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Abstract

Interferometric synthetic aperture radar (InSAR) is an effective technology for measuring temporal

changes of the Earth’s surface. By combining SAR echoes collected at varying times and orbit

geometries, we can produce wide coverage images of crustal deformation fields with centimeter-level

accuracy. However, conventional InSAR techniques often fail to recover a coherent deformation signal

when the radar imaging geometry or surface scattering properties change significantly between radar

passes. This phenomenon, known as decorrelation, produces a random phase term that obscures the

deformation signal and reduces the amount of InSAR data suitable for time series analysis.

We can overcome these limitations by exploiting a subset of intrinsically phase-stable pixels, the

so-called persistent scatterers (PS). Identifying such pixels is a crucial component of this analysis,

since phase unwrapping and subsequent deformation estimation on the spatially sparse PS network

depends on both pixel selection accuracy and the network density. PS techniques have been shown to

work well in urban areas with many strong, stable reflectors, but identifying an appropriate network

of pixels in natural or vegetated terrain remains a challenge due to other spatiotemporally varying

phase terms.

In this dissertation, we present new theory and techniques for generalized PS analysis based

on partially correlated persistent scatterers (PCPS): those that are non-ideal but stable enough for

deformation time series measurement in largely decorrelated areas. We develop a new physically-

based method for modeling spatiotemporal decorrelation, as well as a comprehensive statistical

characterization of the resulting interferometric pixels. We show that these analytical results lay

a theoretical foundation for PCPS algorithm development. Next, we introduce a more reliable

PS selection technique that combines the full set of interferometric observations as a function of

their acquisition intervals. The PCPS technique achieves a better trade-off between pixel selection

accuracy and network density compared to other PS identification methods. Finally, we present

examples of deformation measurements obtained using PCPS analysis. These results demonstrate

that through improved statistical characterization, the PCPS technique attains reliable deformation

measurements for a variety of wavelengths, terrain, and geophysical processes.
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Chapter 1

Introduction

The Earth’s surface is constantly changing due to both manmade and natural phenomena. Recent

natural disasters have highlighted the need to monitor and understand geophysical processes such

as earthquakes, volcanoes, landslides, and ground subsidence. Crustal deformation measurements

play a crucial role in these studies. The models, data, and analysis enabled by these measurements

are essential in identifying areas prone to natural disasters; optimizing of disaster response policies

and resources; and regulating activity for sustainable development.

Spacebourne interferometric synthetic aperture radar (InSAR) is an effective technology for re-

motely imaging changes in the Earth’s surface. Satellite radar is a cost-effective method to obtain

large coverage, spatially dense deformation measurements over very long time spans. As an active

sensor, radar is not dependent on external lighting conditions, and radar wavelengths easily pene-

trate clouds and atmosphere. By combining synthetic aperture radar (SAR) phase data collected

at varying times and orbit geometries, we can produce wide coverage images of crustal deformation

fields with sub-centimeter-level accuracy.

However, conventional InSAR techniques are limited in their ability to recover a coherent defor-

mation signal when the radar imaging geometry or surface scattering properties change significantly

between radar passes. This phenomenon, known as decorrelation, produces a random phase term

that obscures the deformation signal and reduces the amount of InSAR data suitable for time series

analysis. Decorrelation leads to a loss in image spatial coherence and can render large areas of the

image unsuitable for deformation measurements.

We can overcome these limitations by exploiting a subset of intrinsically phase-stable pixels, the

so-called persistent scatterers (PSs). Identifying such pixels is a crucial component of this analysis,

since phase unwrapping and subsequent deformation estimation on the spatially sparse PS network

depends on both pixel selection accuracy and the network density. PS techniques have been shown to

work well in urban areas with many strong, stable reflectors, but identifying an appropriate network

of pixels in natural or vegetated terrain remains a challenge due to other spatiotemporally varying

1
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phase terms.

In this thesis, we discuss new theory and techniques for generalized PS analysis based on partially

correlated persistent scatterers (PCPSs): those that are non-ideal but stable enough for deformation

time series measurement in largely decorrelated areas. We present a new physically-based method for

modeling spatiotemporal decorrelation, as well as a comprehensive statistical characterization of the

resulting interferometric pixels. We show that these analytical results lay a theoretical foundation

for PCPS algorithm development. Next, we introduce a more reliable PS selection technique that

combines the full set of interferometric observations as a function of their acquisition intervals. The

PCPS technique achieves a better trade-off between pixel selection accuracy and network density

compared to other PS identification methods. Finally, we present examples of deformation measure-

ments obtained using PCPS analysis. These results demonstrate that through improved statistical

characterization, the PCPS technique attains reliable deformation measurements for a variety of

wavelengths, terrain, and geophysical processes.

1.1 Contributions

There are three main foci of this thesis. First, we develop the theory of partially correlated persis-

tent scatterers, including parameterized scattering models and derived statistical characterizations.

Second, we apply this theoretical analysis in order to develop an improved technique to identify and

select PS pixels. Finally, we utilize the PCPS selection technique with the Stanford Method for

Persistent Scatterers (StaMPS) framework in order to measure crustal deformation from a variety

of InSAR data sets.

The main contributions of this thesis are summarized below.

1. We present a new parameterized PCPS statistical scattering model.

2. From the scattering model, we derive a new analytical expression for the spatiotemporal decor-

relation of PCPS pixels as a function of their scattering characteristics.

3. We verify the analytical PCPS decorrelation model by comparison to observed C-band InSAR

data.

4. We derive the probability distribution function (PDF) for a full interferometric stack of PCPS

pixels as a function of the scattering parameters and radar imaging baselines.

5. We explain how the PCPS theoretical foundation leads to practical improvements in PS algo-

rithm development.

6. We design a new PS statistical selection technique that optimally combines the full set of

interferometric observations as well as repeat pass spatiotemporal acquisition intervals.
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7. We perform a case study to estimate the performance of PCPS identification accuracy versus

false detection compared to existing PS techniques.

8. We implement and utilize this selection technique with the StaMPS framework in order to

extract deformation measurements for a variety of wavelengths, terrain, and geophysical pro-

cesses.

9. We compare the PS selection results on real InSAR data for the PCPS technique compared to

existing PS methods.

1.2 Thesis roadmap

The remaining chapters of the thesis are organized as follows.

In Chapter 2, we provide a brief overview of radar remote sensing and imaging, InSAR, and prior

work on PS techniques.

In Chapter 3, we present a new radar scattering model that relates the PCPS signal moments to

physical properties of the surface. From this scattering model, we derive a new analytic model for the

spatiotemporal decorrelation of persistent scatterers as a function of baseline and signal-to-clutter

ratio (SCR). This model quantifies the partial correlation of persistent scatterer pixels over large

baselines, providing a means to characterize and compare the phase stability of PS, non-PS, and

ideal point scatterer pixels. Our analysis fundamentally explains why PS coherence remains high

over large baselines and justifies the use of interferometric data with baselines equal to or greater

than the critical baseline. We support our analytic models with decorrelation measurements from

real InSAR data.

In Chapter 4, we present a more complete statistical characterization of the PS decorrelation

phase statistics, derived from PS scattering principles. We review previous interferometric phase

distributions based on a model of the PS SAR pixel. Next, we use the new PS backscattering model

and interferometric stack system model in Chapter 3 to derive the joint phase-amplitude distribution

for the entire stack of pixels as a function of SCR and spatial baseline. We discuss the fundamental

differences in the PS models and quantitatively compare the resulting analytical distributions in

Section 4.5. We show that the new PS backscatter model and resulting distribution fit simulated

data better than previous analysis.

In Chapter 5, we present an algorithm for improved PS selection and show results of this algorithm

for a variety of radar data sets. We first describe the general StaMPS framework for PS deformation

measurement, emphasizing the critical step of PS selection. Next, we present a review of existing

PS selection techniques. We then show a new method of PS characterization and selection based

on the analytical results of the previous chapters. This method optimally combines the full stack of

phase and amplitude observations, as well as information about the spatiotemporal baselines. We
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perform a case study to estimate the performance in terms of PS identification and false detection

compared other PS methods. Our results based on simulated and real data demonstrate that with

an increased amount of information, we obtain better PS parameter estimation and selection. We

present a set of example deformation measurements from a variety of real satellite radar data using

our PCPS selection method.

Finally, we present a concluding summary and directions for future research in Chapter 6.



Chapter 2

Background

2.1 Radar remote sensing

Radar is a sensing modality based on the reflection and detection of radio frequency (RF) electro-

magnetic waves. The term radar originated as an acronym for ”radio detection and ranging,” as

the technology was initially developed to detect and track moving objects such as airplanes and

ships in the 1930s and 1940s [Brown, 1999]. Radar is now used for a much broader range of appli-

cations, including high resolution imaging [Ausherman et al., 1984, Odendaal et al., 1994], target

characterization [Kim et al., 2002, Smith and Goggans, 1993], activity recognition [Kim and Ling,

2009, Liu et al., 2011], gesture sensing [Lien et al., 2016], ground penetration [Daniels, 2004, Jol,

2008], health monitoring [Li et al., 2009, Droitcour et al., 2001], and geophysical monitoring [Elachi

et al., 1990, Massonnet and Feigl, 1995].

Satellite radar has been used for remote sensing and imaging of the Earth since the launch of

SEASAT in 1978 [Bamler and Hartl, 1998]. Radar has several advantages as an instrument for remote

Earth monitoring. Satellite radar enables large coverage, spatially dense observations that are not

feasible with in situ measurements. Unlike optical sensors, radars are actively powered and hence

not limited to daytime operation. Because atmosopheric attenuation is low at radio frequencies,

radar can penetrate atmosphere, clouds, and precipitation that cameras cannot see through. Radar

also enables high resolution three-dimensional mappings of terrain.

Satellite radars are typically pulsed, coherent, and operate in the range of 106 to 1012 Hz, making

them sensitive to objects on the order of centimeters to meters in size. A basic satellite radar

system, shown in Figure 2.1 consists of a transmitter and receiver, antenna, oscillator, modulator,

and circulator. Remote sensing radar satellites generally operate in near geosynchronous orbit, at

altitudes ranging from 600-800 kilometers. As the satellite moves along the orbit path, a side-

looking radar antenna illuminates an area of the Earth’s surface called a footprint or radar swath.

The direction along the orbit path is referred to as azimuth or along-track, while the perpendicular

5
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Figure 2.1: Basic radar components

direction is called range or across-track.

2.2 Radar imaging

One of the primary advantages of radar as a remote sensing modality is its ability to produce

spatially dense measurements of the Earth’s surface. Because radar can simultaneously measure the

reflectivity as well as spatial location of scatterers, the measurements can be registered to spatial

coordinates in order to produce a radar image. Two figures of merit for a radar imaging system

are its signal-to-noise ratio (SNR) and resolution, the ability of the system to distinguish two point

targets.

The total received radar signal from a transmitted pulse is the coherent sum of time-delayed

reflections from scatterers within the illuminated ground swath. The pulse reflections are amplitude-

modulated by the scattering properties of the swath. The reflected energy from each discrete scat-

terer back in the direction of the radar is a factor of many properties, including its physical size,

shape, surface smoothness, and material. Signal processing techniques are used to spatially resolve

scatterers and improve SNR.

In the range dimension, the distance r from the radar to a scatterer is determined by the two-way

time delay td between the pulse transmission and reception of the echo:

r =
ctd
2

(2.1)

where c is the speed of light.

Range resolution is produced using pulse compression, in which the received signal is processed

through a matched filter. By correlating the received signal with the transmitted signal, the reflected

energy is compressed into an effectively shorter pulse, increasing the resolution and SNR. Using this
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Ground scatterers

range

Figure 2.2: Range resolution refers to the ability to distinguish scatterers that are spatially close to
each other.

technique, the range resolution δr is limited by the bandwidth BW of the transmitted signal:

δr =
c

2BW
(2.2)

Bandwidth is generated through pulse modulation schemes such as frequency modulation or phase

shift keying, enabling resolutions finer than those determined by the transmission pulse length alone.

The azimuth angular resolution θaz of a real aperture radar system is determined by the antenna’s

angular beamwidth, which is proportional to the wavelength λ and inversely proportional to the

physical aperture dimension l:

θaz =
λ

l

At a range of r, this resolution produces a ground swath of azimuth length

δaz =
λr

l cos θ

where θ is the incidence angle of the transmitted wave.

To achieve fine resolution on the order of meters, a real aperture antenna would need to be on the

order of kilometers long. Obviously the size and mass involved is prohibitive for space applications.

By using a signal processing concept called SAR, we can instead exploit the relative motion between

the ground and the radar in order to synthesize the equivalent of very large antenna aperture using

a relatively small physical antenna.
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Figure 2.4: Satellite radar geometry, synthetic aperture antenna
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2.3 Synthetic aperture radar

SAR is a signal processing technique for producing high resolution radar images. The relative

motion between the radar and the ground is used to synthesize a larger aperture and hence narrower

beamwidth than the physical dimensions of the antenna afford. As the radar travels along the orbit

path, successive transmitted pulses illuminate a ground swath from different antenna positions. The

reflected radar echoes are pulse compressed for range resolution and then processed in order to form

a two-dimensional image.

SAR exploits the Doppler phenomenon in order to resolve scatterers in the azimuth direction.

The phase of the received radar echo from a point scatterer at range r(t) is given by

φ(t) = −4π

λ
r(t) = −4π

λ

√
r2
0 + v2t2 (2.3)

where r0 is the range to the scatterer at the radar’s closest approach and v is the radar platform’s

velocity. As the satellite travels, the range to a fixed scatterer, and hence the phase of its reflection,

also varies. The time-varying phase produces a Doppler frequency

fD =
dφ

dt
=

2v · u
λ

(2.4)

where v · u represents the projection of the radar platform’s velocity onto the line of sight vector

from the radar to the scatterer.

By correlating the range-compressed radar data with the phase history of a point scatterer, the

response from a ground scatterer can be coherently integrated over multiple pulses. This matched

filter improves the azimuth resolution to

δaz =
l

2
. (2.5)

Equation 2.5 shows that with SAR, the azimuth resolution is no longer limited by the size of the

antenna. In fact, the resolution improves as the antenna size decreases. Intuitively, this is because

a smaller aperture causes a larger radar ground swath, which in turns means that each ground

resolution element is in the ground swath for more radar pulses as the radar passes overhead. This

enables the matched filter to compress a greater amount of collected energy into a smaller azimuth

location.

The complex value of each SAR pixel is determined by the coherent sum of reflections from multi-

ple scatterers within the corresponding ground resolution element, convolved with the radar imaging

impulse response. These reflections add constructively and destructively, producing a speckle effect

on the pixel amplitude [Lee, 1981]. The absolute phase of a single SAR pixel is essentially random

and generally not useful.
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2.4 Interferometric SAR

2.4.1 Technique

Interferometric synthetic aperture radar (InSAR) is a signal processing technique to extract the

difference in phase between multiple SAR acquisitions. SAR images acquired from different imaging

geometries are first coregistered and resampled so that pixels map to the same ground resolution

elements. An interferogram is then produced by multiplying one complex SAR image, the master,

by the complex conjugate of a second SAR image, the slave. The phase of the resulting image equals

the difference in phase between two SAR images and is related to the difference in the path length

∆ρ in the radar line-of-sight (LOS) between the acquisitions:

∆φ = −4π

λ
∆ρ. (2.6)

If the SAR images are acquired from different orbital positions and no deformation occurs between

the passes (for example, if the images are acquired simultaneously from displaced antennae), then

the path length difference ∆ρ is a function of the orbital and Earth geometry [Rodriguez and Martin,

1992], producing a topographic phase term

φtopo =
4π

λ
∆ρ =

4π

λ
B cos(θ + α) (2.7)

where B is the physical baseline separation between the antennae, α is the angle between the baseline

and the local normal, and θ is the look angle. InSAR can thus be used to produce high resolution

topographic maps of the Earth’s terrain [Zebker and Goldstein, 1986].

If ground topography is known, either from another interferogram or a digital elevation model

(DEM), then repeat pass InSAR can be used to image spatiotemporal deformation fields of the

Earth’s surface [Gabriel et al., 1989]. This technique, sometimes known as Differential InSAR

(D-InSAR), was first applied to measure crustal deformation associated with the 1992 Landers

earthquake [Massonnet et al., 1993, Zebker and Rosen, 1994]. The interferometric phase contribution

due to ground deformation ∆r in the radar’s line-of-sight between acquisitions is

∆φdef = −4π

λ
∆r. (2.8)

An example interferogram produced from European Remote Sensing (ERS) C-band radar data

is shown in Figure 2.6. The fringes in the interferogram show deformation contour lines resulting

from the Hector Mine earthquake. Each fringe cycle corresponds to LOS displacement of λ
2 .

Because phase is measured modulo 2π, interferometric phase has an inherent ambiguity; a phase
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Figure 2.5: The change in phase between two SAR acquisitions is related to amount of ground
deformation in the radar line-of-sight.

value of φ is indistinguishable from phases of φ ± 2nπ for all integer values of n. This results in

phase discontinuities in the image. These ambiguities and discontinuities are resolved by a process

known as phase unwrapping, in which the differential phases between adjacent pixels are integrated

over the interferogram [Zebker and Lu, 1998, Costantini, 1998, Chen and Zebker, 2002].

By combining SAR phase data collected at varying times and orbit geometries, we can produce

wide coverage images of crustal deformation fields with centimeter-level accuracy. With a coregis-

tered multi-temporal stack of interferograms, deformation times series over periods of days to decades

can be extracted. InSAR data is used for a wide variety of geophysical remote sensing applications,

including imaging crustal deformation due to earthquakes [Massonnet et al., 1993, Jónsson et al.,

2002] and volcanoes [Amelung et al., 2000, Yun et al., 2006]; monitoring landslides [Lauknes et al.,

2010, Tarchi et al., 2003]; and measuring ground subsidence [Amelung et al., 1999, Hoffmann et al.,

2001].

2.4.2 Interferometric phase terms

Extraction of the deformation signal is complicated by the presence of other interferometric phase

terms. We model the the total interferometric phase φifg as a sum of these terms:

∆φifg = φdef + φatm + φerr + φdecorr + φnoise. (2.9)

The interferometric phase terms are described below and summarized in Table 2.1.
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Figure 2.6: 1999 Hector Mine earthquake interferogram (credit: Jet Propulsion Lab)

Phase term Structure
Deformation (signal of interest) φdef Spatially, temporally correlated
Atmosphere φatm Spatially correlated
Topographic φtopo Deterministic
Errors in orbital/topographic information φerr Function of imaging geometry
Noise φnoise Random
Decorrelation φdecorr Random

Table 2.1: Interferometric phase terms
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Deformation φdef

The deformation phase is the signal of interest. This term tends to be both spatially and temporally

correlated, although high frequency deformation is often difficult to spatiotemporally model and

extract.

Atmospheric phase φatm

The atmospheric phase term arises from variations in signal propagation delay, largely due to differ-

ences in tropospheric water vapor content [Massonnet et al., 1994]. Its contribution to the interfer-

ometric phase is typically on the order of one-tenth of a wavelength [Tarayre and Massonnet, 1996].

Atmospheric phase tends to be correlated spatially and with topography [Hanssen, 2001], but essen-

tially temporally uncorrelated after a period of about 30 days. Its effects can be compensated using

terrain data, existing weather models, or atmospheric data from other sensing modalities [Bonforte

et al., 2001, Li et al., 2005].

Orbital error φerr

The orbital error phase terms are due to imprecise knowledge of the orbit path or geometry. The

orbital error phase terms are spatially correlated and can therefore be compensated or filtered with

some knowledge of the orbital geometry [Agram, 2010]. Alternatively, ground control points may

be used to constrain the satellite position at known times [Shimada, 2000].

Thermal noise φnoise

Thermal noise adds a random phase term that is modeled as white and Gaussian.

