Partition Functions and Ideal Gases PFIG-1

You've learned about partition functions and some uses, now we’ll explore
them in more depth using ideal monatomic, diatomic and polyatomic gases!

Before we start, remember:

What are N, V, and T?

o,y - 3D

We now apply this to the ideal gas where:

1. The molecules are independent.
2. The number of states greatly exceeds the number of
molecules (assumption of low pressure).



ldeal monatomic gases PFIG-2

Where can we put energy into a monatomic gas”?

& = + &

atomic trans elec

Only into translational and electronic modes! ©

The total partition function is the product of the partition
functions from each degree of freedom:

Q(>/,T) = qtn\m(\/,T)qelec(\/,T)

Total atomic Translational atomic  Electronic atomic

partition function  partition function partition function vy

<}

L}

We'll consider both separately...



Translations of Ideal Gas: Uy (V.T) PFIG-3

— P&
General form of partition function: Ui ans = Ze Pean

states
Z
Recall from QM slides...
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a
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3ma

So what is (4 ?
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All three sums are the same because n,, n, n, have same form!
We can simplify expression to:



Qrqns 1S Nearly continuous PFIG-5

3
We'd like to solve this expression, Ah’n?
but there is no analytical solution Grans (V2 T) = ZGXP 8ma?
for the sum!

No fears... there is something we can do!

Since translational energy levels are spaced very close together, the
sum is nearly continuous function and we can approximate the sum as
an integral... which we can solve!

3
h°n’? ﬂ Work the

3ma? integral

qtrans (V ’T) — |:oj3 dn exp(_

/.

Note limit change

27mKgT
only way to solve but adds Qans V. T) = ( j \[/

very little error to result h < IA% X

as AN



Translational energy, (Eyan ) PFIG-6

With q we can calculate any thermodynamic quantity!!

In Ch 17 (BZ notes) we showed this for the average energy ...

3/2
<gtrans> — kBT 2 ( 0 Ina?_trans j Zﬂr;]\i(BT j vV

here... qtrans(V,T){

Vv

B 3/2 ]
<gtrans> = kBT2 ﬁ'ﬂ TS/Z(ZMT;kBj V
oT h y

As we found in BZ notes!

(Recall: this is per atom.) X AT 7]
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ldeal monatomic gas: U...(V.T) PFIG-7

Next consider the electronic contribution to Q: qelec

Again, start from the general - — P
form of g, but this time sum Qetec = Z J.i€ X
over levels rather than states: levels /‘ Energy
of level i
Degeneracy
of level i

We choose to set the lowest electronic energy state at zero, such that all
higher energy states are relative to the ground state.

&, =0

For monatomic gases!
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Can we simplify Qge.?

TABLE 4.1 (18_1)

Some atomic energy levels.”

= —pse —Pee
qelec(T)_ge1+geze 82+ge3e “e3 4.

Electron

terms are getting small rapidly...

Degeneracy

& =2l 4]

Energy/cm '

Atom configuration
. H ls
The electronic energy levels 2
are spaced far apart, and .
. 2p
therefore we typically only T
need to consider the first 152p
term or two in the series... | "
I:s"‘;p
1523
General rule of thumb: E Wia'ep

At 300 K, you only need to keep terms 152252 p*3s
where ¢, < 10° cm™ (e > 0.008)
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82258.942

82259.272
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159 850.318
166 271.70

0.
14 903.66
14904.00
27206.12

0.
404.0
102 406.50
102681.24
102 841.20
104 731.86
105 057.10

“From C.E. Moore, “Atomic Energy Levels” Natl. Bur: Std, Circ. 1 467,

U.S. Government Printing Office. Washington D.C.. 1949
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A closer look at electronic levels...

T 4.
— _ﬁgeZ _:Bge3 Saiful;iin:ﬂ:' LSI;IL‘I8'L'.\1 I)u\c[x."'
qelec(T) - ge1+9e29 +ge3e + ... &!

