1 Section 2 Classical Mechanics and Classical Field Theory

Path Integrals in Quantum Field Theory — A Friendly Introduction

Chris Elliott

October 11, 2013

1 Aims of this Talk

In this talk T hope to demystify (at least a little bit), why so much of modern physics is about defining and computing
mysterious expressions of the form

/dw(@eisw)/h,

This question will lead me to introducing some of the basic ideas in quantisation and quantum field theory: huge
fields leading to many beautiful ideas in both physics and mathematics.

As this is only a one hour talk, I'll only be able to begin the story. I hope to convince you that it’s worth caring about
these Feynman path integrals, but I'll only be able to touch on how one actually defines these heuristic expressions.
Methods are known in many examples, most famously those involving Feynman diagrams and renormalization, but
this will mostly go beyond the scope of this talk.

2 Classical Mechanics and Classical Field Theory

I’d like to start the story on relatively stable ground: the land of classical physics. More specifically, I’ll introduce
the idea of a classical Lagrangian field theory. The idea is that many physical systems take a similar form; there
is a space of possible configurations of the system (which we usually refer to as fields), but those that arise in
reality are those which minimise a certain action — a functional on the space of fields. In lieu of giving a (probably
unenlightening) abstract definition, I'll give a few examples.

Examples 2.1. 1. Classical Mechanics: Consider a particle of mass m moving in a Riemannian manifold M
under the influence of a forcefield with potential V' € C*°(M). The physics of this particle can be described by
a Lagrangian field theory where the fields are smooth maps x : R — M (the possible trajectories the particle
might move along), and the action functional is

S = [ Jml)? - Vi)

where (t) is the unit tangent vector to x at ¢, and | -|? is the norm induced by the metric. The critical points
of S can be computed to be those trajectories satisfying Newton’s second law:

(dV)’ = mV,&(t)

(which is a fancy differential-geometric way of writing F = ma). We might think of “minimising the action”
as trying to balance the kinetic energy of the particle with its potential energy under an external force.
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2. Electromagnetism: Now let M be a Riemannian 3-manifold, and consider pairs of vector fields E, B on
M x R, which we think of as electric and magnetic fields varying over time. We can describe the classical
physical relationship between these two fields as minimising an action functional, namely

(o)
SE.B) = [ B - B
—00
again using the absolute value coming from the Riemannian metric on M. The critical points of S can be
computed to be those fields satisfying Maxwell’s equations in a vacuum. One can further generalise this story
to include a fixed background charge distribution on M, and recover the more general form of Maxwell’s
equations.

3. Gravity: Let M be any manifold equipped with a (background) pseudo-Riemannian metric 7 of signature
(—=,+,...,4). The fields in this theory are pseudo-Riemannian metrics g of the same signature, and the action
functional is the Einstein-Hilbert action

S(g):/ R+/— det g dvol,
M

where dvol,, is the volume form induced by 7, and where R is the Ricci scalar associated to g. The critical
points of S can be described as the solutions to the Einstein field equation

1
iRg = Ric,

where Ric is the Ricci tensor associated to g.

These examples illustrate a general phenomenon: given a classical field theory like this, the physical states — i.e.
those fields extremising the action — arise as solutions to a system of differential equations: the FEuler-Lagrange
equations, or equations of motion of the system. We call these solutions classical states of the system.

In a classical field theory like these, we're interested in taking measurements, or making observations. That is, we
investigate the state a physical system is in by evaluating a functional on the space of classical states.

Definition 2.2. A classical observable in a classical field theory is a functional on the space of classical states.

A key aspect of the rest of this talk is the question: what is the appropriate analogue of a classical observable in a
quantum theory?

3 Why We Need Quantum Field Theory

Of course, the inadequacies of classical physics have been known for more than a hundred years by now. The
classical theories we observe in nature actually arise as “approximations” or “limits” of quantum theories. 1 can’t
give a general definition of a quantum field theory (no-one can, at least not a satisfactory definition), but I can
describe some properties these theories must have.

1. An important characteristic of quantum theory is the nature of measurement: what kind of thing is a quan-
tum observation? Here’s a sign that something genuinely different is going on to the classical theory: the
observations we can make with “true” or “false” as possible answers fail to form a Boolean algebra. The
famous counterexample is Young’s two slit experiment. Suppose one has a screen with two slits at points
A and B, and a detector at a point C' beyond it, and one fires a single photon at the screen. Then one
can do two different experiments, measuring two different possible observables. One finds different results by
performing the following two measurements:

(A OR B) AND C # (A AND C) OR (B AND C),
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where by A, B, C' I mean the observables “was a particle detected at this point?” There are two things
to observe here. The first is the failure of the distributivity law (as satisfied by measurements in classical
mechanics), the second is the non-determinism of the situation: one generally doesn’t get the same result
when one repeats the same experiment. Quantum measurements are inherently probabilistic.