Decorrelation φdecorr

Decorrelation due to spatial and temporal baseline is a major limiting factor in estimating the crustal

deformation signal from interferometric phase data [Zebker and Villasenor, 1992]. Decorrelation

arises because the measured radar return for a ground resolution element is the sum of complex

echoes from multiple discrete scatterers located within the element [Rosen et al., 2000]. Changes in

the radar imaging geometry, scatterer positions, or scattering behavior between radar passes alters

the amplitude or path length of reflections from discrete scatterers. The change in constructive and

destructive interference of these reflections causes the coherent sum to have a random, noise-like

decorrelation phase term that obscures the deformation signal.

Temporal decorrelation occurs when the scattering behavior or scatterer positions changes be-

tween radar passes. Vegetation, seasonal changes such as snow coverage or melting, man-made

changes, and other phenomenon tend to contribute to temporal decorrelation. The amount of



CHAPTER 2. BACKGROUND 14

decorrelation is varies with the temporal separation between radar passes, known as the temporal

baseline T12.

Spatial decorrelation results from changes in the radar imaging geometry. A change in the wave

incidence angle causes different interference patterns in the coherent sum of reflections from discrete

scatterers. Spatial decorrelation increases with the perpendicular baseline B12.

At critical limits on the temporal baseline or spatial baseline, the interferogram suffers from

complete loss of coherence, and no useful deformation information can be extracted. Decorrelation

leads to a loss in image spatial coherence and prevents the use of large baseline data [K.Li and

Goldstein, 1990], decreasing the temporal resolution of the InSAR data.

2.4.3 Multi-temporal InSAR

Multi-temporal InSAR data can be used to mitigate the effect of extraneous phase terms and improve

extraction of crustal deformation time series. Two broad categories of multi-temporal techniques

are small baseline subset (SBAS) and Persistent Scatterer (PS), the latter of which is the focus of

this thesis.

2.5 Persistent scatterer techniques

Conventional InSAR techniques often fail to recover a coherent deformation signal when the radar

imaging geometry or surface scattering properties change significantly between radar passes. This

phenomenon, known as decorrelation, produces a random phase term that obscures the deformation

signal and reduces the amount of InSAR data suitable for time series analysis.

We can overcome these limitations by exploiting a subset of intrinsically phase-stable pixels, the

so-called persistent scatterers (PS). PS pixels are those which are dominated by a point-like scatterer

and in which the decorrelation phase term is small. Using a network of such pixels, we can filter

noise, estimate the remaining phase terms, and accurately recover the deformation signal [Ferretti

et al., 2001].

Identifying such pixels is a crucial component of this analysis, since phase unwrapping and sub-

sequent deformation estimation on the spatially sparse PS network depends on both pixel selection

accuracy and the network density. PS techniques have been shown to work well in urban areas

with many strong, stable reflectors, but identifying an appropriate network of pixels in natural or

vegetated terrain remains a challenge due to other spatiotemporally varying phase terms.

2.5.1 Prior work

PS techniques were first proposed as a method called Permanent Scatterer InSAR (PS-InSAR) by

Ferretti et al. in 2001 [Ferretti et al., 2001]. This technique utilizes an assumed deformation model
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Figure 2.7: Temporal decorrelation occurs when the scattering behavior or scatterer positions
changes between radar passes. Vegetated terrain and areas prone to seasonal changes such as snow
coverage tend to suffer from decorrelation as function of the temporal baseline T12 = T2 − T1.
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Figure 2.8: Spatial decorrelation results from changes in the radar imaging geometry. A change in the
perpendicular baseline B12 causes different interference patterns in the coherent sum of reflections
from discrete scatterers.
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in order to identify PS pixels. Versions of PS-InSAR have been applied to study landslides [Farina

et al., 2006, Colesanti et al., 2003b], seasonal ground deformation [Colesanti et al., 2003a], and fault

creep [Lyons and Sandwell, 2003], and general geophysical phenomena [Vilardo et al., 2009].

In 2004, Hooper et al. developed and demonstrated the Stanford Method for PS (StaMPS)

algorithm that removed the need for prior deformation knowledge [Hooper et al., 2004]. StaMPS

provides a framework to estimate and remove spatiotemporally correlated phase terms from the

PS network. Shankar et al. refined this algorithm by developing a maximum likelihood statistical

estimation method to identify and select PS pixels based on the observed interferometric phases

[Shanker and Zebker, 2007]. Additional work in PS techniques include [Kampes, 2005].

In each of these existing works, the PS is modeled as a non-decorrelating point scatterer with

additive white decorrelation noise. In effect the decorrelation phase term is lumped with the thermal

noise phase term, with the resultant term modeled as white Gaussian noise.

In this thesis, we examine how PS selection and deformation measurements can be improved

through better statistical characterization and modeling of the decorrelation phase term. We decou-

ple decorrelation effects from thermal noise and show that the PS decorrelation phase term is in fact

partially correlated and baseline-dependent. From this model, we develop an improved statistical

selection technique for partially correlated persistent scatterers (PCPS) that utilizes the full stack

of phase and amplitude observations, as well as imaging geometry parameters.



Chapter 3

Spatiotemporal decorrelation of

partially correlated persistent

scatterers

3.1 Introduction

Interferometric synthetic aperture radar (InSAR) is an effective tool for measuring temporal changes

in the Earth’s surface [Gabriel et al., 1989, Rosen et al., 2000]. By combining SAR echoes collected

at varying times and orbit geometries, InSAR techniques permit computations of high accuracy,

wide coverage images of crustal deformation fields. InSAR has been used to study a wide range

of geophysical phenomena, including seismic and volcanic activity [Massonnet et al., 1993, Zebker

and Rosen, 1994, Hooper et al., 2004], land subsidence [Massonnet et al., 1997], and glacial ice flow

[Zebker, 2000].

The measured radar return for a ground resolution element is the sum of complex echoes from

multiple discrete scatterers located within the element. Changes in the radar imaging geometry,

scatterer positions, or scattering behavior between radar passes causes the coherent sum to vary,

leading to a decorrelation phase term that obscures the deformation signal and prevents the use of

large baseline data. Decorrelation due to spatial and temporal baseline is a major limiting factor in

estimating the crustal deformation signal from interferometric phase data [Zebker and Villasenor,

1992].

Spatial and temporal decorrelation effects may be ameliorated by using persistent scatterer (PS)

techniques [Ferretti et al., 2001, Hooper et al., 2004]. Persistent scattering pixels are those in which

a dominant, point-like scatterer causes the pixel to remain relatively phase-stable over the set of

interferograms. By identifying a network of PS pixels, deformation measurements on the order of

18
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millimeters may be obtained even in areas of low coherence, where conventional InSAR fails to

produce useful observations [Colesanti et al., 2003a].

A quantitative theory for PS decorrelation behavior is necessary for fundamentally understanding

and justifying PS techniques. Accurate PS decorrelation models also enable improved PS selection

and subsequent deformation estimation algorithms. Previous work [Hooper et al., 2004, Ferretti

et al., 2001, Colesanti et al., 2003b, Kampes, 2005, Agram, 2010] has generally relied on the assump-

tion that some pixels will be less affected by spatiotemporal decorrelation, and that these pixels

may be identified via simple statistical tests on the observed phase or amplitude. Thus far, however,

there has not been an analytical model that justifies these assumptions by quantifying the relation

between PS scattering characteristics, imaging baselines, and spatiotemporal decorrelation.

In this chapter, we present a new radar scattering model that relates the PS signal moments to

physical properties of the surface. From this scattering model, we derive a new analytic model for the

spatiotemporal decorrelation of persistent scatterers as a function of baseline and signal-to-clutter

ratio (SCR). This model quantifies the partial correlation of persistent scatterer pixels over large

baselines, providing a means to characterize and compare the phase stability of PS, non-PS, and

ideal point scatterer pixels. Our analysis fundamentally explains why PS coherence remains high

over large baselines and justifies the use of interferometric data with baselines equal to or greater

than the critical baseline. We support our analytic models with decorrelation measurements from

real InSAR data.

This chapter is arranged as follows. We first present a new PS model based on probabilis-

tic backscattering characteristics in Section 3.2. In Section 3.3, we derive an analytical model that

quantifies PS spatial decorrelation as a function of spatial baseline and signal-to-clutter ratio (SCR).

We also present a series of radar scattering simulations and show that the simulated spatial decor-

relation matches well with our analytic results. In Section 3.4, we present three candidate models

for PS temporal decorrelation. Finally, we use our spatiotemporal decorrelation expressions with

maximum likelihood SCR estimation in Section 3.6 to analyze an area of the Hayward Fault Zone,

imaged by the European Remote Sensing (ERS) 1 and 2 satellites. Our results show that decorre-

lation observed in real radar data corresponds well with our theoretical analysis.

3.2 Persistent scatterer backscatter model

A PS pixel is typically characterized as one arising from a dominant scatterer with high backscatter

power relative to surrounding non-dominant scatterers, or clutter [Kampes, 2005, Agram, 2010].

We mathematically formalize the PS characterization using the following statistical PS backscatter

model.

Consider a ground resolution element (“resel”) of size Rx in azimuth and Ry in range. The

azimuth and ground range distances from the center of the resel are denoted by variables x and y
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Figure 3.1: PS backscatter mechanism. The resolution element is composed of a centered dominant
scatterer surrounded by uncorrelated, uniformly distributed scatterers contributing to clutter.

respectively. The dimensions of the scattering centers are assumed to be very small compared to

the size of the resel. We model the scattering centers contributing to clutter as uncorrelated and

uniformly spatially distributed, with average reflectivity σc
RxRy

over the resel, where σc is the radar

cross section of the clutter. The dominant scatterer, located at (x, y) = (0, 0), is uncorrelated with

the clutter and has radar cross section σs.
1 The signal-to-clutter ratio of the resolution element is

defined as SCR = σs/σc. Figure 3.1 shows a schematic of the PS backscatter mechanism.

Based on the backscatter characteristics described above, we model the surface backscatter within

the patch as a complex random spatial function f(x, y). We can decompose f(x, y) into a signal

component arising from the dominant scatterer and a clutter component, denoted fs(x, y) and

fc(x, y) respectively:

f(x, y) = fs(x, y) + fc(x, y). (3.1)

Both fs(x, y) and fc(x, y) are modeled as zero mean random spatial functions that are uncorrelated

1If the dominant scatterer is not located at the origin, an additional decorrelation term will arise; this analysis will
be left for future presentation. In principle, the subpixel position of the dominant scatterer can be estimated [Adam
et al., 2003] and the image resampled such that the dominant scatterer lies in the center of the resolution element.
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for all x, y, x′, y′. The autocorrelation function of f(x, y) is therefore given by

E[f(x, y)f∗(x′, y′)] =


σc

RxRy
if (x, y) = (x′, y′) 6= (0, 0)

σs + σc
RxRy

if (x, y) = (x′, y′) = (0, 0)

0 if (x, y) 6= (x′, y′)

(3.2)

=
σc

RxRy
δ(x− x′, y − y′) + σsδ(x, y)δ(x− x′, y − y′) (3.3)

where δ(., .) denotes the two-dimensional Dirac delta function.

Note that this PS model constrains only the first and second moments of the backscatter function

and the location of the dominant scatterer. The actual probability distribution function of the

backscatter random spatial process does not need to be constrained for our ensuing analysis.

In the following sections, we examine how explicit expressions for PS decorrelation derive from

this backscatter model.

3.3 Analytic spatial decorrelation

Spatial decorrelation arises from changes in the radar orbiting geometry relative to the scatterer

positions.

3.3.1 Derivation

We consider an interferometric radar system imaging the surface described in Section 3.2. Two

antennas illuminate the surface from incidence angles θ1 and θ2. For convenience, we assume that the

radar data are sampled such that the single look pixel is approximately the same size as the resolution

element. The complex pixel values in the processed SAR images are given by the superposition

integrals

s1 =

∫∫
f(−x,−y)e−j

4π
λ (r+y sin θ1)W (x, y)dxdy (3.4)

s2 =

∫∫
f(−x,−y)e−j

4π
λ (r+y sin θ2)W (x, y)dxdy, (3.5)

where r is the distance from the sensor to the center of the resolution element, λ is the radar

wavelength, andW (x, y) is the radar imaging impulse response [Zebker and Villasenor, 1992].Because

a change in r between radar passes does not affect the magnitude of correlation, we assume for

simplicity that r is equal for both antennas.

Using the typical impulse response W (x, y) = sinc( x
Rx

)sinc( y
Ry

) and the PS backscatter function
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f(x, y) modeled in Section 3.2, the expected interferometric pixel value reduces to

E[s1s
∗
2] =

∫∫∫∫
E[f(−x,−y)f∗(−x′,−y′)]· (3.6)

e−j
4π
λ (y sin θ1−y′ sin θ2)W (x, y)W ∗(x′, y′)dxdydx′dy′ (3.7)

= σc

∫
e−j

4π
λ y(sin θ1−sin θ2)sinc2(y)dy + σs. (3.8)

The first term may be interpreted as the Fourier transform of the function sinc2(y). Evaluating

the transform yields the result

E[s1s
∗
2] =

σc
(

1− 2Ry(sin θ1−sin θ2)
λ

)
+ σs, sin θ1 − sin θ2 <

λ
2Ry

σs, sin θ1 − sin θ2 ≥ λ
2Ry

.
(3.9)

Typically the incidence angle changes very little between radar passes; both θ1 and θ2 deviate

from a nominal incidence angle θ by only a small amount. We can therefore write θ1 = θ + δθ1 and

θ2 = θ + δθ2. Using a Taylor series expansion about θ and discarding higher order terms, we find

that sin θ1 − sin θ2 ≈ (θ1 − θ2) cos θ. When the perpendicular baseline B is much smaller than the

range r, as is usually the case, then θ1 − θ2 ≈ B
r . Hence, the expected interferometric pixel value

can be rewritten in terms of perpendicular baseline as

E[s1s
∗
2] =

σc
(

1− 2Ry cos θ|B|
λr

)
+ σs, |B| < Bcrit

σs, |B| ≥ Bcrit,
(3.10)

where the critical baseline is given by [Zebker and Villasenor, 1992]

Bcrit =
λr

2Ry cos θ
. (3.11)

Finally, after normalizing by the factor

1√
〈s1s∗1〉

√
〈s2s∗2〉

=
1

σc + σs
, (3.12)
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we arrive at the following analytic spatial correlation function2:

ρspatial(B; SCR) =
〈s1s

∗
2〉√

〈s1s∗1〉
√
〈s2s∗2〉

=


1

1+SCR

(
1− 2Ry cos θ|B|

λr

)
+ SCR

1+SCR , |B| < Bcrit

SCR
1+SCR , |B| ≥ Bcrit.

(3.13)

Equation 3.13 shows that the spatial correlation of a PCPS pixel is a weighted sum of correlation

terms. The first term, arising solely from clutter, decreases linearly as the perpendicular baseline

increases, until the critical baseline is reached. At that point, the clutter decorrelates completely, and

the associated term in the expression goes to 0. The second term in the expression is the constant

correlation of an ideal point scatterer and is independent of baseline. The weights of these terms

are determined by the signal-to-clutter ratio of the resolution element. Theoretical PCPS spatial

decorrelation plots for varying SCR are shown in Figure 3.2.

As a check, we see that when no dominant scatterer exists, the correlation expression reduces to

ρspatial(B; SCR = 0) =

1− 2Ry cos θ|B|
λr , |B| < Bcrit

0, |B| ≥ Bcrit.
(3.14)

This result matches the correlation expression derived in [Zebker and Villasenor, 1992] for a fully

distributed scattering pixel. When SCR increases to infinity, ρspatial approaches a constant value of

1, as expected for an ideal point scatterer which does not decorrelate with spatial baseline.

The PCPS spatial decorrelation expression in Equation 3.13 provides a quantitative measure of

theoretical PS phase stability. We can use this expression to calculate the improvement in correlation

for non-zero-SCR pixels over fully distributed scattering pixels for any given baseline. Similarly, we

can quantify the difference between an ideal point scatterer and a partially correlated persistent

scatterer with finite SCR. Finally, the expression justifies the use of large spatial baseline data in

PS analysis, since it shows that pixels with high SCR maintain coherence at baselines greater than

Bcrit.

3.3.2 Simulation

To verify the theoretical analysis of Section 3.3.1, we compute a series of radar scattering simulations

and calculate the resulting decorrelation as a function of spatial baseline for varying values of SCR.

We set the simulated radar parameter values to those typical for a C-band system: λ = 0.0566 m,

θ = 23.3◦, Rx = 6.5 m, Ry = 24.3 m, Bcrit = 1052 m.

For each value of SCR, we simulate 100 pixels. Each pixel k is generated from a radar ground

2We use the notation f(x;p) to denote a function f of variable x that is parameterized by p.
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swath with uniformly distributed scatterers, where each resel within the swath contains an average

of 100 scatterers. The complex reflectivity of the scatterers are independently distributed according

to the circularly symmetric complex normal distribution CN (0, 1
1+SCR

100
RxRy

). A dominant scatterer

with radar cross section SCR
1+SCR is simulated at the center of the resel. We then compute the SAR

image pixels s
(k)
1 , s

(k)
2 and resulting interferometric pixel z(k) over a range of spatial baseline values

B:

z(k)(B, SCR) = s
(k)
1 (SCR)s

(k)∗
2 (B,SCR). (3.15)

Finally, we compute the spatial decorrelation by ensemble averaging over the 100 simulated pixels

for each pair of SCR and B values:

ρspatial(B,SCR) = (3.16)∣∣∣∣∣∣
∑Ni
k=1 z

(k)(B, SCR)√∑Ni
k=1 s

(k)
1 (SCR)s

(k)∗
1 (SCR)

√∑Ni
k=1 s

(k)
2 (B, SCR)s

(k)∗
2 (B,SCR)

∣∣∣∣∣∣ . (3.17)

The simulation results are plotted in Figure 3.2. As expected, we find that the simulated spa-

tial decorrelation, shown in red, corresponds well with the analytic decorrelation derived in Equa-

tion 3.13, plotted in blue.

3.3.3 Random dominant scatterer position

If the dominant scatterer is located at a random unknown position rather than centered at the origin

of the resel, we expect increased spatial decorrelation. By modeling the distribution of the dominant

scatterer position as uniform over the resel, we can quantify the expected increase in decorrelation,

leading to a more general model for PCPS spatial decorrelation. This analytical generalization is

left for future work.

3.4 Temporal decorrelation models

In this section, we discuss possible models for PS temporal decorrelation. Temporal decorrelation

arises from changes in the sub-pixel scatterer positions and reflectivity between radar passes. In

general, temporal decorrelation is a complex phenomenon that depends on several factors, including

vegetation type, land use, seasonal effects, wind patterns, biomass, and radar wavelength [Askne

and Smith, 1997, Ahmed et al., 2008, Meng and Sandwell, 2010, Ahmed et al., 2011, Lee et al.,

2013] over varying time scales. For PCPS temporal decorrelation, we focus on understanding and

modeling the dependence on SCR.
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Figure 3.2: Analytic and simulated spatial decorrelation
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3.4.1 Linear temporal decorrelation models

This model is based on the empirical observation that correlation decreases linearly with temporal

baseline T in a variety of terrain [Zebker and Villasenor, 1992].

Base model

In our first model, the temporal correlation is constrained to equal 1 (perfect correlation) when T = 0.

The decorrelation function then decreases linearly to 0 (complete decorrelation) when T = Tcrit,

where the critical temporal baseline Tcrit is the parameter of the model. The decorrelation function

is expressed as

ρtemp1(T ;Tcrit) =

1− |T |
Tcrit

, |T | < Tcrit

0, |T | ≥ Tcrit.
(3.18)

The perfect correlation constraint at zero baseline makes theoretical sense, since no temporal decor-

relation should occur if the two radar passes occur at the same time.

