Now, suppose a € ES,
then V3 < a, B C E§ since Eg C E,; therefore, 1 € Ef =2 ¢ Eg V< a = f(z) > aifx € EX.
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Again by the construction of f, it is clear that UperEq = X and UyerES = X. From this, given Vo € X
we know that 3 a, 8 € R such that x € E, and x € E3 and most importantly since «, 5 € R:

—o<a< flz)y <<

And hence f(x) # too irregardless of z. It’ll now be a lot easier to conclude measurability since we no
longer have to worry about the possibility that f(z) = £oo.

Let us now take r € Q, and note that by first set of inequalities established, if x € X, then f(z) < r <=
Jq € R s.t. x € E,. Equivalently: f=((—00,7)) = Uy<,E,. By the density of Q, we can actually restrict
that ¢, € Q. We therefore have:

F Y (00, 7)) = U E,, where q,r €Q

q<r

And since E, € M Vg, and since {g € Q | ¢ < r} is a countable set, we naturally have f~!((—o0,r)) € M.
Furthermore, by the inequalities established, we also have:

F (o)) = | J B et

q<r

And since we showed this to be true Vr € Q, by Exercise 4.4, f is measurable.

2.6 Folland 2.8

Prove the following Proposition:

Proposition. 2.6:

If f:R — R is monotone, then f is Borel measurable.

Proof. We first state our strategy: If we can show that Va € R, f~!([amoo)) is an interval, then f must
be Borel measurable., let us note that as trivial corollary of (Folland) Proposition 2.3, f measurable
<= —f measurable. Thus, without loss of generality, assume f is monotone increasing. Suppose now
that a € R, z € f~!(]a,00), and y € [z,00). Therefore, since f is monotone increasing:

a < f(z) < f(y) =y € f([a,00))

Since this is true Vz,y € [a,0), it actually proves that f~!([a,o0)) is indeed an interval, and therefore
Borel measurable, and hence f is Borel measurable since this is true Va € R. O

2.7 Folland 2.9

Prove the following Proposition:
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Proposition. 2.7:

Let f:[0,1] — [0, 1] be the Cantor Function (Folland Section 1.5), and let g(z) = f(z) + «.
a) g is a bijection from [0, 1] to [0,2], and h = g~ is continuous from [0, 2] to [0, 1].
b) If C is the Cantor set, m(g(C)) = 1.

c¢) By (Folland) Exercise 29 of Chapter 1, g(C') contains a Lebesgue non-measurable set A. Let
B =g '(A). Then B is Lebesgue measurable but not Borel.

d) There exist a Lebesgue measurable function F' and a continuous function G on R such that
F o G is not Lebesgue measurable.

\

Proof.

a) We first recall (from Folland) that the Cantor Function, f(x) is monotone increasing, and naturally
h(z) = z is a strictly increasing function, and hence g(x) = f(x) + « is also strictly increasing
and therefore injective. Next, to show surjectivity, note that g is a continuous function, and
g(0) = f(0)+0 =0, and g(1) = f(1) + 1 = 2; hence, by the intermediate value theorem, g is
surjective.

We now have all the necessary components to conclude that g is a bijection, and since g is a
continuous bijective function, and [0, 1] is compact, g’s inverse, g, is continuous from [0,2] to
[0,1].

b) Firstly, by ¢’s surjectivity, and C being measurable, we see that:
g9([0,INC) U g(C) = g([0,1]NnC)Lg(C) =[0,2] = m(g(C)) +m(g([0,1]\C)) =2

Next, since C is a closed set = [0,1]\C is an open set. Therefore, since all open subsets of [0, 1] may
be written as a countable union of disjoint open sets, let us write [0, 1]\C' = U®0;,0; = (a;, b;).
Now, since f is by construction constant on [0, 1]\C, and recalling that m(C) = 0 = m([0,1]\C) =
1= m(U0;) =1, we see:

(o @0)) =S mig(0,))

j=1

m(g([0, T\C))

= i (m(f(bj) = fla;)) +m(b; — aj))

=> m(0;) since f(b;) = f(a;) Vj €N

And hence m(g(C)) =1 by the the first part of this proof.

c¢) To show Lebesgue measurability, naturally B C C', and since C'is measurable with measure m(C) =
0, it implies m(B) < m(C) = 0, and hence Lebesgue measurable since null sets are measurable.
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2.8

For the sake of contradiction, suppose B = g~!(A) is Borel measurable. In part a), we showed that
g~ ! is continuous and bijective; therefore g(B) = g(g~!(A)) = A. However, by the continuity of g,
if g71(A) was Borel, so too would g(g~1(A)) = A, hence a contradiction since A is not Lebesgue

measurable; therefore, B cannot be Borel measurable.

1 ifzeB
Let F = xp; Le., F(z) = {0 foe B
surable since it is continuous, we now wish to prove that so too is F'. This can be seen by notic-
ing F~%((a,0)) = & or B or R, but all these possibilities are Lebesgue measurable, hence F is
Lebesgue measurable. We can now look at the following reasoning;:

1

and also set G = g7 . Naturally G is Lebesgue mea-

(FoG) H((1/2,00)) = G o FTH([1/2,00)) = {z € [0,2] | xp(9™" (x)) € [1/2,00)}
[0,2] | g~*(z) € B}
=G (B)=g(g'(A) =4

Now since A is not Lebesgue measurable, F' o G also will not be Lebesgue measurable.

Folland 2.10

Prove the following Proposition:

\

Proposition. 2.8:

The following implications are valid <= the measure p is complete:

a) If f is measurable and f = g u-a.e., then g is measurable.

b) If f, is measurable for n € N and f,, — f p-a.e., then f is measurable.

Proof.

a)

For the forward direction, suppose a) holds. Then let N € M be a measurable set s.t. u(N) =0,
and Ny C N. If we define f := 0 and xn, := 1if z € Ny, and 0 otherwise, then trivially f is
measurable and f = xn, p-a.e., so by our assumptions g is measurable. Now, by noting that
xﬁ({l}) = N; € M by g¢’s measurability, and since this is true VN; C N, we have arrived at the
definition of p being complete.

For the backward direction, suppose p is complete, and let f be measurable and f = g p-a.e.
Explicitly, let N € M be the measurable set s.t. u(N) =0 and f(x) = g(x) Vo € N¢. Then if A is
measurable, we have:

g HA) =g (A NN]U[g (A NN] = [g7 (A NN]U[f T (A)\N]

Looking at the right hand side, we can see g~*(A) N N C N is measurable by the definition of p
being a complete measure since p(N) = 0. Furthermore, f~*(A)\N C f~!(A) since f is measurable.
With these two facts, we may therefore conclude that g is indeed measurable.

For the forward direction, suppose b) holds. Then let N € M be a measurable set s.t. u(N) =0,
and Ny C N. If we let f,, = 0 and xn, as before, then like in the forward direction of a), we have
fn = XN, p-a.e., so xn, is measurable. Therefore, vai({l}) € M, and since this is true VN; C N,
we have arrived at the definition of p being complete.
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For the backward direction, suppose p is complete, and f, is measurable Vn € N, and f,, — f
p-a.e. By (Folland) Proposition 2.7, g3(x) = limsup;_, . f;(z) is measurable since f,, is measurable
Vn € N. Furthermore, since f, — f p-a.e., we have g3 = f p-a.e., and thus by the backward
direction of part a) above, f is measurable.

O

2.9 Folland 2.12

Prove the following Proposition:

Proposition. 2.9:

If fe€ Lt and [ f < oo, then {z | f(z) = oo} is a null set and {z | f(z) > 0} is o-finite.

Proof. Let E := {z | f(z) = oo}, F :={z | f(z) >0}, F, := {z | f(z) > 1/n}, and [ satisfy f € LT
and [ f < co. Let us now define the two sets of functions {¢,}$° and {¢,}°, where ¢, = nxg and
Pn = XF, /N

To prove E is a null set, we make the observation that since f(x) = co Vo € E, and x,,(z) < co ¥n € N,
we have:

0< 6u(x) < f(x) Vo € X :vwm=/%m@/fw
= u(E)S%/fdu

Thus, since [ f du < oo, letting n — oo, we see that p(E) = 0; Le., E is a null set.

By the construction of {F,}5°, we have U°F,,, so to conclude that F' is o-finite, we simply need to show
that p(F,) < oo Vn € N. This is easily ascertained since f(z) > 1/n Va € F,, and [ f < co, we have:

0<pu@ < f@ Ve Py = Luh) = [eadus [ £
= M(Fn)gn/fdu<oo

And hence u(F,) < oo Vn € N, which implies F is o-finite.

2.10 Folland 2.13

Prove the following Proposition:

Proposition. 2.10:

Suppose {fn}?° C L*, f, — f pointwise, and [ f = lim [ f, < oo. Then [, f = lim [, f,
VE € M. However, this need not be true if [ f = lim f,, = cc.

