Partition Functions and Ideal Gases PFIG-1

You've learned about partition functions and some uses, now we'll explore them in more depth using ideal monatomic, diatomic and polyatomic gases!

Before we start, remember:

$$Q(N,V,T) = \frac{q(V,T)^{N}}{N!}$$

What are N, V, and T?

We now apply this to the ideal gas where:

- 1. The molecules are independent.
- 2. The number of states greatly exceeds the number of molecules (assumption of low pressure).

Ideal monatomic gases

Where can we put energy into a monatomic gas?

$$\mathcal{E}_{atomic} = \mathcal{E}_{trans} + \mathcal{E}_{elec}$$

Only into translational and electronic modes! ©

The total partition function is the product of the partition functions from each degree of freedom:

$$q(V,T) = q_{trans}(V,T)q_{elec}(V,T)$$

$$\int Translational atomic partition function partition function partition function partition function functio$$

We'll consider both separately...

Translations of Ideal Gas: $q_{trans}(V,T)$ **PFIG-3**

So what is q_{trans} ?

Let's simplify q_{trans} ...

PFIG-4

$$q_{trans} = \sum_{n_x, n_y, n_z=1}^{\infty} e^{-\beta \varepsilon_{n_x, n_y, n_z}} = \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} \exp\left[-\frac{\beta h^2}{8ma^2} \left(n_x^2 + n_y^2 + n_z^2\right)\right]$$

Recall: $e^{a+b+c} = e^a e^b e^c$
$$q_{trans} = \sum_{n_x=1}^{\infty} \exp\left(-\frac{\beta h^2 n_x^2}{8ma^2}\right) \sum_{n_y=1}^{\infty} \exp\left(-\frac{\beta h^2 n_y^2}{8ma^2}\right) \sum_{n_z=1}^{\infty} \exp\left(-\frac{\beta h^2 n_z^2}{8ma^2}\right)$$

All three sums are the same because n_x , n_y , n_z have same form! We can simplify expression to:

q_{trans} is nearly continuous

PFIG-5

We'd like to solve this expression, but there is no analytical solution for the sum!

$$q_{trans}(V,T) = \left[\sum_{n=1}^{\infty} \exp\left(-\frac{\beta h^2 n^2}{8ma^2}\right)\right]^3$$

No fears... there is something we can do!

Since translational energy levels are spaced <u>very close together</u>, the sum is <u>nearly continuous function</u> and we can approximate the sum as an integral... which we can solve!

$$q_{trans}(V,T) = \begin{bmatrix} \int_{0}^{\infty} dn \exp\left(-\frac{\beta h^{2} n^{2}}{8ma^{2}}\right) \end{bmatrix}^{3}$$
Work the integral
Note limit change ...
Note limit change ...
only way to solve but adds
very little error to result
$$q_{trans}(V,T) = \left(\frac{2\pi m k_{B}T}{h^{2}}\right)^{3/2} V$$

Translational energy, $\langle \mathcal{E}_{trans} \rangle$

With q we can calculate **any** thermodynamic quantity!!

In Ch 17 (BZ notes) we showed this for the average energy ...

$$\langle \mathcal{E}_{trans} \rangle = k_B T^2 \left(\frac{\partial \ln q_{trans}}{\partial T} \right)_V$$
 here... $q_{trans}(V,T) = \left(\frac{2\pi m k_B T}{h^2} \right)^{3/2} V$

$$\langle \varepsilon_{trans} \rangle = k_B T^2 \left(\frac{\partial}{\partial T} \ln \left[T^{3/2} \left(\frac{2\pi m k_B}{h^2} \right)^{3/2} V \right] \right)_V$$

As we found in BZ notes! (Recall: this is *per atom*.)

Ideal monatomic gas: $q_{elec}(V,T)$ PFIG-7

Next consider the electronic contribution to q: q_{elec}

Again, start from the general form of q, but this time sum over levels rather than states:

We choose to set the lowest electronic energy state at zero, such that all higher energy states are *relative* to the ground state.

