
http://www.tutorialspoint.com/pascal/pascal_quick_guide.htm Copyright © tutorialspoint.com

PASCAL - QUICK GUIDEPASCAL - QUICK GUIDE

PASCAL - OVERVIEWPASCAL - OVERVIEW
Pascal is a general-purpose, high-level language that was originally developed by Niklaus Wirth in
the early 1970s. It was developed for teaching programming as a systematic discipline and to
develop reliable and efficient programs.

Pascal is Algol-based language and includes many constructs of Algol. Algol 60 is a subset of
Pascal. Pascal offers several data types and programming structures. It is easy to understand and
maintain the Pascal programs.

Pascal has grown in popularity in the teaching and academics arena for various reasons:

Easy to learn.

Structured language.

It produces transparent, efficient and reliable programs.

It can be compiled on a variety of computer platforms.

Features of the Pascal Language
Pascal has the following features −

Pascal is a strongly typed language.

It offers extensive error checking.

It offers several data types like arrays, records, files and sets.

It offers a variety of programming structures.

It supports structured programming through functions and procedures.

It supports object oriented programming.

Facts about Pascal
The Pascal language was named for Blaise Pascal, French mathematician and pioneer in
computer development.

Niklaus Wirth completed development of the original Pascal programming language in 1970.

Pascal is based on the block structured style of the Algol programming language.

Pascal was developed as a language suitable for teaching programming as a systematic
discipline, whose implementations could be both reliable and efficient.

The ISO 7185 Pascal Standard was originally published in 1983.

Pascal was the primary high-level language used for development in the Apple Lisa, and in
the early years of the Mac.

In 1986, Apple Computer released the first Object Pascal implementation, and in 1993, the
Pascal Standards Committee published an Object-Oriented Extension to Pascal.

Why to use Pascal?
Pascal allows the programmers to define complex structured data types and build dynamic and
recursive data structures, such as lists, trees and graphs. Pascal offers features like records,
enumerations, subranges, dynamically allocated variables with associated pointers and sets.

http://www.tutorialspoint.com/pascal/pascal_quick_guide.htm

Pascal allows nested procedure definitions to any level of depth. This truly provides a great
programming environment for learning programming as a systematic discipline based on the
fundamental concepts.

Among the most amazing implementations of Pascal are −

Skype

Total Commander

TeX

Macromedia Captivate

Apple Lisa

Various PC Games

Embedded Systems

PASCAL - ENVIRONMENT SET UPPASCAL - ENVIRONMENT SET UP
There are several Pascal compilers and interpreters available for general use. Among these are −

Turbo Pascal − provides an IDE and compiler for running Pascal programs on CP/M, CP/M-
86, DOS, Windows and Macintosh.

Delphi − provides compilers for running Object Pascal and generates native code for 32-
and 64-bit Windows operating systems, as well as 32-bit Mac OS X and iOS. Embarcadero is
planning to build support for the Linux and Android operating system.

Free Pascal − it is a free compiler for running Pascal and Object Pascal programs. Free
Pascal compiler is a 32- and 64-bit Turbo Pascal and Delphi compatible Pascal compiler for
Linux, Windows, OS/2, FreeBSD, Mac OS X, DOS and several other platforms.

Turbo51 − It is a free Pascal compiler for the 8051 family of microcontrollers, with Turbo
Pascal 7 syntax.

Oxygene − It is an Object Pascal compiler for the .NET and Mono platforms.

GNU Pascal (GPC) − It is a Pascal compiler composed of a front end to GNU Compiler
Collection.

We will be using Free Pascal in these tutorials. You can download Free Pascal for your operating
system from the link: Download Free Pascal

Installing Free Pascal on Linux
The Linux distribution of Free Pascal comes in three forms −

a tar.gz version, also available as separate files.

a .rpm (Red Hat Package Manager) version.

a .deb (Debian) version.

Installation code for the .rpm version::

rpm -i fpc-X.Y.Z-N.ARCH.rpm

Where X.Y.Z is the version number of the .rpm file, and ARCH is one of the supported architectures
(i386, x86_64, etc.).

Installation code for the Debian version (like Ubuntu):

dpkg -i fpc-XXX.deb

http://www.freepascal.org/download.var

Where XXX is the version number of the .deb file.

For details read: Free Pascal Installation Guide

Installing Free Pascal on Mac
If you use Mac OS X, the easiest way to use Free Pascal is to download the Xcode development
environment from Apple's web site and follow the simple installation instructions. Once you have
Xcode setup, you will be able to use the Free Pascal compiler.

Installing Free Pascal on Windows
For Windows, you will download the Windows installer, setup.exe. This is a usual installation
program. You need to take the following steps for installation −

Select a directory.

Select parts of the package you want to install.

Optionally choose to associate the .pp or .pas extensions with the Free Pascal IDE.

For details read: Free Pascal Installation Guide

Text Editor
This will be used to type your program. Examples of few editors include Windows Notepad, OS Edit
command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. For example, Notepad
will be used on Windows and vim or vi can be used on windows as well as Linux or UNIX.

The files you create with your editor are called source files and contain program source code. The
source files for Pascal programs are typically named with the extension .pas.

Before starting your programming, make sure you have one text editor in place and you have
enough experience to write a computer program, save it in a file, compile it and finally execute it.

PASCAL - PROGRAM STRUCTURESPASCAL - PROGRAM STRUCTURES
Before we study basic building blocks of the Pascal programming language, let us look a bare
minimum Pascal program structure so that we can take it as a reference in upcoming chapters.

Pascal Program Structure
A Pascal program basically consists of the following parts −

Program name
Uses command
Type declarations
Constant declarations
Variables declarations
Functions declarations
Procedures declarations
Main program block
Statements and Expressions within each block
Comments

Every pascal program generally have a heading statement, a declaration and an execution part
strictly in that order. Following format shows the basic syntax for a Pascal program −

http://www.freepascal.org/docs-html/user/usersu5.html
http://www.freepascal.org/docs-html/user/usersu3.html

program {name of the program}
uses {comma delimited names of libraries you use}
const {global constant declaration block}
var {global variable declaration block}

function {function declarations, if any}
{ local variables }
begin
...
end;

procedure { procedure declarations, if any}
{ local variables }
begin
...
end;

begin { main program block starts}
...
end. { the end of main program block }

Pascal Hello World Example
Following is a simple pascal code that would print the words "Hello, World!":

program HelloWorld;
uses crt;

(* Here the main program block starts *)
begin
 writeln('Hello, World!');
 readkey;
end.

This will produce following result −

Hello, World!

Let us look various parts of the above program −

The first line of the program program HelloWorld; indicates the name of the program.

The second line of the program uses crt; is a preprocessor command, which tells the
compiler to include the crt unit before going to actual compilation.

The next lines enclosed within begin and end statements are the main program block. Every
block in Pascal is enclosed within a begin statement and an end statement. However, the
end statement indicating the end of the main program is followed by a full stop (.) instead of
semicolon (;).

The begin statement of the main program block is where the program execution begins.

The lines within (*...*) will be ignored by the compiler and it has been put to add a comment
in the program.

The statement writeln('Hello, World!'); uses the writeln function available in Pascal which
causes the message "Hello, World!" to be displayed on the screen.

The statement readkey; allows the display to pause until the user presses a key. It is part of
the crt unit. A unit is like a library in Pascal.

The last statement end. ends your program.

Compile and Execute Pascal Program
Open a text editor and add the above-mentioned code.

Save the file as hello.pas

Open a command prompt and go to the directory, where you saved the file.

Type fpc hello.pas at command prompt and press enter to compile your code.

If there are no errors in your code, the command prompt will take you to the next line and
would generate hello executable file and hello.o object file.

Now, type hello at command prompt to execute your program.

You will be able to see "Hello World" printed on the screen and program waits till you press
any key.

$ fpc hello.pas
Free Pascal Compiler version 2.6.0 [2011/12/23] for x86_64
Copyright (c) 1993-2011 by Florian Klaempfl and others
Target OS: Linux for x86-64
Compiling hello.pas
Linking hello
8 lines compiled, 0.1 sec

$./hello
Hello, World!

Make sure that free pascal compiler fpc is in your path and that you are running it in the directory
containing source file hello.pas.

PASCAL - BASIC SYNTAXPASCAL - BASIC SYNTAX
You have seen a basic structure of pascal program, so it will be easy to understand other basic
building blocks of the pascal programming language.

Variables
A variable definition is put in a block beginning with a var keyword, followed by definitions of the
variables as follows:

var
A_Variable, B_Variable ... : Variable_Type;

Pascal variables are declared outside the code-body of the function which means they are not
declared within the begin and end pairs, but they are declared after the definition of the
procedure/function and before the begin keyword. For global variables, they are defined after the
program header.

Functions/Procedures
In Pascal, a procedure is set of instructions to be executed, with no return value and a function is
a procedure with a return value. The definition of function/procedures will be as follows −

Function Func_Name(params...) : Return_Value;
Procedure Proc_Name(params...);

Comments
The multiline comments are enclosed within curly brackets and asterisks as {* ... *}. Pascal allows
single-line comment enclosed within curly brackets { ... }.

{* This is a multi-line comments
 and it will span multiple lines. *}

{ This is a single line comment in pascal }

Case Sensitivity
Pascal is a case non-sensitive language, which means you can write your variables, functions and
procedure in either case. Like variables A_Variable, a_variable and A_VARIABLE have same
meaning in Pascal.

Pascal Statements
Pascal programs are made of statements. Each statement specifies a definite job of the program.
These jobs could be declaration, assignment, reading data, writing data, taking logical decisions,
transferring program flow control, etc.

For example −

readln (a, b, c);
s := (a + b + c)/2.0;
area := sqrt(s * (s - a)*(s-b)*(s-c));
writeln(area);

Reserved Words in Pascal
The statements in Pascal are designed with some specific Pascal words, which are called the
reserved words. For example, the words, program, input, output, var, real, begin, readline,
writeline and end are all reserved words.

Following is a list of reserved words available in Pascal.

and array begin case const

div do downto else end

file for function goto if

in label mod nil not

of or packed procedure program

record repeat set then to

type until var while with

Character set and Identifiers in Pascal
The Pascal character set consists of −

All upper case letters (A-Z)

All lower case letters (a-z)

All digits (0-9)

Special symbols - + * / := , . ;. () [] = {} ` white space

The entities in a Pascal program like variables and constants, types, functions, procedures and
records, etc., have a name or identifier. An identifier is a sequence of letters and digits, beginning
with a letter. Special symbols and blanks must not be used in an identifier.

PASCAL - DATA TYPESPASCAL - DATA TYPES
Data types of an entity indicates the meaning, constraints, possible values, operations, functions
and mode of storage associated with it.

Integer, real, Boolean and character types are referred as standard data types. Data types can be

categorized as scalar, pointer and structured data types. Examples of scalar data types are
integer, real, Boolean, character, subrange and enumerated. Structured data types are made of
the scalar types; for example, arrays, records, files and sets. We will discuss the pointer data types
later.

Pascal Data Types
Pascal data types can be summarized as below in the following diagram −

Type Declarations
The type declaration is used to declare the data type of an identifier. Syntax of type declaration is
−

 type-identifier-1, type-identfier-2 = type-specifier;

For example, the following declaration defines the variables days and age as integer type, yes and
true as Boolean type, name and city as string type, fees and expenses as real type.

type
days, age = integer;
yes, true = boolean;
name, city = string;
fees, expenses = real;

Integer Types
Following table gives you details about standard integer types with its storage sizes and value
ranges used in Object Pascal −

Type Minimum Maximum Format

Integer -2147483648 2147483647 signed 32-bit

Cardinal 0 4294967295 unsigned 32-bit

Shortint -128 127 signed 8-bit

Smallint -32768 32767 signed 16-bit

Longint -2147483648 2147483647 signed 32-bit

Int64 -2^63 2^63 - 1 signed 64-bit

Byte 0 255 unsigned 8-bit

Word 0 65535 unsigned 16-bit

Longword 0 4294967295 unsigned 32-bit

Constants
Use of constants makes a program more readable and helps to keep special quantities at one
place in the beginning of the program. Pascal allows numerical, logical, string and character
constants. Constants can be declared in the declaration part of the program by specifying the
const declaration.

Syntax of constant type declaration is follows −

const
Identifier = contant_value;

Following are some examples of constant declarations −

VELOCITY_LIGHT = 3.0E=10;
PIE = 3.141592;
NAME = 'Stuart Little';
CHOICE = yes;
OPERATOR = '+';

All constant declarations must be given before the variable declaration.

Enumerated types
Enumerated data types are user-defined data types. They allow values to be specified in a list.
Only assignment operators and relational operators are permitted on enumerated data type.
Enumerated data types can be declared as follows −

type
enum-identifier = (item1, item2, item3, ...)

Following are some examples of enumerated type declarations −

type
SUMMER = (April, May, June, July, September);
COLORS = (Red, Green, Blue, Yellow, Magenta, Cyan, Black, White);
TRANSPORT = (Bus, Train, Airplane, Ship);

The order in which the items are listed in the domain of an enumerated type defines the order of
the items. For example, in the enumerated type SUMMER, April comes before May, May comes
before June, and so on. The domain of enumerated type identifiers cannot consist of numeric or
character constants.

Subrange Types
Subrange types allow a variable to assume values that lie within a certain range. For example, if
the age of voters should lie between 18 to 100 years, a variable named age could be declared as
−

var
age: 18 ... 100;

We will look at variable declaration in detail in the next section. You can also define a subrange
type using the type declaration. Syntax for declaring a subrange type is as follows −

type
subrange-identifier = lower-limit ... upper-limit;

Following are some examples of subrange type declarations −

const
P = 18;
Q = 90;
type
Number = 1 ... 100;
Value = P ... Q;

Subrange types can be created from a subset of an already defined enumerated type, For
example −

type
months = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
Summer = Apr ... Aug;
Winter = Oct ... Dec;

PASCAL - VARIABLE TYPESPASCAL - VARIABLE TYPES
A variable is nothing but a name given to a storage area that our programs can manipulate. Each
variable in Pascal has a specific type, which determines the size and layout of the variable's
memory; the range of values that can be stored within that memory; and the set of operations that
can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must
begin with either a letter or an underscore. Pascal is not case-sensitive, so uppercase and
lowercase letters mean same here. Based on the basic types explained in previous chapter, there
will be following basic variable types −

Basic Variables in Pascal

Type Description

Character Typically a single octet (one byte). This is an integer type.

Integer The most natural size of integer for the machine.

Real A single-precision floating point value.

Boolean Specifies true or false logical values. This is also an integer type.

