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Abstract Patchwork distributions are a class of distributions for use in simulation
that can be used to model finite-dimensional random vectors with given marginal
distributions and dependence properties. They are an extension of the previously
developed chessboard distributions. We show how patchwork distributions can be
selected to match several user-specified properties of the joint distribution. In con-
structing a patchwork distribution, one must solve a linear program that is poten-
tially large. We develop results that shed light on the size of the linear program that
one must solve. These results suggest that patchwork distributions should only be
used to model random vectors with low dimension, say less than or equal to 5.

1 Introduction

Is there a part of stochastic simulation that George Fishman has not contributed to?
If so, it is well hidden! His breadth of work, when multiplied by the length of time
that he has been a major force, give rise to a very large area of contributions to the
field. (Our apologies to the dimensional analysts that are trying to make sense of the
last sentence.) So it is indeed an honour and a privilege to contribute to this volume
in George Fishman’s honour. Our contribution is in the area of input modeling.
The one-dimensional case is well understood—see, for example, Fishman (2001,
Chapter 10). But when we turn to higher dimensions, the situation is far less satis-
factory.

The key issue is statistical dependence and its impact on performance mea-
sures. Indeed, much effort has been devoted to this problem in recent times. Recent
applications include generating test problems for numerical algorithms (Hill and
Reilly 2000), cost analysis (Lurie and Goldberg 1998), crop insurance pricing
(Nelson 2004), and arrival process modeling (Avramidis et al. 2004). There are
many classes of distributions that can be used to model (finite-dimensional) random
vectors with given properties. For surveys, see Devroye (1986), Johnson (1987), and
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Biller and Ghosh (2004, 2006), and for a discussion of the modeling process, see
Henderson (2005). In this paper we develop a new class of distributions of random
vectors that we call patchwork distributions.

Relative to other methods, patchwork distributions have the desirable property
that they afford considerable flexibility to the modeler in their ability to match prop-
erties of the distribution of the random vector. In particular, they can simultaneously
match the marginal distributions of the components of the random vector, the covari-
ance matrix, and the probability that the random vector lies within certain regions.
This flexibility comes at a price: As we shall see, it can be computationally difficult
to construct the desired distribution when the random vector has moderate to large
dimension. Therefore, practically speaking, patchwork distributions are limited to
low dimensions, say 5 or less.

Patchwork distributions are an extension of a certain class of distributions known
as chessboard distributions (Ghosh and Henderson 2001, 2002), or “piecewise-
uniform copulae” (Mackenzie 1994). They are constructed as follows. One assumes
that the desired random vector X = (X1, . . . , Xd ) is given by (F−1

1 (U1), . . . ,
F−1

d (Ud )), where Fi is the desired marginal distribution function of Xi , and Ui

is a uniform random variable on (0, 1). The problem then reduces to construct-
ing the joint distribution of (U1, . . . ,Ud ) on (0, 1)d . (The joint distribution of
U = (U1, . . . ,Ud ) is known as a copula, and this approach of first generating U ,
and then constructing X from U using inversion is very common. The term “copula”
was coined in Sklar 1959. See, e.g., Nelsen 1999 for background on copulas.) We
break the unit cube (0, 1)d down into a grid of cells. Each cell is a hypercube with
faces aligned with the axes. The conditional distribution of U given that it lies in
one of the cells has a distribution with uniform marginals, which can vary from cell
to cell. We call the distribution of X a patchwork distribution, and the distribution
of the corresponding uniform random vector U a patchwork copula.

It is useful to allow cell-specific base copulas. For example, this allows patch-
work distributions to match the extreme behaviour of X when all components are
likely to move jointly. See, e.g., the discussion of tail dependence in Biller (2009).

Patchwork distributions generalize chessboard distributions, which have condi-
tional (joint) uniform distributions, given that they lie in a fixed cell. The conditional
distributions in the cells are fixed in advance heuristically, using any prior infor-
mation about the joint distribution, and one then determines the vector giving the
probabilities that U lies in each of the cells. This probability vector can be found by
solving a certain linear program, the constraints of which reflect the desired proper-
ties of the joint distribution.

A natural property of a joint distribution that one might attempt to match is
the correlation matrix, where the correlations could be Pearson product-moment,
Spearman rank, or Kendall’s tau correlations. We focus on Spearman rank correla-
tions. As we will see, some rank correlation matrices are easier to match than others,
in the sense that the size of the linear program that needs to be solved depends on
the correlation matrix. Therefore, the computational effort required to construct a
patchwork distribution is related to the correlation matrix.

The primary contributions of this paper are:
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1. a characterization of the set of correlation matrices that patchwork distributions
can match,

2. a theoretical analysis that relates the computational effort (size of the linear
program) to a given correlation matrix, and

3. a computational study to shed further light on the results of the theoretical
analysis.

The remainder of this chapter is organized as follows. In Section 2 we define
patchwork distributions more carefully, and describe how one can select them to
match the desired properties of X . We also describe how they can be generated.
Then, in Section 3, we extend known results on the modeling power of chessboard
distributions to patchwork distributions. Sections 4 and 5 contain, respectively, our
theoretical and computational results on the size of the linear programs that must
be solved to match a given correlation matrix. Finally, we offer some concluding
remarks in Section 6.

2 Patchwork Distributions

In this section we define patchwork distributions, explain how they are constructed,
and describe how to generate samples from them. For notational simplicity we
mostly confine the discussion to 3-dimensional random vectors, but analogous
results hold for d ≥ 2 dimensions. Many of these results were proved for the special
case of chessboard distributions in Ghosh and Henderson (2002). We give proofs
of some of the extensions, even though they are usually similar to the special case
of chessboard distributions, because they are helpful in understanding the structure
of patchwork distributions.