Unconstrained short term decorrelation

In this model, we add another degree of freedom to the first model by making the correlation value at

T = 0 a parameter of the model, denoted ρ0. This parameter allows for the possibility of independent

short-term decorrelating effects – those that happen over time spans shorter than the radar repeat

interval – and long-term decorrelation. The rate of long-term decorrelation is determined by the

critical temporal baseline parameter Tcrit. The resulting decorrelation function is

ρtemp2(T ;Tcrit, ρ0) =

min(ρ0 − ρ0|T |
Tcrit

, 1), |T | < Tcrit

0, |T | ≥ Tcrit.
(3.19)

Linearly decorrelating clutter with stationary dominant scatterer

The third temporal decorrelation model is based on the persistent scatterer model presented in

Section 3.2, extended to account for temporal variation. We now denote the PS backscatter function

as f(x, y, t) to indicate its dependence on time t. As before, we can decompose the backscatter

function into its signal and clutter components

f(x, y, t) = fs(x, y, t) + fc(x, y, t), (3.20)

where fs(x, y, t) and fc(x, y, t) are each spatially uncorrelated functions for all t. Additionally,

fc(x, y, t) is uncorrelated with fs(x
′, y′, t′) for all x, x′, y, y′, t, t′. We further assume that the
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dominant scatterer does not move or vary in backscatter between radar passes, i.e. fs(x, y, t) =

fs(x, y, t
′) for all x, y, t, t′.

Based on the modeling assumptions here and in Section 3.2, we can decompose the autocorre-

lation of the backscatter function into a sum of signal autocorrelation and clutter autocorrelation.

Consequently, the expected interferometric pixel value and temporal decorrelation can be similarly

decomposed. The signal component of ρtemp is given by

1

σc + σs

∫∫∫∫
E[fs(−x,−y, t)f∗s (−x′,−y′, t′)]e−j 4π

λ (y−y′) sin θ· (3.21)

W (x, y)W ∗(x′, y′)dxdydx′dy′ =
SCR

1 + SCR
. (3.22)

We model the clutter component of ρtemp as decreasing linearly with temporal baseline according

to the constrained model in 3.4.1. We assume that the clutter component is weighted relative to the

signal component as in Equation 3.13. The resulting total temporal decorrelation is then

ρtemp3(T ;Tcrit, ρf ) =

(1− ρf )(1− |T |
Tcrit

) + ρf , |T | < Tcrit

ρf , |T | ≥ Tcrit.
(3.23)

Figure 3.3 displays the linear decorrelation base model, linear decorrelation model with uncon-

strained short term decorrelation, and linear decorrelation model with stationary dominant scatterer,

plotted for varying values of their parameters.

3.4.2 Exponential temporal decorrelation models

If distributed scatterers within a resolution element move independently with Gaussian-distributed

change of position in each direction, then the resulting theoretical correlation decreases exponentially

with the root mean square displacement [Zebker and Villasenor, 1992]. Below, we suggest directions

for adapting this analytical model to PCPS temporal decorrelation.

Base model

If the change in scatterer position in each spatial dimension is independent of other scatterers, inde-

pendent of its motion in all other dimensions, and Gaussian distributed, then a pixel of distributed

scatterers decorrelates as a function of the root mean square displacement in range σy and height

σz [Zebker and Villasenor, 1992]:

ρ(σy, σz) = e−
1
2 ( 4π

λ )
2
(σ2
y sin2 θ+σ2

z cos2 θ). (3.24)

In order to derive the dependence on temporal baseline, we assume that each scatterer maintains an

average rate of movement in the range direction, denoted my, and neglect movement in the height
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Figure 3.3: The constrained linear (ρtemp1), unconstrained linear (ρtemp2), and weighted sum (ρtemp3)
temporal decorrelation models. Each plot displays a temporal decorrelation model plotted for the
value of Tcrit listed at the top of the column. The unconstrained linear and weighted sum models
are further plotted for varying values of ρ0 and SCR, respectively.
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dimension for simplicity.3 Under these assumptions, we perform a change of variables σy = myT ,

resulting in correlation as a function of temporal baseline T :

ρtemp(T ;my) = e−
1
2 ( 4π

λ )
2
(myT )2 (3.25)

To generalize this model, we group terms into a single parameter σT that expresses the rate of

temporal decorrelation decay:

ρtemp(T ;σT ) = e
− T2

2σ2
T . (3.26)

In future work, this model should be modified to account for random motion in the height

dimension and for true Brownian motion, where the direction of displacement between each radar

pass is random and uniformly distributed.

Unconstrained short term decorrelation effects

Again, we account for different short-term and long-term decorating effects by allowing a non-unity

initial temporal decorrelation at ρ0. This parameter allows for the possibility of decorrelating effects

that happen over time spans shorter than the radar repeat interval.

The resulting temporal decorrelation model is parameterized by the decay parameter σT and the

short term decorrelation factor ρ0:

ρtemp(T ; ρ0, σT ) = ρ0e
− T2

2σ2
T . (3.27)

Exponentially decorrelating clutter with stationary dominant scatterer

We now denote the PS backscatter function as f(x, y, t) to indicate its dependence on time t. As

before, we can decompose the backscatter function into its signal and clutter components

f(x, y, t) = fs(x, y, t) + fc(x, y, t), (3.28)

where fs(x, y, t) and fc(x, y, t) are each spatially uncorrelated functions for all t. We additionally

assume that fc(x, y, t) is uncorrelated with fs(x
′, y′, t′) for all x, x′, y, y′, t, t′. Based on the modeling

assumptions here and in Section 3.2, we can decompose the autocorrelation of the backscatter

function into a sum of signal autocorrelation and clutter autocorrelation. Consequently, the expected

interferometric pixel value and temporal decorrelation can be similarly decomposed.

3Due to symmetry between the range and height variables in Equation 3.24, the results can be extended easily to
include movement in the height dimension.
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We assume that the dominant scatterer does not move or vary in backscatter between radar

passes, i.e. fs(x, y, t) = fs(x, y, t
′) for all x, y, t, t′. This scenario is feasible for persistent scatterers

arising from a strongly reflecting fixed object such as a road or manmade reflector placed in natural

terrain. The signal component of ρtemp is given by

1

σc + σs

∫∫∫∫
E[fs(−x,−y, t)f∗s (−x′,−y′, t′)]e−j 4π

λ (y−y′) sin θ· (3.29)

W (x, y)W ∗(x′, y′)dxdydx′dy′ =
SCR

1 + SCR
. (3.30)

Assuming that the dominant scatterer remains unmoving while the non-dominant scatterers move

according to the assumptions in Section 3.4.2, the temporal decorrelation is given by

ρtemp(T ;σT ,SCR) =
1

1 + SCR
e
− T2

2σ2
T +

SCR

1 + SCR
. (3.31)

Finally, we note that several more sophisticated temporal decorrelation models exist in the lit-

erature (e.g. [Lavalle et al., 2012]). The models described above may be extended to account for

more complex temporal decorrelation effects in future work.

3.5 Other decorrelation terms

Other sources of decorrelation include relative rotation of the orbit path [Zebker and Villasenor,

1992], volumetric scattering [Hoen et al., 2000], and thermal noise [Ahmed et al., 2011]. The total

decorrelation is the product of the various decorrelation terms. We group the non-spatiotemporal

decorrelation multiplicative terms into a single term ρother, resulting in the following total correlation

expression:

ρ = ρspatial · ρtemporal · ρother (3.32)

3.6 Comparison with data: Hayward Fault Zone analysis

In this section, we analyze PS decorrelation trends in ERS radar data and compare the results to

our theoretically derived PS decorrelation expression. We first describe our interferometric radar

data set and pre-processing steps to remove nuisance phase terms. Next, we implement a maximum

likelihood technique to estimate the SCR of each pixel. We then calculate the decorrelation in the

data as a function of SCR and baseline. Finally, we choose the best fit parameters of our analytic

decorrelation expression for the data and analyze the results.
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Parameter Value
Wavelength λ 0.0566 m
Look angle θ 23.3◦

Azimuth resolution Rx 6.5 m
Ground range resolution Ry 24.3 m
Critical baseline Bcrit 1052 m
Number of interferograms Nifg 37

Table 3.1: InSAR system parameters for Hayward Fault Zone analysis

3.6.1 Interferometric data

Our data set consists of 38 descending SAR acquisitions collected by the European Remote Sensing

(ERS-1/2) radar satellites between May 1995 and December 2000 (Track 70, Frame 2853). Param-

eters of the ERS system are listed in Table 3.1. The images cover a 29 km by 31 km area at the

southern end of the San Francisco Bay, near the Hayward Fault Zone. Areas of urban infrastructure

occur in the upper left and bottom edge of the image, while the central part of the image is largely

natural terrain.

We form a stack of Nifg = 37 single look interferograms using an acquisition from December 1997

as the common master. Figure 3.4 displays one such interferogram, created with a September 1997

acquisition as the slave image. The interferogram shows that a large portion of the area suffers low

coherence due to natural terrain, even at relatively low temporal baseline.

In order to analyze decorrelation of the data set, we wish to first remove deformation and

atmospheric effects from the interferometric phase. We assume that the deformation and atmospheric

phase components are both characterized by low spatial frequency, while phase terms arising from

spatial baseline, temporal baseline, and noise are spatially uncorrelated [Emardson et al., 2003,

Hooper, 2006]. Each interferogram is processed with a 10-by-10-pixel low pass filter, and the resulting

signal is subtracted from the interferogram. The remaining interferometric phase is assumed to

consist of only the spatial, temporal, and noise decorrelation terms. While more sophisticated

methods may be applied to remove nuisance phase components, we chose to use a relatively simple

filter in order to focus primarily on the decorrelation analysis.

3.6.2 Methodology

Maximum likelihood SCR estimation

We estimate the SCR of each pixel using the maximum likelihood (ML) technique developed by

Shanker and Zebker [Shanker and Zebker, 2007]. Each pixel is processed individually. For each

pixel i, we assume the interferometric pixel value zi is independently and identically distributed as

a complex circular Gaussian around a constant signal in each interferogram. The SCR of the pixel

is given by the ratio of signal amplitude to Gaussian variance. The interferometric phase of pixel
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Figure 3.4: Sample interferogram from ERS stack, September 1997 (slave)-December 1997 (master).
For display purposes, the image has been scaled to produce square pixels.
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i in each interferogram is then independently and identically distributed according to the following

distribution, parameterized by SCR [Abramowitz and Stegun, 1972]:

pφ(φ; SCR) =
1

2π
e−SCR sin2(φ)· (3.33)

{e−SCR cos2(φ) +
√
πSCR cos(φ)[1− erf(−

√
SCR cos(φ))]}. (3.34)

The joint PDF of all the interferometric phases in the stack, denoted φi,1, . . . , φi,Nifg
, is then given

by

p(φi,1, . . . , φi,Nifg
; SCR) =

Nifg∏
k=1

pφ(φi,k; SCR). (3.35)

We estimate the SCR of the pixel by maximizing the joint phase PDF over the SCR parameter,

given the observed phases φi,1, . . . , φi,Nifg
:

SCRML,i = arg max
SCR

p(φi,1, . . . , φi,Nifg
; SCR) (3.36)

= arg max
SCR

Nifg∏
k=1

pφ(φi,k; SCR) (3.37)

A map of the estimated SCR values is displayed in Figure 3.5. The map shows that the estimated

SCR is roughly correlated with the terrain; areas with urban infrastructure (in the upper left and

lower portions of the image) tend to have slightly higher estimated SCR than vegetated or natural

areas. Figure 3.6 shows a histogram of SCR values, with the number of pixels is displayed in log10-

scale. The vast majority of pixels have very low estimated SCR (< 0.3), as we would expect for

terrain that is largely vegetated and devoid of many dominant scattering centers.

Decorrelation estimation

We wish to measure the observed decorrelation as a function of perpendicular baseline, temporal

baseline, and SCR. Because adjacent pixels in general have different SCR, we cannot estimate the

decorrelation of individual pixels via spatial averaging, as is usually done. Instead, we estimate

the decorrelation by averaging over pixels of near-equal estimated SCR, independent of the pixel

locations.

In order to group pixels of similar estimated SCR, we truncate each pixel’s maximum likelihood

SCR value to one decimal digit. Pixels are then partitioned into sets of equal truncated SCR values.

The resulting sets of pixel indices may be defined as

Sj = {i | 0.1j ≤ SCRML,i < 0.1(j + 1)}, j = 0, 1, 2, . . . . (3.38)
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Figure 3.5: Maximum likelihood estimated SCR. For display purposes, the image has been scaled
to produce square pixels.
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Figure 3.6: Histogram of maximum likelihood estimated SCR values. Binning corresponds to the
pixel sets used to calculate decorrelation in Section 3.6.2.



CHAPTER 3. PCPS SPATIOTEMPORAL DECORRELATION 36

Set S0 contains pixels with estimated SCR between 0 and 0.1, set S1 contains pixels with estimated

SCR between 0.1 and 0.2, and so on. The histogram bins in Figure 3.6 correspond to these sets.

We now calculate the observed correlation over each set of pixels. Each interferogram k, char-

acterized by its perpendicular baseline Bk and temporal baseline Tk, is processed individually. The

correlation for pixels in set Sj in interferogram k is given by

ρj(Bk, Tk) =

∑
i∈Sj s

(i)
k [s

(i)
0 ]∗√∑

i∈Sj s
(i)
0 [s

(i)
0 ]∗

√∑
i∈Sj s

(i)
k [s

(i)
0 ]∗

(3.39)

for j = 0, 1, 2, . . . , (3.40)

k = 1, . . . , Nifg, (3.41)

where s
(i)
0 is the master SAR pixel i and s

(i)
k is the slave SAR pixel i. Hence, for for each range of es-

timated SCR values, we obtain a collection of decorrelation data points that vary with perpendicular

baseline Bk and temporal baseline Tk.

Decorrelation model fitting

For each set of pixels Sj with estimated SCR between 0.1j and 0.1(j + 1), we wish to fit our

theoretical decorrelation model to the observed data points ρj(Bk, Tk). Given the preprocessing of

the interferometric data, we assume that the most significant sources of coherence loss in ρj(Bk, Tk)

are spatial decorrelation and temporal decorrelation. The total spatiotemporal decorrelation is given

by the product of the spatial and temporal decorrelation models [Zebker and Villasenor, 1992]:

ρspatiotemp(B, T ; SCR,ptemp) = ρspatial(B; SCR) · ρtemp(T ; ptemp). (3.42)

The spatial decorrelation component of Equation 3.42 is given by the expression derived in Section

3.3.1:

ρspatial(B; SCR) =


1

1+SCR

(
1− 2Ry cos θ|B|

λr

)
+ SCR

1+SCR , |B| < Bcrit

SCR
1+SCR , |B| ≥ Bcrit,

(3.43)

where Bcrit = λr
2Ry cos θ .

Our goal is to find the best-fitting analytic spatiotemporal decorrelation model ρspatiotemp for

the decorrelation data points ρj(Bk, Tk); that is, we wish to determine the best parameters for the

spatial decorrelation model and each of the candidate temporal decorrelation models described in

Section 3.4. We then analyze the best fit model parameters and compare the best fit SCR values to

the ML SCR values calculated in Section 3.6.2.

Before model fitting, we first discard any data points ρj(Bk, Tk) if the size of the pixel set Sj is
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Set ML SCR Number Effective Description
range of pixels ML SCR

S0 0.0-0.1 4,721,277 0.0312 Poorly correlated
S10 1.0-1.1 2,245 1.0358 Moderately correlated
S20 2.0-2.1 101 2.0303 Well correlated

Table 3.2: Characteristics of pixel sets presented in Figures 3.7-3.8

less than 3.

We use a minimum root mean square error (RMSE) criterion for model fitting, searching over a

range of possible values for the model parameters p. Each set of pixels Sj , characterized by their

effective ML SCR value SCRMLeff,j , is analyzed individually. The best fitting model parameters for

set Sj are given by

[
SCRfit,j

ptempfit,j

]
= arg min

SCR,ptemp

√√√√ 1

|Sj |

Nifg∑
k=1

|ρspatiotemp(Bk, Tk; SCR,ptemp)− ρj(Bk, Tk)|2. (3.44)

3.6.3 Results

We first present the decorrelation data points ρj(Bk, Tk) with their best fit models for three repre-

sentative pixel sets Sj , described in Table 3.2. Figure 3.7 shows the measured decorrelation data

plotted versus spatial baseline B. The subplots in each column display the data points ρj(Bk, Tk) for

the same pixel set Sj , while each row corresponds to a different model for the temporal decorrelation

component. The best fit spatiotemporal decorrelation model for the data points is plotted in red.

Figure 3.8 shows the same data points ρj(Bk, Tk), now plotted versus temporal baseline T . The best

fit spatiotemporal model for the data points is again plotted in red.

A qualitative examination of the decorrelation data points ρj(Bk, Tk) clearly reveals linearly

decreasing correlation as the spatial baseline Bk increases. The correlation also increases with the

estimated SCR. We expect both of these trends based on our theoretical analysis. The agreement

between our theoretical analysis and measured data is reflected by the increasing best fit model

SCRfit as the effective measure SCR increases. Figures 3.7-3.8 show that the measured decorrelation

data points ρj(Bk, Tk) trend more strongly with spatial baseline than with temporal baseline. In

general, there does not appear to be a strong trend of decorrelation with temporal baseline. This

may be because the temporal decorrelation trends are obscured by a stronger spatial decorrelation

trend.

Figure 3.9 compares the best fit model parameters over all pixel sets Sj according to their

effective ML SCR values SCRMLeff,j . Figure 3.9(a) shows the best fit SCR values. The constrained

and weighted sum linear temporal models generally agree at low SCR (< 1), but then diverge as

the SCR increases. Using the unconstrained temporal decorrelation model, however, we obtain

agreement between the estimated and best fit SCR values, almost throughout the full range of SCR.
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Figure 3.7: Decorrelation results by spatial baseline. Each plot displays the measured decorrelation
points for the effective ML SCR listed at the top of the column, as well as the best fit spatiotemporal
model for the temporal decorrelation model listed at the beginning of the row.
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Figure 3.8: Decorrelation results by temporal baseline
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There is more divergence at very high SCR (< 4), which may be due to estimating correlation values

over very small pixel sets.

In Figure 3.9(b), we plot the best fit critical temporal baseline values for the temporal decorre-

lation models. We first examine the constrained and unconstrained linear models. Using the T = 0

constraint, the critical baseline increases from about 1000 days for near-zero SCRMLeff to 10 years

(the maximum of our critical baseline parameter search space) for SCRMLeff ≥ 0.4. We expect the

temporal critical baseline to increase with SCR; resolution elements containing strong dominant

scatterers tend to be located in urban areas, which decorrelate more slowly than natural terrain.

The unconstrained temporal model for SCRMLeff < 0.4 has the maximum critical baseline of 10

years, but the best fit correlation values ρ0 are less than 1, as shown in Figure 3.9(c). As the effective

estimated SCR increases, the best fit ρ0 increases past 1. These values are physically infeasible and

reflect the limitations of the model; the decorrelation function becomes piecewise linear, with no

appreciable temporal decorrelation occurring until several weeks after the initial radar pass.

While the absolute critical baseline values for the constrained and unconstrained temporal models

are larger than we might expect, this may be due to the limitations of these decorrelation models

and their inability to accommodate different temporal decorrelation rates within the same resolution

element. The weighted sum temporal model explicitly accounts for different decorrelation times in

dominant and non-dominant scatterers. For this model, the critical temporal baseline applies to

only the clutter scatterers, as the dominant scatterer is assumed to have zero temporal decorrelation;

hence we expect the best fit critical baseline to be relatively uncorrelated with SCRMLeff . This is

in fact seen in the data in Figure 3.9(b), as the red data points corresponding to the weighted sum

temporal model are generally uncorrelated with SCRMLeff .

Finally, in Figure 3.9(d) we plot the optimal residual error values for all pixel sets. The linear

unconstrained temporal model produces the best fit to the decorrelation points ρj(Bk, Tk), with

an average rms error of 0.068. The linear constrained model performs slightly worse, as we would

expect given the additional model constraint. The weighted sum decorrelation function has the

highest RMS error, suggesting that it does not accurately model temporal changes in the imaged

area.

From Figures 3.7-3.8, we see that the unconstrained temporal decorrelation model produces a

spatiotemporal fit with the lowest root mean square error across all SCR values. This suggests that

multiple temporal decorrelation mechanisms that operate at different time scales should be modeled.