Enumerated Specifies a user-defined list.

Subrange Represents variables, whose values lie within a range.

String Stores an array of characters.

Pascal programming language also allows defining various other types of variables, which we will
cover in subsequent chapters like Pointer, Array, Records, Sets, and Files, etc. For this chapter, let
us study only basic variable types.

Variable Declaration in Pascal

All variables must be declared before we use them in Pascal program. All variable declarations are
followed by the var keyword. A declaration specifies a list of variables, followed by a colon (:) and
the type. Syntax of variable declaration is −

var
variable_list : type;

Here, type must be a valid Pascal data type including character, integer, real, boolean, or any
user-defined data type, etc., and variable_list may consist of one or more identifier names
separated by commas. Some valid variable declarations are shown here −

var
age, weekdays : integer;
taxrate, net_income: real;
choice, isready: boolean;
initials, grade: char;
name, surname : string;

In the previous tutorial, we have discussed that Pascal allows declaring a type. A type can be
identified by a name or identifier. This type can be used to define variables of that type. For
example,

type
days, age = integer;
yes, true = boolean;
name, city = string;
fees, expenses = real;

Now, the types so defined can be used in variable declarations −

var
weekdays, holidays : days;
choice: yes;
student_name, emp_name : name;
capital: city;
cost: expenses;

Please note the difference between type declaration and var declaration. Type declaration
indicates the category or class of the types such as integer, real, etc., whereas the variable
specification indicates the type of values a variable may take. You can compare type declaration
in Pascal with typedef in C. Most importantly, the variable name refers to the memory location
where the value of the variable is going to be stored. This is not so with the type declaration.

Variable Initialization in Pascal
Variables are assigned a value with a colon and the equal sign, followed by a constant expression.
The general form of assigning a value is −

variable_name := value;

By default, variables in Pascal are not initialized with zero. They may contain rubbish values. So it
is a better practice to initialize variables in a program. Variables can be initialized (assigned an
initial value) in their declaration. The initialization is followed by the var keyword and the syntax of
initialization is as follows −

var
variable_name : type = value;

Some examples are −

age: integer = 15;
taxrate: real = 0.5;
grade: char = 'A';

name: string = 'John Smith';

Let us look at an example, which makes use of various types of variables discussed so far −

program Greetings;
const
message = ' Welcome to the world of Pascal ';

type
name = string;
var
firstname, surname: name;

begin
 writeln('Please enter your first name: ');
 readln(firstname);

 writeln('Please enter your surname: ');
 readln(surname);

 writeln;
 writeln(message, ' ', firstname, ' ', surname);
end.

When the above code is compiled and executed, it produces the following result −

Please enter your first name:
John
Please enter your surname:
Smith
Welcome to the world of Pascal John Smith

Enumerated Variables
You have seen how to use simple variable types like integer, real and boolean. Now, let's see
variables of enumerated type, which can be defined as −

var
var1, var2, ... : enum-identifier;

When you have declared an enumerated type, you can declare variables of that type. For
example,

type
months = (January, February, March, April, May, June, July, August, September, October,
November, December);
Var
m: months;
...
M := January;

The following example illustrates the concept −

program exEnumeration;
type
beverage = (coffee, tea, milk, water, coke, limejuice);

var
drink:beverage;

begin
 writeln('Which drink do you want?');
 drink := limejuice;

 writeln('You can drink ', drink);

end.

When the above code is compiled and executed, it produces the following result −

Which drink do you want?
You can drink limejuice

Subrange Variables
Subrange variables are declared as −

var
subrange-name : lowerlim ... uperlim;

Examples of subrange variables are −

var
marks: 1 ... 100;
grade: 'A' ... 'E';
age: 1 ... 25;

The following program illustrates the concept −

program exSubrange;
var
marks: 1 .. 100;
grade: 'A' .. 'E';

begin
 writeln('Enter your marks(1 - 100): ');
 readln(marks);

 writeln('Enter your grade(A - E): ');
 readln(grade);

 writeln('Marks: ' , marks, ' Grade: ', grade);
end.

When the above code is compiled and executed, it produces the following result −

Enter your marks(1 - 100):
100
Enter your grade(A - E):
A
Marks: 100 Grade: A

PASCAL - CONSTANTSPASCAL - CONSTANTS
A constant is an entity that remains unchanged during program execution. Pascal allows only
constants of the following types to be declared −

Ordinal types
Set types
Pointer types (but the only allowed value is Nil).
Real types
Char
String

Declaring Constants
Syntax for declaring constants is as follows −

const
identifier = constant_value;

The following table provides examples of some valid constant declarations −

Constant Type Examples

Ordinal(Integer)type constant valid_age = 21;

Set type constant Vowels = set of (A,E,I,O,U);

Pointer type constant P = NIL;

Real type constant
e = 2.7182818;

velocity_light = 3.0E+10;

Character type constant Operator = '+';

String type constant president = 'Johnny Depp';

The following example illustrates the concept −

program const_circle (input,output);
const
PI = 3.141592654;

var
r, d, c : real; {variable declaration: radius, dia, circumference}

begin
 writeln('Enter the radius of the circle');
 readln(r);

 d := 2 * r;
 c := PI * d;
 writeln('The circumference of the circle is ',c:7:2);
end.

When the above code is compiled and executed, it produces the following result −

Enter the radius of the circle
23
The circumference of the circle is 144.51

Observe the formatting in the output statement of the program. The variable c is to be formatted
with total number of digits 7 and 2 digits after the decimal sign. Pascal allows such output
formatting with the numerical variables.

PASCAL - OPERATORSPASCAL - OPERATORS
An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. Pascal allows the following types of operators −

Arithmetic operators
Relational operators
Boolean operators
Bit operators

Set operators
String operators

Let us discuss the arithmetic, relational, Boolean and bit operators one by one. We will discuss the
set operators and string operations later.

Arithmetic Operators
Following table shows all the arithmetic operators supported by Pascal. Assume variable A holds
10 and variable B holds 20, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

div Divides numerator by denominator B div A will give 2

mod Modulus Operator and remainder of after an
integer division

B mod A will give 0

Relational Operators
Following table shows all the relational operators supported by Pascal. Assume variable A holds 10
and variable B holds 20, then −

Show Examples

Operator Description Example

= Checks if the values of two operands are equal or
not, if yes, then condition becomes true.

(A = B) is not true.

<> Checks if the values of two operands are equal or
not, if values are not equal, then condition becomes
true.

(A <> B) is true.

> Checks if the value of left operand is greater than
the value of right operand, if yes, then condition
becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the
value of right operand, if yes, then condition
becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than
or equal to the value of right operand, if yes, then
condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes, then
condition becomes true.

(A <= B) is true.

Boolean Operators
Following table shows all the Boolean operators supported by Pascal language. All these operators

/pascal/pascal_arithmetic_operators.htm
/pascal/pascal_relational_operators.htm

work on Boolean operands and produce Boolean results. Assume variable A holds true and
variable B holds false, then −

Show Examples

Operator Description Example

and Called Boolean AND operator. If both the operands
are true, then condition becomes true.

(A and B) is false.

and then It is similar to the AND operator, however, it
guarantees the order in which the compiler
evaluates the logical expression. Left to right and
the right operands are evaluated only when
necessary.

(A and then B) is false.

or Called Boolean OR Operator. If any of the two
operands is true, then condition becomes true.

(A or B) is true.

or else It is similar to Boolean OR, however, it guarantees
the order in which the compiler evaluates the
logical expression. Left to right and the right
operands are evaluated only when necessary.

(A or else B) is true.

not Called Boolean NOT Operator. Used to reverse the
logical state of its operand. If a condition is true,
then Logical NOT operator will make it false.

not (A and B) is true.

Bit Operators
Bitwise operators work on bits and perform bit-by-bit operation. All these operators work on
integer operands and produces integer results. The truth table for bitwise and (&), bitwise or (|),
and bitwise not (~) are as follows −

p q p & q p | q ~p ~q

0 0 0 0 1 1

0 1 0 1 1 0

1 1 1 1 0 0

1 0 0 1 0 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by Pascal are listed in the following table. Assume variable A
holds 60 and variable B holds 13, then:

Show Examples

/pascal/pascal_boolean_operators.htm
/pascal/pascal_bit_operators.htm

Operator Description Example

& Binary AND Operator copies a bit to the result if it
exists in both operands.

(A & B) will give 12, which is
0000 1100

| Binary OR Operator copies a bit if it exists in either
operand.

(A | B) will give 61, which is
0011 1101

! Binary OR Operator copies a bit if it exists in either
operand. Its same as | operator.

(A ! B) will give 61, which is
0011 1101

~ Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

(~A) will give -61, which is
1100 0011 in 2's complement
form due to a signed binary
number.

<< Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 will give 240, which is
1111 0000

>> Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

A >> 2 will give 15, which is
0000 1111

Please note that different implementations of Pascal differ in bitwise operators. Free Pascal, the
compiler we used here, however, supports the following bitwise operators −

Operators Operations

not Bitwise NOT

and Bitwise AND

or Bitwise OR

xor Bitwise exclusive OR

shl Bitwise shift left

shr Bitwise shift right

<< Bitwise shift left

>> Bitwise shift right

Operators Precedence in Pascal
Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Operator Precedence

/pascal/pascal_operators_precedence.htm

~, not, Highest

*, /, div, mod, and, &

|, !, +, -, or,

=, <>, <, <=, >, >=, in

or else, and then Lowest

PASCAL - DECISION MAKINGPASCAL - DECISION MAKING
Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages −

Pascal programming language provides the following types of decision making statements. Click
the following links to check their detail.

Statement Description

if - then statement
An if - then statement consists of a boolean expression
followed by one or more statements.

If-then-else statement
An if - then statement can be followed by an optional else
statement, which executes when the boolean expression is
false.

nested if statements
You can use one if or else if statement inside another if or
else if statement(s).

case statement
A case statement allows a variable to be tested for equality
against a list of values.

case - else statement
It is similar to the if-then-else statement. Here, an else term

/pascal/pascal_if_then_statement.htm
/pascal/pascal_if_then_else_statement.htm
/pascal/pascal_nested_if_statement.htm
/pascal/pascal_case_statement.htm

case - else statement follows the case statement.

nested case statements
You can use one case statement inside another case
statement(s).

PASCAL - LOOPSPASCAL - LOOPS
There may be a situation, when you need to execute a block of code several number of times. In
general, statements are executed sequentially: The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages −

Pascal programming language provides the following types of loop constructs to handle looping
requirements. Click the following links to check their details.

Loop Type Description

while-do loop
Repeats a statement or group of statements while a given
condition is true. It tests the condition before executing the loop
body.

for-do loop
Executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

repeat-until loop
Like a while statement, except that it tests the condition at the end
of the loop body.

nested loops
You can use one or more loop inside any another while, for or
repeat until loop.

/pascal/pascal_case_else_statement.htm
/pascal/pascal_nested_case_statement.htm
/pascal/pascal_while_do_loop.htm
/pascal/pascal_for_do_loop.htm
/pascal/pascal_repeat_until_loop.htm
/pascal/pascal_nested_loops.htm

Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Pascal supports the following control statements. Click the following links to check their details.

Control Statement Description

break statement
Terminates the loop or case statement and transfers execution to
the statement immediately following the loop or case statement.

continue statement
Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

goto statement
Transfers control to the labeled statement. Though it is not
advised to use goto statement in your program.

PASCAL - FUNCTIONSPASCAL - FUNCTIONS
Subprograms
A subprogram is a program unit/module that performs a particular task. These subprograms are
combined to form larger programs. This is basically called the 'Modular design.' A subprogram can
be invoked by a subprogram/program, which is called the calling program.

Pascal provides two kinds of subprograms −

Functions − these subprograms return a single value.

Procedures − these subprograms do not return a value directly.

Functions
A function is a group of statements that together perform a task. Every Pascal program has at
least one function, which is the program itself, and all the most trivial programs can define
additional functions.

A function declaration tells the compiler about a function's name, return type, and parameters. A
function definition provides the actual body of the function.

Pascal standard library provides numerous built-in functions that your program can call. For
example, function AppendStr() appends two strings, function New() dynamically allocates
memory to variables and many more functions.

Defining a Function
In Pascal, a function is defined using the function keyword. The general form of a function
definition is as follows −

function name(argument(s): type1; argument(s): type2; ...): function_type;
local declarations;

begin
 ...
 < statements >
 ...
 name:= expression;
end;

A function definition in Pascal consists of a function header, local declarations and a function

/pascal/pascal_break_statement.htm
/pascal/pascal_continue_statement.htm
/pascal/pascal_goto_statement.htm

body. The function header consists of the keyword function and a name given to the function.
Here are all the parts of a function −

Arguments − The argument(s) establish the linkage between the calling program and the
function identifiers and also called the formal parameters. A parameter is like a placeholder.
When a function is invoked, you pass a value to the parameter. This value is referred to as
actual parameter or argument. The parameter list refers to the type, order, and number of
parameters of a function. Use of such formal parameters is optional. These parameters may
have standard data type, user-defined data type or subrange data type.

The formal parameters list appearing in the function statement could be simple or
subscripted variables, arrays or structured variables, or subprograms.

Return Type − All functions must return a value, so all functions must be assigned a type.
The function-type is the data type of the value the function returns. It may be standard,
user-defined scalar or subrange type but it cannot be structured type.

Local declarations − Local declarations refer to the declarations for labels, constants,
variables, functions and procedures, which are application to the body of function only.

Function Body − The function body contains a collection of statements that define what the
function does. It should always be enclosed between the reserved words begin and end. It is
the part of a function where all computations are done. There must be an assignment
statement of the type - name := expression; in the function body that assigns a value to the
function name. This value is returned as and when the function is executed. The last
statement in the body must be an end statement.

Following is an example showing how to define a function in pascal −

(* function returning the max between two numbers *)
function max(num1, num2: integer): integer;

var
 (* local variable declaration *)
 result: integer;

begin
 if (num1 > num2) then
 result := num1

 else
 result := num2;
 max := result;
end;

Function Declarations
A function declaration tells the compiler about a function name and how to call the function. The
actual body of the function can be defined separately.

A function declaration has the following parts −

function name(argument(s): type1; argument(s): type2; ...): function_type;

For the above-defined function max(), following is the function declaration −

function max(num1, num2: integer): integer;

Function declaration is required when you define a function in one source file and you call that
function in another file. In such case, you should declare the function at the top of the file calling
the function.

Calling a Function
While creating a function, you give a definition of what the function has to do. To use a function,

you will have to call that function to perform the defined task. When a program calls a function,
program control is transferred to the called function. A called function performs defined task, and
when its return statement is executed or when it last end statement is reached, it returns program
control back to the main program.