Proof. Let E € M and [ f < oo, and so we define xg s.t. [, f = [ xgf, and so we have:

/Ef:/foS/f:hm/fn<oo
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Furthermore, by (Folland) Theorem 2.15, we have:

/f:/(XEf+XECf):/XEf+/XECf

And similarly for substituting f,, for f above. Now, since f,, — f = xrfn = xrf VF € M, we may
apply Fatou’s Lemma as follows:

/ f= /limianEfn < liminf/ fn = liminf (/fn —/ fn) = /f— lim sup fn
E n—oo n—oo o n—oo Ee n—00 Ec

Where we have = since [, f = [xgf + [xgef, and = since liminf [ f, = lim [f, = [f and
liminf — [ g = —limsup [ g. However, since all terms above are finite, we may gain by apply Fatou’s
Lemma (and in noticing the similarity to the steps made above) to see that:

et ([ 1= 1)< 1t [ [ -

And thus by substituting this in, we have:
f <hm1nf/ fn <limsup/ fn < / f
n—00 n—oo JE E
And therefore all the inequalities in the equation(s) above are actually equalities, and so we have:

liminf/ fn:limsup/ fn=lim / f:/ f

We now turn our attention showing the above result need not hold if [ f = lim [ f = oo by means of a
counter-example. Let E = (0,1], f = X[2,00), and fn = X[2,00) + 7X(0,1/n]- Then f,, — f p.w., and:

fo=np((0,1/n]) =1¥neN = lim fn=1
(0,1] 790 J(0,1]
However, f(o i f =0, thus Ji f=1lim [, fn need not be true if lim [ f = [ f = oc. O

2.11 Folland 2.14

Prove the following Proposition:

Proposition. 2.11:

If felLt let \(E)= [,f dufor E.€ M. Then X is a measure on M, and for any g € L™,
Jgdx= f fg d,u (Flrst Suppose that g is simple.)

Proof. Trivially, since f € L*, we have that A\(E) > 0 VE € M. Moreover, one can see that (&) = 0:

:/%fdu=/><¢fdu=0
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To fully show that X is a measure on M, we need that for any disjoint sequence of sets, {E;}7° € M,
AUFE;) = 327" ME;). We can deduce this fact from the following:

/\(|_|Ej> :/ f dMZ/X(uTCEj)f dp
j=1 U Ej

= / (ZXEj)f dp = Z/XEjf du = by (Folland) Theorem 2.15
=1 =1

SN TR )

We have thus shown all the necessary conditions for A to be a measure do indeed hold.

Next, let g € LT, and assume that g is simple = g = >} a;Xg,;. Therefore:

Jor=YanE) =Y [ ran=3" [xesau
j=1 j=17Ej j=1
=z / (ZaijJ)f dp = /gf du = by (Folland) Theorem 2.15
j=1

And so we get the required result when ¢ is simple. However, by (Folland) Theorem 2.10, we know that
since f € LT, A} st. 0< ¢y <o <--- < f, ¢ — f p.w., and ¢, — f uniformly on any set on
which f is bounded. Therefore, we can apply the Monotone Convergence Theorem (used if = denoted)
as follows:

/gd)\; 1i_{n /¢n d\ = li_)m /(bnf du;/gfdu = since ¢, simple ¥n € N

2.12 Folland 2.16

Prove the following Proposition:

Proposition. 2.12:

If feLTand [ f <oo,Ve>03E € Ms.t. pu(E)<ooand [, f> ([f)—e

Proof. Firstly, By (Folland) Exercise 2.12 (proved above - 5.2), we know that F' := {x |f(z) > 0} is
o-finite. In the proof of (Folland) 2.12, we showed that F,, := {z | f(z) > 1/n} has the nice properties
of u(F,) < oo and UPF,, = F. Furthermore, it is also apparent from the construction of F,, that
F, C Fp11 Vn € N - Le., {F,}5° is monotone increasing, and so {xr, }3° will be an increasing sequence

in Lt st. xp, < XxF,py Y0 €N, and limy, 00 XF, = XP-

Since {xr,}$° and yp satisfy necessary conditions for the Monotone Convergence Theorem, and in
noticing [ f = [ xrf, we may apply it as follows:

1= [xer=m [xei=] s
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We also note that, since xr, C xr Vn € N, we have:

/f:/XFfS/XF,,f:/an Vn € N

Therefore, [ 5 is an increasing sequence with the limit of J f. So by this convergence, we have Ve > 0,

3N € N such that:
Jo= (1)

Le., we have proven the existence of an Fy = E € M which satisfies fFN f> (f f) — e

2.13 Folland 2.17

Prove the following Proposition:

Proposition. 2.13:

Assume Fatou’s lemma and deduce the monotone convergence theorem from it.

Proof. Let {f,}$° be a sequence in LT s.t. f; < fi41 Vj € N, and f = lim,,_, fn. If we're assuming

Fatou’s Lemma, then:
/f:/liminffn gliminf/fn
n—oo n—oo

However, since {f,}{° is monotone increasing with the limit of f, we have f, < fVn e N= [ f, <
J f ¥n € N. And hence taking the lim sup on both sides, we get:

limsup/fnglimsup/f:/f
n—oo n—oo

Therefore, in combining these two inequalities, we see:

limsup/fnS/fgliminf/fn
n—00 n—co

Which can be true <= all the inequalities above are actually equalities, hence we have:

lim [ f, zlimsup/fn zliminf/fn :/f
n—oo n—oo n— oo

2.14 Differentiable functions are Borel Measurable

Let f : R — R be a differentiable function, show that its derivative f’ is Borel Measurable.

Proof. Firstly, we note that by (Folland) Corollary 2.2, since f € C1(R) = f € C(R), we have that f is
Borel measurable.
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Next, we prove that g, := f(z + 1/n) is Borel measurable. This is actually quite easy since h, =z +1/n
is naturally Borel measurable, and hence f o h,, = g, is Borel measurable since both f and g, are Borel
measurable.

Next, since f € C1(R), we know that limj, o w = f'(z), f'(x) € R. Therefore, we can also say
that lim, oo n(f(x + 1/n) — f(z)) = f'(z) Yo € R. Since we already showed f(z + 1/n) and f(z) are
Borel Measurable, by (Folland) Proposition 2.6, f}, := n(f(z + 1/n) — f(x)) is Borel measurable ¥n € N.
Finally, by (Folland) Proposition 2.7, we can conclude that f/(z) = lim,_, f/,(z) is Borel measurable

since f € CY(R), f/, — f, and {f,}{° is a sequence of Borel measurable functions. O

2.15 Folland 2.20

Prove the following Proposition:

Proposition. 2.14:

(A generalized Dominated Convergence Theorem) If f,,,gn, f,g € L', f, — f and g, — g a.e.,
fn < gnand [g, — [g, then [ f, — [f. (Rework the proof of the dominated convergence
theorem).

Proof. By the same reasoning as in Folland, WLOG we may assume f, and f are real-valued, and that
gn + fn = 0 ae., and g, — f, > 0 a.e. Now, we apply (Folland) Corollary (of Fatou’s Lemma) 2.19 to
both g, + f,, and g,, — f,, as follows (we can do so due to the convergent and L' assumptions):

Jta+ 1) = [timgu+ £) < timint [ (g, + )= [g+timint [ 7,
/(g—f)=/lim(gn—fn)Sliminf/(gn—fn)=/g—limsup/fn
1imsup/fn—/g§—/g+/f and /g+/f§/g+liminf/fn

And by combining these inequalities, we see that:

limsup/fn S/fﬁliminf/fn

And since f, f,, € L', we know that the above inequalities imply equalities, everywhere, Le., lim [ f,
exists and [ f, — [ f. O

And so:

2.16 Folland 2.21

Prove the following Proposition:

Proposition. 2.15:

Suppose fn, f € L' and f, — f a.e. Then [|f, — f| > 0 < [|fs] = [|f], (Use (Folland)
Exercise 20).
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Proof. For the forward direction, assume [ |f, — f| — 0, then since:

= fu=| fani=1m) < [lasi=1m] < [15,- 0 snee 51171 < 15, - 1

we know that the right hand side — 0 as n — oo, and since the above holds Vn € N (and since f,,, f € L!),
| [1fal = JUI] = 0= [1fal = [1f]-

For the backward direction, assume [ |f,| = [|f]. If we let g, := |f,|+|f|, then naturally |f, — f] < gn,
and since f,, f € L', we know that [ g, = [(|ful + |f]) = 2 [ |f|]. We may now invoke the generalized
dominated convergence theorem, (Folland) Exercise 2.20 above, which implies:

lim/lfn—f|=/11m|fn—f|

And since f,, — f, we therefore have [|f, — f| — 0. O

2.17 Folland 2.24
2.18 Folland 2.34

Prove the following Proposition:

Proposition. 2.16:

Suppose |f,| < g € L' and f,, — f in measure.

a) [ f=lm [ f,.
b) f. — fin LL.

\

Before we begin, we present Folland Exercise 33 as a necessary Lemma for part a):

2.18.1 Folland 2.33

If f, > 0 and f, — f in measure, then [ f <liminf [ f,.

