0.0:0000

What is the difference between a rhombus and a kite (think about the diagonals)

Parts of a Trapezoid..

Definition:

Parts of a Trapezoid...

Definition:

Parts of a Trapezuid...

Definition:
Quad w/ only 1 pair opp sides II

Parts of a Trapezoid...

Definition:
Quad w/ only 1 pair opp sides II

Parts of a Trapezoid...

Definition:
Quad w/ only 1 pair opp sides II

Parts of a Trapezid...

Parts of a Trapezoid...

Definition:

Parts of a Trapezoid...

Parts of a Trapezoid...

Definition:
Quad w/only 1 pair upp sides II

Parts of a Trapezoid...

Definition:

Parts of a Trapezoid...

Definition:
Quad w/only 1 pair upp sides II

Parts of a Trapezoid...

Definition:

$$
\text { Quad w/ only } 1 \text { pair opp sides II }
$$

Parts of a Trapezoid...

Base
Quad w/ only 1 pair opp sides II

Properties of a Trapezoid...

What can you say about:
$\angle A \& \angle D ?$
$\angle B \& \angle C ?$

Properties of a Trapezoid...

What can you say about:
$\angle A \& \angle D$?
$\angle B \& \angle C$?

Properties of a Trapezoid...

What can you say about:
$\angle A \& \angle D$?
$\angle B \& \angle C$?

Properties of a Trapezoid...

What can you say about:
$\angle A \& \angle D$?
$\angle B \& \angle C$?

Properties of a Trapezoid...

What can you say about:

$$
\left.\begin{array}{l}
\angle A \& \angle D \\
\angle B \& \angle C
\end{array}\right\} \begin{aligned}
& \text { are } \\
& \text { supplemental }
\end{aligned}
$$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Conjecture:
$\angle A \& \angle B ?$
$\angle C \& \angle D ?$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Conjecture:

$$
\begin{aligned}
& \angle A \cong \angle B \\
& \angle C \cong \angle D
\end{aligned}
$$

What would you conjecture about the base L 's of an Isosceles Trapezoid?
Given: Isos Trap $A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D$ (base $\angle ' s \cong$)

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Isos $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D \quad($ base $\angle ' s \cong)$
Construct a parallelogram inside the trap...

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Isos $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D$ (base \angle 's \cong)
Construct pt E so $\overline{A E} \| \overline{R C}$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: $I_{\text {sos }} \operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D$ (base \angle 's \cong)
Construct pt E so $\overline{A E} \| \overline{R C}$ i.e. $A B=E C$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Ios $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{B C}$ i.e. $A B=E C$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: $I_{\text {sos }} \operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D \quad($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{R C}$ ie. $A B=E C$
$A B C E$ is a parallelogram (defn of \square)

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Ios $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{B C}$ i.e. $A B=E C$ $A B C E$ is a parallelogram (defn of \square) $\overline{A E} \cong \overline{B C}($ the 6.1)

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: $I_{\text {sos }} \operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D \quad($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{R C}$ i.e. $A B=E C$
$A B C E$ is a parallelogram (defn of
$\square)$

$$
\overline{A E} \cong \overline{B C}(\text { the } 6.1)
$$

$\angle C \cong \angle A E D$ (corr angle tho)

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Ios $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D \quad($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{B C}$ i.e. $A B=E C$
$A B C E$ is a parallelogram (defn of \square)