To call a function, you simply need to pass the required parameters along with function name, and
if function returns a value, then you can store returned value. Following is a simple example to
show the usage −

program exFunction;
var
 a, b, ret : integer;

(*function definition *)
function max(num1, num2: integer): integer;
var
 (* local variable declaration *)
 result: integer;

begin
 if (num1 > num2) then
 result := num1

 else
 result := num2;
 max := result;
end;

begin
 a := 100;
 b := 200;
 (* calling a function to get max value *)
 ret := max(a, b);

 writeln('Max value is : ', ret);
end.

When the above code is compiled and executed, it produces the following result −

Max value is : 200

PASCAL - PROCEDURESPASCAL - PROCEDURES
Procedures are subprograms that, instead of returning a single value, allow to obtain a group of
results.

Defining a Procedure
In Pascal, a procedure is defined using the procedure keyword. The general form of a procedure
definition is as follows −

procedure name(argument(s): type1, argument(s): type 2, ...);
 < local declarations >
begin
 < procedure body >
end;

A procedure definition in Pascal consists of a header, local declarations and a body of the
procedure. The procedure header consists of the keyword procedure and a name given to the
procedure. Here are all the parts of a procedure −

Arguments − The argument(s) establish the linkage between the calling program and the
procedure identifiers and also called the formal parameters. Rules for arguments in
procedures are same as that for the functions.

Local declarations − Local declarations refer to the declarations for labels, constants,

variables, functions and procedures, which are applicable to the body of the procedure only.

Procedure Body − The procedure body contains a collection of statements that define what
the procedure does. It should always be enclosed between the reserved words begin and
end. It is the part of a procedure where all computations are done.

Following is the source code for a procedure called findMin(). This procedure takes 4 parameters x,
y, z and m and stores the minimum among the first three variables in the variable named m. The
variable m is passed by reference (we will discuss passing arguments by reference a little later) −

procedure findMin(x, y, z: integer; var m: integer);
(* Finds the minimum of the 3 values *)

begin
 if x < y then
 m := x
 else
 m := y;

 if z <m then
 m := z;
end; { end of procedure findMin }

Procedure Declarations
A procedure declaration tells the compiler about a procedure name and how to call the
procedure. The actual body of the procedure can be defined separately.

A procedure declaration has the following syntax −

procedure name(argument(s): type1, argument(s): type 2, ...);

Please note that the name of the procedure is not associated with any type. For the above
defined procedure findMin(), following is the declaration −

procedure findMin(x, y, z: integer; var m: integer);

Calling a Procedure
While creating a procedure, you give a definition of what the procedure has to do. To use the
procedure, you will have to call that procedure to perform the defined task. When a program calls
a procedure, program control is transferred to the called procedure. A called procedure performs
the defined task, and when its last end statement is reached, it returns the control back to the
calling program.

To call a procedure, you simply need to pass the required parameters along with the procedure
name as shown below −

program exProcedure;
var
 a, b, c, min: integer;
procedure findMin(x, y, z: integer; var m: integer);
(* Finds the minimum of the 3 values *)

begin
 if x < y then
 m:= x
 else
 m:= y;

 if z < m then
 m:= z;
end; { end of procedure findMin }

begin
 writeln(' Enter three numbers: ');

 readln(a, b, c);
 findMin(a, b, c, min); (* Procedure call *)

 writeln(' Minimum: ', min);
end.

When the above code is compiled and executed, it produces the following result −

Enter three numbers:
89 45 67
Minimum: 45

Recursive Subprograms
We have seen that a program or subprogram may call another subprogram. When a subprogram
calls itself, it is referred to as a recursive call and the process is known as recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is
defined as −

n! = n*(n-1)!
 = n*(n-1)*(n-2)!
 ...
 = n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by calling itself recursively.

program exRecursion;
var
 num, f: integer;
function fact(x: integer): integer; (* calculates factorial of x - x! *)

begin
 if x=0 then
 fact := 1
 else
 fact := x * fact(x-1); (* recursive call *)
end; { end of function fact}

begin
 writeln(' Enter a number: ');
 readln(num);
 f := fact(num);

 writeln(' Factorial ', num, ' is: ' , f);
end.

When the above code is compiled and executed, it produces the following result −

Enter a number:
5
Factorial 5 is: 120

Following is another example, which generates the Fibonacci Series for a given number using a
recursive function −

program recursiveFibonacci;
var
 i: integer;
function fibonacci(n: integer): integer;

begin
 if n=1 then
 fibonacci := 0

 else if n=2 then
 fibonacci := 1

 else
 fibonacci := fibonacci(n-1) + fibonacci(n-2);
end;

begin
 for i:= 1 to 10 do

 write(fibonacci (i), ' ');
end.

When the above code is compiled and executed, it produces the following result −

0 1 1 2 3 5 8 13 21 34

Arguments of a Subprogram
If a subprogram (function or procedure) is to use arguments, it must declare variables that
accept the values of the arguments. These variables are called the formal parameters of the
subprogram.

The formal parameters behave like other local variables inside the subprogram and are created
upon entry into the subprogram and destroyed upon exit.

While calling a subprogram, there are two ways that arguments can be passed to the subprogram
−

Call Type Description

Call by value
This method copies the actual value of an argument into the
formal parameter of the subprogram. In this case, changes made
to the parameter inside the subprogram have no effect on the
argument.

Call by reference
This method copies the address of an argument into the formal
parameter. Inside the subprogram, the address is used to access
the actual argument used in the call. This means that changes
made to the parameter affect the argument.

By default, Pascal uses call by value to pass arguments. In general, this means that code within a
subprogram cannot alter the arguments used to call the subprogram. The example program we
used in the chapter 'Pascal - Functions' called the function named max() using call by value.

Whereas, the example program provided here (exProcedure) calls the procedure findMin() using
call by reference.

PASCAL - VARIABLE SCOPEPASCAL - VARIABLE SCOPE
A scope in any programming is a region of the program where a defined variable can have its
existence and beyond that variable cannot be accessed. There are three places, where variables
can be declared in Pascal programming language −

Inside a subprogram or a block which is called local variables

Outside of all subprograms which is called global variables

In the definition of subprogram parameters which is called formal parameters

Let us explain what are local and global variables and formal parameters.

Local Variables

/pascal/pascal_call_by_value.htm
/pascal/pascal_call_by_reference.htm

Variables that are declared inside a subprogram or block are called local variables. They can be
used only by statements that are inside that subprogram or block of code. Local variables are not
known to subprograms outside their own. Following is the example using local variables. Here, all
the variables a, b and c are local to program named exLocal.

program exLocal;
var
 a, b, c: integer;

begin
 (* actual initialization *)
 a := 10;
 b := 20;
 c := a + b;

 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
end.

When the above code is compiled and executed, it produces the following result −

value of a = 10 b = 20 c = 30

Now, let us extend the program little more, let us create a procedure named display, which will
have its own set of variables a, b and c and display their values, right from the program exLocal.

program exLocal;
var
 a, b, c: integer;
procedure display;

var
 a, b, c: integer;
begin
 (* local variables *)
 a := 10;
 b := 20;
 c := a + b;

 writeln('Winthin the procedure display');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
end;

begin
 a:= 100;
 b:= 200;
 c:= a + b;

 writeln('Winthin the program exlocal');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 display();
end.

When the above code is compiled and executed, it produces the following result −

Within the program exlocal
value of a = 100 b = 200 c = 300
Within the procedure display
value of a = 10 b = 20 c = 30

Global Variables
Global variables are defined outside of a function, usually on top of the program. The global
variables will hold their value throughout the lifetime of your program and they can be accessed
inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. Following is an example using global and
local variables −

program exGlobal;
var
 a, b, c: integer;
procedure display;
var
 x, y, z: integer;

begin
 (* local variables *)
 x := 10;
 y := 20;
 z := x + y;

 (*global variables *)
 a := 30;
 b:= 40;
 c:= a + b;

 writeln('Winthin the procedure display');
 writeln(' Displaying the global variables a, b, and c');

 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 writeln('Displaying the local variables x, y, and z');

 writeln('value of x = ', x , ' y = ', y, ' and z = ', z);
end;

begin
 a:= 100;
 b:= 200;
 c:= 300;

 writeln('Winthin the program exlocal');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);

 display();
end.

When the above code is compiled and executed, it produces the following result −

Within the program exlocal
value of a = 100 b = 200 c = 300
Within the procedure display
Displaying the global variables a, b, and c
value of a = 30 b = 40 c = 70
Displaying the local variables x, y, and z
value of x = 10 y = 20 z = 30

Please note that the procedure display has access to the variables a, b and c, which are global
variables with respect to display as well as its own local variables. A program can have same name
for local and global variables but value of local variable inside a function will take preference.

Let us change the previous example a little, now the local variables for the procedure display has
same names as a, b, c −

program exGlobal;
var
 a, b, c: integer;
procedure display;

var
 a, b, c: integer;

begin
 (* local variables *)
 a := 10;
 b := 20;
 c := a + b;

 writeln('Winthin the procedure display');
 writeln(' Displaying the global variables a, b, and c');

 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 writeln('Displaying the local variables a, b, and c');

 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
end;

begin
 a:= 100;
 b:= 200;
 c:= 300;

 writeln('Winthin the program exlocal');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);

 display();
end.

When the above code is compiled and executed, it produces the following result −

Within the program exlocal
value of a = 100 b = 200 c = 300
Within the procedure display
Displaying the global variables a, b, and c
value of a = 10 b = 20 c = 30
Displaying the local variables a, b, and c
value of a = 10 b = 20 c = 30

PASCAL - STRINGSPASCAL - STRINGS
The string in Pascal is actually a sequence of characters with an optional size specification. The
characters could be numeric, letters, blank, special characters or a combination of all. Extended
Pascal provides numerous types of string objects depending upon the system and implementation.
We will discuss more common types of strings used in programs.

You can define a string in many ways −

Character arrays − This is a character string which is a sequence of zero or more byte-sized
characters enclosed in single quotes.

String variables − The variable of String type, as defined in Turbo Pascal.

Short strings − The variable of String type with size specification.

Null terminated strings − The variable of pchar type.

AnsiStrings − Ansistrings are strings that have no length limit.

Pascal provides only one string operator, string concatenation operator (+).

Examples
The following program prints first four kinds of strings. We will use AnsiStrings in the next example.

program exString;
var
 greetings: string;
 name: packed array [1..10] of char;
 organisation: string[10];

 message: pchar;

begin
 greetings := 'Hello ';
 message := 'Good Day!';

 writeln('Please Enter your Name');
 readln(name);

 writeln('Please Enter the name of your Organisation');
 readln(organisation);

 writeln(greetings, name, ' from ', organisation);
 writeln(message);
end.

When the above code is compiled and executed, it produces the following result −

Please Enter your Name
John Smith
Please Enter the name of your Organisation
Infotech
Hello John Smith from Infotech

Following example makes use of few more functions, let's see −

program exString;
uses sysutils;
var
 str1, str2, str3 : ansistring;
 str4: string;
 len: integer;

begin
 str1 := 'Hello ';
 str2 := 'There!';

 (* copy str1 into str3 *)
 str3 := str1;
 writeln('appendstr(str3, str1) : ', str3);

 (* concatenates str1 and str2 *)
 appendstr(str1, str2);
 writeln('appendstr(str1, str2) ' , str1);
 str4 := str1 + str2;
 writeln('Now str4 is: ', str4);

 (* total lenghth of str4 after concatenation *)
 len := byte(str4[0]);
 writeln('Length of the final string str4: ', len);
end.

When the above code is compiled and executed, it produces the following result −

appendstr(str3, str1) : Hello
appendstr(str1, str2) : Hello There!
Now str4 is: Hello There! There!
Length of the final string str4: 18

Pascal String Functions and Procedures
Pascal supports a wide range of functions and procedures that manipulate strings. These
subprograms vary implement-wise. Here, we are listing various string manipulating subprograms
provided by Free Pascal −

Sr.No. Function & Purpose

1
function AnsiCompareStr(const S1: ; const S2:):Integer;

Compares two strings

2
function AnsiCompareText(const S1: ; const S2:):Integer;

Compares two strings, case insensitive

3
function AnsiExtractQuotedStr(var Src: PChar; Quote: Char):;

Removes quotes from string

4
function AnsiLastChar(const S:):PChar;

Gets last character of string

5
function AnsiLowerCase(const s:):

Converts string to all-lowercase

6
function AnsiQuotedStr(const S: ; Quote: Char):;

Quotes a string

7
function AnsiStrComp(S1: PChar;S2: PChar):Integer;

Compares strings case-sensitive

8
function AnsiStrIComp(S1: PChar; S2: PChar):Integer;

Compares strings case-insensitive

9
function AnsiStrLComp(S1: PChar; S2: PChar; MaxLen: Cardinal):Integer;

Compares L characters of strings case sensitive

10
function AnsiStrLIComp(S1: PChar; S2: PChar; MaxLen: Cardinal):Integer;

Compares L characters of strings case insensitive

11
function AnsiStrLastChar(Str: PChar):PChar;

Gets last character of string

12
function AnsiStrLower(Str: PChar):PChar;

Converts string to all-lowercase

13
function AnsiStrUpper(Str: PChar):PChar;

Converts string to all-uppercase

14
function AnsiUpperCase(const s:):;

Converts string to all-uppercase

15
procedure AppendStr(var Dest: ; const S:);

Appends 2 strings

16
procedure AssignStr(var P: PString; const S:);

Assigns value of strings on heap

17
function CompareStr(const S1: ; const S2:):Integer; overload;

Compares two strings case sensitive

18
function CompareText(const S1: ; const S2:):Integer;

Compares two strings case insensitive

19 procedure DisposeStr(S: PString); overload;

Removes string from heap

20
procedure DisposeStr(S: PShortString); overload;

Removes string from heap

21
function IsValidIdent(const Ident:):Boolean;

Is string a valid pascal identifier

22
function LastDelimiter(const Delimiters: ; const S:):Integer;

Last occurrence of character in a string

23
function LeftStr(const S: ; Count: Integer):;

Gets first N characters of a string

24
function LoadStr(Ident: Integer):;

Loads string from resources

25
function LowerCase(const s:):; overload;

Converts string to all-lowercase

26
function LowerCase(const V: variant):; overload;

Converts string to all-lowercase

27
function NewStr(const S:):PString; overload;

Allocates new string on heap

28
function RightStr(const S: ; Count: Integer):;

Gets last N characters of a string

29
function StrAlloc(Size: Cardinal):PChar;

Allocates memory for string

30
function StrBufSize(Str: PChar):SizeUInt;

Reserves memory for a string

31
procedure StrDispose(Str: PChar);

Removes string from heap

32
function StrPas(Str: PChar):;

Converts PChar to pascal string

33
function StrPCopy(Dest: PChar; Source:):PChar;

Copies pascal string

34
function StrPLCopy(Dest: PChar; Source: ; MaxLen: SizeUInt):PChar;

Copies N bytes of pascal string

35
function UpperCase(const s:):;

Converts string to all-uppercase

PASCAL - BOOLEANSPASCAL - BOOLEANS
Pascal provides data type Boolean that enables the programmers to define, store and manipulate
logical entities, such as constants, variables, functions and expressions, etc.