As a result, while we cannot meaningfully talk about the value of an observable when the system is in some
state, it does make sense to talk about the expected value of an observable.

2. Another famous characteristic that our model for quantum observables must possess is failure of simultaneous
measurability. This is typified by Heisenberg’s uncertainty principle: two observable quantities for a quantum
particle are its position and its momentum. Suppose one tried to build an algebra of observables, where the
product was “do both observables simultaneously”. Measuring position and momentum simultaneously should
certainly arise as a limit of “measure position, then measure momentum time ¢ later” as € — 0, or likewise of
“measure momentum, then measure position time € later”. The uncertainty principle tells us that in fact these
limits necessarily differ. While one can produce an algebra of observables, it is necessarily non-commutative
in all non-trivial examples.

3. I should say something about the quantum notion of “states”, and the wave-particle duality in quantum
mechanics. One wants to represent our algebra of observables as acting on something. The principle of
superposition says that any complex linear combination of two quantum states is also a state (as in the
thought experiment of Schrédinger’s cat, but in fact this is an experimentally verifiable phenomenon), so our
space of states forms a complex vector space. One generally thinks of the space of states as a separable Hilbert
space, with the observables acting by self-adjoint operators.

For example, in the case of a quantum particle moving in R™, we have the position and momentum operators,
which satisfy well-known commutation relations. The Stone-von Neumann theorem tells us that the repre-
sentation of these operators is essentially unique, and can be described as multiplication and differentiation
operators acting on the Hilbert space L?(R™).

4. T've mostly spoken just about quantum mechanics. In quantum field theory we really need to remember a
piece of data we’ve been so far essentially forgetting: the underlying spacetime manifold. When we consider
observables in this context we can remember the data of the support of a classical observable: does it only
depend on a field in a certain neighbourhood? Quantisation should reflect this locality in a suitable way (I
won’t discuss this further, because it’s somewhat orthogonal to the rest of the talk, but models for quantum
field theory, both descriptions like TQFTs and descriptions like factorisation algebras have this locality built
in as a hypothesis).

5. Finally, our system must behave well in the classical limit. That is, if we take a limit at low energies, or
at long distances, we should recover the appropriate classical field theory. What does this mean in terms
of observables? Well, broadly speaking, to any quantum observable there should correspond an underlying
classical observable — a function on the classical state space — and the commutator of quantum observables
should agree with the Poisson bracket of the classical observables up to a factor of ih.

The example of quantum mechanics is the most well-understood: the quantisation of example 1 from the previous
section. An important quantity to compute is the propagator, describing time evolution of quantum states. Let gy
and ¢r be two points in spacetime: here I stands for ‘initial’ and F' stands for ‘final’. Associated to these points
we associate quantum states (wavefunctions) |g;) and |¢r) (eigenfunctions of the relevant position operators). The
propagator describes the transition probabilities over a time interval from time 0 to time 7": the probability density
function for a particle to be observed in position gr at time T having been observed in position ¢; at time 0. This
is written (and indeed computed) as
{arle="|qr)

where e is the time evolution operator in the theory. One can produce the ezpectation value of an observable
for each T by integrating over g; and ¢ in some specified open sets.

—tHT

Quantities of this form also appear in more general quantum field theories, where they are closely related to scattering
amplitudes (or S-matriz elements): probability amplitudes for observing a particular ensemble of particles in specific
positions at time 7" having observed some other ensemble of particles in specific positions at time 0. These amplitudes
can be computed in terms of standard observables called n-point functions.
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4 The Path Integral

Ok, so now I hope you’re convinced that computing the expectation value of a quantum observable is a worthwhile
thing to be doing. So how do we do it? Feynman’s path integral gives an answer to that question (for the example
of quantum mechanics) which is interesting for several reasons, for instance:

1. The path integral has a very interesting (if unintuitive) interpretation which links very neatly into the theory
of the classical particle moving along critical points of the action.

2. Although the path integral initially makes sense only for quantum mechanics, it admits a natural generalisation
to any quantum theory arising as a quantisation of a classical Lagrangian theory, with the same interpretation
as the quantum particle.

3. Path integrals in quantum field theory are effectively computable in many examples, for instance via Feynman
diagrams. What’s more, the computations one does themselves have intriguing interpretations, as a sum over
the ways particles might interact, split, merge and do all sorts of things on their journey through spacetime.

T’ll give a sketch of Feynman’s derivation of the path integral for a classical particle. Let’s suppose first of all that
we're considering a free particle, i.e. that there’s no potential, then state at the end how to include a potential.
We'll derive the propagator, as described in the previous section: the probability amplitude (gz|e=*#7/?|q;) where
gr and gp are points in space (in R™ say).

