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Abstract In this paper, we propose methods of handling,
analyzing, and profiling monitoring data of energy systems
using their thermal coefficient of performance seen in uneven
segmentations in their time series databases. Aside from
assessing the performance of chillers using this parameter,
we dealt with pinpointing different trends that this para-
meter undergoes through while the systems operate. From
these results, we identified and cross-validated with domain
experts outlier behavior which were ultimately identified as
faulty operation of the chiller. Finally, we establish correla-
tions of the parameter with the other independent variables
across the different circuits of the machine with or without
the observed faulty behavior.
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1 Introduction

For many decades now, there had been different environmen-
tal measures introduced and maintained to mitigate global
warming and climate change and protect the planet and its
inhabitants from its disastrous effects. Since the Montreal and
Kyoto protocol had taken effect and/or adopted in many parts
of the world from 1989 and 1997, respectively, and adhered
to until now, the reduction and ultimate phasing out of the use
environmentally-harmful chemicals for household and com-
mercial equipments most especially for refrigeration, air con-
ditioning, insulation, etc. Examples of such are those cate-
gorized as Chlorofluorocarbons (CFCs), Hydrochlorofluoro-
carbons (HCFCs), and others that are considered greenhouse
gases that have potential contributions to global warming.
A report in [1] mentions that “just replacing some 25 % of
the HCFCs with substances that have zero global warming
potential will have a reduction in the global warming con-
tribution that is equivalent to the reduction achieved by the
Kyoto Protocol during its first commitment period from 2008
to 2012”.

In the field of Heating, Ventilation, Air Conditioning
(HVAC) systems, some of the innovations already had slowly
started to shift adhering and supporting the initiatives of the
two Protocols. In some HVAC machines such as adsorption
chillers, refrigerants now come in a very Earth-friendly form
that is water. Water is continually circulated in the chiller to
provide cooling to many different spaces with the aid of high-
capacity adsorption materials embedded in the chiller itself.
The entire cooling process is a closed cycle with a supply of
high pressure values to effectively vaporize the refrigerant at
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low temperature values. The driving temperature may be sup-
plied partially or fully by environment-friendly and/or renew-
able energy resource such as solar energy. Adsorption chillers
could also provide heating when necessary through the heat
rejection process of the machine. This framework of heating
and cooling technology is also coherent with what the Ger-
man Federal Government’s climate initiative states to pro-
mote emissions reduction, namely, (a) Improving energy effi-
ciency; (b) Developing renewable energies; and (c) Reducing
F-gases (fluorocarbons) which have a harmful impact on cli-
mate [2].

However, it is notable that even when the concepts and
benefits of adsorption technologies had long been known [3],
it is just fairly recent that people from the HVAC community
had taken them more seriously. Recent innovations to support
better and cheaper production, utility and management of
such machines, aside from felt alarming effects of global
warming as mentioned above, had continued to encourage its
technological growth in recent years. The reintroduction of
focus on this technology is fairly young such that the current
literature still focuses on either designing and/or optimizing
prototypes of adsorption chillers to yield better efficiency and
energy-saving performance [4–8]. Unfortunately, only a few
Asian and European manufacturers build adsorption chillers
to date, e.g. Japan and Germany [9], hence there is but a small
pool of related work in studying and profiling the static and
dynamic behavior of such machines.

Alongside with a small number of manufacturers of
adsorption chillers, the (re)design and (re)optimization of
their structures and processes largely remain under the fol-
lowing pursuits: (a) experimentally-determined schemes,
configurations, and solutions that are usually component spe-
cific [10–14]; (b) benchmarked results from systems under
some specific environmental setting [15–18]; (c) experimen-
tal parameter tweaking to achieve improvements in coeffi-
cients of performance, reduction of heat losses, energy con-
sumption, greenhouse emission, etc. [19,20]. Under these
frameworks, it is difficult to obtain optimality of the struc-
ture and processes of chillers, moreso in diagnosing, and
describing faults that occur in them. A few data mining
based-frameworks for energy systems’ fault detection and
diagnosis (although component-specific too) can be seen
in [21–23].

In this research, we focus on these type of adsorption
chillers and profile their energy efficiency through the his-
torical data of its operation. We extract different scenarios
of the behaviour of its thermal coefficient of performance
as it operates through many duty cycles to address cooling
demands. From this profiling mechanism, scenarios of faulty
behaviour are discovered and validated by domain experts.
For all these range of faulty and non-faulty operations, pro-
tocols and control strategies could be developed for better
building automation technologies.