Boolean values are basically integer type. Boolean type variables have two pre-defined possible
values True and False. The expressions resolving to a Boolean value can also be assigned to a
Boolean type.

Free Pascal also supports the ByteBool, WordBool and LongBool types. These are of type Byte,
Word or Longint, respectively.

The value False is equivalent to 0 (zero) and any nonzero value is considered True when
converting to a Boolean value. A Boolean value of True is converted to -1 in case it is assigned to a
variable of type LongBool.

It should be noted that logical operators and, or and not are defined for Boolean data types.

Declaration of Boolean Data Types
A variable of Boolean type is declared using the var keyword.

var
boolean-identifier: boolean;

for example,

var
choice: boolean;

Example

program exBoolean;
var
exit: boolean;

choice: char;
 begin
 writeln('Do you want to continue? ');
 writeln('Enter Y/y for yes, and N/n for no');
 readln(choice);

if(choice = 'n') then
 exit := true
else
 exit := false;

if (exit) then
 writeln(' Good Bye!')
else
 writeln('Please Continue');

readln;
end.

When the above code is compiled and executed, it produces the following result −

Do you want to continue?
Enter Y/y for yes, and N/n for no
N
Good Bye!
Y
Please Continue

PASCAL - ARRAYSPASCAL - ARRAYS
Pascal programming language provides a data structure called the array, which can store a fixed-
size sequential collection of elements of the same type. An array is used to store a collection of
data, but it is often more useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number1, number2, ..., and number100, you
declare one array variable such as numbers and use numbers[1], numbers[2], and ...,
numbers[100] to represent individual variables. A specific element in an array is accessed by an
index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

Please note that if you want a C style array starting from index 0, you just need to start the index
from 0, instead of 1.

Declaring Arrays
To declare an array in Pascal, a programmer may either declare the type and then create
variables of that array or directly declare the array variable.

The general form of type declaration of one-dimensional array is −

type
 array-identifier = array[index-type] of element-type;

Where,

array-identifier − indicates the name of the array type.

index-type − specifies the subscript of the array; it can be any scalar data type except real

element-type − specifies the types of values that are going to be stored

For example,

type
 vector = array [1..25] of real;
var
 velocity: vector;

Now, velocity is a variable array of vector type, which is sufficient to hold up to 25 real numbers.

To start the array from 0 index, the declaration would be −

type
 vector = array [0..24] of real;
var
 velocity: vector;

Types of Array Subscript
In Pascal, an array subscript could be of any scalar type like, integer, Boolean, enumerated or
subrange, except real. Array subscripts could have negative values too.

For example,

type
 temperature = array [-10 .. 50] of real;
var
 day_temp, night_temp: temperature;

Let us take up another example where the subscript is of character type −

type
 ch_array = array[char] of 1..26;
var
 alphabet: ch_array;

Subscript could be of enumerated type −

type
 color = (red, black, blue, silver, beige);
 car_color = array of [color] of boolean;
var
 car_body: car_color;

Initializing Arrays
In Pascal, arrays are initialized through assignment, either by specifying a particular subscript or
using a for-do loop.

For example −

type
 ch_array = array[char] of 1..26;
var
 alphabet: ch_array;
 c: char;

begin
 ...
 for c:= 'A' to 'Z' do
 alphabet[c] := ord[m];
 (* the ord() function returns the ordinal values *)

Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array. For example −

a: integer;
a: = alphabet['A'];

The above statement will take the first element from the array named alphabet and assign the
value to the variable a.

Following is an example, which will use all the above-mentioned three concepts viz. declaration,
assignment and accessing arrays −

program exArrays;
var
 n: array [1..10] of integer; (* n is an array of 10 integers *)
 i, j: integer;

begin
 (* initialize elements of array n to 0 *)
 for i := 1 to 10 do
 n[i] := i + 100; (* set element at location i to i + 100 *)
 (* output each array element's value *)

 for j:= 1 to 10 do

 writeln('Element[', j, '] = ', n[j]);
end.

When the above code is compiled and executed, it produces the following result −

Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109
Element[10] = 110

Pascal Arrays in Detail
Arrays are important to Pascal and should need lots of more details. There are following few
important concepts related to array which should be clear to a Pascal programmer −

Concept Description

Multi-dimensional arrays
Pascal supports multidimensional arrays. The simplest
form of the multidimensional array is the two-
dimensional array.

Dynamic array
In this type of arrays, the initial length is zero. The actual
length of the array must be set with the standard
SetLength function.

Packed array
These arrays are bit-packed, i.e., each character or truth
values are stored in consecutive bytes instead of using
one storage unit, usually a word (4 bytes or more).

Passing arrays to subprograms
You can pass to a subprogram a pointer to an array by
specifying the array's name without an index.

PASCAL - POINTERSPASCAL - POINTERS
Pointers in Pascal are easy and fun to learn. Some Pascal programming tasks are performed more
easily with pointers, and other tasks, such as dynamic memory allocation, cannot be performed
without using pointers. So it becomes necessary to learn pointers to become a perfect Pascal
programmer. Let's start learning them in simple and easy steps.

As you know, every variable is a memory location and every memory location has its address
defined which can be accessed using the name of the pointer variable, which denotes an address
in memory.

What Are Pointers?
A pointer is a dynamic variable, whose value is the address of another variable, i.e., direct address
of the memory location. Like any variable or constant, you must declare a pointer before you can
use it to store any variable address. The general form of a pointer variable declaration is −

type
 ptr-identifier = ^base-variable-type;

The pointer type is defined by prefixing the up-arrow of caret symbol (^) with the base type. The
base-type defines the types of the data items. Once a pointer variable is defined to be of certain
type, it can point data items of that type only. Once a pointer type has been defined, we can use

/pascal/pascal_multi_dimensional_arrays.htm
/pascal/pascal_dynamic_arrays.htm
/pascal/pascal_packed_array.htm
/pascal/pascal_passing_arrays_to_subprograms.htm

the var declaration to declare pointer variables.

var
 p1, p2, ... : ptr-identifier;

Following are some valid pointer declarations −

type
 Rptr = ^real;
 Cptr = ^char;
 Bptr = ^ Boolean;
 Aptr = ^array[1..5] of real;
 date-ptr = ^ date;
 Date = record
 Day: 1..31;
 Month: 1..12;
 Year: 1900..3000;
 End;
var
 a, b : Rptr;
 d: date-ptr;

The pointer variables are dereferenced by using the same caret symbol (^). For example, the
associated variable referred by a pointer rptr, is rptr^. It can be accessed as −

rptr^ := 234.56;

The following example will illustrate this concept −

program exPointers;
var
 number: integer;
 iptr: ^integer;

begin
 number := 100;
 writeln('Number is: ', number);

 iptr := @number;
 writeln('iptr points to a value: ', iptr^);

 iptr^ := 200;
 writeln('Number is: ', number);
 writeln('iptr points to a value: ', iptr^);
end.

When the above code is compiled and executed, it produces the following result −

Number is: 100
iptr points to a value: 100
Number is: 200
iptr points to a value: 200

Printing a Memory Address in Pascal
In Pascal, we can assign the address of a variable to a pointer variable using the address operator
(@). We use this pointer to manipulate and access the data item. However, if for some reason, we
need to work with the memory address itself, we need to store it in a word type variable.

Let us extend the above example to print the memory address stored in the pointer iptr −

program exPointers;
var
 number: integer;
 iptr: ^integer;

 y: ^word;

begin
 number := 100;
 writeln('Number is: ', number);
 iptr := @number;
 writeln('iptr points to a value: ', iptr^);

 iptr^ := 200;
 writeln('Number is: ', number);
 writeln('iptr points to a value: ', iptr^);
 y := addr(iptr);
 writeln(y^);
end.

When the above code is compiled and executed, it produces the following result −

Number is: 100
iptr points to a value: 100
Number is: 200
iptr points to a value: 200
36864

NIL Pointers
It is always a good practice to assign a NIL value to a pointer variable in case you do not have
exact address to be assigned. This is done at the time of variable declaration. A pointer that is
assigned NIL points to nowhere. Consider the following program −

program exPointers;
var
 number: integer;
 iptr: ^integer;
 y: ^word;

begin
 iptr := nil;
 y := addr(iptr);

 writeln('the vaule of iptr is ', y^);
end.

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

To check for a nil pointer you can use an if statement as follows −

if(ptr <> nill)then (* succeeds if p is not null *)
if(ptr = nill)then (* succeeds if p is null *)

Pascal Pointers in Detail
Pointers have many but easy concepts and they are very important to Pascal programming. There
are following few important pointer concepts, which should be clear to a Pascal programmer −

Concept Description

Pascal - Pointer arithmetic
There are four arithmetic operators that can be
used on pointers: increment,decrement, +, -

Pascal - Array of pointers
You can define arrays to hold a number of pointers.

/pascal/pascal_pointer_arithmetic.htm
/pascal/pascal_array_of_pointers.htm

Pascal - Pointer to pointer
Pascal allows you to have pointer on a pointer and
so on.

Passing pointers to subprograms in Pascal
Passing an argument by reference or by address
both enable the passed argument to be changed in
the calling subprogram by the called subprogram.

Return pointer from subprograms in
Pascal

Pascal allows a subprogram to return a pointer.

PASCAL - RECORDSPASCAL - RECORDS
Pascal arrays allow you to define type of variables that can hold several data items of the same
kind but a record is another user-defined data type available in Pascal which allows you to
combine data items of different kinds.

Records consist of different fields. Suppose you want to keep track of your books in a library, you
might want to track the following attributes about each book −

Title
Author
Subject
Book ID

Defining a Record
To define a record type, you may use the type declaration statement. The record type is defined as
−

type
record-name = record
 field-1: field-type1;
 field-2: field-type2;
 ...
 field-n: field-typen;
end;

Here is the way you would declare the Book record −

type
Books = record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: integer;
end;

The record variables are defined in the usual way as

var
 r1, r2, ... : record-name;

Alternatively, you can directly define a record type variable as −

var
Books : record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;

/pascal/pascal_pointer_to_pointer.htm
/pascal/pascal_passing_pointers_to_subprograms.htm
/pascal/pascal_return_pointer_from_subprograms.htm

 subject: packed array [1..100] of char;
 book_id: integer;
end;

Accessing Fields of a Record
To access any field of a record, we use the member access operator (.). The member access
operator is coded as a period between the record variable name and the field that we wish to
access. Following is the example to explain usage of structure −

program exRecords;
type
Books = record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: longint;
end;

var
 Book1, Book2: Books; (* Declare Book1 and Book2 of type Books *)

begin
 (* book 1 specification *)
 Book1.title := 'C Programming';
 Book1.author := 'Nuha Ali ';
 Book1.subject := 'C Programming Tutorial';
 Book1.book_id := 6495407;

 (* book 2 specification *)
 Book2.title := 'Telecom Billing';
 Book2.author := 'Zara Ali';
 Book2.subject := 'Telecom Billing Tutorial';
 Book2.book_id := 6495700;

 (* print Book1 info *)
 writeln ('Book 1 title : ', Book1.title);
 writeln('Book 1 author : ', Book1.author);
 writeln('Book 1 subject : ', Book1.subject);
 writeln('Book 1 book_id : ', Book1.book_id);
 writeln;

 (* print Book2 info *)
 writeln ('Book 2 title : ', Book2.title);
 writeln('Book 2 author : ', Book2.author);
 writeln('Book 2 subject : ', Book2.subject);
 writeln('Book 2 book_id : ', Book2.book_id);
end.

When the above code is compiled and executed, it produces the following result −

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

Records as Subprogram Arguments
You can pass a record as a subprogram argument in very similar way as you pass any other
variable or pointer. You would access the record fields in the similar way as you have accessed in
the above example −

program exRecords;
type
Books = record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: longint;
end;

var
 Book1, Book2: Books; (* Declare Book1 and Book2 of type Books *)

(* procedure declaration *)
procedure printBook(var book: Books);

begin
 (* print Book info *)
 writeln ('Book title : ', book.title);
 writeln('Book author : ', book.author);
 writeln('Book subject : ', book.subject);
 writeln('Book book_id : ', book.book_id);
end;

begin
 (* book 1 specification *)
 Book1.title := 'C Programming';
 Book1.author := 'Nuha Ali ';
 Book1.subject := 'C Programming Tutorial';
 Book1.book_id := 6495407;

 (* book 2 specification *)
 Book2.title := 'Telecom Billing';
 Book2.author := 'Zara Ali';
 Book2.subject := 'Telecom Billing Tutorial';
 Book2.book_id := 6495700;

 (* print Book1 info *)
 printbook(Book1);
 writeln;

 (* print Book2 info *)
 printbook(Book2);
end.

When the above code is compiled and executed, it produces the following result −

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

Pointers to Records
You can define pointers to records in very similar way as you define pointer to any other variable
as follows −

type
record-ptr = ^ record-name;
record-name = record
 field-1: field-type1;
 field-2: field-type2;
 ...
 field-n: field-typen;

end;

Now, you can store the address of a record type variable in the above-defined pointer variable. To
declare a variable of the created pointer type, you use the var keyword −

var
 r1, r2, ... : record-ptr;

Before using these pointers, you must create storage for a record-name type variable, which will
be manipulated by these pointers.

new(r1);
new(r2);

To access the members of a record using a pointer to that record, you must use the ^. operator as
follows −

r1^.feild1 := value1;
r1^.feild2 := value2;
...
r1^fieldn := valuen;

Finally, don't forget to dispose the used storage, when it is no longer in use −

dispose(r1);
dispose(r2);

Let us re-write the first example using a pointer to the Books record. Hope this will be easy for you
to understand the concept −

program exRecords;
type
BooksPtr = ^ Books;
Books = record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: longint;
end;

var
 (* Declare Book1 and Book2 of pointer type that refers to Book type *)
 Book1, Book2: BooksPtr;

begin
 new(Book1);
 new(book2);

 (* book 1 specification *)
 Book1^.title := 'C Programming';
 Book1^.author := 'Nuha Ali ';
 Book1^.subject := 'C Programming Tutorial';
 Book1^.book_id := 6495407;

 (* book 2 specification *)
 Book2^.title := 'Telecom Billing';
 Book2^.author := 'Zara Ali';
 Book2^.subject := 'Telecom Billing Tutorial';
 Book2^.book_id := 6495700;

 (* print Book1 info *)
 writeln ('Book 1 title : ', Book1^.title);
 writeln('Book 1 author : ', Book1^.author);
 writeln('Book 1 subject : ', Book1^.subject);
 writeln('Book 1 book_id : ', Book1^.book_id);

 (* print Book2 info *)
 writeln ('Book 2 title : ', Book2^.title);
 writeln('Book 2 author : ', Book2^.author);
 writeln('Book 2 subject : ', Book2^.subject);
 writeln('Book 2 book_id : ', Book2^.book_id);

 dispose(Book1);
 dispose(Book2);
end.