We say that X = (X1, X2, X3) has a patchwork distribution if

X
D= (F−1

i (Ui ) : i = 1, 2, 3),

where Fi is the marginal distribution function of Xi , i = 1, 2, 3, and the distribution
of U = (U1,U2,U3) is a patchwork copula, as described below.

Let n ≥ 1, and divide (0, 1]3 into a grid of n3 equal-sized cubes (cells) with
sides parallel to the coordinate axes. Let the cells be given by C( j1, j2, j3), with
j1, j2, j3 = 1, . . . , n, so that

C( j1, j2, j3) =
{

(x1, x2, x3) :
ji − 1

n
< xi ≤ ji

n
, i = 1, 2, 3

}
.

Conditional on lying in cell C( j1, j2, j3), U follows an appropriately scaled and
translated version of a copula C( j1, j2, j3), which can vary by cell. We call this
copula the ( j1, j2, j3) base copula. To be more precise, let

(Z ( j1, j2, j3) : 1 ≤ j1, j2, j3 ≤ n)
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be independent random vectors where Z ( j1, j2, j3) is distributed as C( j1, j2, j3).
Then, conditional on being in cell C( j1, j2, j3), the vector U is defined by

Ui = Zi ( j1, j2, j3)

n
+ ji − 1

n
, i = 1, 2, 3. (1)

We allow the mass of each cell to vary. Let

q( j1, j2, j3) = P(U ∈ C( j1, j2, j3))

be the mass assigned to cell C( j1, j2, j3). We require that the q( j1, j2, j3)s satisfy

n∑
j2, j3=1

q( j1, j2, j3) = P

(
U1 ∈

(
j1 − 1

n
,

j1
n

])
= 1

n
, ∀ j1 = 1, . . . , n,

n∑
j1, j3=1

q( j1, j2, j3) = P

(
U2 ∈

(
j2 − 1

n
,

j2
n

])
= 1

n
, ∀ j2 = 1, . . . , n, (2)

n∑
j1, j2=1

q( j1, j2, j3) = P

(
U3 ∈

(
j3 − 1

n
,

j3
n

])
= 1

n
, ∀ j3 = 1, . . . , n,

q( j1, j2, j3) ≥ 0 ∀ j1, j2, j3 = 1, . . . , n.

We call the distribution of U , as constructed above, a patchwork copula.
Theorem 1 below proves that the distribution is indeed a copula, and therefore that
X has the desired marginal distributions.

Theorem 1 If U is constructed as above, with cell probabilities q satisfying the
constraints (2), then U has uniform marginals. Consequently, X has the desired
marginals.

Proof Let the marginal distribution function of Ui be denoted by Gi (·). We show
that G1(x) = x for x ∈ (0, 1], and the proof for dimensions 2 and 3 is exactly the
same. We rely on the conditional relationship (1). For any x ∈ (i − 1, i]/n, we
have that

G1(x) =
∑

j1≤i−1

n∑
j2, j3=1

q( j1, j2, j3)+

n∑
j2, j3=1

P
(
(i − 1)/n < U1 ≤ x |U ∈ C(i, j2, j3)

)
q(i, j2, j3)

= i − 1

n
+

n∑
j2, j3=1

P
(
0 < Z1(i, j2, j3) ≤ n(x − (i − 1)/n)

)
q(i, j2, j3)
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= i − 1

n
+ n

(
x − i − 1

n

) n∑
j2, j3=1

q(i, j2, j3)

= i − 1

n
+ x − i − 1

n
= x

as required. Hence, U has uniform marginals. Since Xi is obtained from Ui via the
probability integral transform, it follows that Xi has the desired marginal distribu-
tion, i = 1, 2, 3. �

Remark 1 Chessboard copulas, as introduced in Ghosh and Henderson (2002), are
patchwork copulas where all the base copulas are derived from independent uniform
random variables. They coincide with the “piecewise-uniform copulae” developed
by Mackenzie (1994). Cloned distributions (Johnson and Kotz 2004) are bivariate
patchwork copulas where the base copula is the same for all cells, and all cells have
the same probability.

The constraints (2) are sufficient to ensure that U has uniform marginals. So long
as those constraints hold, we are then free to choose the cell probabilities to match
other desired properties of the joint distribution. Covariance is one such property.

We believe that for non-Gaussian marginals, it is usually more appropriate
to use rank covariance than product-moment covariance as a measure of depen-
dence. Recall that the rank covariance between two random variables X1 and X2

with distribution functions F1 and F2 respectively is given by E[F1(X1)F2(X2)] −
E[F1(X1)]E[F2(X2)]. Our preference for rank covariance over product-moment
covariance stems from the facts that rank covariance is always well defined, irre-
spective of whether the Xi s have finite second moments or not, and that rank covari-
ance is invariant to strictly increasing transformations of the random variables. In the
case where Fi is continuous, Fi (Xi ) is uniformly distributed on (0, 1]. Indeed, if X1

and X2 are components of a patchwork random vector with continuous marginal
distribution functions, then the rank covariance between X1 and X2 equals the
product-moment covariance between U1 and U2, from which X was constructed.
Hence, we can reduce a study of rank covariance of patchwork distributions with
arbitrary continuous marginals to one of product-moment covariance of uniform
random variables on (0, 1] (rank and product-moment covariances coincide for uni-
form marginals).

Remark 2 When some of the marginal distributions are not continuous, this con-
venient relationship does not hold, and one must then attempt to match the desired
correlations using more-complicated methods; see Avramidis et al. (2009).

We need an expression for the product-moment covariance of two components of
a patchwork copula. Let U be distributed according to the patchwork copula. Then

ΣU
12 = Cov(U1,U2) = E[U1U2]− 1/4

=
∑

j1, j2, j3

q( j1, j2, j3)E[U1U2|U ∈ C( j1, j2, j3)]− 1/4

=
∑

j1, j2, j3

q( j1, j2, j3)μ12( j1, j2, j3)− 1/4, (3)



70 S. Ghosh and S.G. Henderson

where

μ12( j1, j2, j3) = E[U1U2|U ∈ C( j1, j2, j3)].