 $\varepsilon_1 = 0$

For monatomic gases!

Can we simplify q_{elec} ?

+...

PFIG-8

$$q_{elec}(T) = g_{e1} + g_{e2}e^{-\beta\varepsilon_{e2}} + g_{e3}e^{-\beta\varepsilon_{e3}}$$

terms are getting small rapidly...

The electronic energy levels are spaced far apart, and therefore we *typically only need to consider the first term or two in the series...*

General rule of thumb: At 300 K, you only need to keep terms where $\varepsilon_{ej} < 10^3 \text{ cm}^{-1}$ (e^{- $\beta \varepsilon$} > 0.008)

Atom	Electron configuration	Degeneracy $g_e = 2J + 1$	Energy/cm ⁻
Н	1 <i>s</i>	2	0.
	2 <i>p</i>	2	82 258.907
	2 <i>s</i>	2	82 258.942
	2p	4	82 259.272
Не	1 <i>s</i> ²	1	0.
	1s2p	3	159 850.318
		1	166 271.70
Li	$1s^2 2s$	2	0.
	$1s^22p$	2	14 903.66
		4	14904.00
	$1s^2 3s$	2	27 206.12
F	$1s^2 2s^2 2p^5$	4	0.
		2	404.0
	$1s^2 2s^2 2p^4 3s$	6	102 406.50
		4	102 681.24
		2	102 841.20
		4	104 731.86
		2	105 057.10

^a From C.E. Moore, "Atomic Energy Levels" Natl. Bur. Std, Circ. 1 467,

U.S. Government Printing Office, Washington D.C., 1949

TABLE 4.1 (18.1)

A closer look at electronic levels...

PFIG-9

$q_{1}(T) = q_{1} + q_{2}e^{-\beta\varepsilon_{e2}} + q_{2}e^{-\beta\varepsilon_{e3}} + \dots$	Some atomic energy levels. ^{<i>a</i>}			
Telec (=) Bel Be2 Be3	Atom	Electron configuration	Degeneracy $g_e = 2J + 1$	Energy/cm ⁻¹
Conoral tranda	Н	1 <i>s</i>	2	0.
General trends,		2p	2	82 258.907
		2 <i>s</i>	2	82 258.942
1 Nahal gaa atama		2p	4	82 259.272
1. Nobel gas atoms:	He	1 <i>s</i> ²	1	0.
$\epsilon_{e^2} = 10^5 \text{ cm}^{-1}$ (at 300K, keep term(s	S))	1s2p	3	159 850.318
	,,		1	166 271.70
O Allyali matal maa atamaa	Li	$1s^2 2s$	2	0.
2. Alkali metal gas atoms:		$1s^{2}2p$	2	14 903.66
$\epsilon_{0} = 10^{4} \text{ cm}^{-1}$ (at 300K keep te	rm(s)		4	14 904.00
	(0))	$1s^2 3s$	2	27 206.12
	F	$1s^2 2s^2 2p^5$	4	0.
3. Halogen gas atoms:			2	404.0
$s = 10^2 \text{ cm}^{-1}$ (at 300K keep to	erm(s))	$1s^2 2s^2 2p^4 3s$	6	102 406.50
$\epsilon_{e2} = 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$			4	102 681.24
			2	102 841.20
			4	104 731.86
			2	105 057.10

^a From C.E. Moore, "Atomic Energy Levels" Natl. Bur. Std, Circ. 1 467,

U.S. Government Printing Office, Washington D.C., 1949

Final look at Q_{elec}

In general it is sufficient to keep only the first two terms for q_{elec}

$$q_{elec}(T) \approx g_{e1} + g_{e2} e^{-\beta \varepsilon_{e2}}$$

However, you should always keep in mind that for very high temperatures (like on the sun) or smaller values of ε_{ej} (like in F) that additional terms may contribute.

If you find that the second term is of reasonable magnitude (>1% of first term), then you must check to see that the third term can be neglected.

Finally... we can solve for *Q*!