When the above code is compiled and executed, it produces the following result −

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

The With Statement
We have discussed that the members of a record can be accessed using the member access
operator (.). This way the name of the record variable has to be written every time. The With
statement provides an alternative way to do that.

Look at the following code snippet taken from our first example −

 (* book 1 specification *)
 Book1.title := 'C Programming';
 Book1.author := 'Nuha Ali ';
 Book1.subject := 'C Programming Tutorial';
 Book1.book_id := 6495407;

The same assignment could be written using the With statement as −

(* book 1 specification *)
With Book1 do
begin
 title := 'C Programming';
 author := 'Nuha Ali ';
 subject := 'C Programming Tutorial';
 book_id := 6495407;
end;

PASCAL - VARIANTSPASCAL - VARIANTS
Pascal supports a unique type of storage named variants. You can assign any simple type of values
in a variant variable. The type of a value stored in a variant is only determined at runtime. Almost
any simple type can be assigned to variants: ordinal types, string types, int64 types.

Structured types such as sets, records, arrays, files, objects and classes are not assignment-
compatible with a variant. You can also assign a pointer to a variant.

Free Pascal supports variants.

Declaring a Variant
You can declare variant type like any other types using the var keyword. The syntax for declaring
a variant type is −

var

 v: variant;

Now, this variant variable v can be assigned to almost all simple types including the enumerated
types and vice versa.

type
 color = (red, black, white);
var
 v : variant;
 i : integer;
 b : byte;
 w : word;
 q : int64;
 e : extended;
 d : double;
 en : color;
 as : ansistring;
 ws : widestring;

begin
 v := i;
 v := b;
 v := w;
 v := q;
 v := e;
 v := en;
 v := d:
 v := as;
 v := ws;
end;

Example
The following example would illustrate the concept −

Program exVariant;

uses variants;
type
 color = (red, black, white);

var
 v : variant;
 i : integer;
 r: real;
 c : color;
 as : ansistring;

begin
 i := 100;
 v:= i;
 writeln('Variant as Integer: ', v);

 r:= 234.345;
 v:= r;
 writeln('Variant as real: ', v);

 c := red;
 v := c;
 writeln('Variant as Enumerated data: ', v);

 as:= ' I am an AnsiString';
 v:= as;
 writeln('Variant as AnsiString: ', v);
end.

When the above code is compiled and executed, it produces the following result −

Variant as Integer: 100
Variant as real: 234.345
Variant as Enumerated data: 0
Variant as AnsiString: I am an AnsiString

PASCAL - SETSPASCAL - SETS
A set is a collection of elements of same type. Pascal allows defining the set data type. The
elements in a set are called its members. In mathematics, sets are represented by enclosing the
members within braces{}. However, in Pascal, set elements are enclosed within square brackets
[], which are referred as set constructor.

Defining Set Types and Variables
Pascal Set types are defined as

type
set-identifier = set of base type;

Variables of set type are defined as

var
s1, s2, ...: set-identifier;

or,

s1, s2...: set of base type;

Examples of some valid set type declaration are −

type
Days = (mon, tue, wed, thu, fri, sat, sun);
Letters = set of char;
DaySet = set of days;
Alphabets = set of 'A' .. 'Z';
studentAge = set of 13..20;

Set Operators
You can perform the following set operations on Pascal sets.

Operations Descriptions

Union This joins two sets and gives a new set with members from both sets.

Difference Gets the difference of two sets and gives a new set with elements not
common to either set.

Intersection Gets the intersection of two sets and gives a new set with elements common
to both sets.

Inclusion A set P is included in set Q, if all items in P are also in Q but not vice versa.

Symmetric
difference

Gets the symmetric difference of two sets and gives a set of elements, which
are in either of the sets and not in their intersection.

In It checks membership.

Following table shows all the set operators supported by Free Pascal. Assume that S1 and S2 are
two character sets, such that −

S1 := ['a', 'b', 'c'];

S2 := ['c', 'd', 'e'];

Operator Description Example

+ Union of two sets
S1 + S2 will give a set

['a', 'b', 'c', 'd', 'e']

- Difference of two sets
S1 - S2 will give a set

['a', 'b']

* Intersection of two sets
S1 * S2 will give a set

['c']

>< Symmetric difference of two sets S1 >< S2 will give a set ['a',
'b', 'd', 'e']

= Checks equality of two sets S1 = S2 will give the boolean
value False

<> Checks non-equality of two sets S1 <> S2 will give the
boolean value True

<= Contains (Checks if one set is a subset of the other) S1 <= S2 will give the
boolean value False

Include Includes an element in the set; basically it is the
Union of a set and an element of same base type Include (S1, ['d']) will give a

set

['a', 'b', 'c', 'd']

Exclude Excludes an element from a set; basically it is the
Difference of a set and an element of same base
type

Exclude (S2, ['d']) will give a
set

['c', 'e']

In Checks set membership of an element in a set ['e'] in S2 gives the boolean
value True

Example
The following example illustrates the use of some of these operators −

program setColors;
type
color = (red, blue, yellow, green, white, black, orange);
colors = set of color;

procedure displayColors(c : colors);
const
names : array [color] of String[7]

 = ('red', 'blue', 'yellow', 'green', 'white', 'black', 'orange');
var
 cl : color;
 s : String;

begin
 s:= ' ';
 for cl:=red to orange do
 if cl in c then
 begin
 if (s<>' ') then s :=s +' , ';
 s:=s+names[cl];
 end;
 writeln('[',s,']');
end;

var
 c : colors;

begin
 c:= [red, blue, yellow, green, white, black, orange];
 displayColors(c);

 c:=[red, blue]+[yellow, green];
 displayColors(c);

 c:=[red, blue, yellow, green, white, black, orange] - [green, white];
 displayColors(c);

 c:= [red, blue, yellow, green, white, black, orange]*[green, white];
 displayColors(c);

 c:= [red, blue, yellow, green]><[yellow, green, white, black];
 displayColors(c);
end.

When the above code is compiled and executed, it produces the following result −

[red , blue , yellow , green , white , black , orange]
[red , blue , yellow , green]
[red , blue , yellow , black , orange]
[green , white]
[red , blue , white , black]

PASCAL - FILE HANDLINGPASCAL - FILE HANDLING
Pascal treats a file as a sequence of components, which must be of uniform type. A file's type is
determined by the type of the components. File data type is defined as −

type
file-name = file of base-type;

Where, the base-type indicates the type of the components of the file. The base type could be
anything like, integer, real, Boolean, enumerated, subrange, record, arrays and sets except
another file type. Variables of a file type are created using the var declaration −

var
f1, f2,...: file-name;

Following are some examples of defining some file types and file variables −

type
 rfile = file of real;
 ifile = file of integer;
 bfile = file of boolean;
 datafile = file of record

 arrfile = file of array[1..4] of integer;

var
 marks: arrfile;
 studentdata: datafile;
 rainfalldata: rfile;
 tempdata: ifile;
 choices: bfile;

Creating and Writing to a File
Let us write a program that would create a data file for students' records. It would create a file
named students.dat and write a student's data into it −

program DataFiles;
type
 StudentRecord = Record
 s_name: String;
 s_addr: String;
 s_batchcode: String;
 end;

var
 Student: StudentRecord;
 f: file of StudentRecord;

begin
 Assign(f,'students.dat');
 Rewrite(f);
 Student.s_name := 'John Smith';
 Student.s_addr := 'United States of America';
 Student.s_batchcode := 'Computer Science';
 Write(f,Student);
 Close(f);
end.

When compiled and run, the program would create a file named students.dat into the working
directory. You can open the file using a text editor, like notepad, to look at John Smith's data.

Reading from a File
We have just created and written into a file named students.dat. Now, let us write a program that
would read the student's data from the file −

program DataFiles;
type
 StudentRecord = Record
 s_name: String;
 s_addr: String;
 s_batchcode: String;
 end;

var
 Student: StudentRecord;
 f: file of StudentRecord;

begin
 assign(f, 'students.dat');
 reset(f);
 while not eof(f) do

 begin
 read(f,Student);
 writeln('Name: ',Student.s_name);
 writeln('Address: ',Student.s_addr);
 writeln('Batch Code: ', Student.s_batchcode);
 end;

 close(f);
end.

When the above code is compiled and executed, it produces the following result −

Name: John Smith
Address: United States of America
Batch Code: Computer Science

Files as Subprogram Parameter
Pascal allows file variables to be used as parameters in standard and user-defined subprograms.
The following example illustrates this concept. The program creates a file named rainfall.txt and
stores some rainfall data. Next, it opens the file, reads the data and computes the average rainfall.

Please note that, if you use a file parameter with subprograms, it must be declared as a
var parameter.

program addFiledata;
const
 MAX = 4;
type
 raindata = file of real;

var
 rainfile: raindata;
 filename: string;
procedure writedata(var f: raindata);

var
 data: real;
 i: integer;

begin
 rewrite(f, sizeof(data));
 for i:=1 to MAX do

 begin
 writeln('Enter rainfall data: ');
 readln(data);
 write(f, data);
 end;

 close(f);
end;

procedure computeAverage(var x: raindata);
var
 d, sum: real;
 average: real;

begin
 reset(x);
 sum:= 0.0;
 while not eof(x) do

 begin
 read(x, d);
 sum := sum + d;
 end;

 average := sum/MAX;
 close(x);
 writeln('Average Rainfall: ', average:7:2);
end;

begin

 writeln('Enter the File Name: ');
 readln(filename);
 assign(rainfile, filename);
 writedata(rainfile);
 computeAverage(rainfile);
end.

When the above code is compiled and executed, it produces the following result −

Enter the File Name:
rainfall.txt
Enter rainfall data:
34
Enter rainfall data:
45
Enter rainfall data:
56
Enter rainfall data:
78
Average Rainfall: 53.25

Text Files
A text file, in Pascal, consists of lines of characters where each line is terminated with an end-of-
line marker. You can declare and define such files as −

type
file-name = text;

Difference between a normal file of characters and a text file is that a text file is divided into lines,
each terminated by a special end-of-line marker, automatically inserted by the system. The
following example creates and writes into a text file named contact.txt −

program exText;
var
 filename, data: string;
 myfile: text;

begin
 writeln('Enter the file name: ');
 readln(filename);

 assign(myfile, filename);
 rewrite(myfile);

 writeln(myfile, 'Note to Students: ');
 writeln(myfile, 'For details information on Pascal Programming');
 writeln(myfile, 'Contact: Tutorials Point');
 writeln('Completed writing');

 close(myfile);
end.

When the above code is compiled and executed, it produces the following result −

Enter the file name:
contact.txt
Completed writing

Appending to a File
Appending to a file means writing to an existing file that already has some data without overwriting
the file. The following program illustrates this −

program exAppendfile;

var
 myfile: text;
 info: string;

begin
 assign(myfile, 'contact.txt');
 append(myfile);

 writeln('Contact Details');
 writeln('webmaster@tutorialspoint.com');
 close(myfile);

 (* let us read from this file *)
 assign(myfile, 'contact.txt');
 reset(myfile);
 while not eof(myfile) do

 begin
 readln(myfile, info);
 writeln(info);
 end;
 close(myfile);
end.

When the above code is compiled and executed, it produces the following result −

Contact Details
webmaster@tutorialspoint.com
Note to Students:
For details information on Pascal Programming
Contact: Tutorials Point

File Handling Functions
Free Pascal provides the following functions/procedures for file handling −

Sr.No. Function Name & Description

1
procedure Append(var t: Text);

Opens a file in append mode

2
procedure Assign(out f: file; const Name:);

Assigns a name to a file

3
procedure Assign(out f: file; p: PChar);

Assigns a name to a file

4
procedure Assign(out f: file; c: Char);

Assigns a name to a file

5
procedure Assign(out f: TypedFile; const Name:);

Assigns a name to a file

6
procedure Assign(out f: TypedFile; p: PChar);

Assigns a name to a file

7
procedure Assign(out f: TypedFile; c: Char);

Assigns a name to a file

8
procedure Assign(out t: Text; const s:);

Assigns a name to a file

9
procedure Assign(out t: Text; p: PChar);

Assigns a name to a file

10
procedure Assign(out t: Text; c: Char);

Assigns a name to a file

11
procedure BlockRead(var f: file; var Buf; count: Int64; var Result: Int64);

Reads data from a file into memory

12
procedure BlockRead(var f: file; var Buf; count: LongInt; var Result: LongInt);

Reads data from a file into memory

13
procedure BlockRead(var f: file; var Buf; count: Cardinal; var Result:
Cardinal);

Reads data from a file into memory

14
procedure BlockRead(var f: file; var Buf; count: Word; var Result: Word);

Reads data from a file into memory

15
procedure BlockRead(var f: file; var Buf; count: Word; var Result: Integer);

Reads data from a file into memory

16
procedure BlockRead(var f: file; var Buf; count: Int64);

Reads data from a file into memory

17
procedure BlockWrite(var f: file; const Buf; Count: Int64; var Result: Int64);

Writes data from memory to a file

18
procedure BlockWrite(var f: file; const Buf; Count: LongInt; var Result:
LongInt);

Writes data from memory to a file

19
procedure BlockWrite(var f: file; const Buf; Count: Cardinal; var Result:
Cardinal);

Writes data from memory to a file

20
procedure BlockWrite(var f: file; const Buf; Count: Word; var Result: Word);

Writes data from memory to a file

21
procedure BlockWrite(var f: file; const Buf; Count: Word; var Result: Integer);