The root mean square error associated with the weighted sum temporal decorrelation model is larger

than the constrained, but the best fit SCR value is closer to the ML estimate.

The average discrepancy between 0 < SCR < 1.1 is less than 29% for both the constrained and

unconstrained linear models.
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Figure 3.9: Best fit decorrelation model parameters
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3.7 Discussion and conclusion

In this chapter, we have developed a quantitative theory for persistent scatterer spatial decorrelation

derived from a statistical backscatter model. The resulting closed form expression, parameterized by

signal-to-clutter ratio, quantifies the partial correlation of PS pixels over a large range of baselines.

Using ERS interferometric data, we demonstrated that spatial decorrelation trends observed in

actual InSAR data correspond well with our theory.

The decorrelation analysis presented here provides a theoretical framework to characterize par-

tially correlated persistent scatterers. In the following chapters, we will use this framework to develop

new PS identification, selection, and phase unwrapping algorithms. Quantifying the phase stability

of PS pixels allows us to develop fundamental limits on the accuracy of PS techniques as a function

of SCR-based selection thresholds.

Overall, ERS observations of decorrelation agree with our theoretically derived spatial decorre-

lation analysis. We find that correlation both decreases linearly as perpendicular baseline increases,

and increases as a function of weights with SCR. Additional work is needed to improve the PS

temporal decorrelation theory. For instance, we used a single temporal decorrelation model for all

pixels in a set, regardless of terrain. If urban and natural terrain decorrelate at different rates, mul-

tiple models may be required to accurately capture the temporal decorrelation of a set. Unmodeled

sources of decorrelation that might contribute to RMSE include thermal noise, orbital errors, and

atmospheric phase that was not completely filtered out by the interferometric stack preprocessing.

In future work, the PS pixel backscatter model (Section 3.2) and subsequent analysis can be

extended to accommodate more complex PS scattering behavior. For example, multiple dominant

scatterers within a resolution cell [Ferretti et al., 2005] may be modeled by representing the backscat-

ter spatial function f(x, y) in Equation 3.1 as the sum of clutter backscatter fc(x, y) and dominant

scatterer signal functions fs,k(x, y) for k = 1, . . . , Ns:

f(x, y) = fs,1(x, y) + fs,2(x, y) + . . .+ fs,Ns(x, y) + fc(x, y). (3.45)

In the simplest case, the location (xk, yk) and radar cross section σs,k of each dominant scatterer

k are known, and the reflectivity spatial functions fs,k(x, y) are mutually uncorrelated and uncor-

related with the clutter component fc(x, y). The backscatter autocorrelation function can then be
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analytically evaluated as

E[f(x, y)f∗(x′, y′)] =


σc

RxRy
if (x, y) = (x′, y′) 6= (xk, yk)∀k

σs,k + σc
RxRy

if (x, y) = (x′, y′) = (xk, yk)

0 if (x, y) 6= (x′, y′)

(3.46)

=
σc

RxRy
δ(x− x′, y − y′) +

Ns∑
k=1

σs,kδ(x− xk, y − yk)δ(x− x′, y − y′). (3.47)

The spatial decorrelation analysis in Section 3.3 can then be extended in a straight-forward manner.

A more realistic model may consider the locations of the dominant scatterers to be randomly

distributed within the resolution cell according to some parametric spatial distribution (e.g. uniform

or Poisson). Other potential PS models to investigate include spatially correlated clutter backscatter.

We leave in depth statistical analysis of higher order PS scattering mechanisms to future work.



Chapter 4

Persistent scatterer models and

derived statistics

4.1 Introduction

PS pixels are those in which the decorrelation phase term φdecorr is small enough that the defor-

mation signal φdef can be reliably extracted. By identifying a network of PS pixels, deformation

measurements on the order of millimeters may be obtained even in areas of low coherence, where

conventional InSAR fails to produce useful observations [Colesanti et al., 2003a]. PS selection is

highly dependent on accurate characterization of the pixel statistics. In Chapter 3, we quantified PS

phase stability within single interferograms by deriving analytical expressions for spatial and tempo-

ral decorrelation ρspatial and ρtemporal as a function of SCR and imaging baselines. In this chapter,

we extend that analysis to a full statistical characterization of the decorrelation phase term φdecorr

across a stack of interferograms. This analysis will inform improved PS selection and deformation

estimation techniques presented in Chapter 5.

Previous statistical decorrelation phase analysis has treated clutter as an additive white noise

temporal process. This model leads to a characterization of φdecorr as a white noise term that is

lumped together with the noise phase term φnoise. We will show that these assumptions result in

over-simplified statistical characterization of the interferometric pixel stack distribution. A more

accurate analytic distribution can be derived if the decorrelation and white noise terms are modeled

and characterized independently, leading in term to better PS selection and techniques.

In this chapter, we present a more complete statistical characterization of the PS decorrelation

phase statistics, derived from PS scattering principles. We first present a mathematical problem

formulation in Section 4.2. In Section 4.3, we review previous interferometric phase distributions

based on models of the PS SAR pixel. Next, we use a new PCPS backscattering model and multipass

45
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interferometric system model in Section 4.4 to derive the joint phase-amplitude distribution for

the entire stack of interferometric pixels as a function of SCR and spatial baseline. We discuss

the fundamental differences in the PS models and quantitatively compare the resulting analytical

distributions in Section 4.5. Finally, in Section 3.3.2, we show that the new PS backscatter model

and resulting distribution fit simulated data better than previous analysis.

4.2 Problem formulation

We consider a stack ofNsar coregistered single look complex SAR images, indexed by i ∈ {0, . . . , Nsar−
1}. Without loss of generality, we consider SAR image i = 0 as the master and images i =

1, . . . , Nsar − 1 as the slaves.

Let ui(x) represent the complex value of a pixel at coordinates x in SAR image i. The amplitude

and phase of ui(x) are denoted by ri(x) and φi(x) respectively, i.e.

ui(x) = ri(x)ejφi(x), i ∈ {0, . . . , Nsar − 1}. (4.1)

A stack of N = Nsar − 1 interferograms is formed by multiplying the master image i = 0 by the

complex conjugate of each slave image i ∈ {1, . . . , Nsar − 1}. Within each resulting interferogram,

the interferometric pixel at coordinates x is given by

zi(x) = u0(x)u∗i (x) (4.2)

= r0i(x)ejφ0i(x), i ∈ {1, . . . , N} (4.3)

with amplitude r0i(x) = r0(x)ri(x) and phase φ0i(x) = φ0(x)− φi(x).

Statistical characterization of the interferometric pixel stack {z1(x), . . . , zN (x)} forms the fun-

damental basis for PS identification and selection techniques. Our objective in this chapter is to

derive the probability distribution functions (PDFs) for the stack of interferometric amplitudes

{r01(x), . . . , r0N (x)} and phases {φ01(x), . . . , φ0N (x)}.
The interferometric pixel distributions are heavily dependent on the PS models from which they

are derived. In the next section, we first review the existing PS models based on SAR pixel signal

models, as well as the resulting interferometric pixel PDFs. We then summarize the limitations of

these PS SAR pixel models. Next, we present a new, more generalized PCPS statistical analysis be-

ginning from models of the physical backscattering mechanism and multipass interferometric system.

These models, drawn from first principles, lead to a more complete joint statistical characterization

of the interferometric PCPS amplitudes and phases as a function of SCR and imaging parameters.

For the remainder of this chapter, our analysis focuses on characterization of pixel ui(x) and

zi(x) across imaging passes, i.e. as a function of i, rather than as a function of their coordinates x

within each image. We therefore treat the pixel coordinates x as fixed and drop the variable from
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notation for brevity when the context is clear.

We use the following notation for complex Gaussian distributions. A proper complex Gaussian

random variable z with mean E[z] = µ, variance E[(z − µ)(z − µ)∗] = σ2, and pseudo-variance

E[(z − µ)2] = 0 is denoted z ∼ CN (µ, σ2). A proper complex Gaussian random vector z with

mean E[z] = µ, covariance matrix E[zz†] = Σ, and pseudo-covariance matrix E[zzT ] = 0 is denoted

z ∼ CN (µ,Σ).

We denote the matrix of size n×m with all entries equal to 1 by 1n×m and the analogous matrix

with all entries equal to 0 by 0n×m. The identify matrix of size n× n is denoted by In.

4.3 SAR pixel model and derived statistics

Existing PS analyses [Ferretti et al., 2001, Hooper, 2006, Shanker and Zebker, 2007] model PS pixels

using signal properties of the SAR pixel values ui over the acquisitions i = 0, . . . , N . We call this

PS model the SAR pixel PS model, in contrast to the backscatter PS model presented in Section 4.4.

In the SAR pixel PS model, each complex single look SAR pixel ui is modeled as the sum of a

constant signal component s and a clutter term ci that varies with acquisition i:

ui = s+ ci, i = 0, . . . , N. (4.4)

Statistical modeling of the signal component s of the SAR pixel has varied in prior work. In the

following subsections, we review three possible models for s:

• a general, proper, complex Gaussian random variable (derived in Section 4.3.1)

• a zero-mean, circularly-symmetric, complex Gaussian random variable (used in [Just and Bam-

ler, 1994, Shanker and Zebker, 2007], reviewed in Section 4.3.2)

• a deterministic variable (used in [Ferretti et al., 2001], reviewed in Section 4.3.3)

Note that for each of these cases, the value of s is assumed constant over the SAR pixel stack for

i = 0, . . . , N , regardless of whether it is considered random or deterministic but unknown.

In all cases, the clutter term ci is modeled as a zero mean, circularly symmetric complex Gaussian

white noise random process that is independent of the signal s:

ci ∼ CN (0, σ2
c ), i.i.d. for i = 0, . . . , N. (4.5)

The SAR pixel model thus fundamentally assumes that the PS clutter term is uncorrelated between

SAR acquisitions, i.e. E[cicj ] = E[ci]E[cj ] = 0 for i 6= j, regardless of the spatial and temporal

baselines between passes i and j.
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Figure 4.1: In the SAR pixel PS model, each complex single look SAR pixel ui is modeled as the
sum of a constant signal component s and a clutter term ci that varies with acquisition i. The
interferometric stack z1, . . . , zN is formed from a common master SAR image, as shown in the
system block diagram above.

From the SAR pixel stack {u0, . . . , uN}, the interferometric stack {z1, . . . , zN} is formed with

common master acquisition i = 0. The block diagram for the system from input {u0, . . . , uN} to

output {z1, . . . , zN} is shown in Figure 4.1.

The statistics of the interferometric pixels {z1, . . . , zN} depend on the model for the signal com-

ponent s of the SAR pixel. In the following subsections, we derive the PDFs for the interferometric

pixels for each model of s.

4.3.1 Proper complex Gaussian signal

We first examine the general case where the signal s is a proper, complex Gaussian random variable

with complex mean µ and covariance E[(s− µ)(s− µ)∗] = σ2
s , i.e.

s ∼ CN (µ, σ2
s). (4.6)

The clutter term ci is specified by Equation 4.5, where s and ci are mutually independent for all

i. The signal s and clutter c = [c0, . . . , cN ]T are therefore jointly Gaussian and form the proper



CHAPTER 4. PCPS MODELS AND STATISTICS 49

complex Gaussian random vector[
s

c

]
∼ CN

([
µ

0(N+1)×1

]
,

[
σ2
s 01×(N+1)

01×(N+1) σ2
cIN+1

])
(4.7)

The SAR pixel values are then a linear combination of uncorrelated, jointly Gaussian random

variables, given by

u =
[

1(N+1)×1 IN+1

] [ s

c

]
(4.8)

and distributed as

u ∼ CN (µ1, σ2
s1 + σ2

cI). (4.9)

Equation 4.9 shows that unless the signal component is deterministic (i.e. the variance of s is 0),

the SAR pixels in the stack are correlated. The expected SAR pixel power for this signal model is

E[|ui|2] = |µ|2 + σ2
s + σ2

c .

The joint amplitude-phase distribution of the SAR complex values {u0, . . . , uN} is obtained by

performing a change of variables ui = rie
jφi for i = 0, . . . , N , resulting in

f(r0, . . . , rN , φ0, . . . , φN ) =
1

(πσ2)N+1|Γ|

(
N∏
i=0

ri

)
·

exp

− 1

σ2

N∑
i=0

N∑
j=0

(Γ−1)ij
[
rirj cos(φi − φj) + (riai + rjaj) + |µ|2

] , (4.10)

where σ2 = σ2
s + σ2

c , ai = Re{µ} cosφi + Im{µ} sinφi, and the entries of the covariance matrix

Γ ∈ R(N+1)×(N+1) are given by

Γij =

1, i = j

σ2
s

σ2
s+σ2

c
, i 6= j.

(4.11)

For a single SAR image (N = 0), the joint amplitude-phase distribution simplifies to

f(ri, φi) =
ri
πσ2

exp

(
−r

2
i + 2ri(Re{µ} cosφi + Im{µ} sinφi) + |µ|2

σ2

)
. (4.12)
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Constant signal in Gaussian clutter
ui = s + ci

ci ~ CN(0, c
2), i.i.d.

General Gaussian signal
s ~ CN( s, s

2)

Zero-mean Gaussian signal
s ~ CN( s=0, s

2)
Deterministic Gaussian signal

s ~ CN( s, s
2=0)

Figure 4.2: Statistical modeling of the signal component s for the PS SAR pixel model has varied
in prior work. The signal models reviewed in this chapter are shown here in order of increasing
specificity from top to bottom.

The marginal single SAR pixel amplitude and phase distributions are derived by integrating Equa-

tion 4.12 over φi and ri respectively, producing

f(ri) =
2ri
σ2
e−

r2i+|µ|
2

σ2 I0

(
2|µ|
σ2

ri

)
(4.13)

f(φi) =
1

πσ2
e−

(|µ|2−ai)
2

σ2

(
σ2

2
e−

a2i
σ2 +

ai
2

√
πσ2

[
1− erf

(
−
√

1

σ2
ai

)])
(4.14)

where I0(.) denotes the modified Bessel function and erf(.) denotes the error function.

For the general proper complex Gaussian signal model, the interferometric pixel amplitude and

phase PDFs do not have closed forms. In the following subsections, we will examine two specific

cases of the proper Gaussian signal model and derive the associated PDFs. Figure 4.2 shows how

these cases relate to each other.

4.3.2 Circularly-symmetric Gaussian signal

By setting µ = 0 in Equation 4.6, we model the SAR pixel signal component s as a circularly-

symmetric (and by definition, zero-mean) complex Gaussian random variable. In classical radar
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signal models, this distribution arises from a superposition of a large number of individual scatterers

within the resolution cell, each with identically distributed backscatter amplitude and uniformly

distributed phase. This model is therefore not physically valid for a single dominant scatterer in a

PS cell. Regardless, we analyze the resulting PS distributions for completeness and due to the use

of this signal model in prior work.

We compute the signal-to-clutter ratio for this model as

SCR =
E[|s|2]

E[|c|2]
=
σ2
s

σ2
c

. (4.15)

The single SAR amplitude-phase distribution in Equation 4.10 simplifies to

f(ri, φi) =
ri
πσ2

e−
r2i
σ2 , (4.16)

showing that the pixel amplitude and phase are independent. The marginal SAR pixel amplitude is

Rayleigh distributed, while the marginal phase is uniformly distributed over 2π:

f(ri) =
2ri
σ2
e−

r2i
σ2 (4.17)

f(φi) =
1

2π
. (4.18)

These distributions are plotted in Figure 4.3.

The single interferometric phase distribution is given by [Just and Bamler, 1994]

f(φ0i) =
1

2π

1− ρ2

1− (ρ cosφ0i)2

[
1 +

ρ cosφ0i√
1− (ρ cosφ0i)2

arccos(−ρ cosφ0i)

]
, (4.19)

with correlation ρ = SCR
1+SCR . The marginal distributions are plotted in Figure 4.3 for varying

values of SCR. Prior work utilizing this PS model [Shanker and Zebker, 2007] assumed that the

interferometric phases {φ01, . . . , φ0N} are independent and identically distributed according to the

marginal phase distribution in Equation 4.19.

In this work, we additionally derive the joint multipass amplitude-phase distributions over the

full stack. For the circularly-symmetric Gaussian SAR pixel model, the SAR amplitude-phase dis-

tribution in Equation 4.10 simplifies to

f(r0, . . . , rN , φ0, . . . , φN ) =

1

(πσ2)N+1|Γ|

(
N∏
i=0

ri

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

(Γ−1)ijrirj cos(φi − φj)

 (4.20)
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Figure 4.3: Marginal PDFs for the PS SAR pixel model with zero-mean Gaussian signal s ∼
CN (0, σ2

s), plotted for constant average total backscatter power σ2 = 1. Top left: The distribu-
tion of the SAR pixel amplitude r = |u|, normalized by the average signal power σ2

s . Top right: The
SAR pixel phase is uniformly distributed, independent of SCR. Bottom: The interferometric phase
is uniform over [π, π] for a purely distributed scattering pixel with SCR = 0. As SCR increases, the
interferometric phase distribution becomes increasingly concentrated about φ = 0.
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where the entries of the covariance matrix Γ are given by

Γij =

1, i = j

SCR
SCR+1 , i 6= j.

(4.21)

By performing the change of variables

φ0i = φ0 − φi, i = 1, . . . , N, (4.22)

and integrating over φ0, we obtain the joint multipass PDF of the interferometric phases and SAR

amplitudes:

f(r0, . . . , rN , φ01, . . . , φ0N ) =
2π

(πσ2)N+1|Γ|

(
N∏
i=0

ri

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

(Γ−1)ijrirjαij

 (4.23)

where

αij =



1, i = j

cos(φ0j), i = 0, j 6= 0

cos(φ0i), i 6= 0, j = 0

cos(φ0j − φ0i), otherwise.

(4.24)

Equations 4.21 and 4.23 show that in the circularly-symmetric Gaussian SAR pixel model, the in-

terferometric pixel phases φ0i and φ0j are generally correlated for i 6= j, contrary to the assumptions

of prior work.

4.3.3 Deterministic signal in Gaussian clutter

We now consider a SAR pixel PS model in which the SAR signal component s is a deterministic (but

generally a priori unknown) value. We model this as a specific case of the complex Gaussian signal

in Section 4.3.1 by setting the variance σ2
s equal to 0 in Equation 4.6; that is, s has the deterministic

value µ. The signal-to-clutter ratio in this case is computed as

SCR =
E[|s|2]

E[|c|2]
=
|µ|2

σ2
c

. (4.25)

Early work in PS techniques [Ferretti et al., 2001] utilized the SAR pixel deterministic signal model,

though with numerically computed phase and amplitude statistics, rather than analytically derived.

The marginal SAR amplitude and phase distributions were previously computed for the case

where Im{µ} = 0 (implying a loss of generality for the SAR distributions but not the interferometric
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distributions) [Abramowitz and Stegun, 1972]. These distributions are respectively given by

f(ri) =
2ri
σ2
c

I0

(
2ri
σ2
c

)
e
− 1+r2i

σ2c , (4.26)

where I0(.) denotes the modified Bessel function, and

f(φi) =
1

2π
e−SCR sin2(φi)· (4.27)(

e−SCR cos2(φi) +
√
πSCR cos(φi)

[
1− erf

(
−
√

SCR cos(φi)
)])

.

The interferometric distributions have no closed form, but the marginal amplitude and phase

PDFs were numerically computed in [Agram, 2010]. The interferometric phase plot is duplicated in

Figure 4.4 for varying values of SCR.

In addition to the previously published single image phase and amplitude distributions, we

present a derivation for the multipass joint phase-amplitude distributions. The covariance matrix Γ

in Equation 4.11 now simplifies to the identity matrix I. The resulting joint SAR amplitude-phase

distribution is given by

f(r0, . . . , rN , φ0, . . . , φN ) =
1

(πσ2
c )N+1

(
N∏
i=0

ri

)
·

exp

− 1

σ2
c

N∑
i=0

N∑
j=0

[
rirj cos(φi − φj) + (riai + rjaj) + |µ|2

] (4.28)

where ai = Re{µ} cosφi + Im{µ} sinφi.

