Circles - Past Edexcel Exam Questions

1.

(Question 5-C2 May 2018)
The circle C has equation

$$
x^{2}+y^{2}-2 x+14 y=0
$$

Find
(a) the coordinates of the centre of C,
(b) the exact value of the radius of C,
(c) the y coordinates of the points where the circle C crosses the y-axis.
(d) Find an equation of the tangent to C at the point $(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
2.
(Question 5-C2 May 2017)
The circle C has equation

$$
x^{2}+y^{2}-10 x+6 y+30=0 .
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the y coordinates of the points where the circle C crosses the line with equation $x=4$, giving your answers as simplified surds.
3.
(Question 3-C2 May 2016)

Figure 2
The circle C has centre $P(7,8)$ and passes through the point $Q(10,13)$, as shown in Figure 2.
(a) Find the length $P Q$, giving your answer as an exact value.
(b) Hence write down an equation for C.

The line l is a tangent to C at the point Q, as shown in Figure 2 .
(c) Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(4)
4.
(Question 2-C2 May 2015)
A circle C with centre at the point $(2,-1)$ passes through the point A at $(4,-5)$.
(a) Find the equation of the circle C.
(b) Find the equation of the tangent to the circle C at the point A, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
5.
(Question 9 - C2 May 2014)

The figure shows a circle C with centre Q and radius 4 and the point T which lies on C.

The tangent to C at the point T passes through the origin O and $O T=6 \sqrt{5}$.
Given that the coordinates of Q are $(11, k)$, where k is a positive constant,
(a) find the exact value of k,
(b) find an equation for C.
6.

The circle C has radius 5 and touches the y-axis at the point $(0,9)$, as shown in the figure below.

(a) Write down an equation for the circle C, that is shown in the figure.

A line through the point $P(8,-7)$ is a tangent to the circle C at the point T.
(b) Find the length of $P T$.
7.

The circle C has equation

$$
x^{2}+y^{2}-20 x-24 y+195=0
$$

The centre of C is at the point M,
(a) Find
i. the coordinates of the point M,
ii. the radius of the circle C.
N is the point with coordinates $(25,32)$.
(b) Find the length of the line $M N$.

The tangent to C at a point P on the circle passes through N.
(c) Find the length of the line $N P$.
8.
(Question 3-C2 May 2012)
The circle C with centre T and radius r has equation

$$
x^{2}+y^{2}-20 x-16 y+139=0
$$

(a) Find the coordinates of the centre of C.
(b) Show that $r=5$.

The line L has equation $x=13$ and crosses C at the points P and Q as shown in the figure above.
(c) Find the y coordinate of P and the y coordinate of Q.

Given that, to 3 decimal places, the angle $P T Q$ is 1.855 radians,
(d) find the perimeter of the sector $P T Q$.
9.

A circle C has centre $(-1,7)$ and passes through the point $(0,0)$. Find an equation for C.
10.
(Question 4 - C2 May 2011)
The circle C has equation

$$
x^{2}+y^{2}+4 x-2 y-11=0 .
$$

Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds.
11.
(Question 9 - C2 Jan 2011)
The points A and B have coordinates $(-2,11)$ and $(8,1)$ respectively.
Given that $A B$ is a diameter of the circle C,
(a) show that the centre of C has coordinates $(3,6)$,
(b) find an equation for C.
(c) Verify that the point $(10,7)$ lies on C.
(d) Find an equation of the tangent to C at the point (10,7), giving your answer in the form $y=m x+c$, where m and c are constants.
12.
(Question 10 - C2 Jun 2010)
The circle C has centre $A(2,1)$ and passes through the point $B(10,7)$.
(a) Find an equation for C.

The line l_{1} is the tangent to C at the point B.
(b) Find an equation for l_{1}.

The line l_{2} is parallel to l_{1} and passes through the mid-point of $A B$.
Given that l_{2} intersects C at the points P and Q,
(c) find the length of $P Q$, giving your answer in its simplest surd form.
13.
(Question 8 - C2 Jan 2010)
The figure below shows a sketch of the circle C with centre N and equation

$$
(x-2)^{2}+(y+1)^{2}=\frac{169}{4}
$$

(a) Write down the coordinates of N.
(b) Find the radius of C.

The chord $A B$ of C is parallel to the x-axis, lies below the x-axis and is of length 12 units as shown in the figure.
(c) Find the coordinates of A and the coordinates of B.
(d) Show that angle $A N B=134.8^{\circ}$, to the nearest 0.1 of a degree.

The tangents to C at the points A and B meet at the point P.
(e) Find the length $A P$, giving your answer to 3 significant figures.
14.

The circle C has equation

$$
x^{2}+y^{2}-6 x+4 y=12
$$

(a) Find the centre and the radius of C.

The point $P(-1,1)$ and the point $Q(7,-5)$ both lie on C.
(b) Show that $P Q$ is a diameter of C.

The point R lies on the positive y-axis and the angle $P R Q=90^{\circ}$.
(c) Find the coordinates of R.
15.
(Question 5 - C2 Jan 2009)
The points $P(-3,2), Q(9,10)$ and $R(a, 4)$ lie on the circle C, as shown in the figure below.