2 Basic definitions and notations

2.1 Machine and data specifications

Adsorption chillers are mainly designed with an evaporator,
adsorber/desorber reactor beds, and a condenser that alto-
gether circulate a refrigerant to produce cold supply by using
driving heat as seen in Fig. 1. There are three main loops that
support this adsorption cycle namely the heating water circuit
(H T ), chilling water circuit (LT ), and cooling water circuit
(MT ). At the midsection of the figure of the chiller are the
two reactors that alternate in the adsorbing and desorbing
of the refrigerant through the aid of the silica-gel adsorbent
found inside them. As the machine operates, the left-bottom
check valve opens up so vaporised refrigerant moves from the
evaporator towards the adsorber reactor where the vapour is
adsorbed by silica-gel granules with the aid of cooling water
supply. This vaporization produces the chilling capability of
the machine. Meanwhile, the right-bottom valve closes as
the other reactor is provided with high heat by the H T cir-
cuit to desorb the existing refrigerant off from the silica gel.
The desorbed refrigerant moves towards the condenser and
is liquified again before finally being pumped back to the
evaporator for the next cycle of operation to begin. Sensors
can be used to monitor the return and supply temperature val-
ues, i.e. T LT re and T LT su of the LT circuit, and similarly,
T MT re and T MT su of the MT circuit, and T H T re and
T H T su of HT circuit, as well as the circuits’ mass flow rates
and other related resource utilization during the refrigeration
cycle. Please refer to the annotations provided in Fig. 1.

2.2 Flow rates and energy

Let F(c, l) = [ fi,c,l ] and T (c, l) = [ti,c,l ] be the time series
data sets collected by the chiller’s energy meters where fi,c,l

is the flow rate of the water (or refrigerant) passing through
a chiller’s circuit c and ti,c,l is the corresponding recorded
temperature value in the circuit component l at time instance
i on regular intervals k (in minutes), c ∈ {LT, MT, H T },
and l ∈ {return, supply}, i, k ∈ lN. Let Q = [qi,c] be the
amount of energy (in kWh) spent by the chiller in c to aid in
performing the entire cooling process during an operation of
the adsorption chiller, as follows,

∀i, qi,c = |ti,c,l − ti,c,{return,supply}\{l}| ∗ mi,c,k ∗ δ

360,0000
,

where mi,c,k = fi,c,l ∗ (k ∗ 60) ∗ ρ, is the mass of the
refrigerant on time i in c, and ρ and δ are the density and
the specific heat of the refrigerant, respectively (e.g. water
has ρ = 1 kg/0.001m3 and δ = 4, 185.5 J/kg/K). We use the
(k ∗ 60) and the denominator for proper SI unit conversion
purposes where 360,0000 kWh = 1 J. Therefore Q is in kWh.
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Fig. 1 The adsorption chiller cooling specifications. (Image source:
[26])

2.3 Coefficient of performance

For this study, we focus on describing and analyzing chiller
performance using the thermal coefficient of performance
COPtherm, where COPtherm = QLT /Q H T , where QLT and
Q H T are the values of the spent energy per hour of the LT
and H T circuits, respectively. For this study, we derive these
energy values as indicated above using the flow rates (in
m3/h) recorded from their corresponding circuits.

2.4 X-Means clustering algorithm

The X-Means clustering algorithm [24] is an offshoot of the
conventional K-Means clustering algorithm that addresses
three major drawbacks of the latter.

Firstly, K-Means is computationally expensive as it per-
forms exhaustive computations for each data point to deter-
mine its cluster membership. When the dimensionality of the
input increases, K-Means meets scalability issues in com-
puting models. Meanwhile, X-Means provide a solution to
this by employing the concept of blacklisting. Blacklisting
ensures that a pre-specified list of centroids are the only ones
considered for (re)clustering, thus, the number of computa-
tions is bounded by this list and minimizing the iterations
done in K-Means.

Secondly, K-Means is dependent on user input to specify
the number of clusters to be formed for the cluster model.
The decision of the user bounds K-Means to finding infor-
mation by partitioning the data set at this fixed number of
clusters. This is problematic when some sets of behaviour
are unknown to the user and therefore promotes constrictive
choices in discovery of new, sometimes, important behav-
iour/s that could actually appear and/or develop through time

and variations in settings. X-Means however makes local
decisions in each current cluster (Voronoi region) at an iter-
ation as to how the region should be partitioned based on
Bayesian Information Criterion (BIC) values, and chooses
the best clustering models obtained from all the compu-
tations. X-Means therefore quickly approximates the ideal
global partitioning of the data set. This eliminates the weak-
ness we observe in K-Means wherein the users themselves
decide on how we subdivide the data set to perform cluster
analysis.