$$
\begin{aligned}
& \overline{A E} \cong \overline{B C} \text { (the 6.1) } \\
& \angle C \cong \angle A E D \text { (corr angle the) } \\
& \angle A E D \cong \angle D(\text { sos } \Delta \text { the })
\end{aligned}
$$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Isos $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D \quad($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{B C}$ i.e. $A B=E C$
$A B C E$ is a parallelogram (defn of \square $\overline{A E} \cong \overline{B C}$ (the 6.1) $\angle C \cong \angle A E D$ (corr angle the) $\angle A E D \cong \angle D$ (isos \triangle the $)$ $\angle C \cong \angle D$ (trans $P O C)$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Ios $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D$ (base $\angle ' s \cong$)
Construct pt E so $\overline{A E} \| \overline{R C}$ i.e. $A B=E C$ $A B C E$ is a parallelogram (defn of \square) $\overline{A E} \cong \overline{B C}$ (the 6.1) $\angle C \cong \angle A E D$ (corr angle the) $\angle A E D \cong \angle D$ (iss \triangle the $)$ $\angle C \cong \angle D(\operatorname{trans} P O C)$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: $I_{\text {sos }} \operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D \quad($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{B C}$ i.e. $A B=E C$
$A B C E$ is a parallelogram (defn of \square $\overline{A E} \cong \overline{B C}$ (the 6.1) $\angle C \cong \angle A E D$ (corr angle the) $\angle A E D \cong \angle D$ (isos \triangle the $)$ $\angle C \cong \angle D$ (trans $P O C)$

$\angle A, \angle D$ and $\angle B, \angle C$ are suppl pairs (SSI \angle the $)$

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: Ios $\operatorname{Trap} A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D$ (base $\angle ' s \cong$)
Construct pt E so $\overline{A E} \| \overline{R C}$ i.e. $A B=E C$ $A B C E$ is a parallelogram (defn of \square) $\overline{A E} \cong \overline{B C}$ (the 6.1) $\angle C \cong \angle A E D$ (corr angle the) $\angle A E D \cong \angle D$ (iss Δ the $)$ $\angle C \cong \angle D($ trans $P O C)$

$\angle A, \angle D$ and $\angle B, \angle C$ are suppl pairs (SSI \angle the)
$\angle A \cong \angle B$ (hm 2-2, \cong supplements the $)$

What would you conjecture about the base \angle 's of an Isosceles Trapezoid?

Given: Ios Trap $A B C D, \overline{A D} \cong \overline{B C}, \overline{A R} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D($ base $\angle ' s \cong)$
Construct pt E so $\overline{A E} \| \overline{R C}$ i.e. $A B=E C$ $A B C E$ is a parallelogram (defn of \square) $\overline{A E} \cong \overline{B C}$ (thy 6.1) $\angle C \cong \angle A E D$ (corr angle the) $\angle A E D \cong \angle D$ (iss \triangle the $)$ $\angle C \cong \angle D$ (trans $P O C$)

$\angle A, \angle D$ and $\angle B, \angle C$ are suppl pairs (SSI \angle ohm)
$\angle A \cong \angle B$ (hm 2-2, \cong supplements the $)$
QED

What would you conjecture about the base L 's of an Isosceles Trapezoid?

Given: sos Trap $A B C D, \overline{A D} \cong \overline{B C}, \overline{A B} \| \overline{C D}$
Prove: $\angle A \cong \angle B, \angle C \cong \angle D$ (base $\angle ' s \cong$)
Construct pt E so $\overline{A E} \| \overline{B C}$ i.e. $A B=E C$ $A B C E$ is a parallelogram (defn of \square) $\overline{A E} \cong \overline{B C}$ (hm 6.1)

$$
\angle C \cong \angle A E D \text { (corr angle tho) }
$$

$$
\angle A E D \cong \angle D(\text { iss } \Delta \text { tho })
$$

$\angle C \cong \angle D$ (trans POC)
$\angle A, \angle D$ and $\angle B, \angle C$ are suppl pairs (S SL \angle the)
$\angle A \cong \angle B$ (hm 2-2, \cong supplements the)
Theorem 6-15 $\begin{aligned} & \text { Both pair base L's of } \\ & \text { sos trap ane }\end{aligned}$ iss trap ane \cong

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...
$\overline{A D} \cong \overline{B C}$ de fa sos trap

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{R D}$
Prove it...