4.3.4 Limitations of existing models

The SAR pixel PS model described in this section abstracts the complex SAR pixel ui as the sum

of a signal component s and a clutter component ci. We presented three statistical models for the

signal component s:

• a general, proper, complex Gaussian random variable (Section 4.3.1)

• a zero-mean, circularly-symmetric, complex Gaussian random variable (Section 4.3.2)

• a deterministic variable (Section 4.3.3)

In each case, the clutter ci is modeled as an independent and identically distributed, circularly-

symmetric, white Gaussian process.

The SAR pixel PS model is limited by several simplifying assumptions, summarized below:
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Figure 4.4: Marginal PDFs for the PS SAR pixel model with deterministic signal (s ∼ CN (µ, 0)),
plotted for constant signal power µ = 1. Top left: The distribution of the SAR pixel amplitude
r = |u|, normalized by the signal power |µ|2. Top right: The SAR pixel phase for a purely distributed
scatterer (SCR = 0) is uniformly distributed over [π, π]. Unlike the complex Gaussian signal model,
the SAR phase distribution for the constant signal model becomes tighter as SCR increases. Bottom:
The interferometric phase is uniform over [π, pi] for a purely distributed scattering pixel with SCR =
0. As SCR increases, the interferometric phase distribution becomes increasingly concentrated about
φ = 0.
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• The clutter component ci is modeled as an additive white Gaussian noise process. Hence the

PS model fundamentally assumes that ci is uncorrelated between SAR acquisitions i and j,

regardless of the spatial baseline Bij and temporal baseline Tij between passes. That is, the

SAR pixel PS models assumes

E[cicj ] = E[ci]E[cj ] = 0 for i 6= j. (4.29)

• Because the statistical dependence of clutter on spatial and temporal baselines is not modeled,

the resulting interferometric pixel and phase distributions also do not account for imaging

system baselines. This SAR pixel model assumption is mathematically expressed as

f(u0, . . . , uN |B01, . . . , B0N , T01, . . . , T0N ) = f(u0, . . . , uN ), (4.30)

f(z1, . . . , zN |B01, . . . , B0N , T01, . . . , T0N ) = f(z1, . . . , zN ), (4.31)

f(φ01, . . . , φ0N |B01, . . . , B0N , T01, . . . , T0N ) = f(φ01, . . . , φ0N ). (4.32)

• The interferometric pixel phases {φ01, . . . , φ0N} are modeled as independent and identically

distributed according to the marginal PDF f(φ0i). The PS SAR pixel model thus assumes

f(φ01, . . . , φ0N ) =
N∏
i=1

f(φ0i). (4.33)

In the next section, we present a more complete and accurate PS model and statistical character-

ization, derived from first principles of radar backscattering. This PS backscatter model models the

reflectivity of individual scatterers contributing to clutter, in contrast to the SAR pixel PS model,

which models their coherent sum. The new derivation removes the simplifying assumptions described

in Equations 4.29-4.33 and quantitatively accounts for clutter correlation between acquisitions; ef-

fect of spatial and temporal baseline; and the joint distribution of all pixels in the multipass stack.

This extended PS statistical characterization then leads to an improved analytical foundation for

PS identification and selection in the following chapter.

4.4 PCPS multipass interferometric system model, backscat-

ter model, and derived statistics

In this section, we derive the probabilistic distribution functions for the interferometric PCPS pixel

values. Rather than using the abstracted SAR pixels signal models described in Section 4.3, our

analysis is based on first principles for radar backscattering and imaging.

In Section 4.4.1, we present a new system model for multipass interferometric imaging, which
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Figure 4.5: Multipass interferometric system block diagram

takes the surface backscatter function as input and outputs the stack of interferometric pixels. We

then present a probabilistic backscattering function parameterized by SCR to model the PCPS

resolution element in Section 4.4.2. Using this backscattering model as the input to the imaging

system, we derive the statistical distribution of the resulting PCPS SAR pixels as a function of

SCR and spatial baseline in Section 4.4.3. By starting from the backscattering model rather than

an abstract signal model, we show that the correlation between SAR pixels is nonzero and can be

analytically quantified. Finally, we show the distribution of the PCPS interferometric pixel stack.

4.4.1 Multipass interferometric system model

Rather than modeling each interferogram independently, our multipass interferometric system model

considers all radar imaging passes jointly. Each pass i is characterized by its imaging impulse

response hi(x, y,B0i), which is a function of azimuth x, range y, and perpendicular baseline B0i

with respect to the master pass i = 0.

Consider an imaging radar illuminating a ground resolution element. Let θ0 be the incidence angle

of the master image. Each single-look complex SAR image i ∈ {0, . . . , N} is produced by a radar

pass with perpendicular baseline B0i relative to the master image and incidence angle θi = θ0 + δθi,
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with associated impulse response

hi(x, y) = e−j
4π
λ (r+y sin θi)W (x, y). (4.34)

where x and y denote the azimuth and range dimensions, r is the distance from the sensor to the

center of the patch, λ is the radar wavelength, θ is the incidence angle, and W (x, y) is the image

processing impulse response due to range and azimuth compression. We use the typical imaging

impulse response arising from compression of a linear frequency modulated chirp transmission,

W (x, y) = sinc(x/Rx)sinc(y/Ry) (4.35)

where Rx and Ry denote the azimuth and range resolution, respectively.

The resulting single look complex SAR pixel ui is given by the two-dimensional convolution of

the imaging impulse response hi(x, y) with the surface backscatter function f(x, y):

ui = f(x, y, ti) ∗ hi(x, y,B0i) (4.36)

=

∫
x

∫
y

f(x, y, ti)hi(−x,−y)dxdy. (4.37)

Using linear system matrix notation, we can represent the stack of SAR pixel values u = [u0, . . . , uN ]T

as the output of linear system H:

u =


u0

...

uN

 = Hf (4.38)

where each row i ∈ {0, . . . , N} of the matrix H is formed from the imaging impulse response hi(x, y)

and the input f is formed from the surface backscatter function f(x, y), i.e.

H =


−h0(x, y)−

...

−hN (x, y)−

 (4.39)

f =


|

f(x, y)

|

 . (4.40)

Note that though we use matrix notation for simplicity, the input f(x, y) and impulse responses

hi(x, y) are continuous functions of the spatial variables x and y. We temporarily ignore temporal
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changes in the backscatter function and bring them into the analysis at a later stage.

The interferometric pixels are formed as

zi = u0u
∗
i , i = 1, . . . , N. (4.41)

We represent the stack of coregistered interferometric pixels by the vector

z =


z1

...

zN

 =


r01e

jφ01

...

r0Ne
jφ0N

 . (4.42)

The full system diagram from backscatter function to interferometric stack is shown in Figure 4.5.

4.4.2 PCPS backscatter model

We model the PS pixel resulting from a ground resolution element of size Rx in azimuth and Ry

in range, shown in Figure 4.6. Let σ2
s represent the average backscatter power of the dominant

scatterer and σ2
c represent the total average backscatter power due to clutter. The signal-to-clutter

ratio of the pixel is defined as

SCR ≡ σ2
s

σ2
c

. (4.43)

We model the surface backscatter function f(x, y, t) as a random white, circularly symmetric

complex Gaussian spatial function distributed as

f(x, y, t) ∼

CN (0, σ2
s +

σ2
c

RxRy
), x = xdom, y = ydom

CN (0,
σ2
c

RxRy
), otherwise

(4.44)

where (xdom, ydom) denote the distance in range and azimuth of the dominant scatterer from the

center of the resel.

The vector f representing the backscatter function is then described by a circularly symmetric
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Figure 4.6: PS backscatter mechanism. The resolution element is composed of a centered dominant
scatterer surrounded by uncorrelated, uniformly distributed scatterers contributing to clutter.

complex Gaussian random vector with mean µ = 0 and covariance matrix

Σf = E[ff†] (4.45)

=
σ2
c

RxRy
I + σ2

s



0 0 . . . 0

0
. . .

... 1

. . .

0 0


(4.46)

where I is the identify matrix and f† denotes the complex conjugate of the transpose of f . The

nonzero entry of the right-most matrix in Equation 4.46 occurs in the position corresponding to

(xdom, ydom).

We note that the interferometric system model is independent from the specific form of the input

backscatter model f(x, y, t). As such, the system model is not limited to PS analysis and may be

used for other forms of f(x, y, t) beyond that specified in Equation 4.44.
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4.4.3 Derived statistics

Given the probabilistic distribution of the backscatter function f(x, y), we derive the statistics of

the SAR pixel stack u from the linear relation u = Hf . Since f is a circularly symmetric Gaussian

random vector f ∼ CN (0,Σf ), the random vector u is also circularly symmetric and Gaussian,

distributed as u ∼ CN (0,HΣfH
†) where H† is the Hermitian transpose of H.

Covariance of u

For Σf in Equation 4.46, the covariance of u is given by

cov(u) = HΣfH
† (4.47)

=
σ2
c

RxRy
HIH† + σ2

sH



0 0 . . . 0

0
. . .

... 1

. . .

0 0


H† (4.48)

=
σ2
c

RxRy
HH† + σ2

sh(xdom, ydom)h†(xdom, ydom) (4.49)

where h(xdom, ydom) = [h0(xdom, ydom), . . . , hN (xdom, ydom)]T .

Each entry of the matrix HH† is given by

[HH†]ij =

∫ ∫
hi(x, y)h∗j (x, y)dxdy (4.50)

=

∫ ∫
e−j

4π
λ y(sin θi−sin θj)|W (x, y)|2dxdy (4.51)

=

∫ ∫
e−j

4π
λ y(sin θi−sin θj)sinc2(x/Rx)sinc2(y/Ry)dxdy (4.52)

= Rx

∫
e−j

4π
λ y(sin θi−sin θj)sinc2(y/Ry)dy (4.53)

= RxRy

(
1− 2Ry cos θ|Bij |

λr

)
I{|Bij | < Bcrit} (4.54)

where I{.} is the indicator function that evaluates to 1 when the argument is true and 0 otherwise.

In the case where the dominant scatterer is located at the phase center of the pixel,

(xdom, ydom) = (0, 0). (4.55)
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The entries of the outer product h(xdom, ydom)h†(xdom, ydom) then evaluate to

[h(xdom, ydom)h†(xdom, ydom)]ij = hi(0, 0)h∗j (0, 0) (4.56)

= 1 for i, j ∈ {0, . . . , N}. (4.57)

In the rest of the analysis, we assume that the image is resampled such that Equation 4.55 holds.

In general, if this is not the case, Equation 4.56 evaluates to less than unity, quantifying the loss of

coherence due to offset dominant scatterer.

Substituting Equations 4.54 and 4.57 into Equation 4.49 leads to

cov(u) = HΣfH
† = σ2Γ (4.58)

where σ2 = σ2
s + σ2

c , and the entries of the matrix Γ are given by

Γij =
1

1 + SCR

(
1− 2Ry cos θ|Bij |

λr

)
I{|Bij | < Bcrit}+

SCR

1 + SCR
. (4.59)

The right-hand side of Equation 4.59 is equal to the analytical PCPS spatial decorrelation be-

tween SAR acquisitions i and j as a function of the spatial baseline Bij and SCR, as derived in

Chapter 3, Equation 3.13. Thus each entry of the covariance matrix cov(u) is given by σ2Γij , where

Γij = ρspatial(Bij ,SCR). (4.60)

We generalize this covariance matrix result by incorporating temporal decorrelation, setting each

entry Γij equal to the total spatiotemporal decorrelation between SAR acquisitions i and j:

Γij = ρ(Bij , Tij ,SCR). (4.61)

The analytical derivation for this generalization is left for future work.

As discussed in Chapter 3, the total spatiotemporal decorrelation can be decomposed into its

spatial and temporal decorrelation components:

Γij = ρspatial(Bij ,SCR) · ρtemporal(Tij ,SCR). (4.62)

The spatial correlation component, parameterized by SCR, has the analytical form

ρspatial(Bij ; SCR) =


1

1+SCR

(
1− 2Ry cos θ|Bij |

λr

)
+ SCR

1+SCR , |Bij | < Bcrit

SCR
1+SCR , |Bij | ≥ Bcrit,

(4.63)
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where the critical baseline Bcrit is given by

Bcrit =
λr

2Ry cos θ
. (4.64)

For the temporal component ρtemporal, we use an empirical linearly decorrelating model [Zebker and

Villasenor, 1992] parameterized by the critical temporal baseline Tcrit:

ρtemporal(Tij ;Tcrit) =

1− |Tij |Tcrit
, |Tij | < Tcrit

0, |Tij | ≥ Tcrit.
(4.65)

The full covariance matrix of u thus takes the form

cov(u) = σ2Γ(SCR,B,T), (4.66)

where

Γ(SCR,B,T) =

1 ρ(B01, T01,SCR) ρ(B02, T02,SCR) . . . ρ(B0N , T0N ,SCR)

ρ(B01, T01,SCR) 1 ρ(B12, T12,SCR)

ρ(B02, T02,SCR) ρ(B12, T12,SCR) 1
...

. . .

ρ(B0N , T0N ,SCR) 1


(4.67)

and B and T denote the sets of spatial and temporal baselines between every pair of acquisitions in

the stack.

Multipass joint phase-amplitude PDF

From the joint SAR pixel distribution

u ∼ CN
(
0, σ2Γ(SCR,B,T)

)
, (4.68)

we perform a change of variables ui = rie
jφi for i = 0, . . . , N to obtain the joint SAR amplitude-

phase distribution

f(r0, . . . , rN , φ0, . . . , φN ) =

1

(πσ2)N+1|Γ|

(
N∏
i=0

ri

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

(Γ−1)ij cos(φj − φi)rirj

 , (4.69)
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where Γ = Γ(SCR,B,T) is the generalized covariance matrix discussed above.

Without loss of generality, we let index i = 0 represent the master SAR image. Interferogram

pixels are then given by zi = u0u
∗
i . To convert the SAR phases to interferometric phases, we use

the following change of variables:

φ0i = φ0 − φi for i = 1, . . . , N (4.70)

and then integrate over φ0. We thus arrive at the joint PDF for the multipass SAR amplitudes and

interferometric phases:

f(r0, . . . , rN , φ01, . . . , φ0N ) =
2π

(πσ2)N+1|Γ|

(
N∏
i=0

ri

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

(Γ−1)ijαijrirj

 , (4.71)

where

αij =



1, i = j = 0

cos(φ0j), i = 0, j 6= 0

cos(φ0i), i 6= 0, j = 0

cos(φ0j − φ0i), i 6= 0, j 6= 0

(4.72)

and Γ = Γ(SCR,B,T).1

Equation 4.71 expresses the analytical joint distribution of the PCPS amplitudes and interfero-

metric phases over the full stack of acquisitions. The entries of the covariance matrix Γ(SCR,B,T)

are given by the analytical spatiotemporal decorrelation between each pair of acqusitions i and j

and vary as a function of SCR, the spatial baseline Bij , and the temporal baseline Tij . The model

thus accounts for the effect of the physical imaging parameters on the distribution of interferometric

observations.

For deeper insight and intuition into the (2N + 1)-dimensional joint phase-amplitude PDF, we

1From Equation 4.71, it is possible to further derive the joint PDF for the interferometric phases and amplitudes
using the change of variables

r0i = r0ri for i = 0, . . . , N, (4.73)

with associated Jacobian
∏N

i=0 ri. The resulting PDF is then

f(r00, . . . , r0N , φ01, . . . , φ0N ) =

2π

(πσ2)N+1|Γ|

(∏N
k=1 r0k

rN00

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

(Γ−1)ijαij
r0ir0j

r00

 , (4.74)

where αij is given by Equation 4.72.
The interferometric phase-interferometric amplitude PDF f(r00, . . . , r0N , φ01, . . . , φ0N ) contains the same infor-

mation as the interferometric phase-SAR amplitude PDF f(r0, . . . , rN , φ01, . . . , φ0N ), but is more unwieldy for al-
gorithmic use due to the extra operations. Hence for all practical purposes, we will use the PDF form given in
Equation 4.71.
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compute and plot Equation 4.71 and several derived distributions for a stack of two interferograms

(i.e. N = 2). We set the simulated radar parameter values to those typical for a C-band system:

λ = 0.0566 m, θ = 23.3◦, Rx = 6.5 m, Ry = 24.3 m, Bcrit = 1052 m. Only spatial decorrelation is

modeled, with no temporal decorrelation contribution. We numerically integrate the joint PDF to

compute various lower-dimensional marginalizations of joint phase-amplitude PDF, detailed below.

f(φ01, φ02): In Figure 4.7, the joint phase PDF f(φ01, φ02) is plotted for varying values of SCR

and varying baseline pairs. We first note that the PDF is not symmetric for the two interferograms;

the spread is much greater in the dimension associated with the larger baseline. Moreover, the

decorrelation phase terms are not independent across interferograms, as f(φ02|φ01) 6= f(φ02). The

first row of the figure shows that as the SCR of the pixel increases, the PDF becomes tighter around

(φ01, φ02) = (0, 0). This is expected; as the PS pixel approaches an ideal point target, the variation

in the phase decreases.

In the second row of the figure, we show the variation in the joint phase PDF as a function of

the imaging spatial baselines. As the baseline B0i for one interferogram increases toward the critical

baseline, the standard deviation of the PDF in the corresponding dimension increases. Convergence

in the PDF is reached when B0i = Bcrit. The angles of the semi-major and semi-minor axes of the

PDF depend on the relative baselines between the interferograms.

Finally, we note that the joint PDF diverges when the two spatial baselines are equal. Because

only spatial decorrelation is modeled, the rows of the covariance matrix Γ corresponding to exact

repeat orbits will be identical. The covariance matrix is then singular and non-invertible, resulting

in a divergent PDF.

f(φ01, φ02 | r): Figure 4.8 shows the probabilistic distribution of (φ01, φ02), given knowledge of

interferometric amplitude r01 or r02. The SCR and spatial baselines are fixed at SCR = 1, B01 = 200

m, and B02 = 1200 m. In the first row, the phase distribution is plotted for varying values of r01,

the amplitude associated with the smaller baseline. The second row illustrates the variation in the

phase distribution as a function of known r02, the amplitude associated with the larger baseline.

It is immediately obvious that amplitude and phase are not independent; the distribution of both

phases is tightly coupled with the amplitude of either. As the known amplitude increases, the phase

distribution converges about the origin. We see that r02 provides more information about the phase

distribution; the PDF is tighter for f(φ01, φ02) | r02) than for f(φ01, φ02) | r01) at equal values of

r01 and r02. Intuitively, this makes sense; a larger spatial baseline corresponds to greater spatial

decorrelation and hence more uncertainty than a smaller spatial baseline. Therefore, knowledge of

large baseline interferometric values provides more information.

f(r01, r02): In Figure 4.9, the joint amplitude PDF f(r01, r02) is plotted for varying values of SCR

and spatial baseline values. The first row of the figure shows that the amplitude PDF converges
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Figure 4.7: Joint phase PDF f(φ01, φ02) for N = 2 interferograms for varying SCR and spatial
baseline. Row 1 shows the effect of increasing SCR while baselines are fixed at B01 = 200 m and
B02 = 1200 m. The plots illustrate that larger baseline causes a larger dispersion in the phase
PDF, and that the interferometric phases are not independent. As the SCR increases, the joint
phase PDF converges to a delta function at (φ1, φ2) = (0, 0). Since only spatial decorrelation is
modeled, the covariance matrix Γ becomes non-invertible when the two spatial baselines are equal
(B01 = B02 = 600 m) and the resulting joint PDF diverges.
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Figure 4.8: Probabilistic distribution f(φ01, φ02 | r) as a function of r. The SCR and spatial
baselines are fixed at SCR = 1, B01 = 200 m, and B02 = 1200 m. In the first row, the phase
distribution is plotted for varying given values of r01, the amplitude associated with the smaller
baseline. The second row illustrates the variation in the phase distribution as a function of known
r02, the amplitude associated with the larger baseline. As either known amplitude increases, the
phase distribution converges about the origin. Knowledge of r02 provides more information and thus
constrains the phase distribution more tightly.
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Figure 4.9: Joint amplitude PDF f(r01, r02) for N = 2 interferograms for varying SCR and spatial
baseline. The top row illustrates the effect of increasing SCR while baselines are fixed at B01 = 200
m and B02 = 1200 m. As the SCR increases, the joint phase PDF converges toward the diagonal
defined by r01 = r02. The bottom row of the figure shows that dispersion of the PDF about the
diagonal depends on the difference between the baselines B01 and B02 rather than the absolute
baseline values themselves. Unlike the joint phase PDF f(φ01, φ02), the amplitude PDF is virtually
symmetric about the diagonal line r01 = r02 even when B01 6= B02, indicating that spatial baseline
has much less effect on amplitude dispersion than on phase dispersion.

toward the diagonal line r01 = r02 as SCR increases. This is expected since the interferometric

amplitude for an ideal point target will not vary between radar passes.