Finally, K-means tends to find worse local optima when
the number of clusters is fixed rather than dynamically chang-
ing this parameter in its computations. The iterations done
in X-Means will likely avoid being trapped in a worse local
optima for a cluster model as it dynamically approximates
optimal values of for the number of clusters of the data set.

X-Means is comprised of the following steps:

1. Improve-params This step executes the conventional K-
Means until convergence. The average square distance is
used as a similarity measure to determine cluster mem-
bership in each iteration of K-Means.

2. Improve-structure This step determines when and
where new centroids will appear. Such appearance is
determined by computing the BIC of the clusters formed.

3. If the number of clusters formed in an iteration exceeds
kmax , the algorithm stops and reports the best-scoring
model (i.e. the cluster model where the BIC is maxi-
mized) found throughout the search. Otherwise, proceed
to the first step. Note that kmax can be set to at most the
number of points in the data set.

3 Methodology

3.1 Data segmentation and sanitation

The adsorption chiller is under operation whenever we detect
that the refrigerant is passed through the different compart-
ments of the chiller, i.e. fi,c,l > 0, ∃i, c. Using this infor-
mation, a segment S = [s j , s j+k, s j+2k, . . . , s j+mk] is con-
structed whenever we find its corresponding set of positive
flow rates [ f j,c,l , f j+k,c,l , . . . , f j+mk,c,l ], j, m ∈ lN, for any
of the time series of the chiller’s historical data.

To initiate the discovery of the different sets of behaviour
and efficiency states of the chiller, we segment the time series
COPtherm as mentioned. For segments that do not have at least
one value that is greater than or equal to the chiller’s known
nominal thermal coefficient of performance, we remove these
segments from the consideration of further study.

In the segmentation phase, it would be notable that there
are possibly very small values of the flow rates on both ends
of a segment since the chiller is either near or on its startup or
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terminal stage of operation, thus the derivation of the values
of the COPtherm segments yields relatively large values near
and/or on their endpoints compared with the values when
the chiller achieves its steady state of operation. These large
values could be wrongly interpreted as abnormal and/or erro-
neous operation, therefore, we perform the following steps
for data sanitation locally implemented on each segment,

1. determine the first and third quartiles of the segment,
i.e. Q1 and Q3, respectively, and let the interquartile
range I Q R = Q3 − Q1. Remove all the values of the
segment that not in [Q1 − 1.5I Q R, Q3 + 1.5I Q R]. In
removing the extreme values, we retain around 99.3 %
of the segment’s original set of values. We shall consider
the retained values of the segments as valid.

2. For each deleted extreme value of the element si ∈ S,
i ∈ {1, 2, . . . , |S|}, update si as follows,

si =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si−1+si+1
2 , if si−1 and si+1 are valid,

1 < i < |S|,
si−1, if si−1 is valid &si+1 is not,

1 < i ≤ |S|
si+1, if si+1 is valid &si−1 is not,

1 ≤ i < |S|
s|i± j |, s|i± j | s.t. s|i± j | is valid and

min {|i ± j |},
j = 1, 2, . . . , |S| − 1,

1 ≤ i ± j ≤ |S|, otherwise.

3.2 Segment scaling and clustering

As typical as any other machine, chiller’s operate on the basis
of its need for utility, i.e. when there is a cooling demand from
its users. This implies that the segmentation phase would
extract segments of varying lengths of operation. Therefore,
analysis is not immediately done since there is a difficulty
of realizing points of comparisons to obtain a rational result.
The discovery of steady states is difficult for short segments
due to high variations in values as the chiller enters different
phases of operation. However, these short segments and other
short subsegments with short-lived behaviour variations are
keys to discovering faulty behaviour whenever they do not
simulate the expected proper transitions of operational states
of the chiller. On another aspect, the prolonged steady state
observed in a segment for which there is no abnormal dis-
ruption in between enlarges its length and therefore, an idea
of partitioning it comes to mind. However, these partitions
do not model the startup, steady state, and terminal states
of the chiller operation. Comparing a short segment (with a
non-faulty operation) which has the same length of one of
these partitions is unreasonable.