Given that $P R$ is a diameter of C,
(a) show that $a=13$,
(b) find an equation for C.
16.
(Question 5 - C2 Jun 2008)
The circle C has centre $(3,1)$ and passes through the point $P(8,3)$.
(a) Find an equation for C.
(b) Find an equation for the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
17.
(Question 8 - C2 Jan 2008)
A circle C has centre $M(6,4)$ and radius 3 .
(a) Write down the equation of the circle in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

The figure above shows the circle C. The point T lies on the circle and the tangent at T passes through the point $P(12,6)$. The line $M P$ cuts the circle at Q.
(b) Show that the angle $T M Q$ is 1.0766 radians to 4 decimal places.

The shaded region $T P Q$ is bounded by the straight lines $T P, Q P$ and the $\operatorname{arc} T Q$, as shown the figure.
(c) Find the area of the shaded region $T P Q$. Give your answer to 3 d.p.
18.
(Question 7 - C2 May 2007)
The points A and B lie on a circle with centre P, as shown in the figure below.

The point A has coordinates $(1,-2)$ and the mid-point M of $A B$ has coordinates $(3,1)$. The line l passes through the points M and P.
(a) Find an equation for l.

Given that the x-coordinate of P is 6 ,
(b) use your answer to part (a) to show that the y-coordinate of P is -1 ,
(c) find an equation for the circle.
19.

The line joining the points $(-1,4)$ and $(3,6)$ is a diameter of the circle C.
Find an equation for C.
20.
(Question 7 - C2 May 2006)
The line $y=3 x-4$ is a tangent to the circle C, touching C at the point $P(2,2)$, as shown in the figure below.

The point Q is the centre of C.
(a) Find an equation of the straight line through P and Q.

Given that Q lies on the line $y=1$,
(b) show that the x-coordinate of Q is 5 ,
(c) find an equation for C.
21.

In the figure, $A(4,0)$ and $B(3,5)$ are the end points of a diameter of the circle C.

Find
(a) the exact length of $A B$,
(b) the coordinates of the midpoint P of $A B$,
(c) an equation for the circle C.
22.

The circle C, with centre at the point A, has equation $x^{2}+y^{2}-10 x+9=0$.
Find
(a) the coordinates of A,
(b) the radius of C,
(c) the coordinates of the points at which C crosses the x-axis.

Given that the line l with gradient $\frac{7}{2}$ is a tangent to C, and that l touches C at the point T,
(d) find an equation of the line which passes through A and T.

Solutions

1. (a) $(1,-7)$
(b) $\sqrt{50}$
(c) $y=0,-14$
(d) $x+7 y-2=0$
2. (a) $(5,-3)$
(b) 2
(c) $y=-3 \pm \sqrt{3}$
3. (a) $\sqrt{34}$
(b) $(x-7)^{2}+(y-8)^{2}=34$
(c) $3 x+5 y-95=0$
4. (a) $(x-2)^{2}+(y+1)^{2}=20$
(b) $x-2 y-14=0$
5. (a) $k=5 \sqrt{3}$
(b) $(x-11)^{2}+(y-5 \sqrt{3})^{2}=16$
6. (a) $(x+5)^{2}+(y-9)^{2}=25$
(b) 20
7. (a) i. $(10,12)$
ii. 7
(b) 25
(c) 24
8. (a) $(10,8)$
(b) -
(c) 12,4

Study Well

(d) 19.3
9. $(x+1)^{2}+(y-7)^{2}=50$
10. (a) $(-2,1)$
(b) 4
(c) $(0,1 \pm 2 \sqrt{3})$
11. (a) -
(b) $(x-3)^{2}+(y-6)^{2}=50$
(c) -
(d) $y=-7 x+77$
12. (a) $(x-2)^{2}+(y-1)^{2}=100$
(b) $y=-\frac{4}{3} x+\frac{61}{3}$
(c) $10 \sqrt{3}$
13. (a) $(2,-1)$
(b) $\frac{13}{2}$
(c) $A\left(-4,-\frac{7}{2}\right), B\left(8,-\frac{7}{2}\right)$
(d) -
(e) 15.6
14. (a) centre $=(-3,2)$, radius $=5$
(b) -
(c) $(0,2)$
15. (a) -
(b) $(x-5)^{2}+(y-3)^{2}=65$
16. (a) $(x-3)^{2}+(y-1)^{2}=29$
(b) $5 x+2 y-46=0$
17. (a) $(x-6)^{2}+(y-4)^{2}=9$

Study Well

(b) -
(c) 3.507
18. (a) $y=-\frac{2}{3} x+3$
(b) -
(c) $(x-6)^{2}+(y+1)^{2}=26$
19. $(x-1)^{2}+(y-5)^{2}=5$
20. (a) $y=-\frac{1}{3} x+\frac{8}{3}$
(b) -
(c) $(x-5)^{2}+(y-1)^{2}=10$
21. (a) $\sqrt{26}$
(b) $\left(\frac{7}{2}, \frac{5}{2}\right)$
(c) $\left(x-\frac{7}{2}\right)^{2}+\left(y-\frac{5}{2}\right)^{2}=\frac{13}{2}$
22. (a) $(5,0)$
(b) 4
(c) $(1,0),(9,0)$
(d) $y=-\frac{2}{7} x+\frac{10}{7}$

