## PAST EXAM PAPER \& MEMO N2

## ABOUT THE QUESTION PAPERS AND ONLINE INSTANT ACCESS:

THANK YOU FOR DOWNLOADING THE PAST EXAM PAPER AND ITS MEMO, WE HOPE IT WILL BE OF HELP TO YOU. SHOULD YOU NEED MORE QUESTION PAPERS AND THEIR MEMOS PLEASE SEND US AN EMAIL TO INFO@ PREVIOUSPAPERS.CO.ZA AND WE WILL SEND YOU A FULL DOWNLOAD VERSION OF THESE THOUGH A FULL DOWNLOAD COMES AT A COST.

ALTERNATIVELY YOU CAN PURCHASE THEM ONLINE FROM OUR WEBSITE WWW.PREVIOUSPAPERS.CO.ZA TO AVOID DELAYS AND YOU FOLLOW ALL THE NEEDED STEPS TO GET INSTANT DOWNLOAD. WITH ONLINE PAYMENT YOU CAN GET INSTANT DOWNLOADS OF YOUR PURCHASE.

WE SELL PREVIOUS PAPERS AND MEMOS FOR THE SUBJECTS MENTIONED AND THE PAPERS ARE BETWEEN 2014-2019. THE PAPERS ARE IN PDF FORM AND EACH PDF HAS A MINIMUM OF SEVEN DIFFERENT PAPERS. THE YEARS FOR THE PAPERS YOU ARE PURCHASING ARE ALSO INCLUDED ON THE WEBSITE.

## PRICE OF THE PAPERS AT A BIG DISCOUNT

Previous papers are very important in ensuring you pass your final exams. The actual value of the papers we are making you access is way more than R1 000 and we are making these very cheap as we have you in mind. For a small amount you can have these papers.

## THE COST PER SUBJECT IS R300.



This question paper consists of $\mathbf{7}$ pages and 1 formula sheet of $\mathbf{2}$ pages.

## DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA <br> NATIONAL CERTIFICATE <br> MATHEMATICS N2 <br> TIME: 3 HOURS <br> MARKS: 100

## INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Show ALL formulae and intermediate steps and simplify where possible.
5. Questions may be answered in any order, but subsections of questions must be kept together.
6. Use only BLUE or BLACK ink.
7. ALL final answers must be rounded off to THREE decimal places.
8. Write neatly and legibly.

## QUESTION 1

1.1 Fully factorise the following expressions:
1.1.1 $2 x^{2} a-8 a-8 x^{2}+32$
1.1.2 $3 x^{3} y-12 x^{2} y+9 x y$
1.2 Simplify the following fractions:
1.2.1

$$
\begin{equation*}
\frac{2}{x}+\frac{2 x}{3}-\frac{3 x}{2} \tag{3}
\end{equation*}
$$

1.2.2

$$
\begin{equation*}
1-\frac{3-a}{3 a} \tag{3}
\end{equation*}
$$

1.2.3 $\frac{2 a x-4 a}{x^{2}-2 x-3} \div \frac{1}{4 x-12} \times \frac{x+1}{4 a x-8 a}$

## QUESTION 2

2.1 Solve the following equation by using the quadratic formula:

$$
\begin{equation*}
-3 x^{2}-4 x=-5 \tag{4}
\end{equation*}
$$

2.2 Change the subject of the formulas to the symbol in brackets:
2.2.1 $\quad B=\sqrt{\frac{p q}{K x}} \ldots \ldots . . . . . . . . .(x)$
2.2.2. $\quad I=\frac{n E}{R+n r}$
$2.3 \quad 9 \ell$ petrol and a can of oil cost R137.81 together. Peter buys $14 \ell$ petrol and a can of oil for R198.26. What is the price of one litre of petrol and one can of oil?

