Path Loss

EE4367 Telecom. Switching \& Transmission
Prof. Murat Torlak

Radio Wave Propagation

\square The wireless radio channel puts fundamental limitations to the performance of wireless communications systems
\square Radio channels are extremely random, and are not easily analyzed
\square Modeling the radio channel is typically done in statistical fashion

EE4367 Telecom. Switching \& Transmission

Linear Path Loss

\square Suppose $s(t)$ of power P_{t} is transmitted through a given channel
\square The received signal $r(t)$ of power P_{r} is averaged over any random variations due to shadowing.
\square We define the linear path loss of the channel as the ratio of transmit power to receiver power

$$
P_{L}=\frac{P_{t}}{P_{r}}
$$

\square We define the path loss of the channel also in dB

$$
P_{L} \mathrm{~dB}=10 \log _{10} \frac{P_{t}}{P_{r}} \mathrm{~dB} \text { (nonnegative number) }
$$

Experimental results

\square The measurements and predictions for the receiving van driven along 19th St./Nash St.

EE4367 Telecom. Switching \& Transmission

Line-of-Sight Propagation

\square Attenuation
\square The strength of a signal falls off with distance
\square Free Space Propagation

- The transmitter and receiver have a clear line of sight path between them. No other sources of impairment!
\square Satellite systems and microwave systems undergo free space propagation
\square The free space power received by an antenna which is separated from a radiating antenna by a distance is given by Friis free space equation

Friis Free Space Equation

\square The relation between the transmit and receive power is given by Friis free space equations:

$$
P_{r}=P_{t} G_{t} G_{r} \frac{\lambda^{2}}{(4 \pi d)^{2}} \underset{\mathrm{G}_{\mathrm{t}} \text { and } \mathrm{G}_{\mathrm{r}} \text { are the transmit and receive antenna gains }}{\stackrel{\mathrm{P}_{\mathrm{t}}}{\mathrm{G}_{\mathrm{r}}}} \stackrel{\mathrm{P}_{\mathrm{r}}}{\stackrel{\text { d }}{\longrightarrow}}
$$

- λ is the wavelength
$\square d$ is the $T-R$ separation
$\square P_{t}$ is the transmitted power
- P_{r} is the received power
- P_{t} and P_{r} are in same units
$\square G_{t}$ and G_{r} are dimensionless quantities.

Free Space Propagation Example

\square The Friis free space equation shows that the received power falls off as the square of the T-R separation distances
\square The received power decays with distance by $20 \mathrm{~dB} /$ decade
\square EX: Determine the isotropic free space loss at 4 GHz for the shortest path to a geosynchronous satellite from earth $(35,863$ km).
$\square \mathrm{P}_{\mathrm{L}}=20 \log _{10}\left(4 \times 10^{9}\right)+20 \log _{10}\left(35.863 \times 10^{6}\right)-147.56 \mathrm{~dB}$
$\square P_{L}=195.6 \mathrm{~dB}$
\square Suppose that the antenna gain of both the satellite and groundbased antennas are 44 dB and 48 dB , respectively
$\square P_{L}=195.6-44-48=103.6 \mathrm{~dB}$
\square Now, assume a transmit power of 250 W at the earth station. What is the power received at the satellite antenna?

EE4367 Telecom. Switching \& Transmission

Basic Propagation Mechanisms

\square Reflection, diffraction, and scattering:
\square Reflection occurs when a propagating electromagnetic wave impinges upon an object
\square Diffraction occurs when the radio path between the transmitter and receiver is obstructed by a surface that has sharp edges
\square Scattering occurs when the medium through which the wave travels
\square consists of objects with dimensions that are small compared to the wavelength, or
\square the number of obstacles per unit volume is large.