The μ terms are constants that depend on the base copulas, but not on q. It fol-
lows that the covariance between Ui and U j is a linear function of q, for each
i, j = 1, . . . , n.

Suppose now that we want to match the true covariance matrix ΣU to a desired
covariance matrix Σ . The diagonal terms are all equal to 1/12, and covariance
matrices are symmetric, so we can measure the error r (ΣU ,Σ) as

r (ΣU ,Σ) =
∑

1≤i< j≤3

∣∣ΣU
i j −Σi j

∣∣ .

It immediately follows that we can attempt to match Σ using the linear program

min
2∑

i=1

3∑
j=i+1

(z+i j + z−i j ) (4)

subject to ΣU
i j −Σi j = z+i j − z−i j , i = 1,2 and j = i + 1 to 3

z+i j ≥ 0, z−i j ≥ 0, together with constraints (2) and (3).

Remark 3 The linear program (4) is always feasible since q( j1, j2, j3) = n−3, for
all j1, j2, j3, is feasible. Also, the objective function is bounded below by 0, so an
optimal solution exists. If the optimal objective value is 0, then we exactly match
the desired properties.

Clemen et al. (2000) discussed a number of other properties that one might elicit
from users about joint distributions and therefore want to match. Several of these
are easily matched when X has a patchwork distribution. Ghosh and Henderson
(2001) described how to match such properties using chessboard distributions, and
the methods extend to patchwork distributions. For example, probabilities of the
form P(X ∈ A) for various regions A can be expressed as linear functions of
q, and therefore can be matched using linear programming as above. The set A
does not have to be rectilinear. Similarly, conditional fractiles can be matched using
linear programming and concordance probabilities can be matched using quadratic
programming.

It is relatively straightforward to generate random vectors that have a patchwork
distribution. The basic procedure consists of the following steps:

1. Generate the (random) index (J1, J2, J3) of the cell C(J1, J2, J3) containing
the uniform random vector U from the discrete distribution formed by the
q( j1, j2, j3)s. With some preprocessing, it is possible to do this in constant
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time using, e.g., the alias method (Walker 1977). The following description
is adapted from Law and Kelton (2000):

• Alias Method Setup: Two arrays are calculated from the qs. The array
(AC j : j = 1, . . . , n3) contains cutoff values, and the array (AA j : j = 1,
. . . , n3) contains aliases. These arrays can be computed as follows; see
Kronmal and Peterson (1979).

a. Set AC j = n3q( j1, j2, j3) ∀ j = 1, . . . , n3, where the index j represents
the cell C( j1, j2, j3) via j = ( j1 − 1)n2 + ( j2 − 1)n + j3.

b. Define sets T G = { j : AC j ≥ 1} and T S = { j : AC j < 1}.
c. Do the following steps until T S becomes empty:

i. Remove an element k from T G and remove an element m from T S.
ii. Set AAm = k and replace ACk by ACk − 1+ ACm .

iii. If ACk < 1, put k into T S; otherwise put k back in T G.

• Generating Cells: Once the arrays AA and AC have been calculated, the
random cell index (J1, J2, J3) (and equivalently the index J ) can be gener-
ated as follows:

a. Generate I from the discrete uniform distribution over {1, . . . , n3} and
U ∼ U (0, 1) independent of I .

b. If U ≤ ACI , return J = I . Otherwise, return J = AAI .

2. Generate U conditional on U ∈ C(J1, J2, J3) via (1). Here we need to be able
to generate random vectors from the base copula C(J1, J2, J3), but since we can
select the base copula, this should present little difficulty.

3. Generate the components of X via Xi = F−1
i (Ui ).

If q is an extreme-point solution to the d-dimensional version of the linear program
(4), then there are on the order of nd strictly positive cell probabilities. The exact
number of positive values depends on the number of equality constraints in the LP
and the degree to which the extreme-point solution is degenerate. On the other hand,
there are nd cells. Therefore, for large d, the fraction of cells receiving positive mass
is quite small.

The fact that nd is small relative to nd can be viewed as an advantage with respect
to variate generation since it reduces the setup time required to implement the alias
method. However, it can also be viewed as a disadvantage. As the dimension d
increases, the fraction of cells receiving positive probabilities is vanishingly small.
This means that the set of values that the random vector X can assume is somewhat
limited, and so the distributions take a nonintuitive form. As more constraints are
added due to the need to match more distributional properties, the problem severity
is reduced, but it still remains. Mackenzie (1994) avoids this problem by maximizing
the entropy of the discrete distribution q. In this case, all of the cells receive positive
probability. However, the problem of maximizing the entropy of q subject to linear
constraints is a convex optimization problem that is more difficult to solve than the
LPs discussed above. A computationally attractive alternative is to place a lower
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bound on the cell probabilities. We do not discuss this issue further here as it would
lead us too far afield.

3 Modeling Power

In this section we focus on matching covariance matrices. We say that a covari-
ance matrix Σ is feasible if a copula exists with that covariance matrix. Let Ω
denote the set of feasible covariance matrices. (We suppress the dependence on
dimension d.) We view Ω as a subset of the vector space R

d(d−1)/2 equipped
with the usual inner product, because each Σ ∈ Ω is symmetric, the elements
on the diagonal are all equal to 1/12, and there are d(d − 1)/2 elements above
the diagonal. (It is therefore also a subset of [−1/12, 1/12]d(d−1)/2.) In what fol-
lows, the notation Σ will represent both the actual covariance matrix and its vector
form in Ω .