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...
(3) $\overline{A D} \cong \overline{B C}$ de fa sos trap
(A) $\angle D A B \cong \angle A B C$

Basel's isos trap き
(3) $\overline{A B} \cong \overline{A B}$ Refl $P O C$
$\triangle D A B \cong \triangle C B A \quad S A S$

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...
(3) $\overline{A D} \cong \overline{B C}$ defy isos trap
(A) $\angle D A B \cong \angle A B C$ Base C 's sos trap \cong
(5) $\overline{A B} \cong \overline{A B}$ Refl $P O C$

$$
\begin{aligned}
& \triangle \triangle A B \cong \triangle \triangle B A \quad S A S \\
& \overline{A C} \cong \overline{B D} \quad C P C T C
\end{aligned}
$$

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...
(3) $\overline{A D} \cong \overline{B C}$ de fa sos trap
(A) $\angle D A B \cong \angle A B C$ Basel's isos trap き

$$
\overline{A C} \cong \overline{B D} \quad C P C T C
$$

What would you conjecture about the diagonals of an Isosceles Trapezoid?

Conjecture: $\overline{A C} \cong \overline{B D}$
Prove it...
(3) $\overline{A D} \cong \overline{B C}$ de fa sos trap
(A) $\angle D A B \cong \angle A B C$

Basel's isos trap き

$$
\overline{A C} \cong \overline{B D} \quad C P C T C
$$

1 meas angle $Y=$

2 meas angle $Z=$

..back

1 meas angle $\mathbf{A}=$

2 meas angle $B=$

3 meas angle C =

Spider web formed by layers of congruent isosceles trapezoids..

1) $m \angle A=$?
2) $m \angle B=$?
3) $m \angle C=$?

4) $m \angle D=$?
...back

Kites

Properties

Kites

Form a conjecture about the diagonals...

Kites

Form a conjecture about the diagonals...
Hf \perp EG

Form a conjecture about the diagonals...

$$
H F \perp E G
$$

Kites

Form a conjecture about the diagonals...

$$
H F \perp E G
$$

 pt F is equidist fin endpts of $\overline{E G}$ $p+F$ is on perpendicalaw bisector of $\overline{E G}(\mathcal{G}$ conk. bis chm)

Form a conjecture about the diagonals...
$H F \perp E G$

pt F is equidist $f m$ endpts of $\overline{E G}$ $p+F$ is on perpendicalar bisedor of $\overline{E G}(\perp$ conv. bis thm) likenise $\omega / p+H$.

Kites

Form a conjecture about the diagonals...
$H F \perp E G$

pt F is equidist fim endpts of $\overline{E G}$ $p+F$ is on perpendicalar bisector of $\overline{E G}(\perp$ conv. this $)$ likenise $w / p+H$.

$$
\therefore \overline{F H} \perp \overline{E G}
$$

Kites

Form a conjecture about the diagonals...
$H F \perp E G$

pt F is equidist fy endpts of $\overline{E G}$ $p+F$ is on perpendicalar bisector of $\overline{E G}(\perp$ conv. this $)$ likenise w/pt H.

$$
\therefore \overline{F H} \perp \overline{E G}
$$

Kites
Form a conjecture about the diagonals...
$H F \perp E G$

pt F is equidist fim endpts of $\overline{E G}$ $p+F$ is on perpendicalar bisedor of $\overline{E G}(\perp$ conv. bis thm) likenise $w / p+H$.

$$
\therefore \overline{F H} \perp \overline{E G} \rightarrow T h m 6-17
$$

Kites

Form a conjecture about the diagonals...

$$
H F \perp E G
$$

pt F is equidist fy endpts of $\overline{E G}$ $p+F$ is on perpendicular bisector of $\overline{E G}(\perp$ conks the) likewise $w / p+H$.

$$
\therefore \overline{F H} \perp \overline{E G}
$$

1 meas angle $1=$

2 meas angle 2 =

Back...

L6-5 HW Problems

Pg 322 \# 1-15 odd, 18, $21-25$ odd,
27-29,
45-49