Bearing in mind the continuity of operation from the evap-
oration, adsorption, desorption, and condensation cycle that

the chiller undergoes, adjacent values within each segment
are related to each other. Therefore, we could easily scale up
or scale down the lengths of the segments by linear interpo-
lation (and when necessary, linear extrapolation) of points to
expand or compress the segments. The use of linear inter-
polation and extrapolation stems from the fact that they
provide (interpolated) values that are coherent/consistent
with the thermodynamic activities that the chiller undergoes
throughout its operation. In this research, we use the median
length med Length (measured in minutes) with respect to
the lengths of all the retained segments to individually scale
their original lengths either up or down.

Since all the segments extracted from the time series are
already in uniform length after the said interpolations, we
will obtain an m × nd data matrix of segments as input to
the X-Means clustering algorithm, m ∈ lN is the number
of segments retained after all the preprocessing steps. For
this study, these segments are from the values of COPtherm.
We shall then look at the efficiency of the chiller in pro-
viding cooling demand by intercluster, intracluster, and out-
lier analysis of the COPtherm-based cluster model. We note
the following justifications as to the use of clustering for
this research, as follows, (a) the database used in this study
(like other databases of energy systems) does not contain any
record (nor variable) pertaining to faulty or non faulty behav-
iour; and (b) the currently-available literature, inclusive of the
manual, for the adsorption chiller under study only provide
theoretically-sound (i.e. conforming to thermodynamic rules,
etc) and nominal values for temperature, pressure, energy
consumption, etc., while the actual recorded data can show
unexpected values due to many other external factors such
as the loss of the vacuum while the chiller is in operation,
user misuse of the machine, erroneous settings caused either
by machine malfunction or failure, among others. For these
scenarios, unsupervised learning such as the use of clustering
is optimal so as to discover sets of behaviour of the chiller
using its historical data.

Finally, different visualizations of the cluster model are
produced and presented to domain experts to identify and
validate the discovered sets of faulty and nonfaulty behavior
of operation. We also extend the analysis to the other time
series recorded in the variables of the LT, MT, H T circuits,
e.g. return and supply temperature values, by using the same
cluster model to check the influence of these variables to the
efficiency, performance and behavior of the chiller.

4 Results and discussion

4.1 Implementation of methods on actual dataset

The adsorption chiller [25] that is used in this study also
uses water as its refrigerant. Its monitoring data comprises
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Table 1 COPtherm X-Means
cluster model Cluster Size % Cluster Size % Cluster Size %

C0 27 20.77 C8 1 0.77 C16 1 0.77

C1 5 3.85 C9 1 0.77 C17 1 0.77

C2 7 5.38 C10 1 0.77 C18 1 0.77

C3 31 23.85 C11 6 4.62 C19 1 0.77

C4 1 0.77 C12 1 0.77 C20 1 0.77

C5 12 9.23 C13 1 C21 1

C6 12 9.23 C14 1

C7 16 12.31 C15 1

data collected by meters from all of the circuits and pumps
involved in the entire cooling process. The data we used
in this study was collected in every 4-min interval for
the year 2011. The preprocessing, segmentation, scaling,
clustering and visualization proceeded with the following
results,

1. From input data set, we extracted segments using the flow
rate information of the LT circuit and obtained 176 seg-
ments with variable lengths. The timestamps correspond-
ing to the first and last data points of the segments are
recorded. We then construct the segments of all other
variables to have their values corresponding to all the val-
ues within the same timestamps of the segments of QLT .
These variables are the return and supply temperature val-
ues, as well as the energy and power and utilization of the
three circuits. The algorithms in this research could be
used in any of the variables available in the chiller data-
base.

2. Derive the values of COPtherm by first computing for QLT

and Q H T using the segments of the temperature variables
of both LT and H T circuits (as indicated in Sect. 2.2)
setting k = 4.

3. From the computed values of COPtherm of each segment
and the chiller’s nominal thermal COP [25], i.e. 0.6, we
reduced the number of segments to be considered for fur-
ther study to 130 segments. Further data sanitation of
the COPtherm segments was performed as specified in
Sect. 3.1.

4. The remaining COPtherm segments were then scaled using
their median length of 27 (number of dimensions) or
104 min in duration. Therefore, we obtain the input matrix
of COPtherm segments with a dimension of 130 × 27.