PFIG-9

Energy/cm '

Atom
General trends, §
1. Nobel gas atoms: .
€.,0= 10° cm (at 300K, keep ___term(s))
Li

2. Alkali metal gas atoms:
€.0 = 10% cm' (at 300K, keep ___term(s))
3. Halogen gas atoms: I;
€.0 = 102 cm' (at 300K, keep ___term(s))

Electron Degeneracy
configuration 2. =20
ls 2
2p 2
25 2
2p B
15 I
1s2p 3

I
15225 2
1s*2p 2
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oore, “Atomic Energy Levels™ Natl. Bur. Std, Circ. 1 467,
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Final look at e PFIG-10

In general it is sufficient to keep only the first two terms for OIe|eC

qelec (T) ~ gel T geZe_IBgez

However, you should always keep in mind that for very high
temperatures (like on the sun) or smaller values of ¢ (like in F) that
additional terms may contribute.

If you find that the second term is of reasonable magnitude (>1% of
first term), then you must check to see that the third term can be
neglected.
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Finally... we can solve for Q! PFIG-11

For a monatomic ideal gas we have:

Q(N ,V,T) — (Qtrans(\/’T)l\Cllclelec(V’T))N

with

3/2
ZﬂkaTj y

qtrans(viT):( h2

qelec (T) ~ gel T geze_ﬁgez



Finding thermodynamic parameters... U PFIG-12

We can now calculate the average energy, U =(E)

U =(E)= kBTZ(a'”Qj . NkBTZ(alnqj _ NkBTz(alnq”a“Sqe'%j
o ) o ), o)

Plug in Q;5,s @Nd Qgjec ---

e e
Vv
U

= Nk T + Ngezgeze_ﬁgez — Electronip

contribution
2 q typically small
elec (i.e., negligible)
So ... U = or U = &
— .

molar energy



Finding thermodynamic parameters... C,,

Molar heat capacity for a monatomic ideal gas:

<
dT )y

3xr)|
Cy = =—R
dT 2
N,V
3
Could also find heat capacity: CV — E NkB

PFIG-13



Finding thermodynamic parameters... P PFIG-14

P = kBT(aanj — NkBT(alnqj — NkBT(aln(qtransqelec)j
N I+ N - oV ]

Plug in Q;5,s @Nd Qgjec ---

o 27mk, T\ "
P= NkBT[G_Vln[( . B j /V(gel +g,,8 " )]]

Only function of V

T

So... P = or 52
e

Look familiar?? molar pressure vy



ldeal Monatomic Gas: A Summary PFIG-15
Partition Function: Q(N,V,T) = q(V’T)N

N!
3/2
Chrans (V1 T) = (27”2'; BT) Vo Oaec(T) ® Qe + €

<66 O wol4

3 (moI??r)
Energy U zENkBT U :ERT

Heat Capacity

Pressure



Adding complexity... diatomic molecules PFIG-16

In addition to trans. and elec. degrees of freedom, we need to consider:

1. Rotations
2. Vibrations
g/diatomic o ‘;rans T ‘S/:rot T gi/ib T gelei
Translational Rotational Vibrational Electronic

Total Energy Energy Energy Energy Energy
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Diatomic Partition Function PFIG-17

Q. What will the form of the molecular diatomic partition function be given:

= +&., +Eu +E

gdiatomic trans rot elec ?

Ans.

Q. How will this give us the diatomic partition function?

Ans.

Now all we need to know is the form of Girans , Yrot , Yetec , and Gy, -

Start with Yirans: This is the same as in the monatomic case but with m = m,+m,)!

W W
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Diatomic Gases: 4. PFIG-18

We define the zero of the electronic
energy to be separated atoms at
rest in their ground electronic
energy states.

With this definition,
&, =—D,

1

And...

Note the slight difference in g,
between monatomic and diatomic
gases!

Figure 18.2



	Partition Functions and Ideal Gases
	Ideal monatomic gases
	Translations of Ideal Gas:	  	           
	Let’s simplify qtrans …
	qtrans is nearly continuous
	Translational energy, 		
	Ideal monatomic gas: 		
	Can we simplify qelec?
	A closer look at electronic levels…
	Final look at 
	Finally… we can solve for Q!
	Finding thermodynamic parameters… U
	Finding thermodynamic parameters… CV
	Finding thermodynamic parameters… P
	Ideal Monatomic Gas: A Summary
	Adding complexity… diatomic molecules
	Diatomic Partition Function
	Diatomic Gases: 