One might expect thatΩ corresponds with the set of symmetric positive semidef-
inite matrices with diagonal elements equal to 1/12. For d ≤ 3, this is correct (Joe
1997), but for d > 3 it is not known whether this is the case or not. It is known
that in any dimension d, Ω is convex, closed, and full-dimensional (Ghosh and
Henderson 2002).

We are now ready to state some results about the modeling power of patchwork
distributions. The proofs of these results are, in general, similar to the corresponding
results for chessboard distributions (Ghosh and Henderson 2002) and so, for the
most part, are omitted. We start with the following lemma, the proof of which is
needed later in this paper.

Lemma 1 Suppose that Σ ∈ Ω . Then the optimal objective value of the linear
program (4) is at most d(d − 1)/n.

Proof Since Σ ∈ Ω , there exists a random vector V with uniform marginals and
covariance matrix Σ . We modify the distribution of V as follows. We keep the total
mass within each cell constant, but we modify the distribution of V within each cell
to conform with the corresponding base copula. This process yields a patchwork
copula corresponding to a random vector U , say. The cell probabilities (the qs) for
U (which are the same as those for V ) constitute a feasible solution to the linear
program (4). Furthermore, we can bound the differences in the covariance matrices
of V and U , as detailed below. These bounds translate into a bound on the objective
value of the solution q. Since the optimal solution of the linear program can do no
worse, we obtain a bound on the optimal objective value, thereby proving the result.

For now, assume that d = 3. Let q( j1, j2, j3) = P(V ∈ C( j1, j2, j3)) and
note that

Cov(U1,U2)−Σ12

= E[U1U2]− E[V1V2]

=
n∑

j1, j2, j3=1

(
μ12( j1, j2, j3)− E[V1V2|V ∈ C( j1, j2, j3)]

)
q( j1, j2, j3). (5)
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But

j1 − 1

n

j2 − 1

n
≤ E[V1V2|V ∈ C( j1, j2, j3)] ≤ j1

n

j2
n
. (6)

Combining (5) with (6) we see that

Cov(U1,U2)−Σ12

≤
n∑

j1, j2, j3=1

q( j1, j2, j3)

(
μ12( j1, j2, j3)− ( j1 − 1)( j2 − 1)

n2

)
(7)

and

Cov(U1,U2)−Σ12 ≥
n∑

j1, j2, j3=1

q( j1, j2, j3)

(
μ12( j1, j2, j3)− j1 j2

n2

)
. (8)

These bounds will prove useful later, but for now we obtain more-explicit
bounds. The bounds (6) also apply to μ12( j1, j2, j3) and so from (7),

Cov(U1,U2)−Σ12 ≤
n∑

j1, j2, j3=1

q( j1, j2, j3)

(
j1 j2
n2

− ( j1 − 1)( j2 − 1)

n2

)

= n−2
n∑

j1, j2, j3=1

q( j1, j2, j3)( j1 + j2 − 1)

≤ n−2
n∑

j1, j2, j3=1

q( j1, j2, j3)(2n − 1)

= 2n − 1

n2
.

A lower bound follows similarly, so that

|Cov(U1,U2)−Σ12| ≤ 2n − 1

n2
. (9)

The bound (9) was derived assuming d = 3, but the same argument and bound
hold in higher dimensions. Hence, if ΣU denotes the covariance matrix of U , we
have that

r (ΣU ,Σ) ≤ d(d − 1)

2

2n − 1

n2

and the result follows. �
We can now state the main result of this section. Let A◦ and ∂A denote the interior

and boundary of a set A.
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Theorem 2 Patchwork distributions can get arbitrarily close to any Σ ∈ Ω and
can exactly match any Σ ∈ Ω◦ (for sufficiently large n), but cannot necessarily
exactly match Σ ∈ ∂Ω . Furthermore, Σ �∈ Ω iff the optimal objective value of the
linear program (4) exceeds d(d − 1)/n for some n ≥ 1.

Proof This result is proved using the bounds given in Lemma 1. Most of the proof
(specifically the Σ ∈ Ω◦ and the Σ �∈ Ω parts) is very similar to corresponding
results in Ghosh and Henderson (2002) and so is omitted. All that needs to be shown
is that a patchwork distribution may, or may not, be able to exactly match matrices
on the boundary ∂Ω . Ghosh and Henderson (2002) showed that chessboard distri-
butions, which are a special case of patchwork distributions, cannot exactly match
any matrix on the boundary for a finite n. It remains to show that some patchwork
distributions can match some boundary covariance matrix exactly. This is trivially
true, for instance, when the base copulas of the patchwork distribution all have a
covariance Σb ∈ ∂Ω . Then one can exactly match the boundary covariance matrix
Σb with n = 1 using this base copula. �

Theorem 2 establishes that patchwork distributions can exactly match feasible
covariance matrices lying in the interior of Ω , and that infeasible covariance matri-
ces can be proved to be infeasible in finite time by the linear program, but that
little can be concluded for covariance matrices lying on the boundary of Ω . The
boundary matrices are feasible because Ω is closed, but why are they difficult to
match?

Theorem 3 below shows that the joint distribution of a copula with a covariance
matrix that lies on the boundary of Ω is a rather strange creature! Recall that any
copula F can be decomposed into a singular part Fs and an absolutely continuous
part Fac with respect to Lebesgue measure restricted to (0, 1]3. (This is simply the
Lebesgue Decomposition; e.g., see Billingsley 1995, p. 414.) Thus, F = Fac + Fs .

Moreover, the absolutely continuous part has a density fac with respect to Lebesgue
measure.