For a *monatomic ideal gas* we have:

$$Q(N,V,T) = \frac{\left(q_{trans}(V,T)q_{elec}(V,T)\right)^{N}}{N!}$$

with

$$q_{trans}(V,T) = \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2} V$$

$$q_{elec}(T) \approx g_{e1} + g_{e2} e^{-\beta \varepsilon_{e2}}$$

Finding thermodynamic parameters... U PFIG-12

We can now calculate the average energy, $U = \langle E \rangle$

$$U = \langle E \rangle = k_B T^2 \left(\frac{\partial \ln Q}{\partial T} \right)_V = N k_B T^2 \left(\frac{\partial \ln q}{\partial T} \right)_V = N k_B T^2 \left(\frac{\partial \ln q}{\partial T} \right)_V$$

Plug in
$$q_{trans}$$
 and q_{elec} ...

$$U = Nk_B T^2 \left(\frac{\partial}{\partial T} \ln \left(\left(\frac{2\pi m k_B T}{h^2} \right)^{3/2} V \left(g_{e1} + g_{e2} e^{-\beta \varepsilon_{e2}} \right) \right) \right)_V$$

Finding thermodynamic parameters... C_V PFIG-13

Molar heat capacity for a *monatomic ideal gas*:

$$\overline{C}_{V} = \left(\frac{d\overline{U}}{dT}\right)_{N,V}$$

$$\overline{C}_{V} = \left(\frac{d\left(\frac{3}{2}RT\right)}{dT}\right)_{N,V} = \frac{3}{2}R$$

Could also find heat capacity:

$$C_V = \frac{3}{2}Nk_B$$

Finding thermodynamic parameters... P PFIG-14

$$P = k_B T \left(\frac{\partial \ln Q}{\partial V}\right)_{N,T} = N k_B T \left(\frac{\partial \ln q}{\partial V}\right)_T = N k_B T \left(\frac{\partial \ln (q_{trans} q_{elec})}{\partial V}\right)_T$$

Plug in
$$q_{trans}$$
 and q_{elec} ...

$$P = Nk_{B}T \left(\frac{\partial}{\partial V} \ln \left(\left(\frac{2\pi m k_{B}T}{h^{2}} \right)^{3/2} V \left(g_{e1} + g_{e2}e^{-\beta\varepsilon_{e2}} \right) \right) \right)_{T}$$

Only function of V

So... P = or $\overline{P} =$ Look familiar??

Ideal Monatomic Gas: A Summary PFIG-15

Energy

Partition Function:

$$Q(N,V,T) = \frac{q(V,T)^{N}}{N!}$$

$$q_{trans}(V,T) = \left(\frac{2\pi m k_{B}T}{h^{2}}\right)^{3/2} V \qquad q_{elec}(T) \approx g_{e1} + g_{e2}e^{-\beta\varepsilon_{e2}}$$
(molar)
$$U \approx \frac{3}{2}Nk_{B}T \qquad \overline{U} = \frac{3}{2}RT$$

Heat Capacity

Pressure

Adding complexity... diatomic molecules PFIG-16

In addition to trans. and elec. degrees of freedom, we need to consider:

- 1. Rotations
- 2. Vibrations

Diatomic Partition Function

Q. What will the form of the molecular diatomic partition function be given:

$$\varepsilon_{diatomic} = \varepsilon_{trans} + \varepsilon_{rot} + \varepsilon_{vib} + \varepsilon_{elec}?$$

Ans.

Q. How will this give us the diatomic partition function?

Ans.

Now all we need to know is the form of q_{trans} , q_{rot} , q_{elec} , and q_{vib} .

Start with q_{trans} : This is the same as in the monatomic case but with m = m₁+m₂!

Diatomic Gases: *q*_{elec}

We define the zero of the electronic energy to be separated atoms at rest in their ground electronic energy states.

With this definition,

$$\mathcal{E}_{e_1} = -D_e$$

And...

Note the slight difference in q_{elec} between monatomic and diatomic gases!