In the second row of the figure, we show the variation in the joint amplitude PDF as a function

of the imaging spatial baselines. These plots illustrate that the dispersion of the PDF about the

diagonal depends on the difference between the baselines B01 and B02 rather than the absolute

baseline values themselves. Unlike the joint phase PDF f(φ01, φ02), the amplitude PDF is virtually

symmetric about the diagonal line r01 = r02 even when B01 6= B02, indicating that spatial baseline

has much less effect on amplitude dispersion than on phase dispersion.

Again, we note that the joint PDF diverges when the two spatial baselines are equal. Since

only spatial decorrelation is modeled, the covariance matrix Γ becomes non-invertible when the two

spatial baselines are equal (B01 = B02 = 600 m) and the resulting joint amplitude PDF diverges.
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f(r01, r02 | φ): Figure 4.8 shows the probabilistic distribution of (r01, r02), given knowledge of

interferometric phase φ01 or φ02. The SCR and spatial baselines are fixed at SCR = 1, B01 = 200 m,

and B02 = 1200 m. In the first row, the amplitude distribution is plotted for varying known values

of φ01, the phase associated with the smaller baseline. The second row shows the variation in the

amplitude distribution as a function of known φ02, the phase associated with the larger baseline.

The plots illustrate the interdependence between phase and amplitude, as the distribution of

amplitudes varies greatly with known phase. An interferometric phase value of 0 produces the

smallest dispersion in the amplitude distribution about the diagonal. As the known phase diverges

from 0, the amplitude distribution dispersion increases about the diagonal. Again, the interferogram

with the larger baseline and greater spatial decorrelation introduces greater phase uncertainty; hence

knowledge of the value of φ02 provides more information about the amplitude distribution than φ01.

This is evident by the tighter, higher amplitude distributions in the second row compared to the

first.

Marginal amplitude and phase PDFs

The joint phase-amplitude PDF for a single SAR image is computed by setting N = 0 in Equa-

tion 4.69:

f(ri, φi) =
ri
πσ2

e−
r2i
σ2 . (4.75)

Hence the single SAR marginal amplitude and phase PDFs are given respectively by

f(ri) =
2ri
σ2
e−

r2i
σ2 (4.76)

f(φi) =
1

2π
. (4.77)

The PDFs for a single interferogram, formed from the master SAR image and an arbitrary slave

i ∈ {1, . . . , N}, can be derived by setting N = 1 in the joint multipass PDF (Equation 4.71). The

associated covariance matrix is given by

Γ = Γ(SCR, B0i, T0i) =

[
1 ρ(B0i, T0i,SCR)

ρ(B0i, T0i,SCR) 1

]
. (4.78)

The resulting single interferogram joint phase-amplitude PDF is

f(r0, ri, φ0i) =
2πr0ri

(πσ2)2[1− ρ2(B0i, T0i,SCR)]
exp

(
−r

2
0 − 2ρ(B0i, T0i,SCR) cos(φ0i)r0ri + 2r2

i

σ2[1− ρ2(B0i, T0i,SCR)]

)
.

(4.79)
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Figure 4.10: Probabilistic distribution f(r01, r02 | φ) as a function of φ. The SCR and spatial
baselines are fixed at SCR = 1, B01 = 200 m, and B02 = 1200 m. In the first row, the amplitude
distribution is plotted for varying given values of φ01, the phase associated with the smaller baseline.
The second row illustrates the variation in the amplitude distribution as a function of known φ02,
the phase associated with the larger baseline. An interferometric phase value of 0 produces the
smallest dispersion in the amplitude distribution about the diagonal. As the known phase diverges
from 0, the amplitude distribution dispersion increases. Knowledge of the value of larger baseline
phase φ02 provides more information about the amplitude distribution than φ01, as evidences by the
tighter, higher amplitude distributions in the second row compared to the first.
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Figure 4.11: The marginal interferometric phase PDF f(φ0i) derived from the PS backscatter model
varies as a function of SCR and spatiotemporal baselines. Here the PDF is plotted under the
assumption of negligible temporal decorrelation. The PDF converges toward a delta function as
SCR goes to infinity or the spatial baseline goes to 0. When the baseline is greater than or equal
to the critical baseline, the PDF converges to that derived from the PS SAR pixel model with
circularly-symmetric Gaussian signal component [Just and Bamler, 1994].

By integrating Equation 4.79 over the SAR amplitudes r0 and ri, we obtain the marginal interfero-

metric phase PDF

f(φ0i) =
1

2π

1− ρ2

1− (ρ cosφ0i)2

[
1 +

ρ cosφ0i√
1− (ρ cosφ0i)2

arccos(−ρ cosφ0i)

]
, (4.80)

where

ρ = ρ(B0i, T0i,SCR) = ρspatial(B0i,SCR) · ρtemporal(T0i,SCR). (4.81)

The marginal interferometric phase PDF is plotted in Figure 4.11 as a function of SCR and

spatial baseline, assuming that temporal decorrelation is negligible. As the spatial baseline B0i

increases for a given SCR, the correlation ρ(B0i, T0i,SCR) decreases, and the interferometric phase

PDF (Equation 4.80) becomes more disperse about the mean. This trend holds until |B0i| is greater

than the critical baseline Bcrit, when the correlation converges to ρ(B0i,SCR) = SCR
SCR+1 . In the case

of imaging a purely distributed scattering pixel (SCR = 0) with |B0i| ≥ Bcrit, the correlation is

equal to 0 and the marginal interferometric phase is uniformly distributed over [−π, π].

In the limit where the baselines are zero or the SCR goes to infinity, f(φ0i) converges to a delta

function at φ0i = 0, as expected.
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4.5 Analytical comparison and discussion

In this chapter, we presented two analytical models for persistent scatterers:

• The PS SAR pixel model (Section 4.3), which abstracts the complex SAR pixel ui as the sum

of a signal variable s and a clutter variable ci. We analyzed three statistical models for the

signal component s:

1. s ∼ CN (µ, σ2
s) (Section 4.3.1)

2. s ∼ CN (0, σ2
s) (Section 4.3.2)

3. s ∼ CN (µ, 0) (Section 4.3.3)

In each case, the clutter ci is modeled as an independent and identically distributed, circularly-

symmetric, white Gaussian process over acquisitions i = 0, . . . , N .

• The PS backscatter model (Section 4.4), which models the backscattering spatial function

f(x, y) of the PS resolution element as the superposition of a dominant scatterer, described by

backscattering function fs(x, y), and clutter scatterers, described by backscattering function

fc(x, y). The clutter backscatter function fc(x, y) is an independent and identically distributed,

circularly-symmetric, white, Gaussian process over azimuth x and range y.

In this section, we discuss the relationship between the PS SAR pixel and PS backscatter mod-

els. We compare the derived interferometric statistical characterizations and show how the PS

backscatter model results generalize those of the PS SAR pixel model.

The fundamental differences between the PS SAR pixel model and the PS backscatter model

result from the characterization of clutter correlation. The SAR pixel model uses an initial assump-

tion that ci is uncorrelated between SAR acquisitions i and j, regardless of the spatial baseline Bij

and temporal baseline Tij . The PS backscatter model removes this assumption. Instead, the clutter

correlation between acquisitions is analytically derived from first principles, starting from a model of

the backscatter function. This derivation shows that the clutter contribution to the SAR pixel value

is in fact correlated between acquisitions, and that the amount of clutter correlation is a function of

spatiotemporal baselines.

As a result, the SAR pixels u have covariance matrix entries

Γij =

1, i = j

SCR
SCR+1 , i 6= j.

(4.82)

for the PS SAR pixel model derivation, versus

Γij = ρ(Bij , Tij ,SCR) = ρspatial(Bij ,SCR) · ρtemporal(Tij ,SCR), (4.83)
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for the PS backscatter model derivation, where

ρspatial(Bij ,SCR) =


1, i = j

1
1+SCR

(
1− 2Ry cos θ|Bij |

λr

)
+ SCR

1+SCR , i 6= j, |Bij | < Bcrit

SCR
1+SCR , i 6= j, |Bij | ≥ Bcrit.

(4.84)

The PS backscatter model form of Γ thus generalizes the SAR model form by accounting for the

effect of spatial and temporal baselines. The two forms are equivalent when the spatial baseline Bij

is greater than the critical baseline Bcrit and temporal decorrelation is ignored.

If the signal component of the PS SAR pixel is modeled as a circularly-symmetric Gaussian, then

the derived multipass joint SAR pixel PDF f(u), joint SAR phase-amplitude PDF f(r0, . . . , rN , φ0, . . . , φN ),

and joint interferometric phase-amplitude PDF f(r0, . . . , rN , φ01, . . . , φ0N ) have the same form as

those derived from the PS backscatter model, except for the entries of the covariance matrix Γ.

When the covariance matrix forms are equivalent, under the conditions described above, then the

phase-amplitude PDFs for the PS SAR pixel model and backscatter model coincide exactly.

Hence the interferometric phase PDF derived from the PS backscatter model (Equation 4.80) is a

generalization of the interferometric phase PDF derived from the SAR pixel PS model with circularly-

symmetric Gaussian signal (Equation 4.19, [Just and Bamler, 1994]). The PDFs in Equations 4.19

and 4.80 are equivalent except for the value of correlation ρ:

• SAR pixel PS model with Gaussian signal:

ρ = ρ(SCR) =
SCR

1 + SCR
(4.85)

• Backscatter PS model:

ρ = ρ(SCR, B0i, T0i) = ρspatial(B0i,SCR) · ρtemporal(T0i,SCR), (4.86)

where

ρspatial(Bij ,SCR) =


1

1+SCR

(
1− 2Ry cos θ|Bij |

λr

)
+ SCR

1+SCR , |Bij | < Bcrit

SCR
1+SCR , |Bij | ≥ Bcrit.

(4.87)

The values of ρ for the two models are equivalent in the limit when the temporal decorrelation is

ignored and the spatial baseline B0i is greater than the critical baseline Bcrit.

Figure 4.11 shows a comparison of the interferometric phase PDFs derived from the two PS

models (Equations 4.80 and 4.19), ignoring the effect of temporal decorrelation. The PS SAR pixel

model underestimates the clutter correlation and thus overestimates the dispersion of the phase PDF

when |B0i| < Bcrit. The derived PDFs coincide when the spatial baseline is greater than or equal to
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the critical baseline.

The PS backscatter model thus removes several of the simplifying assumptions inherent in the

PS SAR pixel model. By modeling the PS as a backscattering spatial function and incorporating a

new multipass imaging system model, we analytically derived the following interferometric statistical

characteristics from first principles:

• The clutter contribution to the SAR pixels ui is generally correlated between acquisitions i

and j, not independent. Hence the PS SAR pixel model, which only accounts for correlation

of the dominant scatterer, underestimates the total correlation between SAR acquisitions.

• The correlation between SAR pixels ui and uj is a function of both SCR and spatiotemporal

baselines Bij and Tij . Hence the pixels {u0, . . . , uN} are generally not identically distributed.

• The joint distribution of the interferometric phases {φ01, . . . , φ0N} is characterized by the

covariance matrix Γ(SCR,B,T), where each entry Γij of the matrix is given by the total

correlation between SAR acquisitions i and j. Hence the multipass interferometric phases are

generally neither independent nor identically distributed.

The PS backscatter model derivations therefore generalize the PS SAR pixel model derivations,

enabling a more complete statistical characterization of the resulting interferometric PS pixels.

4.6 Directions for future analysis

The PS backscatter model analysis presented in this chapter assumed that the interferometric stack

z is formed using a common master SAR image, i.e. z = u0u
∗. The analysis can be easily extended

to account for any instantiation of a well-determined, non-cyclic interferometric stack formation.

The interferogram formation process is mathematically represented by the change of variables in

Equations 4.70-4.73, which transforms the joint SAR pixel PDF to the joint interferometric pixel

PDF. Any non-cyclic formation graph of N interferograms from N + 1 SAR images will produce an

invertible Jacobian matrix J for this change of variables and hence a well-defined joint interferometric

PDF. If the formation graph is also fully connected, the resulting covariance matrix Γ is identical

to that given in Equations 4.67-4.62. Examples of non-cyclic interferometric stack formation graphs

are shown in Figure 4.12.

If cycles are introduced into the interferometric stack formation graph, e.g. those shown in Fig-

ure 4.13, then the system is overdetermined. The invertibility of J no longer holds and a straight-

forward extension of the change of variables in Equations 4.70-4.73 is insufficient. An important

direction for further research is extending the analysis of this chapter to such cases.

The most general instantiation of a cyclic interferometric stack is the formation of every possible

master-slave interferometric pair from the stack of SAR pixels u. The resulting interferometric pixels

are mathematically formulated as Z = uu†, where each row i is denoted by zi and corresponds
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Figure 4.12: Non-cyclic interferometric stack formation graphs with covariance matrix Γ (Equations
4.67-4.62).

to the pixels formed from master SAR image i. One possible approach to deriving the PDF of

the full set of pixels is to modify the multipass interferometric system such that each row zi as

an independent vector observation. We conjecture that the covariance matrix of these pixels is

equivalent to Equation 4.67, which already contains the analytical correlation between every pair of

SAR images.

Finally, future work is needed to formalize the analysis of temporal decorrelation in the PS

backscatter model derivation. In this chapter, we simplified our analysis by first assuming a time-

invariant backscatter function f(x, y) and deriving the corresponding PDFs for spatial decorrelation.

Temporal decorrelation was then incorporated directly into the entries of the resulting covariance

matrix Γ. We can remove this simplifying assumption in the future by modeling the temporal change

in the backscatter function f(x, y, t).
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Figure 4.13: Cyclic interferometric stack formation graphs where covariance matrix Γ (Equations
4.67-4.62) is no longer valid.



Chapter 5

Partially correlated persistent

scatterer selection for InSAR

deformation measurement

5.1 Introduction

In the previous chapters, we quantified the PS spatiotemporal decorration and phase probabilitistic

distribution as a function of SCR and spatial and temporal imaging baselines. These results showed

that PS pixels – those with a dominant, point-like scatterer – are more immune to decorrelation

phase noise than pixels with low SCR. PS techniques aim to utilize this property in order to extract

deformation measurements in areas of low coherence, where conventional InSAR fails to produce

useful observations [Crosetto et al., 2009, Crosetto et al., 2015].

A critical step in PS techniques is the selection of PS pixels. Phase unwrapping and subsequent

deformation estimation on the spatially sparse PS network depends on both pixel selection accuracy

and the network density. Existing PS methods that model PS as a non-decorrelating point scatterer

with additive white decorrelation noise have been shown to work well in urban areas with many

strong, stable reflectors. However identifying an appropriate network of pixels in natural or vegetated

terrain remains a challenge due to other spatiotemporally varying phase terms.

In this chapter, we first review existing PS selection techniques. We then present a new method

of PS characterization and selection based on the analytical results of the previous chapters. This

method optimally combines the full stack of phase and amplitude observations, as well as information

about the spatiotemporal baselines. We perform a case study to estimate the performance in terms

of PS identification and false detection compared other PS methods. Our results based on simulated

and real data demonstrate that with an increased amount of information, we obtain better PS

77
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parameter estimation and selection.

We then show how the improved PS selection method can fit within existing PS frameworks. We

describe the general StaMPS framework for PS deformation measurement, emphasizing the critical

step of PS selection. Finally, we present a set of example deformation measurements from a variety

of real satellite radar data using the StaMPS with the new PCPS selection method.

5.2 Prior PS selection techniques

The selection of PS pixels from the interferometric radar images is a critical step in persistent

scatterer techniques. The identification of pixels with low decorrelation phase noise is not trivial

due to other phase contributions:

∆φifg = φdef + φatm + φerr + φdecorr + φnoise (5.1)

Prior work in PS characterization and selection techniques have generally utilized ad hoc statis-

tical or empirically-based tests on the observed interferometric amplitudes or phases, summarized

below.

5.2.1 Amplitude

The PS-InSAR technique [Ferretti et al., 2001] selects PS pixels based on a measure of amplitude

dispersion, given by

DA =
σA
µA

. (5.2)

where σA and µA are the standard deviation and mean of the SAR amplitudes. The authors showed

that at high SNR, the amplitude dispersion is well-correlated with phase stability and is more immune

to nuisance signals such as atmospheric delay and orbital error. However this correlation between

amplitude dispersion and phase stability breaks down as SNR decreases, especially for SNR ≤ 2.

Since the introduction of PS-InSAR, other techniques have been developed that use amplitude

analysis to identify PS pixels. The Spatio-Temporal Unwrapping Network (STUN) method [Kampes

and Adam, 2006] estimates the signal-to-clutter ratio (SCR) of each oversampled pixel as the ratio

of its power to the power of neighboring pixels. SqueeSAR [Ferretti et al., 2011] is a refinement of

PS-InSAR designed to jointly process distributed scatterers (DS) along with PS in order to increase

the density of selected pixels. This technique utilizes space adaptive filtering in order to increase

SNR by averaging over statistically homogenous DS, while preserving the high SNR of single PS

pixels, selected using amplitude dispersion.

It is worth noting that many other techniques (e.g. [Werner et al., 2003, Agram, 2010]) employ

loose limits on amplitude dispersion or similar simple amplitude statistics in order to identify an
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initial set of PS candidates. This initial candidate selection step takes advantage of relatively low

complexity criteria to reduce the set of pixels that must be processed, while ultimately employing

other selection metrics after some spatiotemporal filtering to choose the final set of selected PS.

5.2.2 Phase

Amplitude-based techniques work well for urban areas where manmade infrastructure produces

many bright reflectors, but generally fail to identify a sufficient density of PS pixels in natural or

vegetated terrain [Ferretti et al., 2011]. To allow PS analysis to be extended to such areas, Hooper et

al. introduced a new class of PS selection techniques based on phase analysis rather than amplitude

statistics [Hooper et al., 2004].

In the StaMPS algorithm [Hooper, 2006], PS pixels are identified as those with high temporal

phase coherence γx, defined as

γx =
1

N

∣∣∣∣∣
N∑
i=1

exp{jφ̂noise,x,i}

∣∣∣∣∣ (5.3)

where φ̂noise,x,i is an estimate of the phase noise term for pixel x in interferogram i. StaMPS

computes this estimate by iteratively filtering the interferometric phase ψint,x,i and subtracting the

spatially correlated result ψ̃int,x,i, as well as an estimate of the spatially uncorrelated phase term

∆φ̂uθ,x,i due to look angle error:

φ̂noise,x,i = ψint,x,i − ψ̃int,x,i −∆φ̂uθ,x,i. (5.4)

Using this phase analysis technique, StaMPS has identified PS networks in non-urban areas such as

volcanoes [Hooper et al., 2004, Hooper et al., 2007], rural subsidence bowls [Sousa et al., 2009], and

fault zones [Champenois et al., 2012].

The StaMPS phase analysis for PS selection was refined in [Shanker and Zebker, 2007] using

an information theoretic approach. Here, the maximum likelihood estimate of each pixel’s SCR is

computed using the Gaussian signal in Gaussian noise phase PDF model in Equation 4.19 [Just and

Bamler, 1994].