Writes data from memory to a file

22
procedure BlockWrite(var f: file; const Buf; Count: LongInt);

Writes data from memory to a file

23
procedure Close(var f: file);

Closes a file

24
procedure Close(var t: Text);

Closes a file

25
function EOF(var f: file):Boolean;

Checks for end of file

26
function EOF(var t: Text):Boolean;

Checks for end of file

27
function EOF: Boolean;

Checks for end of file

28
function EOLn(var t: Text):Boolean;

Checks for end of line

29

29
function EOLn: Boolean;

Checks for end of line

30
procedure Erase(var f: file);

Deletes file from disk

31
procedure Erase(var t: Text);

Deletes file from disk

32
function FilePos(var f: file):Int64;

Position in file

33
function FileSize(var f: file):Int64;

Size of file

34
procedure Flush(var t: Text);

Writes file buffers to disk

35
function IOResult: Word;

Returns result of last file IO operation

36
procedure Read(var F: Text; Args: Arguments);

Reads from file into variable

37
procedure Read(Args: Arguments);

Reads from file into variable

38
procedure ReadLn(var F: Text; Args: Arguments);

Reads from file into variable and goto next line

39
procedure ReadLn(Args: Arguments);

Reads from file into variable and goto next line

40
procedure Rename(var f: file; const s:);

Renames file on disk

41
procedure Rename(var f: file; p: PChar);

Renames file on disk

42
procedure Rename(var f: file; c: Char);

Renames file on disk

43
procedure Rename(var t: Text; const s);

Rename file on disk

44
procedure Rename(var t: Text; p: PChar);

Renames file on disk

45
procedure Rename(var t: Text; c: Char);

Renames file on disk

46
procedure Reset(var f: file; l: LongInt);

Opens file for reading

47
procedure Reset(var f: file);

Opens file for reading

48
procedure Reset(var f: TypedFile);

Opens file for reading

49
procedure Reset(var t: Text);

Opens file for reading

50
procedure Rewrite(var f: file; l: LongInt);

Opens file for writing

51
procedure Rewrite(var f: file);

Opens file for writing

52
procedure Rewrite(var f: TypedFile);

Opens file for writing

53
procedure Rewrite(var t: Text);

Opens file for writing

54
procedure Seek(var f: file; Pos: Int64);

Sets file position

55
function SeekEOF(var t: Text):Boolean;

Sets file position to end of file

56
function SeekEOF: Boolean;

Sets file position to end of file

57
function SeekEOLn(var t: Text):Boolean;

Sets file position to end of line

58
function SeekEOLn: Boolean;

Sets file position to end of line

59
procedure SetTextBuf(var f: Text; var Buf);

Sets size of file buffer

60
procedure SetTextBuf(var f: Text; var Buf; Size: SizeInt);

Sets size of file buffer

61
procedure Truncate(var F: file);

Truncate the file at position

62
procedure Write(Args: Arguments);

Writes variable to file

63
procedure Write(var F: Text; Args: Arguments);

Write variable to file

64
procedure Writeln(Args: Arguments);

Writes variable to file and append newline

65
procedure WriteLn(var F: Text; Args: Arguments);

Writes variable to file and append newline

PASCAL - MEMORY MANAGEMENTPASCAL - MEMORY MANAGEMENT
This chapter explains dynamic memory management in Pascal. Pascal programming language
provides several functions for memory allocation and management.

Allocating Memory Dynamically
While doing programming, if you are aware about the size of an array, then it is easy and you can
define it as an array. For example, to store a name of any person, it can go max 100 characters so
you can define something as follows −

var
name: array[1..100] of char;

But now, let us consider a situation, where you have no idea about the length of the text you need
to store, for example, you want to store a detailed description about a topic. Here, we need to
define a pointer to string without defining how much memory is required.

Pascal provides a procedure newto create pointer variables.

program exMemory;
var
name: array[1..100] of char;
description: ^string;

begin
 name:= 'Zara Ali';

 new(description);
 if not assigned(description) then
 writeln(' Error - unable to allocate required memory')
 else
 description^ := 'Zara ali a DPS student in class 10th';
 writeln('Name = ', name);
 writeln('Description: ', description^);
end.

When the above code is compiled and executed, it produces the following result −

Name = Zara Ali
Description: Zara ali a DPS student in class 10th

Now, if you need to define a pointer with specific number of bytes to be referred by it later, you
should use the getmem function or the getmem procedure, which has the following syntax −

procedure Getmem(
 out p: pointer;
 Size: PtrUInt
);

function GetMem(
 size: PtrUInt
):pointer;

In the previous example, we declared a pointer to a string. A string has a maximum value of 255
bytes. If you really don't need that much space, or a larger space, in terms of bytes, getmem

subprogram allows specifying that. Let us rewrite the previous example, using getmem −

program exMemory;
var
name: array[1..100] of char;
description: ^string;

begin
 name:= 'Zara Ali';

 description := getmem(200);
 if not assigned(description) then
 writeln(' Error - unable to allocate required memory')
 else
 description^ := 'Zara ali a DPS student in class 10th';
 writeln('Name = ', name);
 writeln('Description: ', description^);

 freemem(description);
end.

When the above code is compiled and executed, it produces the following result −

Name = Zara Ali
Description: Zara ali a DPS student in class 10th

So, you have complete control and you can pass any size value while allocating memory unlike
arrays, where once you defined the size cannot be changed.

Resizing and Releasing Memory
When your program comes out, operating system automatically releases all the memory allocated
by your program, but as a good practice when you are not in need of memory anymore, then you
should release that memory.

Pascal provides the procedure dispose to free a dynamically created variable using the procedure
new. If you have allocated memory using the getmem subprogram, then you need to use the
subprogram freemem to free this memory. The freemem subprograms have the following syntax
−

procedure Freemem(
 p: pointer;
 Size: PtrUInt
);

function Freemem(
 p: pointer
):PtrUInt;

Alternatively, you can increase or decrease the size of an allocated memory block by calling the
function ReAllocMem. Let us check the above program once again and make use of ReAllocMem
and freemem subprograms. Following is the syntax for ReAllocMem −

function ReAllocMem(
 var p: pointer;
 Size: PtrUInt
):pointer;

Following is an example which makes use of ReAllocMem and freemem subprograms −

program exMemory;
var
name: array[1..100] of char;
description: ^string;
desp: string;

begin
 name:= 'Zara Ali';
 desp := 'Zara ali a DPS student.';

 description := getmem(30);
 if not assigned(description) then
 writeln('Error - unable to allocate required memory')
 else
 description^ := desp;

 (* Suppose you want to store bigger description *)
 description := reallocmem(description, 100);
 desp := desp + ' She is in class 10th.';
 description^:= desp;

 writeln('Name = ', name);
 writeln('Description: ', description^);

 freemem(description);
end.

When the above code is compiled and executed, it produces the following result −

Name = Zara Ali
Description: Zara ali a DPS student. She is in class 10th

Memory Management Functions
Pascal provides a hoard of memory management functions that is used in implementing various
data structures and implementing low-level programming in Pascal. Many of these functions are
implementation dependent. Free Pascal provides the following functions and procedures for
memory management −

S.N Function Name & Description

1
function Addr(X: TAnytype):Pointer;

Returns address of variable

2
function Assigned(P: Pointer):Boolean;

Checks if a pointer is valid

3
function CompareByte(const buf1; const buf2; len: SizeInt):SizeInt;

Compares 2 memory buffers byte per byte

4
function CompareChar(const buf1; const buf2; len: SizeInt):SizeInt;

Compares 2 memory buffers byte per byte

5
function CompareDWord(const buf1; const buf2; len: SizeInt):SizeInt;

Compares 2 memory buffers byte per byte

6

6
function CompareWord(const buf1; const buf2; len: SizeInt):SizeInt;

Compares 2 memory buffers byte per byte

7
function Cseg: Word;

Returns code segment

8
procedure Dispose(P: Pointer);

Frees dynamically allocated memory

9
procedure Dispose(P: TypedPointer; Des: TProcedure);

Frees dynamically allocated memory

10
function Dseg: Word;

Returns data segment

11
procedure FillByte(var x; count: SizeInt; value: Byte);

Fills memory region with 8-bit pattern

12
procedure FillChar(var x; count: SizeInt; Value: Byte|Boolean|Char);

Fills memory region with certain character

13
procedure FillDWord(var x; count: SizeInt; value: DWord);

Fills memory region with 32-bit pattern

14
procedure FillQWord(var x; count: SizeInt; value: QWord);

Fills memory region with 64-bit pattern

15 procedure FillWord(var x; count: SizeInt; Value: Word);

Fills memory region with 16-bit pattern

16
procedure Freemem(p: pointer; Size: PtrUInt);

Releases allocated memory

17
procedure Freemem(p: pointer);

Releases allocated memory

18

18
procedure Getmem(out p: pointer; Size: PtrUInt);

Allocates new memory

19
procedure Getmem(out p: pointer);

Allocates new memory

20
procedure GetMemoryManager(var MemMgr: TMemoryManager);

Returns current memory manager

21
function High(Arg: TypeOrVariable):TOrdinal;

Returns highest index of open array or enumerated

22
function IndexByte(const buf; len: SizeInt; b: Byte):SizeInt;

Finds byte-sized value in a memory range

23
function IndexChar(const buf; len: SizeInt; b: Char):SizeInt;

Finds char-sized value in a memory range

24
function IndexDWord(const buf; len: SizeInt; b: DWord):SizeInt;

Finds DWord-sized (32-bit) value in a memory range

25
function IndexQWord(const buf; len: SizeInt; b: QWord):SizeInt;

Finds QWord-sized value in a memory range

26
function Indexword(const buf; len: SizeInt; b: Word):SizeInt;

Finds word-sized value in a memory range

27
function IsMemoryManagerSet: Boolean;

Is the memory manager set

28
function Low(Arg: TypeOrVariable):TOrdinal;

Returns lowest index of open array or enumerated

29
procedure Move(const source; var dest; count: SizeInt);

Moves data from one location in memory to another

30
procedure MoveChar0(const buf1; var buf2; len: SizeInt);

Moves data till first zero character

31
procedure New(var P: Pointer);

Dynamically allocate memory for variable

32
procedure New(var P: Pointer; Cons: TProcedure);

Dynamically allocates memory for variable

33
function Ofs(var X):LongInt;

Returns offset of variable

34
function ptr(sel: LongInt; off: LongInt):farpointer;

Combines segment and offset to pointer

35
function ReAllocMem(var p: pointer; Size: PtrUInt):pointer;

Resizes a memory block on the heap

36
function Seg(var X):LongInt;

Returns segment

37
procedure SetMemoryManager(const MemMgr: TMemoryManager);

Sets a memory manager

38
function Sptr: Pointer;

Returns current stack pointer

39
function Sseg: Word;

Returns stack segment register value

PASCAL - UNITSPASCAL - UNITS
A Pascal program can consist of modules called units. A unit might consist of some code blocks,
which in turn are made up of variables and type declarations, statements, procedures, etc. There
are many built-in units in Pascal and Pascal allows programmers to define and write their own units
to be used later in various programs.

Using Built-in Units

Both the built-in units and user-defined units are included in a program by the uses clause. We
have already used the variants unit in Pascal - Variants tutorial. This tutorial explains creating and
including user-defined units. However, let us first see how to include a built-in unit crt in your
program −

program myprog;
uses crt;

The following example illustrates using the crt unit −

Program Calculate_Area (input, output);
uses crt;
var
 a, b, c, s, area: real;

begin
 textbackground(white); (* gives a white background *)
 clrscr; (*clears the screen *)

 textcolor(green); (* text color is green *)
 gotoxy(30, 4); (* takes the pointer to the 4th line and 30th column)

 writeln('This program calculates area of a triangle:');
 writeln('Area = area = sqrt(s(s-a)(s-b)(s-c))');
 writeln('S stands for semi-perimeter');
 writeln('a, b, c are sides of the triangle');
 writeln('Press any key when you are ready');

 readkey;
 clrscr;
 gotoxy(20,3);

 write('Enter a: ');
 readln(a);
 gotoxy(20,5);

 write('Enter b:');
 readln(b);
 gotoxy(20, 7);

 write('Enter c: ');
 readln(c);

 s := (a + b + c)/2.0;
 area := sqrt(s * (s - a)*(s-b)*(s-c));
 gotoxy(20, 9);

 writeln('Area: ',area:10:3);
 readkey;
end.

It is the same program we used right at the beginning of the Pascal tutorial, compile and run it to
find the effects of the change.

Creating and Using a Pascal Unit
To create a unit, you need to write the modules or subprograms you want to store in it and save it
in a file with .pas extension. The first line of this file should start with the keyword unit followed by
the name of the unit. For example −

unit calculateArea;

Following are three important steps in creating a Pascal unit −

The name of the file and the name of the unit should be exactly same. So, our unit
calculateArea will be saved in a file named calculateArea.pas.

The next line should consist of a single keyword interface. After this line, you will write the
declarations for all the functions and procedures that will come in this unit.

Right after the function declarations, write the word implementation, which is again a
keyword. After the line containing the keyword implementation, provide definition of all the
subprograms.

The following program creates the unit named calculateArea −

unit CalculateArea;
interface

function RectangleArea(length, width: real): real;
function CircleArea(radius: real) : real;
function TriangleArea(side1, side2, side3: real): real;

implementation

function RectangleArea(length, width: real): real;
begin
 RectangleArea := length * width;
end;

function CircleArea(radius: real) : real;
const
 PI = 3.14159;
begin
 CircleArea := PI * radius * radius;
end;

function TriangleArea(side1, side2, side3: real): real;
var
 s, area: real;

begin
 s := (side1 + side2 + side3)/2.0;
 area := sqrt(s * (s - side1)*(s-side2)*(s-side3));
 TriangleArea := area;
end;

end.

Next, let us write a simple program that would use the unit we defined above −

program AreaCalculation;
uses CalculateArea,crt;

var
 l, w, r, a, b, c, area: real;

begin
 clrscr;
 l := 5.4;
 w := 4.7;
 area := RectangleArea(l, w);
 writeln('Area of Rectangle 5.4 x 4.7 is: ', area:7:3);

 r:= 7.0;
 area:= CircleArea(r);
 writeln('Area of Circle with radius 7.0 is: ', area:7:3);

 a := 3.0;
 b:= 4.0;
 c:= 5.0;

 area:= TriangleArea(a, b, c);
 writeln('Area of Triangle 3.0 by 4.0 by 5.0 is: ', area:7:3);

end.