Theorem 3 Suppose that fac is defined as above for a distribution F with covari-
ance matrix Σ ∈ ∂Ω . Then, there cannot exist an open set G such that

fac(x) ≥ φ > 0 a.e. in G. (10)

(Recall that a property holds almost everywhere (a.e.) on the set G if it is true for all
x ∈ G except on a subset of Lebesgue measure 0.)
Proof For notational ease we give a proof in the 3-dimensional case. The gen-
eral case is virtually identical. Suppose such a G exists. We assume, without loss
of generality, that fac(x) ≥ φ > 0 for all x ∈ G and not just a.e. (If not, just
redefine fac on the set of measure 0.) Now, we can choose an open ball B(x, ε)
within G and an open cubical region C with faces aligned with the axes within
B(x, ε) such that the interior of C is non-empty. Split fac into two parts, fC and fC̄ ,
defined as:
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fC (x) =
{
φ x ∈ C

0 elsewhere
and fC̄ (x) =

{
fac(x)− φ x ∈ C

fac(x) elsewhere
.

Let u and v be the endpoints that define C , so that

C = {(x1, x2, x3) ∈ (0, 1]3 : ui < xi ≤ vi , i = 1, 2, 3}.

Divide the region C into 4 (equal size) subregions,

Cab =
{

(x1, x2, x3) ∈ C : u1 + (a − 1)
v1 − u1

2
< x1 ≤ u1 + a

v1 − u1

2
,

u2 + (b − 1)
v2 − u2

2
< x2 ≤ u2 + b

v2 − u2

2

}
,

for 1 ≤ a, b ≤ 2.
Define a new distribution H from F as follows. The singular parts Hs and Fs

coincide, as do the hC̄ and fC̄ parts, respectively, of the absolutely continuous den-
sity. The density hC takes the value 2φ on C11 and C22, and 0 on C12 and C21. Then it
is straightforward to show that H has uniform marginals, that the (1, 2)th covariance
is strictly increased, and that the other covariances remain unchanged. Alternatively,
if hC takes the value 0 on C11 and C22, and 2φ on C12 and C21, then the covariance
strictly decreases.

The argument above could be repeated for each pair of components. Convexity
of Ω then implies that Σ must lie in the interior Ω◦ which is a contradiction, and
the proof is complete. �

One consequence of Theorem 3 is that we cannot hope to exactly match covari-
ance matrices on the boundary of Ω if we use a base copula which has a density
component that satisfies (10) for some set G. This gives another explanation for
why chessboard distributions cannot match covariance matrices on the boundary
of Ω .

We have already seen a singular base copula that can exactly match a covariance
matrix on the boundary of Ω . We might ask whether a base copula exists that can
match all matrices on the boundary of Ω . We do not have a complete answer to this
question, but we will shed further light on it in Section 4.

In summary, the import of the results in this section is that patchwork
distributions

• can prove that a given covariance matrix is infeasible in finite time,
• can arbitrarily closely approximate any feasible covariance matrix,
• can exactly match any feasible covariance matrix in the interior of the set of

feasible covariance matrices, but
• might not exactly match any covariance matrix on the boundary of the set of

feasible covariance matrices.
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4 Modeling Effort: Theoretical Results

In order to use a patchwork distribution, we need to perform the setup steps out-
lined in Section 2. The main computational bottleneck there is the solution of the
linear programming problem. The time required to solve a linear program typically
increases with the size of the linear program, which in turn depends on the dis-
cretization level n. So it is of interest to see how large n needs to be to match a
given covariance matrix for a fixed dimension d of the random vector, and that is
the subject of this section and the next one. Here we focus on theoretical analysis,
while the next section performs some computational experiments.

We limit ourselves to the case where the patchwork distribution uses the same
base copula in all cells, since this makes the arguments more elegant. Let Ωn(Σb)
represent the set of covariance matrices that can be matched by patchwork distri-
butions of size n with a base copula that has Σb as its covariance matrix. (In many
contexts, the argument Σb will be clear and hence shall be dropped.) The set Ωn

shares many of the properties of Ω , namely that it is non-empty, closed, convex,
and full-dimensional in R

d(d−1)/2 (Ghosh and Henderson 2002). We have shown in
Theorem 2 that patchwork distributions can achieve any feasible covariance matrix
in the interior of Ω for some finite n. Thus, in a sense the sequence {Ωn, n ≥ 1}
grows to cover the whole of Ω as n → ∞; we shall establish this rigorously
and provide bounds on the rate of convergence in terms of n. Our results show
that, roughly speaking, the set Ωn is smaller than Ω by a factor that is somewhere
between (1− κ1/n) and (1− κ2/n2) for some constants κ1 and κ2. In order to state
these results precisely we need some definitions.

Let B(x, ε) = {y : ‖x − y‖2 < ε} be the (open) ε−ball centered at x , defined
under the l2 metric on the space R

m(d), where m(d) = d(d − 1)/2. The ball B(0, 1),
the unit open ball centered at the origin, is denoted by B. Thus, B(x, ε) = x + εB,
where the notation vM denotes the set {vx : x ∈ M} for any scalar v, and
y + M = {y + x : x ∈ M}.

We call any compact, convex set with a non-empty interior a convex body. The
Minkowski subtraction set operation on two convex bodies M and N can be defined
(Schneider 1993, Chapter 3) as

M ∼ N
Δ= {x ∈ M : x + N ⊂ M}.

A convex body E is said to be centered if it contains the origin as an interior point.
Sangwine-Yager (1988) defines, for an ε > 0, the εth relative inner parallel body
of a convex body M with respect to a centered convex body E to be M ∼ εE .

The families of sets U(ε,Σb) and L(ε) are indexed by ε and defined as

U(ε)
Δ= Ω ∼ εΩ,

U(ε,Σb)
Δ= U(ε)+ εΣb, and (11)

L(ε)
Δ= Ω ∼ εB. (12)
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These definitions are illustrated in Fig. 1.
A matrix z belongs to U(ε) ⊂ Ω if the set z+εΩ belongs toΩ . The set U(ε) has

a non-empty interior for all 0 < ε < 1. The set U(ε) + εΣb is simply the set U(ε)
translated by the matrix εΣb. Similarly, a matrix z belongs to L(ε) if the ε−ball
B(z, ε) ⊂ Ω . This has a simple interpretation, in that L(ε) is the subset of points
in Ω that are at least an l2−distance ε away from the boundary ∂Ω . Again, the sets
L(ε) can be empty for large ε, but are non-empty for sufficiently small ε > 0. Note
that the lower-bound sets L(ε) are defined independent of the base covariance Σb.