5. Use the 130 × 27 data matrix of the scaled COPtherm

segments as input to the X-Means clustering to obtain
the different sets of behaviour during the chiller opera-
tions. Project the line graphs (or heat maps when needed),
box and scatter plots to enable intercluster and intracluster
analysis from the X-Means cluster model.

4.2 Cluster and outlier analysis

Using the X-Means clustering algorithm, we were able to
obtain 8 (nonsingleton) clusters and 13 outliers describing
different profiles and temporal variations of the COPtherm

as the chiller undergoes its operations. Shown in Table 1 is
the summary of the clusters and their sizes, i.e. number of
segments belonging to them.

For the sake of brevity, we present in the main body of
this paper the intercluster and intracluster analysis of the
COPtherm segments belonging to clusters C0, C1, C3, and
some of the outliers C9, C12, C17, and C21. Note that the
same methods for analysis could be replicated on all other
clusters and outliers in the model.

Cluster C3 is composed of the most number of segments
in the model, i.e. ≈24 %, followed by C0 with ≈21 %. Shown
in Figs. 2 and 3 are the line graphs of clusters C0 and C3.
The x-axis and the y-axis show the time elapsed (where the
tick marks are in 4-min intervals) and the COPtherm values
observed on each segment (projected as 1 time continuous
time series) for these two clusters. The legend on the right
side of the figures correspond to the timestamp of the first
data point in each of the segments.

From Figs. 2 and 3, it can be observed that majority
of these segments follow the regular or the expected (non-
faulty) trend of the machine execution. Due to the two-bed
reactor structure where the beds alternately function as either
adsorber or desorber on each cycle in adsorption chillers,
the oscillations of the temperature values throughout major-
ity of the chiller’s operation are expected and/or imposed
in the process as either cooling or heating is performed
on these reactors. Furthermore, both tail ends of each seg-
ment would also imply either the short time allocated for
the start-up or terminal stage of the chiller’s execution as
the driving heat is supplied/sustained to meet the cooling
demand of the users or or weakened/suspended when this
demand is already stopped. These tail ends are more appar-
ent for cluster C0 compared with C3 as seen in the fig-
ures.
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Fig. 2 Line graphs for cluster C0 COPtherm values

Fig. 3 Line graphs for cluster C3 COPtherm values

Furthermore, the aforementioned figures also show that
majority of the C3’s values are relatively smaller than C0’s.
Notice that the midsection along the y-axis of C3’s values
is relatively lower than that of C0’s. In fact, the average val-
ues of the two clusters are xC3 = 0.3455 and xC0 = 0.399.
Moreover, in terms of the general shape of the clusters from
the point of start-up to the terminal stage, C0’s members
show a more defined trend on these stages. Another big dif-
ference of the values and behavior of the cluster’s COPs are
the number of outlier values in each of the segments, wherein
C3’s has more compared to C0 as can be seen in Figs. 4 and
5. This implies that even when the high peaks and troughs of
the segments in C0 are very apparent in the behavior, these
values and behavior are sustained by the chiller for a more
prolonged period of time and with regular frequency com-
pared with C3’s for the entirety of the chiller’s operation. The

Fig. 4 Boxplot visualization for cluster C0 COPtherm values

Fig. 5 Boxplot visualization for cluster C3 COPtherm values

larger gap of the values of the troughs and peaks for C0 com-
pared with C3 is highlighted in the scatterplot visualizations
in Figs. 6 and 7, respectively. These differences evidently
justify the groupings of the segments in their respective clus-
ters. It is notable that the values and trend of both clusters
are also relatively similar to each other compared with all
other clusters in the model. The fact that these clusters have
the majority of the input segments as their cluster members,
they could be considered to determine non-faulty operations
with COPs observed to be within the mean value and behav-
ior within a year or with slightly larger yet valid COP values.

The scatterplot visualizations in Figs. 6 and 7 provides
visual cues with how COPtherm values correlate with the
driving heat temperature values of the H T variable T H T su.
Shown in Table 2 are the values of the Pearson product
moment correlation r for T H T su and COPtherm computed
for each of the clusters of the model. The values that are
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Fig. 6 Scatterplot for cluster C0 COPtherm values against T H T su val-
ues

Fig. 7 Scatterplot for cluster C3 COPtherm values against T H T su val-
ues

underlined correspond to outliers. The first two columns of
the table are non singleton clusters.