Basic Propagation Mechanisms

EE4367 Telecom. Switching \& Transmission
Prof. Murat Torlak

Free Space Propagation

\square Can be also expressed in relation to a reference point, d_{0}

$$
P_{r}(d)=P_{t} K\left(\frac{d_{0}}{d}\right)^{2} \quad \mathrm{~d} \geq \mathrm{d}_{0}
$$

$\square \mathrm{K}$ is a unitless constant that depends on the antenna characteristics and free-space path loss up to distance d_{0}
\square Typical value for d_{0} :

- Indoor:1m

Outdoor: 100 m to 1 km P

Simplified Path Loss Model

\square Complex analytical models or empirical measurements when tight system specifications must be met
\square Best locations for base stations
\square Access point layouts
\square However, use a simple model for general tradeoff analysis

$$
P_{r}=P_{t} K\left[\frac{d_{0}}{d}\right]^{\gamma}
$$

$\square \mathrm{dB}$ attenuation model

$$
P_{r} \mathrm{dBm}=P_{t} \mathrm{dBm}+K \mathrm{~dB}-10 \gamma \log _{10}\left[\begin{array}{c}
d \\
d_{0}
\end{array}\right]
$$

$\square d_{0}$: close-in reference point

Typical Pathloss Exponents

\square Empirically, the relation between the average received power and the distance is determined by the expression where γ is called the path loss exponent
\square The typical values of γ are as: $\quad P_{r} \propto d^{-\gamma}$

Environment	Path Loss exponent, γ
Free Space	2
Urban Area	2.7 to 3.5
Suburban Area	3 to 5
Indoor (line-of-sight)	1.6 to 1.8

EE4367 Telecom. Switching \& Transmission

Radio System Design

\square Fade Margins: The difference between the normal received power and the power required for minimum acceptable performance is referred to as the fade margin. Greater fade margins imply less frequent occurrences of minimum performance levels.
\square When large fade margins are provided, the received signal power during unfaded conditions is so strong that bit errors are virtually nonexistent.
\square To minimize dynamic range requirements in a receiver and reduce interference between systems, adaptive transmitter power control (ATPC) is sometimes used. Thus, when excess power is unnecessary, it is not used.

Noise Power

\square Noise power in a receiver is usually dominated by thermal noise generated in the frontend receiver amplifier. In this case, the noise power can be determined as follows:

$$
P_{N}=F k T_{0} B
$$

$\mathrm{F}=$ the receiver noise figure
$\mathrm{T}_{0}=$ the reference receiver temperature in degrees Kelvin (290°)
$\mathrm{K}=1.38 \times 10^{-23}$ is Boltzmann's constant
$\mathrm{B}=$ the receiver bandwidth
\square The noise figure of any device is defined as the ratio of the input SNR to the output SNR.

$$
\mathrm{F}=\mathrm{SNR}_{\text {in }} / \mathrm{SNR}_{\text {out }}
$$

System Gain/Fade Margin

\square System Gain is defined to be the difference, in decibels, of the transmitter output power and the minimum receive power for the specified error rate:

$$
A_{s}=10 \log _{10}\left(\frac{P_{t}}{P_{\text {req }}}\right)
$$

\square Combining the noise tigure and the system gain equations:

$$
A_{s}=10 \log _{10}\left(\frac{P_{t}}{\operatorname{SNR} F k T_{0} B}\right)-D
$$

D is the degradation from the ideal performance
SNR $=\mathrm{P}_{\text {req }} / \mathrm{P}_{\mathrm{N}}$
\square System gain, in conjunction with antenna gains and path losses, determines the fade margin (assuming free space path loss)

Fade Margin $=A_{s}+G_{T}+G_{R}+20 \log _{10} \lambda-A_{f}-20 \log _{10}(4 \pi d)$
$\square A_{f}=$ system (branching and coupling) loss, G_{T} and $G_{R}=$ transmit and receive antenna gains, $\lambda=$ transmitted wavelength $\left(\lambda=c / f_{c}\right), d=$ distance

EE4367 Telecom. Switching \& Transmission

Cell Radius Prediction

\square The signal level is same on a circle centered at the base station with radius R
\square Find the distance R such that the received signal power cannot be less than $P_{\text {min }} \mathrm{dBm}$
\square The received signal power at a distance $\mathrm{d}=\mathrm{R}$ is specified by

$$
\begin{gathered}
P_{r}(d)(d B)=P_{t}(d B)+10 \log _{10} K-10 \gamma \log _{10}\left(\frac{d}{d_{0}}\right) \\
P_{r}(R) \leq P_{\text {min }}
\end{gathered}
$$