We are now ready to state the main result of this section.

Theorem 4 Let � = √
m(d). Then,

a) Ωn(Σb) ⊆ U
(

1

n2
,Σb

)
, and

b) L
(

2�

n

)
⊆ Ωn(Σb).

Theorem 4 establishes that the “gap” between Ωn(Σb) and Ω has a width that is
somewhere between O(n−1) and O(n−2). The following corollary uses that result to
obtain bounds on the volume of the setΩn(Σb) relative to that ofΩ . Let L represent
Lebesgue measure on the real vector space R

m(d).

Corollary 1 There is a constant K (d) that depends on the dimension d such that

L(Ω)− K (d)

n
≤ L(Ωn(Σb)) ≤

(
1+ 1

n2

)−m(d)

L(Ω).
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Corollary 1 formalizes the rather imprecise statement we made earlier about the
rate at whichΩn approachesΩ . The rate at which patchwork distributions can cover
the set Ω of feasible covariance matrices is at least of the order 1 − K (d)n−1, but
can be no faster than a factor of the order (1 + n−2)−m(d) which, in turn, is of the
order 1− m(d)n−2 when n is large. These results are illustrated in Fig. 1.

We now turn to proving these results.
Proof of Theorem 4(a) For notational ease we prove the result for d = 3. The case
d > 3 is proved similarly. We establish the result by showing that a certain oper-
ation on any n-sized patchwork distribution having a covariance matrix Σ ∈ Ωn

constructs a new distribution with a new covariance matrix in Ω . One can obtain an
upper bound on the distance between these matrices, which then gives the result.

Let {q(·, ·, ·)} represent the solution to the LP (4) that exactly matches a covari-
ance matrix Σ ∈ Ωn . Then

Σ12 = E[U1U2]− E[U1]E[U2]

=
n∑

j1, j2, j3=1

E[U1U2|U ∈ C( j1, j2, j3)]q( j1, j2, j3)− 1

4
. (13)

Let Z = (Z1, Z2, Z3) be a random vector distributed according to the base cop-
ula, and let Σb ∈ Ω be its covariance matrix. Since E[Zi ] = 1/2, i = 1, 2, 3, we
see that

E[U1U2|U ∈ C( j1, j2, j3)] = E

[(
Z1

n
+ j1 − 1

n

)(
Z2

n
+ j2 − 1

n

)]

= E[Z1 Z2]

n2
+ j1 + j2 − 2

2n2
+ ( j1 − 1)( j2 − 1)

n2

= E[Z1 Z2]

n2
+ t( j1, j2), (14)

where t( j1, j2) is a function only of j1, j2, and n.
Suppose now that we replace the base copula in each cell with another copula

represented by the random vector Z ′. The result is still a valid patchwork copula
because of Theorem 1, and represents the distribution of a random vector U ′, say. If
Σ ′ is the covariance matrix of U ′, then

Σ ′
12 =

n∑
j1, j2, j3=1

(
E[Z ′

1 Z ′
2]

n2
+ t( j1, j2)

)
q( j1, j2, j3)− 1

4
. (15)

Let Σb′ be the covariance matrix of Z ′. The net change in covariance due to the
replacement operation is, from (13), (14), and (15),

Σ ′
12 −Σ12 =

n∑
j1, j2, j3=1

1

n2
(E[Z ′

1 Z ′
2]− E[Z1 Z2]) q( j1, j2, j3)
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= 1

n2
(Σb′

12 −Σb
12). (16)

Equation (16) holds for every component of the covariance matrix. Hence,

Σ ′ = Σ + 1

n2
(Σb′ −Σb),

and is contained in Ω . We can choose Σb′ ∈ Ω arbitrarily. Thus,
(
Σ + Ω

n2

)
− Σb

n2
⊂ Ω,

and we have established that for any Σ ∈ Ωn , Σ ∈ U(n−2,Σb). This gives the
result. �

This result is tight in a certain sense. Consider the case where chessboard
copulae of size n are used to match a perfectly correlated uniform random vec-
tor with pairwise covariances all equal to 1/12. (This target covariance matrix
belongs to ∂Ω .) A chessboard copula can be constructed by equally distributing
its mass on the diagonal cells, and all pairwise covariances of this copula are
equal to 1/12 − 1/12n2. If we perform the transformation described in the proof
above, where Σb′ is the covariance matrix of a perfectly correlated uniform ran-
dom vector (so all entries in the covariance matrix are equal to 1/12), then we
obtain the distribution of the perfectly correlated uniform random vector as a result.
Thus, we see that Ωn can have some points in common with the boundary of
U(n−2,Σb).

We now prove the second part of Theorem 4. First, recall that all norms in a real
vector space are equivalent; see, for example, Golub and Van Loan (1996, p. 53).
Indeed, for any x ∈ R

m(d),

‖x‖∞ ≤ ‖x‖2 ≤ � ‖x‖∞. (17)

Proof of Theorem 4(b) The result is trivial if L(2�/n) is empty, so assume it is
nonempty. The proof of Lemma 1 derived a bound on the optimal objective func-
tion of the linear program (4). Specifically, if Σ ∈ Ω denotes a target covari-
ance matrix and Σn is an optimal solution to the linear program then,
from (9),

|Σ(i, j)−Σn(i, j)| ≤ 2

n
∀ 1 ≤ i < j ≤ 3. (18)

Equation (18) shows that we can get within l∞−distance 2/n from any Σ ∈ Ω
using patchwork distributions. From (17), we then have that Σn ∈ B(Σ, 2�/n).
Hence, in particular, for any Σ ∈ ∂Ω , we can pick a matrix Σn ∈ Ωn such that
Σn ∈ B(Σ, 2�/n).