## QUESTION 3

3.1 Simplify:
$\frac{a^{5} b^{3}}{a^{-2} b^{4}} \times \sqrt{\sqrt[3]{a^{18} b^{36}}}$
3.2 Solve for $x$ :
$3.2^{x}=24$
3.3 Simplify with the aid of logarithmic laws:

$$
\begin{equation*}
x=\frac{13,4^{5} \times \sqrt{265}}{(12,8)(54,6)} \tag{5}
\end{equation*}
$$

Show ALL the steps. (Answers only are not acceptable).
Prove that $\frac{\log _{x} 9+\log _{x} 81-\log _{x} 3}{\log _{x} 2187}=\frac{5}{7}$

## QUESTION 4

4.1 A pulley turns at 3500 revolutions per minute.

Calculate:
4.1.1 The angular velocity of the pulley in radians per second.
4.1.2 The diameter of the pulley if the circumferential velocity is $2015 \mathrm{~cm} / \mathrm{s}$.
( $2 \times 3$ )
(6)
4.2 A sector of a circle has an arc of $22,5 \mathrm{~cm}$, which subtends an angle $\theta$. If the diameter of the circle is 48 cm , calculate:
4.2.1 The magnitude of the angle $\theta$ in degrees.
4.2.2 The area of the circle sector.
4.3 Consider FIGURE 1 below. A paperweight, in the shape of a cone, which containing a liquid has a slant height, $\mathrm{AC}=13,2 \mathrm{~cm}$ and diameter, $\mathrm{BC}=16 \mathrm{~cm}$. Determine the following:
4.3.1 AD , the perpendicular height of the paperweight.
4.3.2 How many millilitres of liquid will the paperweight hold when full?


FIGURE 1
4.4 An irregular figure with one horizontal straight side is divided into 7 vertical strips of 8 mm wide each. The ordinates dividing these strips have the following lengths measured in cm: $0 ; 12 ; 13 ; 21 ; 24 ; 23 ; 18$; and 0 .

Calculate the area of the figure.

## QUESTION 5

5.1 Consider FIGURE 2 below. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACD}$ are two right-angled triangles with $\mathrm{AB}=134,5 \mathrm{~cm}, \mathrm{AD}=56,9 \mathrm{~cm}$ and $\mathrm{BC}=128 \mathrm{~cm}$. Determine the following:
5.1.1 The magnitude of the angle $\theta$.
5.1.2 The length of side AC.
5.1.3 The magnitude of the angle $\beta$. Give your answer for $\beta$ in radians.


FIGURE 2
5.2 Calculate the value of $A$ for the following:
$3,5 \tan A+7=0 ; A \in\left[0^{\circ} ; 360^{\circ}\right]$
5.3 An observer is standing 25 m from the foot of the tree. The angle of elevation to the top of a tree is $57^{\circ}$. Calculate the height of the tree.

## QUESTION 6

6.1 Draw the following graph on its own system of axes using graph paper:

$$
\begin{equation*}
y=\cos x-\frac{1}{2} ; 0^{\circ} \leq x \leq 360^{\circ} \tag{3}
\end{equation*}
$$

6.2 Given: function $y=x^{2}-4 x-5$

Determine the following:
6.2.1 Zero points of the function
6.2.2 $y$-intercept of the function
6.2.3 The axis of symmetry
6.2.4 The coordinates of the turning point

Hence, draw the graph of $y=x^{2}-4 x-5$ on a system of axes, using graph paper.
6.3 Draw the graph of $x-y=5$ on the same system of axes used for QUESTION 6.2.
6.4 Read from the graph the coordinates of the point where the two graphs in QUESTION 6.3 intersect.

## MATHEMATICS N2 - FORMULA SHEET

## The right cone

Volume $=1 / 3 \pi r^{2} h$
Surface area $=\pi r \sqrt{\mathrm{~h}^{2}+\mathrm{r}^{2}}+\pi \mathrm{r}^{2}$

$$
=\pi \mathrm{r} \ell+\pi \mathrm{r}^{2}
$$

## The right pyramid

Volume $=\frac{1}{3}($ area of base $) \times($ perpendicular height $)$

## The prism

Volume $=($ area of base $) \times($ perpendicular height $)$

## The cylinder

Volume $=\pi r^{2} h$
Surface area $=2 \pi r^{2}+2 \pi r h$

## The sphere

$V=\frac{4}{3} \pi r^{3} ; A=4 \pi r^{2}$

## Degrees and radians

$180^{\circ}=\pi \mathrm{rad}$
Sector: $\theta=\frac{\text { arc }}{\text { radius }}-; A=1 / 2 r^{2} \theta$