Proof.

a) By (Folland) Theorem 2.30, 3 a subsequence {f,, }5° s.t. fn, — h, where f = h a.e. Furthermore,
by (Folland) Proposition 2.11, since f = h a.e., f is measurable. As is standard by this point, we
may assume f,, and g are real-valued functions; therefore, g + f, > 0 a.e., and g — f,, > 0 a.e.
Moreover, we naturally have g+ f, = g+ f, g — fn = g — f in measure. We now make use of our
Lemma as follows:

[o+ [1= [t 5 <timint [(g+5.) = [ g+ timine [ 1,
[o-[1=[to=p <timint [t )= [ g~ tmsup [ 1,

And so in combining these inequalities, we have:

limsup/fn < /fgliminf/fn
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Which we recognize as in previous exercises to be true <= all the above inequalities are actually
equalities; hence: [ f =lim [ f,.

b) From (Folland) Proposition 2.29, we know that since f, — f in L', f, — f in measure as well.
Thus, since:

,u({:c €X | ||fulz) — f(x)] — 0] > e}) :,u({x €X | |ful) — fla)] > e}) 0 asn — 0o

We also have that |f, — f| — 0 in measure. Furthermore, since: |f,, — f| < |fu| + |f| < 2g € L, we

may apply Part a) to see that:
0= [0 du=tim [ 1, - 7lds

Hence f, — f in L.

2.19 Folland 2.39

Prove the following Proposition:

Proposition. 2.17:

If f,, — f almost uniformly, then f,, — f a.e. and in measure.

Proof. We first recall the f,, — f almost uniformly means that 3{E,,}3° C M s.t. u(ES) < L and f, — f
uniformly on E,,. If we define F := UPE,,, then p(E°) < liminf y(ES) = 0; hence, f, — f a.e.

Now to show f,, — f in measure, we proceed as follows. Ve, § > 0, since f,, — f almost uniformly,
JE eMand an N € Ns.t. Vn > N, |fn(z) — f(x)] < e Vo € E and u(F°) < §. An immediate result of
this set up is therefore:

liminf o {z € X | |fu(z) = f(@)] = €}) < p(F*) <6

And since our result works Vo > 0, letting § — 0 proves f, — f in measure.

2.20 Folland 2.42

Prove the following Proposition:

Proposition. 2.18:

Let i be a counting measure on N. Then f, — f in measure <= f,, — f uniformly.

Proof. For the forward direction, suppose f, — f in measure (x4 a counting measure on N). Then Ve > 0
dN € Ns.t. Vn > N:

= {zeN||fula)-f@)2e}=g

N | =

u({z €N | 1ful@) = f@) 2 €}) <

Le., |fn(z) — f(2)] < e Vz € N (and n > N), which is by definition uniform convergence.
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For the converse, suppose f, — f uniformly (again u a counting measure on N). Then Ve > 0, AN € N
s.t. Vn > N:

fal@) = f@] <eVzeN = p({zeN||ful@) - f@)] = }) = u(2) =0

For which the latter equality vacuously satisfies our definition of convergence in measure. O

2.21 Folland 2.44: Lusin’s Theorem

Prove the following Theorem:

Theorem. 2.1: Lusin’s Theorem

If f : [a.b] — C is Lebesgue measurable and € > 0, there is a compact set E C [a,b] such that
u(E°) < € and f|F is continuous. (Use Egoroff’s Theorem and (Folland) Theorem 2.26.)

Proof. Following the hint, by (Folland) Theorem 2.26, 3 {f,,}{° s.t. f : [a,b] = C and f, — f a.e. Also,
by Egoroff’s Theorem, 3F C [a, b] s.t. p(F€) < ¢/2 and f,, — f uniformly on F.

Naturally, since f,, — f uniformly on F¢, f|F will be continuous. We now make use of (Folland) Theorem
1.18 which states that VF' € M:

u(F) = sup{p(K) | K" C F}
And so by definition of sup, 3 E?* C F s.t. u(F\E) < ¢/2. We thus have:

H(ES) = u(F*) + u(F\E) < 5 + 5 = ¢

And since E C F, we know that f|E is also continuous, thereby proving the Theorem. O

2.22 Folland 2.46

Prove the following Proposition:

Proposition. 2.19:

Let X =Y = [0,1], M = N = B 1), 4 = Lebesgue measure, and v = counting measure. If
D = {(x,z) | # € [0,1]} is the diagonal in X x Y, then [ [ xpdudv, [ [ xpdvdu, and [ xpd(uxv)
are all unequal. (To compute [ xpd(p x v) = pu x v(D), go back to the definition of p x v.)

Proof. We begin by making the following two observations: Va € [0,1], [xpdr(y) = f{w} dv(y) =
v({z}) = 1 and Vy € [0,1], [xpdu(z) = f{y} dv(z) = u({y}) = 0. Therefore, we’ll now be able to
compute [ [ xpdudv and [ [ xpdvdp as follows:

//XDd/idV: / </XD(x,y)d,u(x)>du(y) = /Odu(y) =0
[ [ o= [ [xotamat)iuto) = [ aute) =1

We now claim that [ xpd(puxv) = co. To see this, suppose {A,, x B,}5° s.t. Ay, B, C [0,1] (measurable
subsets) s.t. D C U(A, X By). Therefore, [0,1] C U(A, x By). Because of this, IN € N s.t.
p*(An x By) > 0, and explicitly pu(Ax) > 0, and v(By) = oo. Therefore, 1% pu(A,)v(By) = 00 =
[ xpd(p x v) = occ. O
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2.23 Folland 2.48

Prove the following Proposition:

Proposition. 2.20:

Let X =Y =N, M =N = P(N), u = v = counting measure. Define:

1 ifm=n
fm,n)=<¢ -1 ifm=n+1

0 otherwise

Then [ |fld(p x v) =00, and [ [ f dudv and [ [ f dvdp exist and are unequal.

\

Proof. We first claim that p x p is also a counting measure. We may actually note that fundamentally,
a counting measure 7 on N x N will satisfy 7(A x B) = |A||B| = u(A)v(B). Therefore, since rectangles
generate the product o-algebra, the o-finitness of 7 implies u x v = 7.

We now proceed to computing each of the quantities of interest. For the first, if we let E := U*{{(n,n)}U
{(n,n + 1)}}, then clearly |E| = oo, and |f| = xg. Therefore:

[ 1710 xv) = 1] =

Furthermore, the other two calculations are nearly immediate:

//fdudlf—//fmndu )dv(n Zmen Z —0
//fdudu_//fmndu Ydv(m Zmen ;x{mzl}zl

2.24 Folland 2.49

Prove the following Proposition:

Proposition. 2.21:

Prove (Folland) Theorem 2.38 by using Theorem 2.37 and Proposition 2.12 together with the
following lemmas:

a) If Ee M x N and pux v(E) =0, then v(E,) = u(EY) =0 for a.e. z and y.

b) If f is L-measurable and f = 0 M-a.e., then f, and f¥ are integrable for a.e. x and y, and
[ fodv = [ f¥dp =0 for a.e. z and y. (Here the completeness of p and v is needed.)

\

Proof.

a) Immediately by (Folland) Theorem 2.36, since (X, M, u) and (Y, N, v) are o-finite measure spaces,
we have:

0= px v(E) = / o(Ey)du(z) = / H(EY)du(y)
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b) Let us define F := {(z,y) € M x N | f(z,y) # 0}. Thus, IE € M ® N where u x v(E) = 0 and
F C E. From a), u(E;) = v(EY) = 0 for z,y a.e. Furthermore, by the fact that F, C E, and
FY C EY, by linearity of measures we have p(F,) = v(FY) = 0 as well. We may now conclude thus
that:
[1tsdav = [xellar=0= [ xelldu= [1£71dn=0 for ae. wand g

For which the intended result trivially follows.

Please see the next (attached) page for our proof of (Folland) Theorem 2.38. O

3 Chapter 3

3.1 Folland 3.2

Prove the following Proposition:

Proposition. 3.1:

a) If v is a signed measure, E is v-null < |v|(E) = 0.

b) If v ane p are signed measures, v | y < |v| Ly < vt Lpand v~ L p.

Proof.

a)

For the forward direction, suppose v is a signed measure and that E is v-null. Suppose for the sake
of contradiction that [v|(F) = vt (E)+v~ (E) > 0, where v = v+ — v~ is the Jordon Decomposition
of v. By the Hahn Decomposition Theorem, 3 P, N s.t. v(X) =v(PUN) =v*(P) — v~ (N) and
vH(N)=0=v"(P).

We thus can thus make the following observations:
lv|[(E) =vT(E)+v (E)=2v"(E) >0 since v(E)=0= v (E)=v (E)
vI(ENP)=vH(ENN)+vT(ENP)=vT(ENX)=v"(E) >0 since 2v1(E) >0
v (ENP)<v (P)=0

And so:
vENP)=vT(ENP)+v (ENP)=v (ENP)>0

However, since EN P C E, and we are assuming that v(E) = 0, we arrive at a contradiction with
the last inequality. Thus, actually if F is v-null, |v|(E) = 0.