When the above code is compiled and executed, it produces the following result −

Area of Rectangle 5.4 x 4.7 is: 25.380
Area of Circle with radius 7.0 is: 153.938
Area of Triangle 3.0 by 4.0 by 5.0 is: 6.000

PASCAL - DATE AND TIMEPASCAL - DATE AND TIME
Most of the softwares you write need implementing some form of date functions returning current
date and time. Dates are so much part of everyday life that it becomes easy to work with them
without thinking. Pascal also provides powerful tools for date arithmetic that makes manipulating
dates easy. However, the actual name and workings of these functions are different for different
compilers.

Getting the Current Date & Time
Pascal's TimeToString function gives you the current time in a colon(:) delimited form. The
following example shows how to get the current time −

program TimeDemo;
uses sysutils;

begin
 writeln ('Current time : ',TimeToStr(Time));
end.

When the above code was compiled and executed, it produces the following result −

Current time : 18:33:08

The Date function returns the current date in TDateTime format. The TDateTime is a double
value, which needs some decoding and formatting. The following program demonstrates how to
use it in your program to display the current date −

Program DateDemo;
uses sysutils;
var
 YY,MM,DD : Word;

begin
 writeln ('Date : ',Date);
 DeCodeDate (Date,YY,MM,DD);
 writeln (format ('Today is (DD/MM/YY): %d/%d/%d ',[dd,mm,yy]));
end.

When the above code was compiled and executed, it produces the following result −

Date: 4.111300000000000E+004
Today is (DD/MM/YY):23/7/2012

The Now function returns the current date and time −

Program DatenTimeDemo;
uses sysutils;
begin
 writeln ('Date and Time at the time of writing : ',DateTimeToStr(Now));
end.

When the above code was compiled and executed, it produces the following result −

Date and Time at the time of writing : 23/7/2012 18:51:

Free Pascal provides a simple time stamp structure named TTimeStamp, which has the following
format −

type TTimeStamp = record
 Time: Integer;
 Date: Integer;
end;

Various Date & Time Functions
Free Pascal provides the following date and time functions −

Sr.No. Function Name & Description

1
function DateTimeToFileDate(DateTime: TDateTime):LongInt;

Converts DateTime type to file date.

2
function DateTimeToStr(DateTime: TDateTime):;

Constructs string representation of DateTime

3
function DateTimeToStr(DateTime: TDateTime; const FormatSettings:
TFormatSettings):;

Constructs string representation of DateTime

4
procedure DateTimeToString(out Result: ;const FormatStr: ;const DateTime:
TDateTime);

Constructs string representation of DateTime

5
procedure DateTimeToString(out Result: ; const FormatStr: ; const
DateTime: TDateTime; const FormatSettings: TFormatSettings);

Constructs string representation of DateTime

6
procedure DateTimeToSystemTime(DateTime: TDateTime; out SystemTime:
TSystemTime);

Converts DateTime to system time

7
function DateTimeToTimeStamp(DateTime:
TDateTime):TTimeStamp;Converts DateTime to timestamp

8
function DateToStr(Date: TDateTime):;

Constructs string representation of date

9
function DateToStr(Date: TDateTime; const FormatSettings:

TFormatSettings):;

Constructs string representation of date

10
function Date: TDateTime;

Gets current date

11
function DayOfWeek(DateTime: TDateTime):Integer;

Gets day of week

12
procedure DecodeDate(Date: TDateTime; out Year: Word; out Month: Word;
out Day: Word);

Decodes DateTime to year month and day

13
procedure DecodeTime(Time: TDateTime; out Hour: Word; out Minute: Word;
out Second: Word; out MilliSecond: Word);

Decodes DateTime to hours, minutes and seconds

14
function EncodeDate(Year: Word; Month: Word; Day: Word):TDateTime;

Encodes year, day and month to DateTime

15
function EncodeTime(Hour: Word; Minute: Word; Second: Word; MilliSecond:
Word):TDateTime;

Encodes hours, minutes and seconds to DateTime

16
function FormatDateTime(const FormatStr: ; DateTime: TDateTime):;

Returns string representation of DateTime

17
function FormatDateTime(const FormatStr: ; DateTime: TDateTime; const
FormatSettings: TFormatSettings):;

Returns string representation of DateTime

18
function IncMonth(const DateTime: TDateTime; NumberOfMonths: Integer =
1):TDateTime;

Adds 1 to month

19
function IsLeapYear(Year: Word):Boolean;

Determines if year is leap year

20
function MSecsToTimeStamp(MSecs: Comp):TTimeStamp;

Converts number of milliseconds to timestamp

21
function Now: TDateTime;

Gets current date and time

22
function StrToDateTime(const S:):TDateTime;

Converts string to DateTime

23
function StrToDateTime(const s: ShortString; const FormatSettings:
TFormatSettings):TDateTime;

Converts string to DateTime

24
function StrToDateTime(const s: AnsiString; const FormatSettings:
TFormatSettings):TDateTime;

Converts string to DateTime

25
function StrToDate(const S: ShortString):TDateTime;

Converts string to date

26
function StrToDate(const S: Ansistring):TDateTime;

Converts string to date

27
function StrToDate(const S: ShortString; separator: Char):TDateTime;

Converts string to date

28
function StrToDate(const S: AnsiString; separator: Char):TDateTime;

Converts string to date

29
function StrToDate(const S: ShortString; const useformat: ; separator:
Char):TDateTime;

Converts string to date

30
function StrToDate(const S: AnsiString; const useformat: ; separator:
Char):TDateTime;

Converts string to date

31

31
function StrToDate(const S: PChar; Len: Integer; const useformat: ;
separator: Char = #0):TDateTime;

Converts string to date

32
function StrToTime(const S: Shortstring):TDateTime;

Converts string to time

33
function StrToTime(const S: Ansistring):TDateTime;

Converts string to time

34
function StrToTime(const S: ShortString; separator: Char):TDateTime;

Converts string to time

35
function StrToTime(const S: AnsiString; separator: Char):TDateTime;

Converts string to time

36
function StrToTime(const S: ; FormatSettings: TFormatSettings):TDateTime;

Converts string to time

37
function StrToTime(const S: PChar; Len: Integer; separator: Char =
#0):TDateTime;

Converts string to time

38
function SystemTimeToDateTime(const SystemTime:
TSystemTime):TDateTime;

Converts system time to datetime

39
function TimeStampToDateTime(const TimeStamp: TTimeStamp):TDateTime;

Converts time stamp to DateTime

40
function TimeStampToMSecs(const TimeStamp: TTimeStamp):comp;

Converts Timestamp to number of milliseconds

41
function TimeToStr(Time: TDateTime):;

Returns string representation of Time

42
function TimeToStr(Time: TDateTime; const FormatSettings:

TFormatSettings):;

Returns string representation of Time

43
function Time: TDateTime;

Get current time

The following example illustrates the use of some of the above functions −

Program DatenTimeDemo;
uses sysutils;
var
year, month, day, hr, min, sec, ms: Word;

begin
 writeln ('Date and Time at the time of writing : ',DateTimeToStr(Now));
 writeln('Today is ',LongDayNames[DayOfWeek(Date)]);
 writeln;
 writeln('Details of Date: ');

 DecodeDate(Date,year,month,day);
 writeln (Format ('Day: %d',[day]));
 writeln (Format ('Month: %d',[month]));
 writeln (Format ('Year: %d',[year]));
 writeln;
 writeln('Details of Time: ');

 DecodeTime(Time,hr, min, sec, ms);
 writeln (format('Hour: %d:',[hr]));
 writeln (format('Minutes: %d:',[min]));
 writeln (format('Seconds: %d:',[sec]));
 writeln (format('Milliseconds: %d:',[hr]));
end.

When the above code was compiled and executed, it produced the following result:

Date and Time at the time of writing : 7/24/2012 8:26:
Today is Tuesday
Details of Date:
Day:24
Month:7
Year: 2012
Details of Time:
Hour: 8
Minutes: 26
Seconds: 21
Milliseconds: 8

PASCAL - OBJECT ORIENTEDPASCAL - OBJECT ORIENTED
We can imagine our universe made of different objects like sun, earth, moon, etc. Similarly, we
can imagine our car made of different objects like wheel, steering, gear, etc. Same way, there are
object-oriented programming concepts, which assume everything as an object and implement a
software using different objects. In Pascal, there are two structural data types used to implement a
real world object −

Object types
Class types

Object-Oriented Concepts

Before we go in detail, let's define important Pascal terms related to Object-Oriented Pascal.

Object − An Object is a special kind of record that contains fields like a record; however,
unlike records, objects contain procedures and functions as part of the object. These
procedures and functions are held as pointers to the methods associated with the object's
type.

Class − A Class is defined in almost the same way as an Object, but there is a difference in
way they are created. The Class is allocated on the Heap of a program, whereas the Object is
allocated on the Stack. It is a pointer to the object, not the object itself.

Instantiation of a class − Instantiation means creating a variable of that class type. Since
a class is just a pointer, when a variable of a class type is declared, there is memory
allocated only for the pointer, not for the entire object. Only when it is instantiated using one
of its constructors, memory is allocated for the object. Instances of a class are also called
'objects', but do not confuse them with Object Pascal Objects. In this tutorial, we will write
'Object' for Pascal Objects and 'object' for the conceptual object or class instance.

Member Variables − These are the variables defined inside a Class or an Object.

Member Functions − These are the functions or procedures defined inside a Class or an
Object and are used to access object data.

Visibility of Members − The members of an Object or Class are also called the fields.
These fields have different visibilities. Visibility refers to accessibility of the members, i.e.,
exactly where these members will be accessible. Objects have three visibility levels: public,
private and protected. Classes have five visibility types: public, private, strictly private,
protected and published. We will discuss visibility in details.

Inheritance − When a Class is defined by inheriting existing functionalities of a parent Class,
then it is said to be inherited. Here child class will inherit all or few member functions and
variables of a parent class. Objects can also be inherited.

Parent Class − A Class that is inherited by another Class. This is also called a base class or
super class.

Child Class − A class that inherits from another class. This is also called a subclass or
derived class.

Polymorphism − This is an object-oriented concept where same function can be used for
different purposes. For example, function name will remain same but it may take different
number of arguments and can do different tasks. Pascal classes implement polymorphism.
Objects do not implement polymorphism.

Overloading − It is a type of polymorphism in which some or all of operators have different
implementations depending on the types of their arguments. Similarly functions can also be
overloaded with different implementation. Pascal classes implement overloading, but the
Objects do not.

Data Abstraction − Any representation of data in which the implementation details are
hidden (abstracted).

Encapsulation − Refers to a concept where we encapsulate all the data and member
functions together to form an object.

Constructor − Refers to a special type of function which will be called automatically
whenever there is an object formation from a class or an Object.

Destructor − Refers to a special type of function which will be called automatically
whenever an Object or Class is deleted or goes out of scope.

Defining Pascal Objects
An object is declared using the type declaration. The general form of an object declaration is as
follows −

type object-identifier = object

 private
 field1 : field-type;
 field2 : field-type;
 ...
 public
 procedure proc1;
 function f1(): function-type;
 end;
var objectvar : object-identifier;

Let us define a Rectangle Object that has two integer type data members - length and width and
some member functions to manipulate these data members and a procedure to draw the
rectangle.

type
 Rectangle = object
 private
 length, width: integer;

 public
 constructor init;
 destructor done;

 procedure setlength(l: inteter);
 function getlength(): integer;

 procedure setwidth(w: integer);
 function getwidth(): integer;

 procedure draw;
end;
var
 r1: Rectangle;
 pr1: ^Rectangle;

After creating your objects, you will be able to call member functions related to that object. One
member function will be able to process member variable of related object only.

Following example shows how to set lengths and widths for two rectangle objects and draw them
by calling the member functions.

r1.setlength(3);
r1.setwidth(7);

writeln(' Draw a rectangle: ', r1.getlength(), ' by ' , r1.getwidth());
r1.draw;
new(pr1);
pr1^.setlength(5);
pr1^.setwidth(4);

writeln(' Draw a rectangle: ', pr1^.getlength(), ' by ' ,pr1^.getwidth());
pr1^.draw;
dispose(pr1);

Following is a complete example to show how to use objects in Pascal −

program exObjects;
type
 Rectangle = object
 private
 length, width: integer;

 public
 procedure setlength(l: integer);
 function getlength(): integer;

 procedure setwidth(w: integer);

 function getwidth(): integer;

 procedure draw;
end;
var
 r1: Rectangle;
 pr1: ^Rectangle;

procedure Rectangle.setlength(l: integer);
begin
 length := l;
end;

procedure Rectangle.setwidth(w: integer);
begin
 width :=w;
end;

function Rectangle.getlength(): integer;
begin
 getlength := length;
end;

function Rectangle.getwidth(): integer;
begin
 getwidth := width;
end;

procedure Rectangle.draw;
var
 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
end;

begin
 r1.setlength(3);
 r1.setwidth(7);

 writeln('Draw a rectangle:', r1.getlength(), ' by ' , r1.getwidth());
 r1.draw;
 new(pr1);
 pr1^.setlength(5);
 pr1^.setwidth(4);

 writeln('Draw a rectangle:', pr1^.getlength(), ' by ' ,pr1^.getwidth());
 pr1^.draw;
 dispose(pr1);
end.

When the above code is compiled and executed, it produces the following result −

Draw a rectangle: 3 by 7
* * * * * * *
* * * * * * *
* * * * * * *
Draw a rectangle: 5 by 4
* * * *
* * * *
* * * *
* * * *
* * * *

Visibility of the Object Members
Visibility indicates the accessibility of the object members. Pascal object members have three
types of visibility −

Visibility Accessibility

Public The members can be used by other units outside the program unit

Private The members are only accessible in the current unit.

Protected The members are available only to objects descended from the parent object.

By default, fields and methods of an object are public and are exported outside the current unit.

Constructors and Destructors for Pascal Objects:
Constructors are special type of methods, which are called automatically whenever an object is
created. You create a constructor in Pascal just by declaring a method with a keyword constructor.
Conventionally, the method name is Init, however, you can provide any valid identifier of your own.
You can pass as many arguments as you like into the constructor function.

Destructors are methods that are called during the destruction of the object. The destructor
methods destroy any memory allocation created by constructors.