## Angular velocity and circumferential velocity

Angular velocity: $w=2 \pi n$
Circumferential velocity: $v=\pi D n$
$n=$ rotation frequency ( $\mathrm{r} / \mathrm{s}=$ revolution per second)

## Mid-ordinate rule

Area $=\left[\frac{\text { First ordinate }+ \text { last ordinate }}{2}+\right.$ sum of the ordinates $] \times$ distance between the ordinates $=($ distance between ordinates $) \times($ sum of mid-ordinates $)$

## Graphs

Straight line: $y=m x+c \quad$ Parabola: $y=a x^{2}+b x+c$
Axis of symmetry: $x=\frac{-b}{2 a}$

Roots: $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

## Trigonometry

$90^{\circ}<\theta<180^{\circ} \quad \sin \theta=\sin \left(180^{\circ}-\theta\right) \quad \cos \theta=-\cos \left(180^{\circ}-\theta\right)$
$\tan \theta=-\tan \left(180^{\circ}-\theta\right)$
Reciprocal Identities
$\sec x=\frac{1}{\cos x}$
$\operatorname{cosec} x=\frac{1}{\sin x}$
$\cot x=\frac{1}{\tan x}$

## Segments of circles

Chord length $=x$
Height of segment $=h$
Diameter of circle $=D$
$\mathrm{D}=\mathrm{h}+\frac{x^{2}}{4 \mathrm{~h}}$

## Regular polygons

Angle subtended at centre of circumscribed circle by one side:
$\theta=$
$\frac{360^{\circ}}{\text { number of sides }}$
$\mathrm{R}=$ radius of circumscribed circle
$x=$ length of side
$x=2 \mathrm{R} \sin \frac{\theta}{2}$
Annulus: $\mathrm{A}=\pi\left(R^{2}-r^{2}\right)$


## higher education \& training

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

## MARKING GUIDELINE

NATIONAL CERTIFICATE APRIL EXAMINATION

MATHEMATICS N2

APRIL 2016

This marking guideline consists of 11 pages.

## INSTRUCTIONS AND INFORMATION

1. $\quad \checkmark$ equals $\mathbf{1}$ mark an $\sqrt{ }$ equals $1 / 2$ mark.
2. Half marks are not allocated, unless indicated otherwise.
3. Where a formula is required, using the wrong formula is a principle error and NO marks are allocated.
4. Students should show ALL formulae and intermediate steps and simplify where possible.
5. ALL final answers must be rounded off to THREE decimal places (unless indicated otherwise).
6. Questions may be answered in any order, but subsections of questions must be kept together. If subsections are separated, the student can be penalised by ONE mark.

Where a student copied wrongly from the question paper, and the standard of the 7. question is still the same, the student will be penalised by ONE mark. If the copying error simplifies the question and makes it easier, the student forfeits the marks.
8. Questions must be answered in blue or black ink. Answers in PENCIL are not marked as it is regarded as rough work.

## QUESTION 1

1.1

$$
\begin{array}{ll}
1.1 .1 & 2 x^{2} a-8 a-8 x^{2}+32 \\
& 2 a\left(x^{2}-4\right)-8\left(x^{2}-4\right) \\
& =2(a-4)(x-2)(x+2) \tag{4}
\end{array}
$$

1.1.2 $3 x^{3} y-12 x^{2} y+9 x y$
$=3 x y\left(x^{2}-4 x+3\right)$
$=3 x y(x-3)(x-1)$
1.2
1.2.1 $\frac{2}{x}+\frac{2 x}{3}-\frac{3 x}{2}$
$=\frac{12+4 x^{2}-9}{6 x}$
$=\frac{12-5 x^{2}}{6 x} \checkmark \checkmark$
1.2.2

$$
\begin{align*}
& 1-\frac{3-a}{3 a}  \tag{3}\\
& =\frac{3 a-3+a}{3 a} \\
& =\frac{4 a-3}{3 a} \tag{3}
\end{align*}
$$