Other phase-based analysis for PS selection include the Interferometric Point Target Analysis

technique [Werner et al., 2003], which utilizes a measure of spectral phase diversity. The Persistent

Scatterer Pairs (PSP) method [Costantini et al., 2008] utilizes a measure of weighted coherence

over two spatially close points, in order to eliminate the need to perform spatial filtering to remove

atmospheric and orbital error phase contributions prior to selection. The Quasi-Permanent Scatterer

(QPS) method [Perissin and Wang, 2012] extends PS analysis to include all possible interferogram

pairs from a stack of SAR images, rather than using a single common master. Partially coherent

PS pixels are then identified using temporal coherence similar to Equation 5.3, but where each
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interferogram’s phase contribution to the coherence is weighted by the spatial coherence in a window

around the pixel in that interferogram.

In general, the phase-based techniques for identifying and selecting PS pixels improved PS de-

formation analysis in non-urban areas. However the accuracy and density of the identified networks

in natural terrain remain a challenge. Recent work on partially coherent PS pixels [Wang et al.,

2008, Prati et al., 2010] have suggested that such techniques can dramatically increase the number

of pixels identified over StaMPS.

5.3 PCPS selection

In this section, we present a new method for statistical identification and selection of partially

coherent PS pixels, based on the analysis presented in Chapters 3-4.

5.3.1 Analytical foundation

Below, we summarize the main analytical results and their impact on the design of the PS selection

technique:

• Analysis: We quantified phase stability, the defining property of persistent scatterer pixels,

using decorrelation as a function of SCR (Chapter 3).

Algorithm: We use estimated SCR as a basis for PS identification and selection.

• Analysis: We derived the joint multipass interferometric PDF across both phase and ampli-

tude (Chapter 4).

Algorithm: We use the full stack of interferometric phase and amplitude observations to per-

form maximum-likelihood SCR estimation.

• Analysis: We quantifed the effect of spatial and temporal baselines on the probabilitistic

distribution of interferometric phase and amplitude.

Algorithm: We quantitatively account for the physical imaging parameters of spatial and

temporal baseline in the PS characterization and selection.

• Analysis: We showed that the interferometric phase observations are neither independent nor

identically distributed (Chapter 4).

Algorithm: We use a joint PDF characterizing the full stack of multipass interferometric

observations to perform maximum-likelihood SCR estimation.

• Analysis: We quantified the phase stability of partially correlated persistent scatterers for

baselines over the critical baseline (Bij > Bcrit).

Algorithm: We include all interferograms in the PS selection analysis, including those over the



CHAPTER 5. PCPS SELECTION 81

critical baseline, using analytical models that quantitatively adjust for baseline impact on the

decorrelation.

• Analysis: We showed that partially correlated persistent scatterers can be quantitatively char-

acterized using SCR.

Algorithm: By adjusting the threshold on the estimated SCR needed for pixel selection, we an-

alytically tune the tradeoff between PCPS network density and phase stability of the selected

pixels.

5.3.2 Maximum likelihood parameter estimation

The basis for our PS selection method is maximum likelihood (ML) parameter estimation. Shanker

and Zebker [Shanker and Zebker, 2007] showed that ML estimation provided an information theoretic

framework for SCR estimation given an the observed interferometric phase values. They used the

assumption that the phase value in each interferogram is independent and identifically distributed

according to the marginal phase distribution derived by Just et al. [Just and Bamler, 1994]:

SCRML = arg max
SCR

f(φ01, . . . , φ0N | SCR) (5.5)

= arg max
SCR

∏
i

f(φ0i | SCR), (5.6)

where

f(φ0i | SCR) =
1

2π

1− ρ2(SCR)

1− (ρ(SCR) cosφ0i)2

[
1 +

ρ(SCR) cosφ0i√
1− (ρ(SCR) cosφ0i)2

arccos(−ρ(SCR) cosφ0i)

]
,

(5.7)

and ρ(SCR) = SCR
1+SCR .

The maximum likelihood SCR framework can be extended for the analysis presented in earlier

chapters by using the joint interferometric stack phase-amplitude PDF (Equation 4.71). Given

the observed interferometric phases φ01, . . . , φ0N and SAR amplitudes r0, . . . , rN , the maximum

likelihood SCR is given by

SCRML = arg max
SCR

f(r0, . . . , rN , φ01, . . . , φ0N | SCR) (5.8)

= arg max
SCR

2π

(πσ2)N+1|Γ(SCR,B,T)|

(
N∏
i=0

ri

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

[Γ−1(SCR,B,T)]ijαijrirj

 ,
(5.9)
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where

αij =



1, i = j = 0

cos(φ0j), i = 0, j 6= 0

cos(φ0i), i 6= 0, j = 0

cos(φ0j − φ0i), i 6= 0, j 6= 0.

(5.10)

The entries of the covariance matrix Γ(SCR,B,T) are given by the analytical decorrelation between

each pair of SAR images,

Γij(SCR,B,T) = ρ(Bij , Tij ,SCR) = ρspatial(Bij ,SCR) · ρtemporal(Tij ,SCR). (5.11)

The SCR estimate specified by Equation 5.9 is the first PS characterization technique that utilizes

physically-based statistical derivations to simultaneously combine the entire stack of amplitude and

phase observations. PCPS pixels may then be selected by imposing a threshold on the estimated

SCR values.

In contrast to previous PS selection techniques that have considered only amplitude (e.g. [Fer-

retti et al., 2001]) or phase (e.g. [Shanker and Zebker, 2007]), this maximum likelihood PS selection

method uses both sets of observations simultaneously. Because the distribution f(r0, . . . , rN , φ01, . . . , φ0N )

depends on spatial and temporal baselines, this PS selection method also quantitively incorporates

information about the spatiotemporal baselines of the stack. Instead of assuming that observations

are independent and identically distributed, the joint distribution accounts for correlation between

every pair of SAR scenes, modeled by the covariance matrix Γ.

Below, we discuss some of the algorithmic details and considerations for implementation.

Total backscatter power

The phase-amplitude PDF f(r0, . . . , rN , φ01, . . . , φ0N ) is a function of the average total pixel backscat-

ter power σ2. In order to remove this dependency, we treat σ2 as an unknown parameter to be

estimated. The maximum likelihood estimate is given by

σ2
ML = arg max

σ2
f(r0, . . . , rN , φ01, . . . , φ0N | SCR, σ2) (5.12)

= arg max
σ2

log f(r0, . . . , rN , φ01, . . . , φ0N | SCR, σ2). (5.13)

A closed form expression for σ2
ML may be found by calculating the zeros of the derivative of the
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log likelihood function (Equation 5.13) with respect to σ2:

d

dσ2
log f(r0, . . . , rN , φ01, . . . , φ0N | SCR, σ2)

∣∣∣∣
σ2=σ2

ML

= 0 (5.14)

d

dσ2
log

 2π

(πσ2)N+1|Γ|

(
N∏
i=0

ri

)
exp

− 1

σ2

N∑
i=0

N∑
j=0

[Γ−1]ijαijrirj

∣∣∣∣∣∣
σ2=σ2

ML

= 0 (5.15)

−N + 1

σ2
+

∑N
i=0

∑N
j=0 αijrirj

σ4

∣∣∣∣∣
σ2=σ2

ML

= 0 (5.16)

Solving Equation 5.14 for σ2 gives

σ2
ML =

1

N + 1

N∑
i=0

N∑
j=0

[Γ−1]ijαijrirj . (5.17)

By substituting Equation 5.17 into 5.9, we obtain the expression

SCRML = arg max
SCR

2π

|Γ(SCR,B,T)|

(
N∏
i=0

ri

)(
N + 1

πe
∑N
i=0

∑N
j=0[Γ−1(SCR,B,T)]ijαijrirj

)N+1

(5.18)

where

αij =



1, i = j = 0

cos(φ0j), i = 0, j 6= 0

cos(φ0i), i 6= 0, j = 0

cos(φ0j − φ0i), i 6= 0, j 6= 0.

(5.19)

Temporal decorrelation model parameters

If the parameters of the temporal decorrelation model are not known a priori, they may be concur-

rently estimated during the maximum likelihood SCR process. For the base linear model described

in Section 3.4.2, for example, the critical temporal baseline Tcrit may be estimated as[
SCRML

Tcrit,ML

]
= arg max

SCR,Tcrit

f(r0, . . . , rN , φ01, . . . , φ0N | SCR, Tcrit). (5.20)
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Discussion of multidimensional optimization methods is beyond the scope of this thesis.

5.3.3 Covariance matrix stability

The covariance matrix Γ can become unstable or overly constrained for very small baseline pairs

due to small theoretical decorrelation. Hence, in practice, it is useful to include an empirical noise

decorrelation factor ρnoise to the entries of the covariance matrix, i.e.

Γij(SCR,B,T) = ρ(Bij , Tij ,SCR) · ρnoise (5.21)

to ensure that the analytical PDF does not become ill-conditioned.

5.3.4 Software implementation

In the software implementation, the computational complexity of the maximum likelihood estima-

tion may be decreased by maximizing the log likelihood rather than the original distribution. In

addition, for a given set of multipass interferometric data, the covariance matrix Γ(SCR,B,T) can

be precomputed in a lookup table for each value of SCR in the optimization search space.

5.3.5 Selection criteria

After characterizing each pixel by its maximum likelihood SCR, we perform PCPS selection by

thresholding the SCRML value, as illustrated in Figure 5.1.

The statistical PS characterizations presented in Chapters 3-4 provide an analytical justification

for using SCR as a PS selection criteria, as well as a framework with which to determine the SCR

threshold value. Below we provide a qualitative outline of this justification and framework, leaving

the full theoretical analysis for future work.

PS techniques are fundamentally founded on the concept of a network of pixels where the defor-

mation phase can be accurately extracted from other nuisance phase terms. The decorrelation phase

term is the greatest limiting factor in this deformation extraction, due to noise-like characteristics.

Hence the accuracy of unwrapping and deformation estimation in these techniques is fundamen-

tally limited by the distribution of the decorrelation phase noise; the greater the variance of the

decorrelation phase term, the less accurate the extraction of the deformation phase signal. Because

we showed that the distribution of the decorrelation phase component is an analytical function of

SCR, the fundamental limits of PS deformation estimation accuracy may be quantitatively related

to SCR.

Therefore we can set the SCR threshold based on the PS deformation estimation accuracy re-

quirements, as determined by the tolerable variance of the decorrelation phase term. That is, if

we determine an acceptable level of decorrelation phase variance, we can use the analytical phase
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Figure 5.1: PCPS selection flow diagram

distribution to compute the associated minimum SCR necessary for the given imaging baselines.

This value then sets the SCR threshold for PS selection.

We may extend the criteria for PS selection beyond just SCR by also thresholding the concur-

rently estimated value of Tcrit, as described in Section 5.3.2. This threshold imposes a limit on the

expected temporal decorrelation for each selected PS pixel.

5.4 Comparison of selection techniques

We evaluate the PCPS selection technique against two standard existing PS methods: PS-InSAR

[Ferretti et al., 2001] and StaMPS [Hooper et al., 2004] with the maximum likelihood PS selection

technique devleoped by [Shanker and Zebker, 2007].

Table 5.1 summarizes the fundamental differences between the PS-InSAR, MLPS StaMPS, and

PCPS slelection techniques. Compared to the other two methods, the PCPS technique utilizes

the full stack of multipass interferometric phases and amplitudes, combining them in a quantitative

framework that accounts for both correlation between interferograms and the imaging spatiotemporal

baselines.

5.5 Simulation

To compare the performance of PS identification algorithms, we simulate a series of PS pixels with

varying SCR and Gaussian noise. Each simulated resolution element contains 1000 randomly placed
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Accounts Accounts
Selection for correlation for spatiotemporal Observations

Technique criteria between IFGs? baselines? used
PSInSar Amplitude No No Amplitude

dispersion
MLPS ML SCR with No No Phase
StaMPS marginal phase PDF
PCPS ML SCR with Yes Yes Phase,

joint multipass PDF amplitude

Table 5.1: Compared to PS-InSAR and MLPS StaMPS, the PCPS technique utilizes the full stack of
multipass interferometric phases and amplitudes, combining them in a quantitative framework that
accounts for both correlation between interferograms and the imaging spatiotemporal baselines.

scatterers with uncorrelated complex reflectivity and total average power 1
1+SCR , plus a centered

dominant scatterer with average power SCR
1+SCR . The multipass SAR pixel values for each resolution

element is computed using the interferometric stack imaging system model described in Section

4.4.1. Finally, complex white Gaussian noise with varying standard deviation is added to the SAR

pixel values.

For each multipass pixel stack, we evaluate the selection criteria for three PS techniques:

• PS-InSAR [Ferretti et al., 2001]: amplitude dispersion

• MLPS StaMPS [Shanker and Zebker, 2007]: maximum likelihood SCR using the Just-Bamler

marginal phase distribution [Just and Bamler, 1994]

• PCPS: maximum likelihood SCR using the joint multipass stack phase-amplitude distribution

Figure 5.2 shows the results of these PS selection criteria as a function of SCR and noise standard

deviation. Each column of subplots corresponds to one PS technique, with the selection metric

indicated on the y-axis. The subplot rows correspond to decreasing SCR from top to bottom.

Within each subplot, the selection metric value data points are plotted for increasing values of

Gaussian noise standard deviation, with the standard deviation of the selection metric indicated by

vertical bars. Increasing the Gaussian noise standard deviation causes the plotted points to move

right along the phase standard deviation axis. As SCR decreases, the phase standard deviations

increases for each Gaussian noise level, as expected and as indicated by the rightward-moving trend

of data points moving down each subplot column. Typical threshold values are indicated for each

PS technique by the dashed red lines.

The PS-InSAR amplitude distribution technique identifies pixels with very high SCR, but fails

to find many pixels when the SCR decreases below 10. The low density of identified pixels in low

SCR environments is a PS-InSAR weakness that has been identified by previous researchers [Hooper

et al., 2004].
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Figure 5.2: PCPS attains the best performance at identifying only pixels with low additive Gaussian
noise for each level of SCR.

Using only phase information and ignoring the correlations due to small baselines, the MLPS

StaMPS method identifies many pixels, including many false detections. The ML SCR estimate is

also highly biased since correlations due to small baselines are essentially attributed to high SCR.

We see that the PCPS method attains the best performance at identifying only the pixels with low

additive Gaussian noise for each level of SCR. The PCPS plots show a well-defined peak of maximum

likelihood SCR when the phase standard deviation is low, then very low estimated SCR as phase

standard deviation increases. This is because the PCPS algorithm uses both phase and amplitude

information, taking into account the correlation between the SAR scenes by incorporating their

spatiotemporal baselines. The steep slope in the plotted data points as phase standard deviation

increases allows a well-defined SCR threshold that easily distinguishes phase-stable pixels from phase

instable-pixels.
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Parameter Value
Wavelength λ 0.0566 m
Look angle θ 23.3◦

Azimuth resolution Rx 6.5 m
Ground range resolution Ry 24.3 m
Critical baseline Bcrit 1052 m
Number of interferograms Nifg 37

Table 5.2: InSAR system parameters for ERS case study

5.6 ERS case study

To investigate the performance of the PCPS selection technique on real data, we examine a case

study of ERS data in the San Francisco South Bay region. Our data set consists of 38 descending

SAR acquisitions collected by the European Remote Sensing (ERS-1/2) radar satellites between

May 1995 and December 2000 (Track 70, Frame 2853). Parameters of the ERS system are listed

in Table 5.2. We form a stack of Nifg = 37 single look interferograms using an acquisition from

December 1997 as the common master. An example interferogram from the stack is shown in Figure

5.3.

We focus on three subareas of the interferogram, highlighted in Figure 5.4:

• Urban scene: This area of the city of Fremont consists of urban infrastructure such as roads

and buildings. We expect to find the highest density of PS in this area due to many strong

corner reflectors and temporally stable scatterers.

• Natural scene: This scene consists of mountainous natural terrain and vegetation, where we

expect fewer PS due to few bright scatterers and faster temporal decorrelation.

• Water scene: In this area of the bay, we expect to find virtually no persistent scatterers. This

area is meant to provide an estimate of the false positive PS detection rate for each of the

algorithms.

We perform PS characterization and selection on the scene using the three techniques described

above:

• PS-InSAR [Ferretti et al., 2001]: amplitude dispersion

• MLPS StaMPS [Shanker and Zebker, 2007]: maximum likelihood SCR using the Just-Bamler

marginal phase distribution [Just and Bamler, 1994]

• PCPS: maximum likelihood SCR using the joint multipass stack phase-amplitude distribution

We first set the selection thresholds for each of the techniques according to values in the literature,

shown in Table 5.3. Figure 5.5 shows the resulting selected PS mask across the whole scene using
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Figure 5.3: Our case study uses ERS data imaging the San Francisco Bay Area between May 1995
and December 2000 (Track 70, Frame 2853). An example interferogram formed between acquisitions
from October 1997 and December 1997 is shown above.
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Figure 5.4: The PS selection case study focuses on three sites within the ERS interferometric scene:
an urban site where a high PS density is expected; a natural terrain site where lower PS density is
expected; and a water site where no PS are expected. (Map imagery: Google)
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PS detection rate
for 1% false positive

Algorithm Initial selection threshold Urban Natural
PSInSar [Ferretti et al., 2004] DA = 0.2 1.25% 0.64%
MLPS StaMPS [Shanker and Zebker, 2007] SCRML = 2 5.30% 1.82%
PCPS SCRML = 1 6.69% 2.43%

Table 5.3: Case study results comparison

PS-InSAR, MLPS StaMPS, and PCPS, as well as the zoomed urban and natural terrain subareas.

We see that amplitude dispersion detects significantly lower PS compared to either MLPS StaMPS

and PCPS.

Clearly the density of selected PS depends on the selection threshold. As the selection threshold

is raised, the density of selected PS pixels increases, as does the false detection rate. Because of this,

the density measure alone does not provide a good measure of performance. Instead, we examine

both the PS selection density as well as the estimated false detection rate, as determined by the

number of selected PS in the water subarea. Figure 5.6 shows the percentage of selected PS in the

urban and natural terrain areas as a function of the false positive detection rate. Ideally we would

like this graph to increase as steeply as possible. PS-InSAR is capped at a threshold of DA = 0.2since

it has been shown that it does not correlate well with phase dispersion after that point. We see

that PCPS achieves a higher detection rate for any given false detection rate compared to MLPS

StaMPS in both urban and natural terrain. The improvement is especially pronounced at low false

positive detection rates.

Table 5.3 summarizes the PS detection rates in urban and natural terrain for 1% false positive

detection rate in the water subarea. Both techniques using phase stability, MLPS StaMPS and

PCPS, clearly outperform PS-InSAR. Again, we see that amplitude distribution identifies pixels

with very high SCR in urban areas, but fails to find many pixels in natural terrain. In fact the

performance improvement of 4-5% by PCPS aligns well with a PS-InSAR assessment made by

Ferretti in 2004 [Ferretti et al., 2004]:

Using even more advanced algorithms, it should be possible to find about five times more

PS that have reliable coherence in the target frame.

5.7 StaMPS framework

We evaluate the PCPS pixel selection method in the context of a full PS pipeline. We utilize StaMPS

(Stanford Method for Persistent Scatterers) [Hooper, 2006] as a framework for using PS to extract

deformation measurements. StaMPS provides a processing chain for performing spatial and temporal

filtering to estimate and extract various phase components from the observed interferometric pixels.

A high level block diagram for the StaMPS processing chain is shown in Figure 5.7, consisting of
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Figure 5.5: The selected PS pixels are superimposed on the SAR amplitude image. To normalize
for the effect of the PS selection threshold on PS density, we set the threshold for each algorithm
to attain 1% false detection rate, as determined by the number of identified PS within the water
scene where no PS are expected. Compared to PS-InSAR and MLPS StaMPS, PCPS increases the
density of selected PS by more than a factor of two.
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Figure 5.6: Detection versus false alarm case study results. PCPS achieves a higher detection rate
for any given false detection rate compared to MLPS StaMPS in both urban and natural terrain.
The improvement is especially pronounced at low false positive detection rates.
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Figure 5.7: StaMPS processing chain

three general stages:

1. Spatially correlated phase terms are estimated and removed from the interferometric phase.

2. Using the residual interferometric phase due to decorrelation and thermal noise, PS pixels are

selected.