Now, suppose the assertion in the theorem is false, and there exists a Λ ∈
L(2�/n) that does not belong to Ωn . Since Ωn is convex, the celebrated Separating
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Hyperplane Theorem (see, e.g., Luenberger 1969, Theorem 3, Section 5.12) gives
us a hyperplane H through Λ that separates the point Λ from Ωn .

Consider a line N passing through Λ that is orthogonal to the hyperplane H.
Busemann (1958, Chapter 1) tells us that since Λ is in the interior of Ω , this line
intersects the boundary ∂Ω of the convex set Ω at exactly two points, say Σ1 and
Σ2. By definition, the point Λ ∈ L(2�/n) does not belong to either of the sets
B(Σ i , 2�/n), i = 1, 2. Thus, H separates each of the sets B(Σ i , 2�/n), i = 1, 2,
from Λ. Moreover, the sets lie on opposite sides of H, since Λ ∈ Ω◦. Thus, at least
one ball is separated from Ωn by the hyperplane H. But this contradicts the earlier
observation that one can always choose a point that belongs to Ωn from each ball
B(Σ i , 2�/n), i = 1, 2. This completes the proof. �

In order to prove Corollary 1, we need the following result. Brannen (1997,
Theorem 1) quotes a lower bound from Sangwine-Yager (1988) for the Lebesgue
measure of a relative inner parallel body M ∼ εE . That result establishes that

L(M ∼ εE) ≥ L(M)− εS(M ; E)+ R(m(d), ε),

where S(M ; E) represents the relative surface area of M with respect to E , and the
function R(m(d), ε) is nonnegative. They also give conditions under which S(M ; E)
is finite and positive, and these are satisfied by using the sets Ω and B in the defini-
tion of L(ε) as M and E respectively. Thus, if ε < 1, then

L(L(ε)) ≥ L(Ω)− k(d)ε (19)

for some positive constant k(d) that possibly depends on the dimension m(d) of
the sets.

Proof of Corollary 1 From (19), for n large enough that 2�/n < 1,

L(Ω)− k(d)

(
2�

n

)
≤ L

(
L
(

2�

n

))
,

where k(d) is a positive value that depends on d. This equation, along with Theorem
4(b), gives the lower bound in the statement of the result with K (d) = 2k(d)�.

For the upper bound, first note that U(n−2,Σb) is a translation of the set U(n−2),
and so both sets have the same Lebesgue measure. Also, if Λ ∈ U(n−2), then, by
definition, Λ+ n−2Ω ⊆ Ω . In particular, Λ+ n−2Λ ∈ Ω , i.e., Λ ∈ (1+ n−2)−1Ω .
Hence,

U(n−2) ⊆ (1+ n−2)−1Ω.

The Lebesgue measure of the linearly scaled set (1 + n−2)−1Ω is given by
(1+ n−2)−m(d)

L(Ω) (see Billingsley 1995, Theorem 12.2). This, along with
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Theorem 4(a), establishes the upper bound on the Lebesgue measure of Ωn and
we are done. �

We conclude this section by showing that for any fixed choice of base copula,
there will exist covariance matrices in Ω that cannot be exactly matched, no mat-
ter how n is chosen. This result shows that it is pointless to attempt to identify a
“powerful” base copula that matches all of Ω for some finite n.

Proposition 1 For any fixed base copula, there exists a covariance matrix Σ ∈ Ω
that cannot be exactly matched for any n.

Proof On the contrary, suppose that such a base copula exists, and let Σb be its
covariance matrix. Consider a line N through Σb and the origin. (If Σb is equal
to the origin, then pick an arbitrary line through the origin.) Since Ω is compact,
convex, and the origin is in its interior, this line intersects ∂Ω at two points. Fol-
low the line from Σb through the origin until you reach one of those points. Call
that point Σ̄ . By the supposition, a Σb-based patchwork copula, of size n, say,
can exactly match Σ̄ . Then, by the argument establishing Theorem 4(a), a Σ ′ of
value

Σ ′ = Σ̄ + Σ̄ −Σb

n2

can also be achieved by replacing the base copula in each cell with a copula that
has covariance matrix Σ̄ . The matrix Σ ′ is, however, outside Ω , and we have the
desired contradiction. �

Whether patchwork copulas with a bounded number of base copulas can match
all of Ω for some finite n is an open problem. We conjecture that this is impossible.

5 Modeling Effort: Computational Results

Corollary 1 proves that patchwork distributions with discretization level n can match
covariance matrices that are a distance r from the boundary set ∂Ω , where the order
of r lies somewhere between n−1 and n−2. In this section we describe a computa-
tional study that sheds further light on this rate for the special case of chessboard
distributions.

Let S be a collection of d(d − 1)/2−dimensional vectors that represent the off-
diagonal elements of covariance matrices Σ in R

d×d . Consider rays from the origin
through each of these vectors. We determine the rate at which each ray is “covered”
by chessboard distributions as the discretization level n grows. We populate the set
S by sampling uniformly from the set of all positive semidefinite matrices of size
d × d. (Ghosh and Henderson 2003 provides such a sampler.) This allows us to test
whether the rate varies in different regions of Ω .