1.2.3 $\frac{2 a x-4 a}{x^{2}-2 x-3} \div \frac{1}{4 x-12} \times \frac{x+1}{4 a x-8 a}$
$=\frac{2 a(x-2)}{(x-3)(x+1)} \times \frac{4(x-3)}{1} \times \frac{x+1}{4 a(x-2)}$
$=2$

## QUESTION 2

2.1

$$
\begin{align*}
& \frac{-3 x^{2}-4 x+5=0}{3 x^{2}+4 x-5=0} \\
& x=\frac{-4 \pm \sqrt{(-4)^{2}-4(3)(-5)}}{6} \\
& x=\frac{-4 \pm \sqrt{76}}{6} \\
& x=0,786 \quad \text { or } x=-2,120 \quad
\end{align*}
$$

$2.2 \quad 2.2 .1$

$$
\begin{align*}
& B=\sqrt{\frac{p q}{K x}} \ldots \ldots . . . . . . . \\
& \therefore B^{2}=\frac{p q}{K x} \\
& \therefore x=\frac{p q}{K B^{2}} \tag{3}
\end{align*}
$$

2.2.2

$$
\begin{align*}
& I=\frac{n E}{R+n r} \ldots \ldots \ldots . . . . . . \\
& I R+I n r=n E \\
& \therefore I R=n E-I n r \\
& \therefore I R=n(E-I r) \\
& \therefore n=\frac{I R}{E-I R} \\
& \text { or } n=\frac{-I R}{I R-E} \tag{3}
\end{align*}
$$

2.3

$$
\begin{gather*}
9 \ell+c=137,81 \ldots . . . . . . . . .  \tag{1}\\
14 \ell+c=198,26 \ldots . . . . . . .
\end{gather*}
$$

(1) $-(2)-5 \ell=-60,45$

$$
\therefore \ell=12,09
$$

From (1) $\quad 9(12,09)+c=137,81$

$$
\begin{align*}
& \therefore c=137,81-108,81 \\
& \therefore c=29 \tag{4}
\end{align*}
$$

## QUESTION 3

3.1

$$
\begin{align*}
& \frac{a^{5} b^{3}}{a^{-2} b^{4}} \times \sqrt{\sqrt[3]{a^{18} b^{36}}} \\
& =\frac{a^{7}}{b} \times \sqrt{a^{6} b^{12}} \\
& =\frac{a^{7}}{b} \times a^{3} b^{6} \\
& =a^{10} b^{5} \tag{4}
\end{align*}
$$

3.2

$$
\begin{align*}
& 3.2^{x}=24 \\
& 2^{x}=8 \\
& 2^{x}=2^{3} \\
& x=3 \tag{3}
\end{align*}
$$

3.3

$$
\begin{aligned}
& x=\frac{13,4^{5} \times \sqrt{265}}{12,8 \times 54,6} \\
& \therefore \log x=\log \frac{13,4^{5} \times \sqrt{265}}{12,8 \times 54,6}
\end{aligned}
$$

$$
\therefore \log x=\log 13,4^{5}-\log 265^{\frac{1}{2}} \checkmark_{\imath}{ }^{\checkmark}, \cdot \log 54,6
$$

Show ALL the steps. Answers only are not acceptable.

Without rounding off:
$\log x=4,002744313$
$\therefore x=10^{4,002744313}$
$\therefore x=10063,390$

$$
\therefore \log x=5 \log 13,4-\frac{1}{2} \log 265-\log 12,8-\log 54,6
$$

$$
\therefore \log x=4,003
$$

$$
\therefore x=10^{4,003}
$$

$$
\begin{equation*}
\therefore x=10069,317 \tag{5}
\end{equation*}
$$

3.4

$$
\begin{align*}
& \frac{\log _{x} 9+\log _{x} 81-\log _{x} 3}{\log _{x} 2187}=\frac{5}{7} \\
& L H S=\frac{\log _{x} 9+\log _{x} 81-\log _{x} 3}{\log _{x} 2187} \\
& =\frac{\log _{x} 3^{2}+\log _{x} 3^{4}-\log _{x} 3}{\log _{x} 3^{7}} \\
& =\frac{2 \log _{x} 3+4 \log _{x} 3-\log _{x} 3}{7 \log _{x} 3} \\
& =\frac{5 \log _{x} 3}{7 \log _{x} 3} \\
& =\frac{5}{7}=R H S \tag{4}
\end{align*}
$$