Following example will provide a constructor and a destructor for the Rectangle class which will
initialize length and width for the rectangle at the time of object creation and destroy it when it
goes out of scope.

program exObjects;
type
 Rectangle = object
 private
 length, width: integer;
 public
 constructor init(l, w: integer);
 destructor done;

 procedure setlength(l: integer);
 function getlength(): integer;

 procedure setwidth(w: integer);
 function getwidth(): integer;

 procedure draw;
end;

var
 r1: Rectangle;
 pr1: ^Rectangle;

constructor Rectangle.init(l, w: integer);
begin
 length := l;
 width := w;
end;

destructor Rectangle.done;
begin
 writeln(' Desctructor Called');
end;

procedure Rectangle.setlength(l: integer);
begin
 length := l;

end;

procedure Rectangle.setwidth(w: integer);
begin
 width :=w;
end;

function Rectangle.getlength(): integer;
begin
 getlength := length;
end;

function Rectangle.getwidth(): integer;
begin
 getwidth := width;
end;

procedure Rectangle.draw;
var
 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
end;

begin
 r1.init(3, 7);
 writeln('Draw a rectangle:', r1.getlength(), ' by ' , r1.getwidth());
 r1.draw;
 new(pr1, init(5, 4));

 writeln('Draw a rectangle:', pr1^.getlength(), ' by ',pr1^.getwidth());
 pr1^.draw;
 pr1^.init(7, 9);

 writeln('Draw a rectangle:', pr1^.getlength(), ' by ' ,pr1^.getwidth());
 pr1^.draw;
 dispose(pr1);
 r1.done;
end.

When the above code is compiled and executed, it produces the following result −

Draw a rectangle: 3 by 7
* * * * * * *
* * * * * * *
* * * * * * *
Draw a rectangle: 5 by 4
* * * *
* * * *
* * * *
* * * *
* * * *
Draw a rectangle: 7 by 9
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
Destructor Called

Inheritance for Pascal Objects

Pascal objects can optionally inherit from a parent object. The following program illustrates
inheritance in Pascal Objects. Let us create another object named TableTop, which is inheriting
from the Rectangle object.

program exObjects;
type
 Rectangle = object
 private
 length, width: integer;
 public
 procedure setlength(l: integer);
 function getlength(): integer;
 procedure setwidth(w: integer);
 function getwidth(): integer;
 procedure draw;
end;

TableTop = object (Rectangle)
 private
 material: string;
 public
 function getmaterial(): string;
 procedure setmaterial(m: string);
 procedure displaydetails;
 procedure draw;
end;

var
 tt1: TableTop;

procedure Rectangle.setlength(l: integer);
begin
 length := l;
end;

procedure Rectangle.setwidth(w: integer);
begin
 width :=w;
end;

function Rectangle.getlength(): integer;
begin
 getlength := length;
end;

function Rectangle.getwidth():integer;
begin
 getwidth := width;
end;

procedure Rectangle.draw;
var
 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
end;

function TableTop.getmaterial(): string;
begin
 getmaterial := material;
end;

procedure TableTop.setmaterial(m: string);

begin
 material := m;
end;

procedure TableTop.displaydetails;
begin
 writeln('Table Top: ', self.getlength(), ' by ' , self.getwidth());
 writeln('Material: ', self.getmaterial());
end;

procedure TableTop.draw();
var
 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
 writeln('Material: ', material);
end;

begin
 tt1.setlength(3);
 tt1.setwidth(7);
 tt1.setmaterial('Wood');
 tt1.displaydetails();
 writeln;
 writeln('Calling the Draw method');
 tt1.draw();
end.

Following are the important points which should be noted down −

The object Tabletop has inherited all the members of the Rectangle object.

There is a draw method in TableTop also. When the draw method is called using a TableTop
object, TableTop's draw gets invoked.

There is an implicit instance named self that refers to the current instance of the object.

When the above code is compiled and executed, it produces the following result −

Table Top: 3 by 7
Material: Wood

Calling the Draw Method
* * * * * * *
* * * * * * *
* * * * * * *
Material: Wood

PASCAL - CLASSESPASCAL - CLASSES
You have seen that Pascal Objects exhibit some characteristics of object-oriented paradigm. They
implement encapsulation, data hiding and inheritance, but they also have limitations. For
example, Pascal Objects do not take part in polymorphism. So classes are widely used to
implement proper object-oriented behavior in a program, especially the GUI-based software.

A Class is defined in almost the same way as an Object, but is a pointer to an Object rather than
the Object itself. Technically, this means that the Class is allocated on the Heap of a program,
whereas the Object is allocated on the Stack. In other words, when you declare a variable the
object type, it will take up as much space on the stack as the size of the object, but when you
declare a variable of the class type, it will always take the size of a pointer on the stack. The actual
class data will be on the heap.

Defining Pascal Classes
A class is declared in the same way as an object, using the type declaration. The general form of a
class declaration is as follows −

type class-identifier = class
 private
 field1 : field-type;
 field2 : field-type;
 ...

 public
 constructor create();
 procedure proc1;
 function f1(): function-type;
end;
var classvar : class-identifier;

Its worth to note following important points −

Class definitions should come under the type declaration part of the program only.

A class is defined using the class keyword.

Fields are data items that exist in each instance of the class.

Methods are declared within the definition of a class.

There is a predefined constructor called Create in the Root class. Every abstract class and
every concrete class is a descendant of Root, so all classes have at least one constructor.

There is a predefined destructor called Destroy in the Root class. Every abstract class and
every concrete class is a descendant of Root, so, all classes have at least one destructor.

Let us define a Rectangle class that has two integer type data members - length and width and
some member functions to manipulate these data members and a procedure to draw the
rectangle.

type
 Rectangle = class
 private
 length, width: integer;

 public
 constructor create(l, w: integer);
 procedure setlength(l: integer);
 function getlength(): integer;
 procedure setwidth(w: integer);
 function getwidth(): integer;
 procedure draw;
end;

Let us write a complete program that would create an instance of a rectangle class and draw the
rectangle. This is the same example we used while discussing Pascal Objects. You will find both
programs are almost same, with the following exceptions −

You will need to include the {$mode objfpc} directive for using the classes.

You will need to include the {$m+} directive for using constructors.

Class instantiation is different than object instantiation. Only declaring the variable does not
create space for the instance, you will use the constructor create to allocate memory.

Here is the complete example −

{$mode objfpc} // directive to be used for defining classes
{$m+} // directive to be used for using constructor

program exClass;
type
 Rectangle = class
 private
 length, width: integer;

 public
 constructor create(l, w: integer);
 procedure setlength(l: integer);

 function getlength(): integer;
 procedure setwidth(w: integer);

 function getwidth(): integer;
 procedure draw;
end;
var
 r1: Rectangle;

constructor Rectangle.create(l, w: integer);
begin
 length := l;
 width := w;
end;

procedure Rectangle.setlength(l: integer);
begin
 length := l;
end;

procedure Rectangle.setwidth(w: integer);
begin
 width :=w;
end;

function Rectangle.getlength(): integer;
begin
 getlength := length;
end;

function Rectangle.getwidth(): integer;
begin
 getwidth := width;
end;

procedure Rectangle.draw;
var
 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
end;

begin
 r1:= Rectangle.create(3, 7);

 writeln(' Draw Rectangle: ', r1.getlength(), ' by ' , r1.getwidth());
 r1.draw;
 r1.setlength(4);
 r1.setwidth(6);

 writeln(' Draw Rectangle: ', r1.getlength(), ' by ' , r1.getwidth());
 r1.draw;
end.

When the above code is compiled and executed, it produces the following result −

Draw Rectangle: 3 by 7
* * * * * * *
* * * * * * *
* * * * * * *
Draw Rectangle: 4 by 6
* * * * * *
* * * * * *
* * * * * *
* * * * * *

Visibility of the Class Members
Visibility indicates the accessibility of the class members. Pascal class members have five types of
visibility −

Visibility Accessibility

Public These members are always accessible.

Private These members can only be accessed in the module or unit that
contains the class definition. They can be accessed from inside the
class methods or from outside them.

Strict Private These members can only be accessed from methods of the class itself.
Other classes or descendent classes in the same unit cannot access
them.

Protected This is same as private, except, these members are accessible to
descendent types, even if they are implemented in other modules.

Published This is same as a Public, but the compiler generates type information
that is needed for automatic streaming of these classes if the compiler
is in the {$M+} state. Fields defined in a published section must be of
class type.

Constructors and Destructors for Pascal Classes
Constructors are special methods, which are called automatically whenever an object is created.
So we take full advantage of this behavior by initializing many things through constructor
functions.

Pascal provides a special function called create() to define a constructor. You can pass as many
arguments as you like into the constructor function.

Following example will create one constructor for a class named Books and it will initialize price
and title for the book at the time of object creation.

program classExample;

{$MODE OBJFPC} //directive to be used for creating classes
{$M+} //directive that allows class constructors and destructors
type
 Books = Class
 private
 title : String;
 price: real;

 public
 constructor Create(t : String; p: real); //default constructor

 procedure setTitle(t : String); //sets title for a book
 function getTitle() : String; //retrieves title

 procedure setPrice(p : real); //sets price for a book
 function getPrice() : real; //retrieves price

 procedure Display(); // display details of a book
end;
var
 physics, chemistry, maths: Books;

//default constructor
constructor Books.Create(t : String; p: real);
begin
 title := t;
 price := p;
end;

procedure Books.setTitle(t : String); //sets title for a book
begin
 title := t;
end;

function Books.getTitle() : String; //retrieves title
begin
 getTitle := title;
end;

procedure Books.setPrice(p : real); //sets price for a book
begin
 price := p;
end;

function Books.getPrice() : real; //retrieves price
begin
 getPrice:= price;
end;

procedure Books.Display();
begin
 writeln('Title: ', title);
 writeln('Price: ', price:5:2);
end;

begin
 physics := Books.Create('Physics for High School', 10);
 chemistry := Books.Create('Advanced Chemistry', 15);
 maths := Books.Create('Algebra', 7);

 physics.Display;
 chemistry.Display;
 maths.Display;
end.

When the above code is compiled and executed, it produces the following result −

Title: Physics for High School
Price: 10
Title: Advanced Chemistry
Price: 15
Title: Algebra
Price: 7

Like the implicit constructor named create, there is also an implicit destructor method destroy
using which you can release all the resources used in the class.

Inheritance
Pascal class definitions can optionally inherit from a parent class definition. The syntax is as follows
−

type
childClas-identifier = class(baseClass-identifier)
< members >
end;

Following example provides a novels class, which inherits the Books class and adds more
functionality based on the requirement.

program inheritanceExample;

{$MODE OBJFPC} //directive to be used for creating classes
{$M+} //directive that allows class constructors and destructors

type
 Books = Class
 protected
 title : String;
 price: real;

 public
 constructor Create(t : String; p: real); //default constructor

 procedure setTitle(t : String); //sets title for a book
 function getTitle() : String; //retrieves title

 procedure setPrice(p : real); //sets price for a book
 function getPrice() : real; //retrieves price

 procedure Display(); virtual; // display details of a book
end;
(* Creating a derived class *)

type
 Novels = Class(Books)
 private
 author: String;

 public
 constructor Create(t: String); overload;
 constructor Create(a: String; t: String; p: real); overload;

 procedure setAuthor(a: String); // sets author for a book
 function getAuthor(): String; // retrieves author name

 procedure Display(); override;
end;
var
 n1, n2: Novels;

//default constructor
constructor Books.Create(t : String; p: real);
begin
 title := t;
 price := p;
end;

procedure Books.setTitle(t : String); //sets title for a book
begin
 title := t;
end;

function Books.getTitle() : String; //retrieves title
begin
 getTitle := title;
end;

procedure Books.setPrice(p : real); //sets price for a book
begin

 price := p;
end;

function Books.getPrice() : real; //retrieves price
begin
 getPrice:= price;
end;

procedure Books.Display();
begin
 writeln('Title: ', title);
 writeln('Price: ', price);
end;

(* Now the derived class methods *)
constructor Novels.Create(t: String);
begin
 inherited Create(t, 0.0);
 author:= ' ';
end;

constructor Novels.Create(a: String; t: String; p: real);
begin
 inherited Create(t, p);
 author:= a;
end;

procedure Novels.setAuthor(a : String); //sets author for a book
begin
 author := a;
end;

function Novels.getAuthor() : String; //retrieves author
begin
 getAuthor := author;
end;

procedure Novels.Display();
begin
 writeln('Title: ', title);
 writeln('Price: ', price:5:2);
 writeln('Author: ', author);
end;

begin
 n1 := Novels.Create('Gone with the Wind');
 n2 := Novels.Create('Ayn Rand','Atlas Shrugged', 467.75);
 n1.setAuthor('Margaret Mitchell');
 n1.setPrice(375.99);
 n1.Display;
 n2.Display;
end.

When the above code is compiled and executed, it produces the following result −

Title: Gone with the Wind
Price: 375.99
Author: Margaret Mitchell
Title: Atlas Shrugged
Price: 467.75
Author: Ayn Rand

Its worth to note following important points −

The members of the Books class have protected visibility.

The Novels class has two constructors, so the overload operator is used for function
overloading.

The Books.Display procedure has been declared virtual, so that the same method from the
Novels class can override it.

The Novels.Create constructor calls the base class constructor using the inherited keyword.

Interfaces
Interfaces are defined to provide a common function name to the implementers. Different
implementers can implement those interfaces according to their requirements. You can say,
interfaces are skeletons, which are implemented by developers. Following is an example of
interface −

type
 Mail = Interface
 Procedure SendMail;
 Procedure GetMail;
 end;

 Report = Class(TInterfacedObject, Mail)
 Procedure SendMail;
 Procedure GetMail;
 end;

Please note that, when a class implements an interface, it should implement all methods of the
interface. If a method of an interface is not implemented, then the compiler will give an error.

Abstract Classes
An abstract class is one that cannot be instantiated, only inherited. An abstract class is specified by
including the word symbol abstract in the class definition, like this −

type
 Shape = ABSTRACT CLASS (Root)
 Procedure draw; ABSTRACT;
 ...
 end;

When inheriting from an abstract class, all methods marked abstract in the parent's class
declaration must be defined by the child; additionally, these methods must be defined with the
same visibility.

Static Keyword
Declaring class members or methods as static makes them accessible without needing an
instantiation of the class. A member declared as static cannot be accessed with an instantiated
class object (though a static method can). The following example illustrates the concept −

{$mode objfpc}
{$static on}
type
 myclass=class
 num : integer;static;
 end;
var
 n1, n2 : myclass;
begin
 n1:= myclass.create;
 n2:= myclass.create;
 n1.num := 12;
 writeln(n2.num);
 n2.num := 31;
 writeln(n1.num);
 writeln(myclass.num);
 myclass.num := myclass.num + 20;
 writeln(n1.num);
 writeln(n2.num);

end.

When the above code is compiled and executed, it produces the following result −

12
31
31
51
51

You must use the directive {$static on} for using the static members.