3. The deformation signal is extracted from the PS network.

These stages are explained in the following subsections.

5.7.1 Phase components

The StaMPS filtering procedures are designed to estimate and extract the various phase components

from the wrapped interferometric phases based on their spatial and temporal characteristics. We

express the observed wrapped interferometric phase as

φifg,x,i = (φdef,x,i + φatm,x,i + φerr,x,i + φdecorr,x,i + φnoise,x,i) mod 2π (5.22)
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where x represents the pixel coordinates in interferogram i. The component phase terms and their

spatiotemporal properties are described below.

Deformation φdef

The primary signal of interest to be estimated is the phase term produced by ground deformation

∆z in the radar line-of-sight:

φdef = −4π

λ
∆z. (5.23)

The deformation signature tends to be spatially and temporally correlated. When available, spa-

tiotemporal deformation models may be used to constrain the estimate [Farina et al., 2006, Colesanti

et al., 2003b, Colesanti et al., 2003a, Lyons and Sandwell, 2003, Vilardo et al., 2009]. However spa-

tiotemporal frequency content is often unknown a priori, especially for high frequency deformation

changes due to episodic geophysical phenomena such as earthquakes and landslides [Hooper, 2006].

Atmosphere φatm

Variations in signal propagation delay through the atmosphere occurs due to differences in tropo-

spheric water vapor and total electron content [Massonnet et al., 1994]. Its contribution to the

interferometric phase is typically on the order of one-tenth of a wavelength [Tarayre and Massonnet,

1996]. Tropospheric phase tends to be correlated spatially and with topography [Hanssen, 2001],

but essentially temporally uncorrelated after a period of about 30 days. Its effects can be compen-

sated using terrain data, existing weather models, or atmospheric data from other sensing modalities

[Bonforte et al., 2001, Li et al., 2005].

Orbital error φorb

The error associated with imprecise knowledge of the satellite orbit path produces a spatially cor-

related phase term. The orbital error phase terms are spatially correlated and can therefore be

compensated or filtered with some knowledge of the orbital geometry from other sensors or ground

control points [Scharroo and Visser, 1998, Agram, 2010, Shimada, 2000].

DEM error φerr

The phase contribution due to topography may be removed using a digital delevation map (DEM).

Errors in the DEM lead to a residual phase which is correlated with the spatial baseline:

φerr =
4π

λr
B(θ)δh sin(θ) (5.24)
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Phase component Spatial properties Temporal properties
Deformation Low frequency Low frequency
Atmosphere Low frequency High frequency
Orbital errors Low frequency High frequency
DEM error High frequency Correlated with baseline
Noise High frequency High frequency
Decorrelation noise (new) High frequency Dependent on baseline

Table 5.4: Spectral characteristics of PS pixel phase components [Hooper, 2006]

Noise φnoise

The original StaMPS framework lumps all noise due to scatterer decorrelation, thermal effects,

phase center uncertainty, and coregistration errors under one phase term, assuming all noise is

white, Gaussian, and therefore uncorrelated in space and time.

In our application of StaMPS, we separate the phase term due to decorrelation, modeling this

term using the analytically derived probabilistic distributions derived in the previous chapters.

Decorrelation φdecorr

In Chapters 3-4, we showed that the characteristics of decorrelation noise, unlike thermal noise and

phase center uncertainty, are dependent on spatial and temporal baselines. In this chapter, we show

how these analytical results can be applied to extend the StaMPS framework by separating out the

decorrelation phase term φdecorr from the other noise sources described above.

The phase component spectral characteristics are summarized in Table 5.4.

5.7.2 Processing steps

The steps of the StaMPS framework are described in more detail below.

1. PS candidate selection: An initial superset of PS pixels is selected using a theoretically subopti-

mal but computationally efficient method. This step is theoretically unnecessary but improves

computational speed by narrowing the number of pixels that need to be processed.

2. Iterative estimation of spatially correlated phase terms until coherence change is below thresh-

old.

• Weighted spatial filtering

• Estimate DEM error and atmospheric phase

3. PS selection: Selection of the PS pixel network is a critical step in the PS processing chain.

The selected pixel network must be sufficiently dense for phase unwrapping. At the same

time, the pixels must be accurately selected so that the deformation signal can be extracted
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Parameter Value
Wavelength 3.12 cm
Date range Aug. 2010 - Sept. 2013
Number of interferograms 128
Master acquisition 10 Feb 2012
Spatial resolution 3 m × 3 m

Table 5.5: Parameters of the COSMO-SkyMed interferometric data set imaging Kilauea

and well-estimated from their phase. Hence both rates of missed detection and false positive

must be sufficiently low for the PS technique to succeed. The objective of PS selection is to

maximize density of selected pixels with sufficiently reliable coherence for unwrapping.

PS selection is challenging due to the other terms in the interferometric phase. Spatiotem-

poral filtering in the first stage of StaMPS is imperfect since the exact characteristics of the

atmospheric phase and deformation signal are generally unknown a priori. The focus of this

chapter is improved PS characterization and selection algorithms based on the analytical re-

sults of previous chapters.

4. Estimate and correct spatially correlated phase terms in PS network: Analytical models or

other data sources are used to estimate φerr, φorb, φatm. These terms are then removed from

the observed total phase, leaving the deformation signal φdef .

5. Phase unwrapping: Finally, the PS network phase is unwrapped to estimate the deforma-

tion signal. Phase unwrapping of the sparse network is a challenging problem that has been

examined by [Costantini and Rosen, 1999].

5.8 PS deformation results

We now examine the performance of PCPS in the context of the full StaMPS processing chain. We

demonstrate deformation signal measurement for a variety of radar wavelengths.

5.8.1 COSMO-SkyMed, Kilauea

Radar system

The Constellation of Small Satellites for Mediterranean basin Observation-SkyMed (COSMO-SkyMed)

system consists of four satellites phased 90◦ apart in sun-synchronous orbit [Covello et al., 2010].

The X-band radar operated in stripmap imaging mode achieves spatial resolution of 3 m x 3 m.

Due to the constellation geometry, COSMO-SkyMed can achieve a one day temporal interferometric

baseline, which is able to capture quick episodic deformation events.

Table 5.5 summarizes the parameters of the COSMO-SkyMed radar system.
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Figure 5.8: Geocoded COSMO-SkyMed interferogram imaging the southern flank of Kilauea, Hawaii.
The area of PS analysis is indicated by the black rectangle.

Geophysical process

Kilauea is a shield volcano on the island of Hawai’i with two active rift zones. The south flank is

characterized by seaward displacement of about 8 centimeters per year [Owen et al., 2000], with a

slip-rate of approximately 21 centimeters per year [Montgomery-Brown et al., 2009]. Frequent slow

slip events and earthquake swarms are evidenced by sudden crustal deformation events.

Results

We process a stack of 128 interferograms using a master acquisition from 10 Feb 2012. Figure

5.8 shows an example geocoded interferogram. For our deformation analysis, we zoom in on a 2.1

km x 2.4 km region showing evidence of a sudden deformation event in March 2011. This region

is characterized by dry natural terrain and vegetation. The lack of bright scatterers results in

decorrelation of much of the scene.

Figure 5.9 shows a comparison of the selected PS using PS-InSAR amplitude dispersion, MLPS

StaMPS ML SCR based on the marginal phase PDF, and PCPS ML SCR based on the joint phase-

amplitude PDF. As expected in natural terrain, the PS density obtained using amplitude dispersion

is much lower compared to that obtained using phase statistics. The PCPS algorithm identifies

61,413 pixels compared to 42,790 for MLPS StaMPS and 2,695 for PS-InSAR.
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Figure 5.9: The area under analysis region is characterized by dry natural terrain and vegetation,
resulting in decorrelation of much of the scene. As expected, the PS density obtained using amplitude
dispersion is much lower compared to that obtained using phase statistics.

In Figure 5.10, we show the PS network wrapped phase in a time series first spanning and then

excluding the event of interest. Figure 5.11 then shows the deformation times series obtained by

unwrapping the phase. The deformation signature of the event is evident for the interferograms

spanning March 2011. We estimate a deformation of about 2 centimeters in these scenes.

Finally, in Figure 5.12, we plot the deformation time series for a point inside the region versus

a point outside. Here the 2 centimeter relative deformation is evident inside the region. The

fluctuations of the deformation lie within the range likely due to variations in atmospheric delay

between acquisitions.

5.8.2 ALOS, Central Valley

Radar system

The Advanced Land Observing Satellite (ALOS), operated by Japan Aerospace Exploration Agency

(JAXA), carried a Phased Array L-band Synthetic Aperture Radar (PALSAR) [Kimura and Ito,
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Figure 5.12: The point indicated by the red marker inside the deformation zone shows displacement
in the radar line of sight of approximately 2.5 centimeters in March 2011, compared to the point
outside the deformation zone, indicated by the blue marker.
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2000]. The 20 centimeter wavelength gives ALOS greater immunity to temporal decorrelation effects

compared to shorter wavelength InSAR systems [Zebker and Villasenor, 1992].

Parameter Value
Wavelength 23.6 cm
Date range June 2007 - Dec. 2010
Number of interferograms 12
Spatial resolution 20 m × 5 m

Table 5.6: ALOS parameters

Geophysical process

The Central Valley of California has been undergoing sustained land subsidence over the last two

decades due to excessive groundwater pumping [Famiglietti et al., 2011, Reeves et al., 2011].

Results

The ALOS stack consists of 12 interferograms formed from a master acqusition at 23 Mar 2008.

Figure 5.13 shows an example geocoded interferogram from the stack, with the area of analysis

indicated by the square and magnified in Figure 5.14. The area of analysis is largely vegetated, with

agricultural plot outlines visible in optical map imagery, but also includes populated infrastructure

within the towns of Hanford and Kingsburg.

Figure 5.15 shows a comparison of the selected PS using PS-InSAR, MLPS StaMPS, and PCPS.

PS-InSAR identifies 169,289 PS, compared to MLPS StaMPS, which identifies 360,883 PS. PCPS

selects 420,355 PS. Again, the PS-InSAR method identifies many fewer PS in natural terrain due to

lack of bright scatterers with high SCR.

In Figure 5.16, we show the wrapped phase. Figure 5.17 shows the results of the phase unwrap-

ping, with the deformation signal due to subsidence. Finally, Figure 5.18 plots the deformation time

series, with clearly visible deformation trend in the area of subsidence compared to outside.

5.9 Conclusion

In this chapter, we presented an improved method for maximum likelihood PS selection, based on the

analysis of partially correlated persistent scatterers (PCPS) presented in Chapters 3-4. Compared

to standard existing PS selection techniques such as PS-InSAR [Ferretti et al., 2004] and MLPS

StaMPS [Shanker and Zebker, 2007], the new PCPS selection method presents several advantages:
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Figure 5.13: Geocoded ALOS interferogram imaging the Central Valley, California. The area of
analysis, indicated by the black rectangle, is shown in detail in Figure 5.14.

Figure 5.14: Zoom in on study area. The region is largely composed of agricultural vegetation,
but also includes manmade infrastructure in the towns of Hanford and Kingsburg. (Map imagery:
Google)
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Figure 5.15: While the three PS selection techniques produce similar density of identified pixels in
urban areas, the methods utilizing phase statistics (MLPS StaMPS and PCPS) identify a larger
density of pixels in vegetated and agricultural areas compared to the amplitude-based PS-InSAR
technique. Of the three PS algorithms, the PCPS method obtains the largest number of identified
pixels overall.
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Figure 5.18: The point inside the subsidence bowl, indicated by the red marker, displays approxi-
mately 50 cm of displacement in the radar line of sight over 3.5 years, relative to the reference point
indicated by the black marker. In comparison, a point on the edge of the subsidence bowl, indicated
by the blue marker, displays only 16 cm of LOS displacement.
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• PCPS selection accounts for correlation in the interferometric phase residual due to spatiotem-

poral decorrelation between passes, while existing techniques assume that the interferometric

phase residual is uncorrelated between passes.

• PCPS accounts for the effect of spatiotemporal baselines on the distribution of the interfero-

metric phase residual, while existing techniques assume that the interferometric phase residual

is independent of baseline.

• PCPS combines both amplitude and phase observations, while existing techniques utilize only

amplitude or only phase.

We evaluated the performance of the PCPS technique against that of PS-InSAR and MLPS

StaMPS using simulated interferometric data as well as real ERS data. In order to normalize for the

effect of selection threshold on the resulting PS network density, we developed a new performance

evaluation methodology that sets the selection threshold for each algorithm in order to attain the

same PS false detection rate. Using this methodology, we showed that PCPS identifies approximately

five times as many PS pixels as PS-InSAR in urban and natural terrain, an improvement predicted

in the original PS-InSAR paper [Ferretti et al., 2004].

We demonstrated that the PCPS selection technique can be applied as a modular stage within

existing PS frameworks, using StaMPS [Hooper, 2006] as an example. Our results with StaMPS

showed that the PCPS selection algorithm is able to extract deformation signatures across a variety

of geophysical phenomena, terrains, radar wavelengths, imaging geometries, and time scales.

There are several directions to further research the design and evaluation of algorithms to select

and utilize partially correlated persistent scatterers for deformation measurements. First, the fun-

damental performance of the PCPS selection technique requires deeper analysis. In future work, we

would like to quantify the effect of selection threshold on the accuracy of PS detection and resulting

deformation measurement, as well as the effect of decorrelation model mismatch on ML parameter

estimation. The performance of PCPS compared to non-PS methods such as the small-baseline

subset (SBAS) technique [Berardino et al., 2002] also remains to be investigated.

The integration of the PS selection stage into the broader PS algorithmic framework is another

area with large potential for fundamental improvements. By utilizing information extracted from

other stages of the pipeline prior to PCPS selection, and by passing on parameters estimated as a

byproduct of PCPS selection, we can improve each stage of the PS framework. For example, the

maximum likelihood estimates of each pixel’s SCR and temporal decorrelation rate may be combined

into confidence metrics for use in PS network phase unwrapping.

Finally, the studies presented in this chapter demonstrate the feasibility of the PCPS technique for

deformation measurements. However we have only begun to explore the application and performance

of the PCPS algorithm for real InSAR data. In future work, we plan to more thoroughly and

systematically quantify the results of PCPS deformation estimation on real data against ground
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truth measurements obtained through other sensing algorithms and modalities.



Chapter 6

Conclusion

6.1 Summary

Deformation measurements obtained by interferometric synthetic aperture radar play an important

role in understanding the Earth’s crustal processes. However conventional InSAR techniques are

limited in their ability to recover a coherent deformation signal when the radar imaging geometry

or surface scattering properties change significantly between radar passes. The decorrelation phe-

nomenon leads to a loss in image spatial coherence and can render large areas of the image unsuitable

for deformation measurements.

Persistent scatterer (PS) techniques can overcome these limitations by exploiting a subset of

intrinsically phase-stable pixels. Identifying such pixels is a crucial component of this analysis,

since phase unwrapping and subsequent deformation estimation on the spatially sparse PS network

depends on both pixel selection accuracy and the network density. PS techniques have been shown to

work well in urban areas with many strong, stable reflectors, but identifying an appropriate network

of pixels in natural or vegetated terrain remains a challenge due to other spatiotemporally varying

phase terms.

This thesis proposes an analytical and algorithmic approach to PS characterization and selection

in highly decorrelated areas. There are three main focuses of this work. First, we develop the

theory of partially correlated persistent scatterers, including parameterized scattering models and

derived statistical characterizations. Second, we apply this theoretical analysis in order to develop an

improved technique to identify and select PS pixels. Finally, we utilize the PCPS selection technique

with the StaMPS (Stanford Method for Persistent Scatterers) framework in order to measure crustal

deformation from a variety of InSAR data sets.

In Chapter 3, we presented a new radar scattering model that relates the PCPS signal moments

to physical properties of the surface. From this scattering model, we derived a new analytic model

111
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for the spatiotemporal decorrelation of persistent scatterers as a function of baseline and signal-to-

clutter ratio (SCR). This model quantifies the partial correlation of persistent scatterer pixels over

large baselines, providing a means to characterize and compare the phase stability of PS, non-PS,

and ideal point scatterer pixels.

In Chapter 4, we presented a more complete statistical characterization of the PS decorrelation

phase statistics, derived from PS scattering principles. We used the PCPS backscattering model and

interferometric stack system model in Chapter 3 to derive the joint phase-amplitude distribution

for the entire stack of pixels as a function of SCR and spatial baseline. We show that the new PS

backscatter model and resulting distribution fit simulated data better than previous analysis.

In Chapter 5, we presented an algorithm for improved PS selection based on the analysis of

the previous chapters. This method optimally combines the full stack of phase and amplitude

observations, as well as information about the spatiotemporal baselines. We performed a case study

demonstrating the improved performance in terms of PS identification and false detection compared

other PS selection methods. Using the general StaMPS framework for PS deformation measurement,

we demonstrated that the PCPS selection algorithm can obtain deformation measurements for a

variety of radar data sets.

6.2 Future work

This thesis opens several directions for future exploration and improvement in all areas of PCPS

research: analysis and theory, algorithm development, and application. A few of these directions

are summarized below.

6.2.1 Analytic

The material presented here assumed one master SAR image with N slave images; i.e. the inter-

ferometric stack was formed as z = u0u. We can extend the analysis to every possible master-slave

pair by forming the interferometric stack as

Z = uuT . (6.1)

We also simplified our analysis by first assuming a time-invariant backscatter function f(x, y, t) =

f(x, y) and deriving the corresponding PDFs for spatial decorrelation. Temporal decorrelation was

then incorporated directly into the entries of the covariance matrix Γ. We can remove this simplifying

assumption in the future by modeling the temporal change in the backscatter function f(x, y, t).
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6.2.2 Algorithmic

The fundamental performance of the PCPS selection technique requires deeper analysis. In future

work, we would like to quantify the effect of selection threshold on the accuracy of PS detection

and resulting deformation measurement, as well as the effect of decorrelation model mismatch on

ML parameter estimation. The performance of PCPS compared to non-PS methods such as the

small-baseline subset (SBAS) technique [Berardino et al., 2002] also remains to be investigated.

The integration of the PS selection stage into the broader PS algorithmic framework is another

area with large potential for fundamental improvements. By utilizing information extracted from

other stages of the pipeline prior to PCPS selection, and by passing on parameters estimated as a

byproduct of PCPS selection, we can improve each stage of the PS framework. For example, the

maximum likelihood estimates of each pixel’s SCR and temporal decorrelation rate may be combined

into confidence metrics for use in PS network phase unwrapping.

6.2.3 Application

We have only begun to explore the application and performance of the PCPS algorithm for real

InSAR data. In future work, we plan to more thoroughly and systematically quantify the results

of PCPS deformation estimation on real data against ground truth measurements obtained through

other sensing algorithms and modalities.

Beyond deformation measurement, PCPS analysis can also be used for applications such as

change detection. The details of extending this analysis to such applications are to be developed.

6.3 Closing remarks

In this thesis, we presented new theory and techniques for generalized PS analysis based on partially

correlated persistent scatterers (PCPS): those that are non-ideal but stable enough for deformation

time series measurement in largely decorrelated areas. We derived a new physically-based method

for modeling spatiotemporal decorrelation, as well as a comprehensive statistical characterization

of the resulting interferometric pixels. We showed that these analytical results lay a theoretical

foundation for PCPS algorithm development.

Based on this analysis, we designed a more reliable PS selection technique that combines the full

set of interferometric observations as a function of their acquisition intervals. The PCPS technique

achieves a better trade-off between pixel selection accuracy and network density compared to other

PS identification methods. Finally, we presented examples of deformation measurements obtained

using PCPS analysis. These results demonstrate that through improved statistical characterization,

the PCPS technique attains reliable deformation measurements for a variety of wavelengths, terrain,

and geophysical processes.
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The main contributions of this thesis thus lie in the analysis, algorithms, and application of PCPS

techniques. We hope that this work opens the door to future research on PCPS and improvement

in InSAR deformation measurement technology.
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