## QUESTION 4

4.1 4.1.1 The angular velocity of the pulley in radians per second.

$$
\begin{align*}
& w=2 \pi n \\
& w=2 \pi\left(\frac{3500}{60}\right) \\
& w=366,519 \mathrm{rad} / \mathrm{s} \tag{3}
\end{align*}
$$

4.1.2 $\quad V=\pi D n$

$$
\begin{align*}
& 2015=\pi D\left(\frac{3500}{60}\right) \\
& 10,995=D \\
& D=10,955 \mathrm{~cm} \tag{3}
\end{align*}
$$

$4.2 \quad 4.2 .1$

$$
\begin{align*}
& \theta=\frac{s}{r} \\
& \theta=\frac{22,5}{24} \quad \checkmark \quad \text { where } s=22,5 \mathrm{~cm} \text { and } r=24 \mathrm{~cm} \\
& \checkmark  \tag{3}\\
& \theta=0,938 \mathrm{rad} \text { or } 53,743^{\circ} \quad \checkmark
\end{align*}
$$

Final round off:
$\theta=0,9375 \mathrm{rad}$ or $53,715^{\circ} \quad \checkmark$
$\qquad$
4.2.2

$$
\begin{array}{lll}
A=\frac{1}{2} r^{2} \theta & & \text { or } \\
=\frac{1}{2}(24)^{2}(0,938) & \checkmark & =\frac{1}{2}(24)^{2}(0,9375) \\
=270,144 \mathrm{~cm}^{2} & \checkmark & =270 \mathrm{~cm}^{2}
\end{array}
$$

4.3

$$
\begin{align*}
& A D^{2}=A B^{2}-B D^{2} \\
& =(13,2)^{2}-(8)^{2} \\
& =110,24 \\
& A D=10,5 \mathrm{~cm} \tag{2}
\end{align*}
$$

$$
\begin{array}{ll}
4.3 .2 & V=\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(8)^{2}(10,5) \\
& =703,717 \mathrm{~cm}^{3} \\
& =703,717 \mathrm{~m} \ell \tag{3}
\end{array}
$$

$$
\text { or } 703,7167544 \mathrm{~cm}^{3}
$$

$$
=703,7167544 \mathrm{~m} \ell
$$

Follow up with height of 4.3
4.4

$$
\begin{array}{ll}
A=\left[\frac{0+0}{2}+12+13+21+24+23+18\right] \times 0,8 & \text { or } \mathrm{A}=8880 \mathrm{~mm}^{2} \\
=88,8 \mathrm{~cm}^{2} & \checkmark \tag{4}
\end{array}
$$

## QUESTION 5

$5.1 \quad$ 5.1.1

$$
\begin{array}{ll}
\cos \theta=\frac{128}{134,5} & \checkmark \\
\cos \theta=0,952 \\
\theta=17,824^{\circ}
\end{array} \quad \text { *without rounding off : } \theta=17,885^{\circ}
$$

5.1.2

$$
\begin{aligned}
& A C^{2}=134,5^{2}-128^{2} \quad \text { or } \\
& A C^{2}=1706,25 \\
& A C=41,307
\end{aligned}
$$

$\sin 17.824=\frac{o p p}{134,5}$
$134 \cdot 5 \cdot \sin 17,824^{\circ}=41,17$
or
In $\triangle A B C$
$\tan \theta=\frac{A C}{128}$
or
In $\triangle A B C$
$\sin \theta=\frac{A C}{134,5}$
$\therefore A C=128 \tan \theta$
$\therefore A C=134,5 \sin \theta$
$\therefore A C=128 \tan 17,885^{\circ}$
$\therefore A C=134,5 \sin 17,885^{\circ}$
$\therefore A C=41,306 \mathrm{~cm}$
$\therefore A C=41,306 \mathrm{~cm}$