\square Solving the above equation for the radius R , we obtain

$$
R \leq d_{0} \times 10^{0.1\left(P_{T} / \gamma\right)}
$$

\square where $P_{T}=P_{\text {min }}-P_{t}-10 \log _{10} K$

Mobile Telephone Network

\square Each mobile uses a separate, temporary radio channel
\square The cell site talks to many mobiles at once
\square Channels use a pair of frequencies for communication
\square forward link

- reverse link

Limited Resource \rightarrow Spectrum

\square Wireline communications, i.e., optical, 10-10
\square Wireless communications impairments far more severe
$\square 10^{-2}$ and 10^{-3} are typical operating BER for wireless links
\square More bandwidth can improve the BER and complex modulation and coding schemes
\square Everybody wants bandwidth in wireless, more users
\square How to share the spectrum for accommodating more users

Early Mobile Telephone System

\square Traditional mobile service was structured in a fashion similar to television broadcasting
\square One very powerful transmitter located at the highest spot in an area would broadcast in a radius of up to 50 kilometers
\square This approach achieved very good coverage, but it was impossible to reuse the frequencies throughout the system because of interference

Cellular Approach

\square Instead of using one powerful transmitter, many low-power transmitters were placed throughout a coverage area to increase the capacity
\square Each base station is allocated a portion of the total number of channels available to the entire system
\square To minimize interference, neighboring base stations are assigned different groups of channels

Why Cellular?

\square By systematically spacing base stations and their channel groups, the available channels are:
\square distributed throughout the geographic region
\square maybe reused as many times as necessary provided that the interference level is acceptable
\square As the demand for service increases the number of base stations may be increased thereby providing additional radio capacity
\square This enables a fixed number of channels to serve an arbitrarily large number of subscribers by reusing the channel throughout the coverage region

Cells

\square A cell is the basic geographic unit of a cellular system
\square The term cellular comes from the honeycomb shape of the areas into which a coverage region is divided
\square Each cell size varies depending on the landscape
\square Because of constraints imposed by natural terrain and manmade structures, the true shape of cells is not a perfect hexagon

EE4367 Telecom. Switching \& Transmission

Cell Cluster Concept

\square A cluster is a group of cells
\square No channels are reused within a cluster

Frequency Reuse

\square Cells with the same number have the same set of frequencies
$\square 3$ clusters are shown in the figure
\square Cluster size $\mathrm{N}=7$
\square Each cell uses $1 / \mathrm{N}$ of available cellular channels (frequency reuse factor)

Method for finding Co-channel Cells

\square Hexagonal cells: N can only have values which satisfy $\mathrm{N}=\mathrm{i}^{2}+\mathrm{ij}+$ j^{2} where i and j are non-negative integers
\square To find the nearest co-channel neighbors of a particular cell one must do the following
\square Move i cells along any chain of hexagons

- Turn 60 degrees counter-clockwise and move j cells
\square This method is illustrated for $\mathrm{i}=2$ and $\mathrm{j}=1$

EE4367 Telecom. Switching \& Transmission

Hexagonal Cell Clusters

(a) $i=2$ and $j=0$

(c) $i=2$ and $j=2$

(b) $i=1$ and $j=2$

(d) $i=2$ and $j=3$

Geometry of Hexagonal Cells

\square Distance between nearest cochannel cells
\square A hexagon has exactly six equidistant neighbors separated by multiple of 60 degrees
\square Approximate distance between the centers of two nearest cochannel cells is

$$
D=\sqrt{3 N} R
$$

Frequency Reuse Ratio

\square The frequency reuse ratio is defined as

$$
q=\frac{D}{R}
$$

\square The frequency reuse patterns below apply to hexagonal cells,

$$
q=\frac{D}{R}=\sqrt{3 N}
$$

Frequency Reuse Pattern	Cluster Size	Frequency Reuse Ratio
(i, j)	N	q
$(1,1)$	3	3.00
$(2,0)$	4	3.46
$(2,1)$	7	4.58
$(3,0)$	9	5.20
$(2,2)$	12	6.00
$(3,1)$	13	6.24
$(3,2)$	19	7.55
$(4,1)$	21	7.94
$(3,3)$	27	9.00
$(4,2)$	28	9.17
$(4,3)$	37	10.54