For the converse, suppose |v|(E) = 0, hence |v|(E') =0 VE' C E (E’ measurable). Since |v|(E') =
vI(E")+ v (E') =0 <= vT(E') =0 = v (F), we thus trivially satisfy v(E’) = vT(E’) —
v~ (E’) = 0 since both are already zero.

Let us recall that, explicitly, if 3 E,F € Ms.t. ENF =g, EUF = X and u(E') =0 =v(F')VE' C
E,F' C F (E', F' measurable), we denote this property as v L p.

We begin by showing v L u = |v| L u. To see this, since F' is v-null, by Part a), we know that

|V|(F) = 0. Since |v| is a positive (regular) measure, by monotonicity we have that |v| is F-null.
Thus, by definition, |v| L p.

30



We now show |v| L p= vt 1 pand v~ L p. Since v = v+ +v~, we have v < v and v~ < v,
and so v (F') =v~(F’) =0, Le., F is both v*-null and v~-null; hence, v* L pand v~ L u.

We may now complete Part b) by showing [v™ L g and v~ L p] = v L pu. Let us make explicit the
properties associated with v+ L y and v~ L u by replacing the roles of E, F' (from the beginning
of this proof) with Ay, Ay for v L p and By, Bs for v~ 1 u. We first note that since Ay, By
are both p-null, so too is A; U By. This is true since by looking at the following representation:
AiUB; = A1 U (Bl\Al), and in noting Bl\Al C Bl, VE' C AU Bl, E'All - Al,Bi C Bj s.t.
E’' = B{ U A; and both Bj and A} are p-null. Furthermore, since 41 U Ay = X = By U By, we have
X\(A; UB;) = Ay N By, which is both »-null and v~-null since A3 N By C Ay and Ay N By C Bs.
Thus, by setting £ = A; U By, and F = As N By, we see that indeed v L p.

O

3.2 Folland 3.7

Prove the following Proposition:

Proposition. 3.2:

Suppose that v is a signed measure on (X, M) and E € M.

a) vT(E) =sup {v(F) | EeM,F CE} and v~ (E) = —inf {v(F) ‘ FeM,FCE}.

b) [v|(E) =sup {37 |v(E;)| | n €N, Ey,..., E, are disjoint, and L} E; = E}.

\

Proof.
a) For the first equality, VF' C E we have:
v(F)=vH(F)—v (F)<vT(F) <vH(E)

And so vT(E) > sup{v(F) | E € M,F C E}. To see the reverse inequality, if P, N are our
Hahn Decomposition of v, we naturally have v (E) = v(E N P), and since ENP C E, vT(E) <
sup{v(F) | E € M,F C E}, and so:

viH(E)=sup{v(F) | EEM,F C E}
For the second inequality, this follows very similarly. Explicitly, VF C E, we have:
—v(F)=v (F)—vH(F)<v (F)<v (E)

And so v (F) > sup{—v(F) | Fe M,F C E} = —inf{v(F) | F € M,F C E}. For the reverse
inequality, since v~ (F) = —v(E N N), and since ENN C E, v (E) < sup{—v(F) | Fe M,F C
E} = —inf{v(F) | F e M, F C E}. Combining our two inequalities, we see:

v (E)=—inf {v(F) | FeM,F C E}

b) Firstly, if P, N are again the Hahn Decomposition of v, then E = (EN N) U (E N P), and so:

V|(E) =vT(E)+v (E)=vT(ENP)+v (ENN)
=vH(ENP)+v (ENN)+vH(ENN)+v (ENP)

=0

=|v(ENP)|+[v(ENN)|
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And so:
[V|(E) < sup { Z lv(E;)| ‘ n €N, Fy,..., E, are disjoint, and |_|Ej = E}
1 1

To see the reverse inequality, we note that V& = LT F;, we have:

And so:
|v|(E) > sup { Z |v(E;)| ‘ n €N, Eq,..., E, are disjoint, and |_|Ej = E}
1 1
And hence combining the two inequalities, we have:

V|(E) = sup{z |v(E;)| ‘ n €N, Ey,..., E, are disjoint, and |_|Ej = E}
1 1

3.3 Folland 3.12

Prove the following Proposition:

Proposition. 3.3:

For j = 1,2, let uj,v; be o-finite measures on (X;, M;) s.t. v; << p;. Then vy X v << 1 X po
and:
dVl

(z1,22) = Tm(xl)

dllg

d(lll X 1/2) avy
dpiz

d(pr X p2) (z2)

Proof. Let us begin by defining f; := % for j = 1,2. Thus, if A; x Ay is measurable, by the definition
J
of product measure and Radon-Nikodym derivative, we have:

v X va(Ar X Ag) = v1(Ar)ra(Ag) = fldul/ fadpa
Ay A,
Z/f1XA1du1/fz><A2duz
Z//f1f2XA1XA2dM1d,u2

;//AlXAz Jrfad(py x p2)
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Where we have = by Tonelli’s Theorem. Therefore, on A; x Ay measurable, (f1f2)(p1p2) = vive; and
thus we also have equality on the algebra of finite unions of A; x As’s. Furhermore, by the uniqueness
of the extension from premeasure to measure, (f1f2)(u1p2) = viva on My ® My. We thus immediately
have that if (u1 X p2)(E) =0 = (11 X »»)(E) =0, and so v; X va << p1 X p;. Finally, since the
Radon-Nikodym derivative is unique, we have:

d(l/1 X 1/2)
d(pn X p2)

vy
dpz

dV1

(1, 22) = fi(z1) fo(x2) = iy

(1) 7= (2)

3.4 Folland 3.13

Prove the following Proposition:

Proposition. 3.4:

Let X =[0,1], M = Bio,1], m = Lebesgue measure, and p = counting measure on M, then:

a) m << p but dm # fdu for any f.

b) u has no Lebesgue decomposition with respect to m.

\

Proof.

a) Firstly, if E € M and p(E) = 0, then it must be that E = @, and so m(E) = m(g) = 0; Le.,
m << p. Suppose for the sake of contradiction that dm = fdu, then Va € [0,1] and E = {z}, we
have:

O:m(E):/Efd,u:/Edm:m(E):O

Thus we must have that f = 0 on [0, 1]. However:
t=m(0.1)= [ fau=[ oau=0
[0,1] [0,1]

Le. we’ve reached a contradiction and hence dm # fdu for any f.

b) Suppose, for the sake of contradiction, that p has a Lebesgue decomposition w.r.t. m; namely:
= A+pwhere A L m and p << m. Since A L m, by definition we know that 3F, FF s.t X = FUF
where E is A-null and F' is m-null (or just m(F) = 0 since m is a positive measure). Suppose
x € F, then u({z}) = 1, but A\({z}) = 0 and m({z}) = 0 = p({z}) = 0, which would be a
contradiction unless we have F' = &. Thus, since X = FUF = EFlU g = E = X. However, since
m(E) = m([0,1]) = 1, yet we are requiring E to be m-null, we arrive at a contradiction. Thus, # a
Lebesgue decomposition of p w.r.t. m.

O

3.5 Folland 3.17

Prove the following Proposition:

Proposition. 3.5:

Let (X, M, ;1) be a o-finite measure space, N a sub-c-algebra of M, and v = u|N. If f € L(p),
Jg € L' (v) (thus g is N-measurable) s.t. [}, fdu= [, gdv VE € N; if ¢’ is another such function,
then g = ¢’ v-a.e. (In Probability Theory, g is call the conditional expectation of f on N.)
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Proof. Let us begin by defining the measure A s.t. d\A = fdu and its integration is restricted to E € N;
Le., VE € N, we have A\(E) = [, fdu. To easily see that A << v, note that if v(E) = 0= pu(E) =0 =
ME) = [, ddp = 0. We thus have shown the necessary conditions for us to invoke The Lebesgue-Radon-

Nikodym theorem. Explicitly, the Radon-Nikodym derivative, g = % exists and is v-integrable where

fdu = d\ = gdv; e,
/fdu:/d)\:/gdu VE €N
E E E

Finally, if ¢’ satisfies [}, fdu = [, ¢'dv, then naturally d\ = ¢/dv, and since the Radon-Nikodym deriva-
tive is unique, we must also have g = ¢’ v-a.e. O

3.6 Folland 3.20

Prove the following Proposition:

Proposition. 3.6:

If v is a complex measure on (X, M) and v(X) = |v|(X), then v = |v|.