Or
In $\triangle A B C$
$\tan \theta=\frac{A C}{128}$
$\therefore A C=128 \tan \theta$
$\therefore A C=128 \tan 17,824^{\circ}$
$\therefore A C=41,155 \mathrm{~cm}$
5.1.3

$$
\begin{equation*}
\sin \beta=\frac{41,307}{56,9} \tag{3}
\end{equation*}
$$

$\beta=\sin ^{-1} 0,726$
$\beta=46,552^{\circ}$
$\beta=0,812$ radians
Or
$\beta=46,326^{\circ}$
$\therefore \beta=0,808 \mathrm{rad}$
or
$\beta=46,348^{\circ}$
$\therefore \beta=0,809 \mathrm{rad}$
5.2

$$
\begin{align*}
& 3,5 \tan \mathrm{~A}+7=0 ; A \in\left[0^{\circ} ; 360^{\circ}\right]  \tag{3}\\
& \tan A=-2
\end{align*}
$$

$$
A=180-63,435=116,565
$$

$$
\begin{equation*}
A=360-63,435=296,565 \tag{3}
\end{equation*}
$$

5.3

$$
\begin{aligned}
& \tan 57^{\circ}=\frac{A C}{25} \\
& \therefore A C=25 \tan 57^{\circ} \\
& \therefore A C=38,497 \mathrm{~m}
\end{aligned}
$$

## QUESTION 6

6.1

$$
y=\cos x-\frac{1}{2} \text { for } 0^{\circ} \leq x \leq 360^{\circ}
$$



| shape | x-intercepts | y-intercept | turning points |
| :--- | :--- | :--- | :--- |
| $1 / 2 \operatorname{mark}(\sqrt{ })$ | $60^{\circ}, 300^{\circ}$ | 0,5 | $\left(180^{\circ},-1,5\right)^{1 / 2} \operatorname{mark} \sqrt{ }$ |
|  | $1 / 2$ mark\& $1 / 2$ mark $\sqrt{ } \sqrt{1 / 2}$ mark $\sqrt{ }$ | $\left(360^{\circ}, 0,5\right)^{1 / 2}$ mark $\sqrt{ }$ |  |

$6 \times 1 / 2$ marks $=3$ marks
6.2

$$
\begin{array}{cccc}
\text { 6.2.1 } & x^{2}-4 x-5=0 \\
& (x+1)(x-5)=0 \\
& x=-1 & \text { or } & x=5  \tag{2}\\
\checkmark & & \checkmark .
\end{array}
$$

6.2.2 let $x=0$

$$
\begin{equation*}
y=-5 \tag{1}
\end{equation*}
$$

6.2.3 $\quad x=\frac{-b}{2 a}$
$=\frac{-(-4)}{2}$

$$
\begin{equation*}
=2 \tag{1}
\end{equation*}
$$

6.2.4 If $x=2$ then

$$
\begin{align*}
& y=(2)^{2}-4(2)-5 \\
& =-9 \tag{2}
\end{align*}
$$

therefore, TP is $(2 ;-9)$


TY- $1 / 2$ mark $\sqrt{ }$
x-intercepts( $1 / 2$ mar $\& 1 / 2$ mark)
Y-intercept( $1 / 2$ mark)
Shape (1 mark)
$6.3 \quad \mathrm{x}$-intercept $1 / 2$ marky-intercept ${ }^{1 / 2}$ markshape 1 mark
$\sqrt{ }$
$(0 ;-5)^{v}$ and $(5 ; 0)$


IF YOU NEED MORE PAPERS WE SELL THEM FOR R300 VISIT OUR WEBSITE AT WWW.PREVIOUSPAPERS.CO.ZA

## OR SEND US AN EMAIL AT INFO@PREVIOUSPAPERS.CO.ZA AND

WE WILL GLADLY HELP YOU.