To compute this time evolution, we’ll split the time interval up into IV pieces of equal length d¢, then take the limit
as N — oo. The scattering amplitude splits as an integral:

(grle™"Tqr) = /<QF|€7iH5t|Q1>"‘/<QN|67iH5t\fJ1>dql"'qu.

Compute each factor by performing a Fourier transform (I'll be careless about units and omit ). By “performing
a Fourier transform”, I mean we’ll use Fourier inversion to write a function as an integral of its Fourier dual.

i 1 — )
<C]n+1|€ 1H6t|qn> — §/<qn+1‘e—zH5t|p>ezp%dp

1 st 2, -
=5 ¢ 2P P (g |p)dp

i 6_%192_1'17(‘171+1_q7z)dp
27

_ I st/ 2((an 1 —an) [50)?
2mét

Here we used a fact: that the Fourier transform of the functional (g,,1]|e~*#%" is ¢~ 27" times pairing with [gn41),

or as a physicist would put it, that the state |p) is an eigenvector for the time evolution operator, and we explicitly
evaluated the Gaussian integral. One can, if one prefers, interpret the Fourier inversion step as decomposing the
state |¢n) in terms of an eigenbasis of the time evolution operator. Now, we plug these pieces back into the product
and take the limit. The integral over all the ¢,, normalised by the constant terms, is interpreted as an integral over
all paths, and the integrand in the limit becomes

el o %m(fdt.
If we did this calculation including a potential term V(q) (and were careful to include ), we would’ve found the

integrand
oi/B Sy $2md® =V (9)dt

which we recognise as e/"5(9) | the complex exponential of the action for the classical particle.

Remark 4.1. This calculation can actually be made completely rigorous: this was done by Kac in the 40s using
the Wiener measure on the space of continuous functions from an interval to R™.
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Feynman interpreted this all in the following way: we compute the expectation value of an observable by considering
all possible paths, i.e. all fields in the theory, weight them by the factor €*/"5(9) and integrate.

In a more general quantum theory quantising a classical theory with space of fields ® and action functional 5,
we can try to generalise this idea. Motivated by the above calculation, we guess that the expectation value of an
observable O can be computed by an integral over all fields where we weight the fields according to the action in
the same way as above. That is, an integral of the form

©) = [ a0

where Z is a normalisation. So far, this expression doesn’t mean anything: we don’t have a candidate for a measure
d¢ making this equality hold. In fact, generally no such measure can exist. However, don’t panic! With some
ingenuity we can still define the expression on the right-hand side. There’s a great deal to say about this, and I
don’t have time to say more than a tiny bit, but there’s some general techniques we might use:

¢ One can make sense of the integral fairly directly when S is a quadratic functional (we say the theory is free in
this case), just because there’s a good theory of infinite-dimensional Gaussian integrals. One can approximate
the infinite-dimensional space ® by finite-dimensional spaces and take a limit, which converges. This is called
reqularisation.

e If this is not the case then we can try to reduce to the free case, inspired by the analogous finite-dimensional
calculations. One picks out the non-quadratic piece: e/ = eiSauaa/eigl/ an(d expands it as a power series in
the variable g (a “coupling constant”). The terms can individually be computed combinatorially. Of course,
the only works inside the radius of convergence of the power series.

e This actually still doesn’t quite work: the individual terms diverge in the regularisation step. Renormalization
is a method for “cancelling divergences” in these terms. It’s not actually as arbitrary as it sounds: physically
meaningful quantities can be proven independent of the method chosen, so the overall calculation gives a
well-defined answer. Still, the details are beyond the scope of this talk.

Finally, let me note why the action had to show up in the path integral if we wanted an expression of this form to
give the correct classical limit. In the classical limit iz — 0 we expect the expectation value of an observable to be
its expectation value as a function on the classical phase space. What does our path integral look like in this limit?
Well, an answer in many contexts is given by the principle of stationary phase, which says (rather imprecisely) that
an oscillating integral of the form

/f(x)emg(x)dx

converges, as 1) — 00, to (a constant times) the integral of f(a:)emg(“) over the critical locus of g. A version of this
holds, for instance, over finite-dimensional spaces, or for the path integrals in quantum mechanics. This is the sense
in which the path integral closely mirrors and generalises the classical Euler-Lagrange story: where fields localise
to the solutions to the equations of motion.

IThirty-one years ago, Dick Feynman told me about his “sum over histories” version of quantum mechanics.“The electron does
anything it likes,” he said.“It just goes in any direction at any speed, forward or backward in time, however it likes, and then you add
up the amplitudes and it gives you the wave-function.” I said to him, “You’re crazy.” But he wasn’t. — Freeman Dyson (in 1980)
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