Proof. Suppose that d|v| = fdu as in the definition of |v|. Then if E € M, then we will have:
V(E) + v(E°) = v(X) = |v|(X) = |[v|(E) + |[v|(E€), where we have = by assumption

And so:
v(E°) = [V[(E°) = [V[(E) — v(E)
Taking the real part of the LHS, and using (Folland) Proposition 3.13a (|v(E)| < |v|(E)), we see that:
Re(v(E°) — |v|(E)) < Re(v(E°) — [v(E°)])
= vr(E°) = [v(E°)]

And similarly for the RHS:

And so combining the fact that Re(LHS) < 0 < Re(RHS), but obviously since Re(LHS) = Re(RHS),
we must have that:
Re([v|(E) —v(E) =0 = [V|[(E) =v(E)

But since, again by (Folland) Proposition 3.13a, we have |[v(E)| < |v|(E), we see that this must be true
<~ y;(E) =0, and so:

V|(E) =v(E) =v.(E)+v(E) =v(E) VEeM (Le,v=1v|)
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3.7 Folland 3.21

Prove the following Proposition:

Proposition. 3.7:

Let v be a complex measure on (X, M). If E € M, define:

E)—sup{Z|I/(Ej)| | n €N, Ey, ..., E, disjoint, E = Uy 1E}

E) = sup { Z [V(Ej)| | n €N, Ey, Es, ... disjoint, E = U721 E; }

/;de||f|§1}

Then p; = po = ps3 = |v|. (First show that py < po < pz. To see that pus = |v|, let f = 5% ; and

5(E) = sup {

apply (Folland) Prop 3.13. To see that pug < pg, approximate f by a simple function.)

\.

Proof. We proceed as in the hint. Trivially, u1 < po since given E € M, {{E;}{° | E = U{E;} D
{{E;}7 | E=U}E;} (set E; = & Vj > n).

To see p2 < |v| < ps, let f:= dl and so if E = U E;, we have:

1/|’

[Z |V(Ej)|:| < Z lv|(E;) by (Folland) Prop. 3.13a
Jj=1 Jj=1
- W] = [ av
/ |f|%d|v]| by (Folland) Prop. 3.13b
— [ Fsap
B
= / fdv by (Folland) Prop. 3.9a

<| fnl e [{{ st =]

And so pg < |v| < ps by the steps with square brackets around them.

To show now that pz < ui, let D := {z € C | |z| < 1}. Trivially D is compact, and thus 3{z;}7 s.t.

Ve > 0: .
JB(z) oD
1

Moreover, by definition of supremum, Ve > 0, 3f s.t. |f| <1 and:

E)g‘/Efdl/ +e

If we are assuming |f| < 1, then f~1(D) = X, and so we will have X = U} f~(B.(z;)) as well. By
defining B; := f~!(Bc(z;)), we now perform the standard “shuffle” to make a disjoint sequence {A;}7
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out of {B;}7, namely we let A; = By, and A; = B;\ U§=1 B;, so that X = U7 A;. Now, in following the
hint, we explicitly define the simple function ¢ := >} z;x Ay
Naturally |¢| <1 and |f(z) — ¢(z)| < €. Thus:

Mg(E)g‘/de—l—eS/fdu—‘/qbdu—i—’/(bdu—&-e
E E E E
< / fdv — / ¢dv —1—‘ / odv| + € by the Reverse Triangle Inequality
E E E
< /|ff¢\d1/+ /d)dz/ +€
E E

+e€

S/ed\llH— /d)dv
E E

<elV|(E)+e+ / ¢pdv
E

So, by letting e — 0, we have u3(E) < | [, ¢d|v|. Now, let us define {E;}} by E; = A; N E so that
E = U7 Ej; thus:

izj/vdu

Jj=1 Ej

13(E) < ‘ /E pdv

n
= ’/ZZjXAjXEdZ/
Jj=1

M=

v(E;)

< lliv(E))
j=1

=1

pE) e {5}t | - L1E;

<
Il

<

I

1

J

And so p3 < py. Thus since we were able to show p1 < ps < |v| < ps < pq, every inequality above is
actually an equality and in fact: py = ps = sz = |v|.
O

3.8 Folland 3.24

Prove the following Proposition:

Proposition. 3.8:

If fe Ll and f is continuous at z, then z is in the Lebesgue set of f.

Proof. To show that x is in the Lebesgue set of f, we need to show that:

1
1im7/ fy) = f(2)ldy =0
2 (B @) Jo, o) [f(y) = f(=)|
To see this, suppose that ¢ > 0. By the definition of continuity of f at x, we know that 30 > 0 s.t. if
[lz —y|| <0, Le., y € Bs(xz), we have |f(z) — f(y)| < e. We therefore yield the following inequality for

0<r<ad:
1 1

m(BT(:c))/BT(z)|f(y)_f($)| < Tn(BT(x))/BT(x) edy = A,(e) =€

Thus, since € was arbitrary, we may conclude that our limit is indeed = 0; I.e., = is in the Lebesgue set
of f. O
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3.9 Folland 3.25

Prove the following Proposition:

Proposition. 3.9:

If E is a Borel set in R™, the density, Dg(z), of z is defined as:

. m(E N B.(x))
De(@) =l ="

whenever the limit exists.

a) Show that:

Di(z) = 1 forae z€F
E )0 forae. x€ E°

b) Find examples of F and z s.t. Dg(z) is a given number « € (0,1), or such that Dg(x) does
not exist.

Proof.
a) Let us begin by defining v(A) := m(ENA) VA € Bgn. Then, by construction we have v << m and
5—; = xg. Furthermore, since {B,(z)},~¢ vacuously satisfies the requirements for a set to shrink

nicely to z € R™, we may make use of (Folland) Theorem 3.22. Explicitly, by 3.22, we have:

. m(ENB(r,x . v(B,(x "
Dg(x) = }%W = 7’1\%771((31~(($)))) =xg for m —almost everyz € R

Which is precisely what we wanted to show.

b) For the first example, we are looking for an E and an z s.t. Dg(z) = «, where a € (0,1).
Suppose we are dealing in Bgz and we set z = (0,0) and let £ = {(z,y) | v = tcos(d),y =
tsin(f),t > 0,0 € (0,27«)}. Intuitively, E is the interior of the 2-dimensional, infinitely-extending,
cone whose vertex is the point x, and walls are defined as the positive xz-axis and the line starting
at the origin and passing thought the point (cos(27a),sin(2ma)) on the unit circle. Therefore,
E N By (x) will be the interior of the same cone as defined before, but now bounded by the curve
beginning at (r,0), which traverses c.c.w. along C,.(0) and stops at (r cos(2mwa), rsin(2ra)). With
this geometrical understanding, we can now easily recognize that since m(B,(z)) = 2712, m(E N
B.(z)) = am(B,(z)) = a2nr?. Since our results are true Vr > 0, we have:

. m(ENB(r,x)) . a2xr?
5 (@) 0 m(B(r,z)) "0 272

For the second example, we are looking for an E and an z s.t. Dg(z) does not exist. Suppose for
this example we turn our thoughts to Bg: (so that B,(z) = (x — r,z + r)). Let us now set z = 0,
and define FE as follows:

11 11 11 11
E=|]smmsm)=lo7)Uls ) U5 5)U-
H1<22"+1’22"> (8’4) (32’16> (128’64)

Our strategy henceforth will be to compose a countable subsequence, ri, s.t. 7 \, 0 and where
limy oo % will be undefined, therefore also rendering Dg(x) undefined. To do this, we
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set 7, = 5r. Naturally, we have m(B,, (z)) = 5 = 5r—r. We now decompose (with a slight abuse

of notation) {ri}3° = {re}® +' {ra41}5°, Le. separate 7 into two subsequences, one where k is
even, the other when k is odd. For the former (k is even), we have:

11 1 | 1Y /2 1

m(E N Bry(x)) = Zm<22n+1 ’ 22n> - Z 92n+1 _ 9ok Z 92nt1 <2k> (3) T 3.9k 1
n>l n>1 n=0

And (quite) similarly for £ being odd we have:

1 1 1 1 = 1 1 2 1
m(EN By, (z) = Z m<22n+1722n) = Z 92nt1  9k+1 nz:% 92ntl (2k+1) (3) T 3.2k

n>l+1 n>l+1

And so, in recalling again that m(B,,) = 5= we have:

k—1
m(ENB,,(z) | p=r=1 ifk=21€N

m(B (2)) | MEZ =1 ifk=2+11€N

m(ENB;, (z))

B (1) is undefined, and therefore so too is Dg(x) by our previous reasoning.
Tk

O

And so limy,_,

3.10 Folland 3.26

Prove the following Proposition:

Proposition. 3.10:

If A and p are positive, mutually singular Borel measures on R™ and A + p is regular, then so are
A and p.