Notice that most of the (nonsingleton) clusters in the first
column show negative correlation for COPtherm and T H T su.
For example, these negative correlations are perceivable for
C0 and C3 as in Figs. 6 and 7. There are only two nonsingle-
ton clusters that showed positive, though weak, correlation,
i.e. C2 and C5. These positive, yet stronger correlation of
the two variables are readily apparent for 9 out of 14 out-
liers. From among these 9 outliers, there were 4 of them that
were identified and validated by domain experts as faults of
operation of the chiller, i.e. C9, C10, C12, and C19. Addi-
tionally, another outlier was also identified as faulty opera-
tion, i.e. C21, had a negative value for r with COPtherm.

Table 2 Correlation values r for COPtherm and THTsu values computed
per cluster

Cluster r Cluster r Cluster r

C3 −0.117181 C4 0.129856 C16 −0.380267

C0 −0.063631 C8 0.036321 C17 0.846726

C7 −0.250765 C9 0.725417 C18 −0.307854

C6 −0.409584 C10 0.391405 C19 0.866002

C11 −0.301475 C12 0.437844 C20 −0.037083

C1 −0.155649 C13 −0.362165 C21 −0.403705

C5 0.088842 C14 0.168064

C2 0.050553 C15 0.467124

Fig. 8 Line graphs for cluster C9 COPtherm values

Shown in Figs. 8 and 9 are the values and trend of the afore-
mentioned identified faults. It can be seen that the typical
prolonged oscillating pattern of adsorption chiller cycles are
not observed for both of these faults even when C9 and C21
have their original length (i.e. unscaled) of 20 and 12 min,
respectively, and continuous flow of the refrigerant is already
present. Also notice how these outliers’ set of values as shown
in Figs. 10 and 11 differ from those of the non-singleton clus-
ters C0 and C3. It is clear that the COP values are not just
abnormal in magnitude but in their trend too as the chiller
goes through with its operation for the duration of these out-
lier segments.

We also refer the reader to the Appendix containing
Tables 3 and 4 showing the correlations r of COPtherm com-
pared independently with the variables of the MT and LT
circuits. One could replicate the same process of analysis as
performed previously on these circuits.
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Fig. 9 Line graphs for cluster C21 COPtherm values

Fig. 10 Scatterplot for cluster C9 COPtherm against T H T su values

Fig. 11 Scatterplot for cluster C21 COPtherm against T H T su values

5 Conclusions and future work

In this research, we were able to provide a framework in deal-
ing with data sanitation, segmentation, clustering and analy-
sis of time series data sets for adsorption chillers whose time
and duration of operation are irregular, unequal in length, and
with different sets of behavior. We were able to uncover faulty
and nonfaulty modes of operation based that were validated
by domain experts. We were able to profile these behaviours
and establish the correlation of the thermal coefficient of per-
formance with the variables of the LT , MT , and H T circuits
of the chiller. Future work shall focus on identifying states,
duration, and values of machine start up, steady states, and
terminal stages. We shall also use the proposed framework to
analyze electrical coefficients of performance of chillers and
compute for energy savings and losses due to faulty opera-
tions.

Acknowledgments The authors would like to thank Dan Pelleg and
the Auton Lab of Carnegie Mellon University’s School of Computer
Science for the implementation of X-Means used in this research.

6 Appendix

Tables 3 and 4.

Table 3 Correlation values r for COPtherm and TMTsu values computed
per cluster

Cluster r Cluster r Cluster r

C3 −0.186347 C4 −0.746703 C16 −0.681503

C0 −0.116684 C8 0.358187 C17 −0.196419

C7 −0.048101 C9 −0.487606 C18 −0.558702

C6 −0.233954 C10 0.127804 C19 0.094979

C11 −0.291695 C12 0.861950 C20 −0.329952

C1 0.053145 C13 −0.376835 C21 −0.384007

C5 −0.236404 C14 −0.498099

C2 −0.139959 C15 −0.105373

Table 4 Correlation values r for COPtherm and TLTre values computed
per cluster

Cluster r Cluster r Cluster r

C3 −0.209934 C4 −0.388970 C16 −0.230884

C0 −0.076414 C8 −0.757722 C17 −0.269248

C7 −0.423012 C9 −0.869854 C18 −0.573007

C6 −0.686900 C10 −0.617938 C19 −0.536233

C11 −0.394420 C12 −0.285265 C20 0.186395

C1 −0.449397 C13 −0.513003 C21 0.132058

C5 0.029275 C14 −0.461682

C2 −0.205804 C15 −0.554011
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