Co-channel Interference and System Capacity

\square There are several cells that use the same set of frequencies in a given coverage area
\square these cells are called co-channel cells
\square the interference between signals from these cells is cochannel interference
\square Co-channel interference cannot be combated by simply increasing the carrier power of a transmitter
\square an increase in carrier transmit power increases the interference to neighboring co-channel cells
\square To reduce co-channel interference

- co-channel cells must be physically separated by a minimum distance to provide sufficient isolation due to propagation

Frequency reuse ratio

\square When the size of each cell is approximately the same, and the base stations transmit the same power, then

$$
q=\frac{D}{R}=\sqrt{3 N}
$$

- if the radius of the cell is R
\square and the distance between centers of the nearest co-channel cells is D
$\square N$ is the cluster size
\square the parameter q is called the co-channel reuse ratio
\square A small value of q provides larger capacity since N is small
A large value of q improves the transmission quality

Signal to Interference Ratio (SIR)

\square Let N_{1} be the number of co-channel interfering cells
$\square P_{r}$ is the desired signal power from the desired base station
$\square P_{i}$ is the interference power caused by the $\mathrm{i}^{\text {th }}$ interfering cochannel cell base station
\square The SIR (S/I) at the desired mobile receiver is

$$
\frac{S}{I}=\frac{P_{r}}{\sum_{i=1}^{N_{I}} P_{i}}
$$

Recall Power-Distance Relation

\square Average received signal strength at any point in a mobile radio channel is

$$
P_{r}=P_{t} K\left(\frac{d}{d_{0}}\right)^{-\gamma}
$$

\square If d_{0} is the close-in reference point in the far field region of the antenna from the transmitting antenna
$\square P_{t}$ is the transmitter power
$\square \gamma$ is the path loss exponent
$\square \mathrm{P}_{\mathrm{r}}$ is the received power at a distance d

Approximated SIR

\square SIR for a mobile can be approximated as

$$
\frac{S}{I}=\frac{R^{-\gamma}}{\sum_{i=1}^{N_{I}}\left(D_{i}\right)^{-\gamma}}
$$

- If the transmit power of each base station is equal
- γ is same throughout the coverage area
$\square D_{i}$ is the distance of the $i^{\text {th }}$ interferer from the mobile
\square SIR as considering only the first layer of interfering cells can be simplified as

$$
\frac{S}{I}=\frac{(D / R)^{\gamma}}{N_{I}}=\frac{(\sqrt{3 N})^{\gamma}}{N_{I}}
$$

\square if all interfering base stations are equi-distant from each other and this distance is $D_{i} \approx D$

Approximated SIR

\square With hexagon shaped cellular systems, there are always six cochannel interfering cells in the first tier.
\square The frequency reuse ratio can be expressed as

$$
q=\left(N_{I} \times \frac{S}{I}\right)^{1 / \gamma}=\left(6 \times \frac{S}{I}\right)^{1 / \gamma}
$$

\square Example: For the U.S. AMPS analog FM system, a value of $\mathrm{S} / \mathrm{I}=18$ dB or greater is acceptable.
\square With a path loss exponent of $\gamma=4$, the frequency reuse ratio q is determined as

$$
q=\left(6 \times 10^{1.8}\right)^{1 / 4}=(6 \times 63.1)^{0.25} \simeq 4.41
$$

\square Therefore, the cluster size N should be

$$
N=q^{2} / 3=6.49 \simeq 7
$$

S/I Ratio vs Cluster Size

\square Suppose the acceptable S / I in a cellular system is 20 dB . $\gamma=4$, what is the minimum cluster size? Consider only the closest interferers.