Proof. If K" C Bgn, then A(K), u(K) < (A4 v)(K) < oo. Furthermore, suppose that E, F form the
singular decomposition of A, y; Le., R* = EU F and VF; C F, F} € Bga, u(F1) = 0, and similarly for £
w.r.t. A

Suppose now that A € Bgn. By definition of A + u’s regularity, we know that:
(A4 p)(A) = inf {(A+ p)(UP") | UD E}
Therefore, Ve = 27 k € N, 3 UP” s.t. (A + p)(Uz) < (A + u)(A) + €. Thus, we may construct a

countable sequence of these such Uy’s, namely {Uy}5°, for which when letting k — oo, we have:

klirn A+ ) (Ug) = A+ p)(A), where (A4 p)(Ux) > (A4 p1)(A) Yk € N by positivity of measures
— o0
By our set up of the singular decomposition of A, i we also note that we may express (A + p)(Ug) =
A+ ) (U NE)+ A+ p) (U NF) = u(UpNE) + A(Up N F), and similarly for A, namely: (A + p)(A) =
w(ANE)+ MANF). Furthermore, since i, A\ are positive measures, and by construction Uy D A =
UrNE D ANE (and similarly Uy NF D ANF), we have u(UxNE) > u(ANE) and A(UxNF) > A(ANF).
By applying the last result twice, we can reach the following result:
A+ w)(Ue) = A+ p)(A) =AU N F) + p(Up NE) = AANF) — p(AN E)
>AUNF)—XANEF)
=AU NE)+ AU NE)=AANF)—ANANE)
=0 =0
= AUk) = A(4) 20
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For which we already showed that the LHS has limit = 0, and thus taking limits on every equation in
the above reasoning shows that limy_, .o A(Ux) = A(A). Furthermore, by the exact same steps but in
swapping A <> p, we see that limg_,oo p(Uy) = p(A) as well. Therefore, the same approximation by open
sets from above for the definition of (A + u)’s regularity also works as an approximation by open sets
from above for all sets A € Bgrn for A and p, hence we have arrived at the definition of A and u being
regular measures. O

4 Chapter 5
4.1 Folland 5.1

Prove the following Proposition:

Proposition. 4.1:

If X is a normed vector space over K (= R or C), then addition and scalar multiplication are
continuous from X x X and K x X to X. Moreover, the norm is continuous from X to [0, c0); in
fact, |||z — llyll| < ll= - yll.

Proof. Let us define A : X x X — X as the addition map (Le., defined as A(x,y) = = + y). The by
construction, A is a linear map from the NVS X x X to the NVS X. We thus will have (for (z,y) € X x X):

AG, Il = [lz + yll < [l=]] + [lyl] < 2max{]|]], [ly|[} = 2[|(z, y)Il

And therefore by (Folland) Proposition 5.2, since the above shows A is bounded, A must also be contin-
uous.

Let now define M : X x X — X as the scalar multiplication map (I.e., defined as M (o, ) = ax). Suppose
now that € > 0 and we choose § = min{1,e}. Then if (o, x) € K x X such that ||(a, z)|| < d, we have:

max{lal, [[z[|} < 6 < €= |[M (0, )| = [loz]| = |al|lz]] <6 <5 < e

And so is continuous at (0,0), and hence again by (Folland) Proposition 5.2, M is continuous.

Lastly, let again € > 0, but now set 6 = e. If 2,y € X such that ||z — y|| <, then:
2l = [lz =y +yll < |l =yl + llyll = [l]] = lly]| < [lz =yl
And similarly for ||y|| — ||z]] < ||y — z|| = ||z — y||. Therefore:
il =gl < llz —yll <5 =¢

And so || - || is uniformly continuous and therefore continuous from X to [0, o). O

4.2 Folland 5.2

Prove the following Proposition:

Proposition. 4.2:

L(X,Y) is a vector space and the function || - || defined by (Folland, Equation 5.3) is a norm on it.
In particular, the three expressions on the right of (5.3) are always equal.
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Proof. We begin by defining;:
|||y := sup {||Tx|| | ||z[| = 1}
Tx
I = sup { 1L 20}

||
IT]]s == sup {C'| [|Tz|| < C||z[| V= € X}

As in (Folland) Equation 5.3. We thus begin by showing ||-||1 = ||-||2 = ||*||5. Firstly, if z € X, 2 # 0, then
|z/l|#||| = 1 and so T'(z)/||z|| = T(x/||||) < ||-||1. Since this is true V& € X, we may take the supremum
and hence ||T||2 < ||T|]1- Next, again if z € X and ||z|| = 1, then ||Tz|| < ||T]|5, and again taking the
supremum implies ||T||; < ||T||s. Lastly, again supposing z € X, we simply have ||Tz|| < ||T||2, therefore
|1T|ls < ||T||2- Summarizing we have: ||T|]1 < ||T|ls < [|T]l2 < ||T]]1, and hence all our inequalities
above are actually equalities, and proving the equivalence of the above forms of (5.3).

To prove that || - || does indeed define a norm, suppose S,T € L(X,Y), and z € X. We thus have:
(S + T)al| = ||Sz + T|| < [|Szf| + [[Tzf| < (IS[|+ [TIDIlll =[S +TI < [IS]|+[|T]]
If now a € K(= C or R), then:

|aTa|| = |a||Tz|| < lal[T][|[z]] = [laT(| < |a||T]|
=lla” (aD)|| < Ja™H|laT|| = |all|T]] < [|oT]]
=|aT|| = |af||T]|

And finally, ||T|| =0 < ||Tz|| =0 Vz € X and T = 0. Hence we’ve shown all the conditions for || - ||
to be a norm. O

4.3 Folland 5.5

Prove the following Proposition:

Proposition. 4.3:

If X is a normed vector space, the closure of any subspace of X is a subspace.

Proof. Let X be a subspace of X and X denote its closure. Firstly, by definition, 0 € X. The other
property that we need to show is that if that if z,y € X, and a,b € K, then ax + by € X as well. Since
x,y € X, we know that 3 {z;}7° € X and {y;}} C X s.t. , = = and y,, — y with respect to the norm,
[|-]] on X. So, Ve/2 > 0, AN, N3 € N s.t. ||z, — z|| < €/2 and ||y, — y|| < €/2 ¥n > Ny, N3 respectively.
So, ¥n > N = max(Ny, N3), we have:

€
(@@ + byn) = (az + by)|| < [azn — azl| + [1bya = byll = lalllzn = /| + blllga =yl < 2(5) =

And so since axy, + by, — az + by, and ax, + by, € X it implies ax + by € X by the definition of X.
Therefore, X is indeed a subspace of X. O

4.4 Folland 5.6

Prove the following Proposition:
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Proposition. 4.4:

Suppose that X is a finite-dimensional vector space. Let eq,...,e, be a basis for X and define
1327 ajeslls = 227 lagl.

a) ||+ ||1 is @ norm on X.

b) The map (ay,...,a,) — >.; aje; is a continuous form K™ with the usual Euclidean topology

to X with the topology defined by || - ||1.
c) {x € X ||lz||]s =1} is compact in the topology defined by || - ||1.

d) All norms on X are equivalent. (Compare any norm to || - ||1.)

Proof.

a) We can first see that |[x|[; =0 <= x =0since > | |aj| =0 < a; =0Vj =1,...,n, and
0:=0ey + -+ 0ey.

Next, to see the triangle inequality, we first note that the triangle inequality naturally holds Vz,y €
K. Therefore, if x,y € X = x = ] aje;,y = > Bj€;, and hence:
> (o + Bj)e;

n n
> _ajei ) Bie;
j=1 j=1 j=1
n n
<D eyl + Y181 = IIxlx + [lylh
j=1 j=1

So the triangle inequality holds. Now suppose A € K, we therefore have:

n

Ix+yll =

ZMJ + Bjl

n n
Ixll = | A3 ases|| = || 2o(as)e; Z o] = A Z ol = I\l
j=1 1 j=1
And hence we have shown the three conditions for || - ||; to be a norm on X.

b) From Part a), by dropping the absolute values in expressions of the form >} |a;|, and replacing it by
Y1 aje;, the one inequality now becomes an equality, and hence the rest proves that T : K™ — X,
where T'(ay, -+ ,a,) = Y| aje;, is a linear map. We may now invoke (Folland) Proposition 5.2,
which states T' is continuous <= T is continuous at 0.

Let € > 0, and § = ¢/n. Then if:
Ix =0l =[|x]| = (@2 +---a2)/? <6 = a2<(ai+---+a2)<d® Vi=1,...,n

And so |a;] < || = ¢/n. Therefore, we have:

n
> aje;
j=1

ITx][[1 =

€
:a1—|—-~-—|—|an|<n<) =€
1 n

¢) We begin by showing I' := {(a1,...,a,) € K" | > ] |aj| = 1} € K™ is compact. To see this, we
can simply show that I' is closed and bounded since I' C K™ = C™ or R™. The boundness of T is
easy to see since: ||(a1,...,an)|l2 = ||z||2 := 27 2)1/2 = la;| <1Vj=1,...,n = By(0) DT,
hence I' is bounded.
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To see I is closed, we show that I'“ is open. If x € I'“, then:

x € {(al,...,an) zj:|aj|7e1}
E{(al,...,ann zj:|aj|<1}u{(a1,...,an)| 2?:|aj|>1} =T LT,

Le., if x = (@1,...,%,), then >7|z;| <1 or > |z;| > 1. Assume x € I'y, and y € K". Letting
€1 =1—> 7 |z;| >0, then in taking §; = € /n, we have:

€ .
lx —ylla <d1 = |x¢—yi|§||X—y||2<61=E1 Vie{1,...,n}

n n
€
= Ik =ylh= Yl -yl <n(5) =1->Ia
j=1

j=1
n n n
=) il =Y il < 1= since |a| — [b] < [b— a]
Jj=1 j=1 j=1
n
=)yl <1
j=1

And so B, /n(x) C 'y, so I'y is open. Now suppose x € T'y. Letting e; = .7 [2;/ — 1 and y € K"
as before. Then letting dy = €2/2, we have:
€ .
[x=¥ll2<d2 = |zi—y| <||x—yll2 <d2= - Vie{1,...,n}

n

n
€
= I =ylhi= Y lo =yl <n(5) =Y fosl - 1

=1 =1
n n n
=) il =Y Dyl <D eyl -1 since [ — [a| < [b— q
j=1 j=1 =1
n
=)yl >1
j=1

And so B, /,(x) C I'y, and hence I'y is open. Now since I' = T'y LIT's, we can now conclude that
I'¢ is open, and hence T is closed, and hence compact. Furthermore, in Part b), we showed that T'
(as defined in Part b) is continuous. Therefore, since:

T(T) = {xeX [ [x[ =1}

We may now conclude that since I' is compact, so too is {x € X | ||x||1 = 1} in the topology defined
by [ - []1-

d) Suppose || - || : x = Rxg is an arbitrary norm on X. We recall that to show || - || and || - |1 are
equivalent, we need to find C1,Cy > 0 s.t. Ci[x[|; < [[x|| < Cofx[[; vx € X. If x = 0, then
[|x|]1 = ||x|| since both are norms, selecting any C; < Cy where C1,Cy > 0 proves the equivalence

of these norms for x = 0; therefore, assume x # 0.

If we let Cy = max({|le;||}), then if x € X = x = ] z;e;, then:

n n
[x]| < Z |zj]||e;|| < Co Z = Cy||x|]1 where we have < from the A-inequality
j=1 j=1

42



So we have found an appropriate Cs.

We now claim that || - || is continuous in the topology defined by || - ||1. To see this, let € > 0, and
d=¢/n. Ifx,y € X and ||x — y|[1 < J, then by what we found above:

=yl < Callx=slh < & () =
2

Which tells us that || - || is indeed continuous on X in the topology defined by || - ||1.

By Part c), we recall that A := {x € X | ||x||1 = 1} is a compact set in the topology defined by ||-||1.
Therefore, by the continuity of || - ||, and since we are assuming z # 0, we know that mingc 4 ||x]]|
exists, so let’s call this min Cy. Explicitly now:

le‘

X

Hence completing our proof since we found both C;, Cy which satisfy the necessary inequality.

4.5 Folland 5.9

Prove the following Proposition:

Proposition. 4.5:

Let C*([0,1]) be the space of functions on [0, 1] possessing continuous derivatives up to order k
on [0, 1], including one-sided derivatives at the endpoints.

a) If f € C([0,1]), then f € C¥([0,1]) <= f is k times continuously differentiable on (0, 1)
and lim,~,, £ () and lim, ~ fU)(x) exist for j < k. (The mean value theorem is useful.)

b) ||l = Zlg |||, is a norm on C*([0,1]) that makes C*([0,1]) into a Banach space. (Use
induction on k. The essential point is that if {f,} c C*([0,1]), f, — f uniformly, and
fl, — g uniformly, then f € C'([0,1]) and f’ = g. The easy way to prove this is to show

that f(z) — £(0) = [ g(t)dt.)

\

Proof.

a) We'll proceed to prove this claim through induction. Suppose k = 0, then the forward case of
f € C([0,1]) implying f is differentiable on (0,1) and and limg~, f(z) and lim, ~; f(z) existing is
by the definition of C(]0, 1]).

Now, for the backward direction (k = 0), suppose f € C((0,1)), limg~,,, f(2), and lim, ~ f(x) exist
- this, however, is simply the definition of f € C([0, 1]).

Let Léj ) = limg{‘n f(z) and L§j ) = lim, s, f@(x). Now assume the property above holds for
k =n —1. The forward direction is simply by definition. For the backward direction, if we wish to
show that f being k times differentiable on (0,1) and limi&n f(z) and lim, », f9) () existing for
j < n implies f € C*(]0,1]), we may proceed as follows. Firstly, by the existence of the one sided
derivatives, we know that Ve > 0, 36 > 0 such that if 0 < z < §, then |f)(2) — Léj)| < eVj<n.

Furthermore, WLOG, we may omit the ng ) case since all we need to chance in the argument is
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that 6 < < 1 instead of 0 < & < 0. Moreover, by the mean value theorem, 3% € (0,9) s.t
fU=D(2) — fU=D(0) = (z — 0)fYW) (&) = xfU) (%) Therefore:

f(j—l) (z) — f(j—l) ()

T

— Lyl = |f(j)(55) — L] < e since & € (0,0)

And so limg\ o f<j—1)($)7f<j—1)(m)
FO=D (z)— f(j—1)(x)

= Lo Vj < n, and by the exact same argument for 1, we see that

lim, ~o =L Vj < n,and so f € C"([0,1]), completing our inductive step and
proving this proposmon vk € N.

b) We proceed, as hinted, by induction. Suppose that {f,}$° is Cauchy in C'. Then f, — f in C°

and f] — ¢ in C. Therefore:
ful0) = 2 0)+ [ Fitw)dy
0

However, since f/ — g, by the dominated convergence theorem we have:

n—oo n—roo

)= i 1) = Jim 1,00+ i [ Sy =500+ [ oty
0
And therefore by the fundamental theorem of calculus we may conclude that g = f/, and so f,, — f
in C*.

We now make our inductive step. Assume the statement is true up until j = k. Suppose then that
{f.}5° is Cauchy in C¥*! and f, — f in C* and f(kH) — g in C**1. Therefore, fy(bk) — f,(LkH)
in C, and f(kJr1 — g in C'. We therefore may conclude that f(kH) — fﬁbkﬂ) in C, and ultimately
fn — f in C+D),

To finish our proof, we need to prove that || - || is indeed a norm. Firstly, if f # 0, then naturally
[1fIl #0,s0 ||f||=0 < f=0. Since ||-|| is simply a sum of other norms, the triangle inequality
and absolutely scalability are both trivially immediate like definiteness.

O

5 Chapter 6
5.1 Folland 6.3

Prove the following Proposition:

Proposition. 5.1:

If1 <p<r<oo, LPNL" is a Banach space with norm || f|| = [|f||, + || f||+, and if p < ¢ < 7, the
inclusion map LP N L" — LY is continuous.

Proof. We begin by first showing that LP N L" is a Banach Space w.r.t. ||f|| = ||fll, + |||l (L.e., show
LP N L" a normed vector space and complete w.r.t. ||f]]).

The fact that || - || and || - ||, are norms implies || - || is a norm. Firstly, || - || > 0 since || - ||, || - ||» > 0.
Now, suppose f,g € L" N LP, and A € K, then we have:

F+gll =1 + gllo + 11 + gllr < [[fllo + Ngllp + [[£1l- + lgll- = 1F1] + llg]l
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ML= 1A + ALl = Il A AL = [T
Il =0 <= |lfllp=lfllr =0 < f=0p-ae.

We can also immediately see that LP N L" is a vector space since if u,v € LP N L", then u,v € LP and
L", and so all our conditions for being a vector subspace are satisfied since both LP and L" are vector
subspaces.

Suppose now that {f,}$° be a Cauchy sequence in LP N L". By noting that ¥n,m € N, we have
= fnllp < fn = fonll 0 [|f— flle < [l — finll, and hence {£,}3° are also Canchy in Z? and L.
We can thus define g and h as lim f,, in LP and L" respectively. Let € > 0, then 3 N € N s.t. if we take
§ = P+D/P then letting || f, — g||, < J, and in setting E := {x € X | € < |f,.(x) — g(x)|}, we have:

€

1 1 1 1 1
_ P il _glP — _ alPdy = — _ P _ —(5\P —
WE) = p/Ee dp < 6p/Elfn glPdp < 6p/lfn gPdu = < (I1Fn = gll,)" < ()" =

Le., u(E) < € = {fn}i° converges in measure to g. If r < oo, the argument holds for interchanging p
for r. If r = oo, then 3 a subsequence f,, of {f,}{° s.t. fn, — h p-a.e. We have therefore shown that
g=h,and so g € LP N L". Therefore, since f, — g in LP and L", we have f,, — g in LP N L" - and hence
LP N L" is a Banach space with norm || - ||.

Let now p < ¢ < r. By (Folland) Proposition 6.10, we know that 3\ € (0,1) st||f||;}|\f||}f>‘ where
% = % + =2 Thus, since ||f||, < ||f]| and ||f|], < [|f]], we have:

1 Flla < ARIFIEA < LAPIAR = 1£]]

Suppose now that € > 0 and f,g € LP N L", then if ||f — g|| < d = ¢, we have ||f —g|lq < ||f — g]| < e by
the above inequality. Hence ¢ : LP N L" — L7 is uniformly continuous (and naturally continuous as well).