The origin is in the strict interior of the set of all positive semidefinite (PSD)
matrices, which implies that there is a finite maximum value r sd (Σ) > 0 such
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that rΣ is positive semidefinite for all r sd (Σ) ≥ r > 0. We compute r sd (Σ)
by formulating and solving a semidefinite program. The set of feasible covariance
matrices Ω also contains the origin in its strict interior, and so a finite maximum
r∗(Σ) exists such that rΣ is a feasible covariance matrix for uniform marginals
for all r∗(Σ) ≥ r > 0. Finally, let r∗(n,Σ) represent the point at which the ray
rΣ intersects the set Ωn of all covariance matrices that chessboards of size n can
exactly match. Fig. 2 illustrates these definitions.

We numerically determine r∗(n,Σ) by solving, for each Σ ∈ S, the LP

r∗(n,Σ) = max r (20)

s.t. rΣ(i, j) = Cov(Xi , X j ), ∀i < j,

r ≥ 0,

along with the constraints (2) that ensure that the distribution of X is a copula. The
LPs (20) are feasible (r = 0, q = 1/nd is a feasible solution) and terminate with a
positive finite optimal solution r∗(n,Σ). The rate of change in r∗(n,Σ) along rays
rΣ , r > 0, ∀Σ ∈ S, provides an indication of the rate at which the set Ωn covers
Ω . To see why, recall that two convex closed bodies that differ in their sizes by a
small ε > 0 also differ in volume (Lebesgue measure) by the same order. (We used
this result in the proof of Corollary 1.)

For the d = 3 case, the set Ω is known to coincide with the set of all PSD
matrices (e.g., Joe 1997) and thus r∗(Σ) = r sd (Σ), which facilitates the calcu-
lation of the exact coverage rate. Figure 3 plots the relative difference (r sd (Σ) −
r∗(n,Σ))/r sd (Σ) against n in the log-log scale for 20 different values ofΣ ∈ S and
n taking values up to 128. (Here, and in what follows, in the interest of notational

Ω
PSD matrices

r (n, Σ )

r (Σ )

rsd (Σ )

rΣ ray

Ωn

Fig. 2 The points r sd (Σ), r∗(Σ), and r∗(n,Σ)
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Fig. 3 Log-log plots for 20 covariance rays rΣ , r> 0, in 3 dimensions

brevity we write r∗ and r sd in place of r∗(Σ) and r sd (Σ) when no confusion should
arise.) Table 1 provides the estimated slopes of the curves for the 20 illustrated rays.
The slope estimates are calculated from only a handful of sample points and are thus
noisy, but the slopes hover close to −2 in all the cases tested. Thus, it would seem
likely that the coverage rate is closer to n−2 than n−1 for d = 3.

Table 1 Slopes of log-log plots for 20 covariance rays in 3 dimensions. All values
reported to 3 decimal places

Correlations

Σ12 Σ13 Σ23 Calculated Slope

−0.996 −0.055 0.075 −1.902
−0.944 −0.300 −0.136 −2.162
−0.912 0.280 0.299 −2.066
−0.773 0.371 0.514 −2.175
−0.731 −0.188 0.656 −2.117
−0.613 0.427 0.664 −2.197
−0.488 −0.070 0.870 −2.136
−0.300 0.223 0.928 −2.130
−0.118 0.142 0.982 −2.035

0.198 0.256 0.946 −2.001
−0.989 −0.118 0.092 −1.900
−0.912 −0.324 −0.251 −2.136
−0.849 −0.122 0.514 −2.135
−0.731 −0.678 0.080 −2.120
−0.713 −0.634 −0.300 −2.171
−0.592 0.493 0.638 −2.200
−0.368 −0.327 0.870 −2.035
−0.236 −0.221 0.946 −1.879
−0.021 0.514 0.857 −2.166

0.336 0.360 0.870 −1.921
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Fig. 4 log-log plots for 20 covariance rays rΣ , r> 0, in 4 dimensions

In the case of higher dimensions d ≥ 4, the value r∗ is not known (in general
r∗ ≤ r sd ), and the rates of coverage calculated via the same log-scale plot as in the
d = 3 case will only yield approximate values. Figure 4 plots the relative difference
(r sd − r∗(n,Σ))/r sd against n in the log-log scale for 20 different values of Σ ∈ S
for dimension d = 4. If r∗ were strictly less than r sd , then (r sd − r∗(n,Σ))/r sd

would not drop linearly (in the log scale) to 0 with increasing n. No non-linearity
is manifest in the range of values n = [1, 64] plotted. The plots seem fairly linear,
with the slopes varying within [−2.117,−2.013].

Our implementation could not solve the linear programs for larger n due to
numerical instability (the relative error is below 0.0004 for n = 64). It might be
the case that the difference (r sd − r∗) is non-zero but too small to be detected by
our tests. This indicates that for the d = 4 case, r∗ = r sd is a good assumption for
practical purposes, and that the rate of coverage is again closer to the upper bound
in Corollary 1.

6 Conclusions

We have shown that patchwork distributions represent a flexible class of distribu-
tions that can match many desired properties of a random vector. They are primarily
effective in low dimensions, say up to dimension 5. (We have solved patchwork LPs
in dimension 5 for n = 32 using a column generation technique, but we will not
report in detail on these ideas here.) The primary bottleneck in constructing patch-
work distributions is solving a certain linear program, the size of which is related to
the discretization level n. The discretization level required to match a given corre-
lation matrix depends on the distance of the correlation matrix to the boundary of
the set of all feasible correlation matrices. Our theoretical and computational results
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give strong evidence that the set of feasible correlation matrices not matched by
patchwork distributions using discretization level n diminishes at the rate n−2.
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Walker, A. J. 1977. An efficient method for generating discrete random variables with general

distributions. ACM Transactions on Mathematical Software 3:253–256.


	Patchwork Distributions
	Soumyadip Ghosh and Shane G. Henderson
	1  Introduction
	2  Patchwork Distributions
	3  Modeling Power
	4  Modeling Effort: Theoretical Results
	5  Modeling Effort: Computational Results
	6  Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