O
5.2 Folland 6.4
Prove the following Proposition:
Proposition. 5.2:
If 1 <p<r<oo, LP 4+ L" is a Banach Space with norm ||f|| = inf{||g||, + [|2||- | f = g+ h},
and if p < ¢ < r, the inclusion map L? — LP + L" is continuous.
Proof. We begin by showing || - ||, as defined, is a norm. Firstly, || - || > 0 since || - ||p, || - ||» > 0. Now,

suppose f1, fo € L" 4+ LP, and A € K, then we have:

11+ fol| = int {Ilgllp +1All- | fi+ f2= g+

= inf {Ilg1 + gallp + b1 + hall

f1+f2:g+h:(gl+g2)+(h1+h2)}

IN

inf {(llgallp + llgzllp) + (Il + kally) | o+ f2 = g+ h = (g1 + g2) + (b + h2) }

< inf {llgrlly + 1halle| f1 = g1+ ho | +int {[lgally + [lhall,| fo = g2+ ha}
1201+ 11£el

A

45



AN = int {1Agll, + AR,

A = )\(ngh)}
inf {|A| lglly + M| 1Al] | Af = Mg +h)}
Nin {llglly + IIkll: | £ =g+ }

= [A[ L]l
Ifl=0 <= [Ifll=Ifll. =0V¥g,hst. f=g+h <= f=0 pac.
We can also immediately see that LP + L" is a vector space since if u,v € LP 4+ L", then u = uy + ug,v =

v1 + vo where uy,v; € LP and us,v9 € L”, and so all our conditions for being a vector subspace are
satisfied since both LP and L" are vector subspaces.

To show completeness, we make use of (Folland) Theorem 5.1 which states that a normed vector space, X,
is complete <= every absolutely convergent series in X converges. So, suppose Y ;" f, be an absolutely
convergent series in LP + L. By the definition of inf and || - ||, we know that Vn € N, 3 g, € LP h,, € L"
S.t. fn = gn + hy, where ||gn||p + ||Anllr < ||fnl| +27". Therefore, from this inequality, and since both
> fnoand >07°27™ are absolutely convergent, so too will 7% g, and >.{° h,,. Since LP and L" are
Banach spaces, Zf[ gn — g € L? and Zfr hy, — h € L". Furthermore, by definition || - || < || - ||, and
[|]] <1]-|~, so combining these two reverse inequalities, we have > 7 f,, = 3" (gn +h»), which therefore
has a limit in LP 4+ L", explicitly g + h € LP + L". We have thus show all the necessary conditions for
LP + L" to be a Banach Space w.r.t. || - ||.

Suppose p < g < rand f € L. Let E:={x € X |1 < |f(z)|}. Thus, by the construction of E, we
therefore have: |fxgl? < |fxr|? and |fxe|? < |fxE:|? (e, fxE € L?, fxg € L"), and hence:

A= xe + Fxeell < xelle + 1 xsllr <Ifxells + 11 xells = [1f1lq

Suppose now that € > 0 and f,g € L?, then if ||f — g||; < J = ¢, we have ||f — g|| <||f — gllq4 < € by the
above inequality. Hence ¢ : LY — LP 4+ L" is uniformly continuous (and naturally continuous as well).
O

5.3 Folland 6.5

Prove the following Proposition:

Proposition. 5.3:

Suppose 0 < p < ¢ < co. Then:

a) LP ¢ L1 < X contains sets of arbitrarily small positive measure.
b) L? ¢ LP <= X contains sets of arbitrarily large finite measure.

¢) What about the case of ¢ = co?

\

Proof.

a) We first prove the following Lemma:

Lemma. 5.1: Chebyshev’s Inequality

n(Ey) < (@Y

Where Ey = {x € X | |f(x)| >t} and p € (0, 0).
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Proof. Let g(x) = 2P if x > t, and 0 otherwise. We thus have 0 < t*xg, < |f|’xE,, and hence:

1 | (I1£115)"
FE) = — tP duy < — Py < ~——=2_
(Ey) tp/ XEtM_tp[Etwf ps

O

Now back to the problem at hand. For the forward direction, we proceed via the contrapositive,
Le., suppose Je > 0 s.t. VE C M(X), u(E) & (0,¢€). From Chebyshev’s Inequality, we know that

AT s.t. Yt > T, p(E;) = 0 since p(Ey) < (%)p — 0, and so |f| < T a.e. So:

Jisvau= [ igiaus [ pdn < T+ [ i< oc

And so f € L9.

For the converse, suppose Ve > 0, 3E € M(X) s.t. u(E) € (0,¢). Let us define {F,,}{° where
0 < w(F,) < 1/n so that pu(F,) — 0. By defining G,, := F,\ U, F,, we must have 0 <
w(F,) < p(UXGE,,). Furthermore, by taking subsequences, we may actually assume now that
0 < p(Gp) <27™. Now if we define:

F=3" (wGn) X, (2 0)

Then we have:

[1sdn= [ rdn= [ 37 (0(G) M= Y s = T <o
n=1

n=1

And so f € LP; however, one can see that f ¢ L4 since:

/|f\qdu = /fqdu =3 (lG)) T M2l = 3 /a1y 20l g
n=1 n=1

b) For the forward direction, the proof here is completely analogous to that in a). For the converse,

by substituting (M(Gn))_l/q for (u(Gn))_l/(p+1), and noting that now we have 2™ < u(G,,) < oo
instead of 0 < u(Gy,) < 27™, the same results as in a) still hold.

c) For the case of ¢ = 0o, we have L>® ¢ LP < p(X) = oo, since if |f|P < C' € R>g, we have:

/|f|pdu§0/du§Cu(X) < o0

5.4 Folland 6.7

Prove the following Proposition:

Proposition. 5.4:

If f e LP N L*> for some p < 00, so that f € LI Vg > p, then ||f||oc = limg— o0 || f]lg-
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Proof. We may first assume f # 0 a.e. by the triviality of this case. From (the proof of Folland)
Proposition 6.10, we know that:

11la < (A1) (1 11)
And so: - ;
timsup |1 < tim sup (1) A1) ) = Nl

Furthermore, by our initial assumption, we have ||f||oc > 0. Suppose now that 0 < a < ||f||c and
E, ={xe€X||f(x)] > a}. We thus have:

£ < (1AL < [ 1< ()" = @nED) < ((161)7)

. 1/q P
<
= hqn_1>})r01f a(M(Ea)) < hqm_>£f 1£lq
= a <liminf||f||,
q—00

And so letting a — || f||co, We thus have:

limsup [[ f[lg < ||f[loc < liminf || ]|,

q—ro0 q

And so we must have all our inequalities become equalities: hence limg_,o0 || fllq = || f]]oo-

5.5 Folland 6.10

Prove the following Proposition:

Proposition. 5.5:

Suppose 1 < p < o0. If f,,,f € LP and f, — f a.e., then ||fr, — fllp = 0 <= ||fullp = |If]]p-
[Use Exercise 20 in (Folland) 2.3.]

Proof. For the forward direction, if || f, — f||, — 0, by the triangle inequality we have:
1 ally = A1l < fn = fllp =0

And we therefore have || f,|l, = || f|lp-
For the converse, suppose || fn|lp = [|f]lp- We now quickly prove the following result:
If z,w € C, then |z — w[? < 2P71(|2|P + |w|P) ¥p > 1
By the second derivative test, g(z) = |2z|P is convex (Le., g(tz + (1 — t)w) < tg(z) + (1 — t)g(w)). So, if
we set t = 1/2, and move the 2P over to the other side, we have:
z—wl’ 1 1
< Z|4|P -z p
22| <+ g
For which the latter is recognizably true due to the convexity of |- [P for p > 1 (and in making a change
of variables w' = —w)

Carrying on, let us define g, := 2P=X(|f|P + | fn|?) — |f — ful|P- By the above inequality, we know that
gn > 0, and so we may apply Fatou’s Lemma:

2(If11,)" < timint [ g, =2 (|11,)" ~ imsup [ 17 = . P
n—00 n—

oo

2 —wP <27z + wl) =

And so limsup [ |f — fo|Pdp < 0= ||f — full, = 0.
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5.6 Folland 6.14

Prove the following Proposition:

Proposition. 5.6:

If g € L*°, the operator T' defined by T'f = fg is bounded on LP for 1 < p < co. Its operator
norm is at most ||g||c with equality if p is semi-finite.

Proof. Firstly, we may assume g #Z 0 due to the triviality of this case. We now proceed to see that:

(1T f11)" :/Ifgl”du = [fPlglPdp < (Hgl\oo)p/lfl”du = (llglse)” (I1f115)" [ < since |g] < lgllsc]

= Il < llgllo

To see equality if p is semi-finite, suppose 0 < € < ||g||c0, By w’s semi-finitness, 3 F s.t. ||g]loc — € <
lg| Vx € E. Thus, we have:

ITxelly = llgxell > (gl = €)lIxelle = Tl > llglle —¢ = [Tl > lgll

Where we have the last implication by €’s arbitrarily, and to satisfy both equalities, we must have
llgllee = 1IT]- 0
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