Robotics 1/24 Dr. Juliar Rvde

Introduction Challenges Example

Summary

Pattern Recognition in Mobile Robotics CSE 455/555 Introduction to Pattern Recognition

Dr. Julian Ryde

SUNY at Buffalo

January 21, 2011

Abstract/Lecture Overview

Robotics 2/24 Dr. Juliar Rvde

Introduction

Challenges

Example Applications

Summary

A more realistic set of motivating application examples based in Mobile Robotics

- Motivations for mobile robotics
- Challenges of mobile robotics
- Examples involving pattern recognition
- Not going to talk about Industrial/static robotics
 - Even thought there are many applications of pattern recognition in this area of robotics

What is Robotics?

PR in Robotics 3/24 Dr. Juliar

- Definitions
 - Intelligent connection of perception to action
- Perception Acquisition and interpretation of sensor data
- Intelligence?
 - Decision making
 - Learning
- Actuation Effecting changes in the physical world
 - Locomotion
 - Manipulation
- Roles of pattern recognition in robotics
 - Pattern recognition also has a role to play in intelligence
 - Pattern recognition forms part of the interpretation

Introduction

Challenges

Example Applications

Robotics Areas

PR in Robotic: 4/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications

Summary

Static

- Industrial robotics
- Controlled environments
- More commercially successful
- Mobile
- Indoor Robotics
 - Personal robotics
 - Office robots
 - Remote telepresence
 - Domestic robots
 - Roomba most successful consumer mobile robot?
- Field Robotics
 - Mining
 - Military
- Health care
 - Home care for the elderly (Especially Japan)
- Wherever it is Dirty, Dull or Dangerous

Willow Garage

PR In Robotics 5/24 Dr. Juliar

Introduction

Challenges

Example Application

- Long term funded company that does not need to make a profit
- Adheres to the open source development model
- Robot Operating System (ROS)
- OpenCV
 - Computer Vision
 - Machine Learning algorithms
- PR2 Robot
 - PR2 Beta Overview Video

Sensors

PR in Robotics 6/24 Dr Julia

Ryde

Introduction

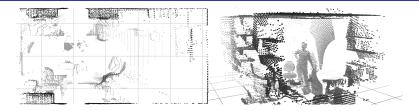
Challenges

Example Application

Summary

Internal sensors

- Global position system GPS
- Inertial Measurement Unit IMU
- Vision based
 - Standard Cameras
 - Omnidirectional
- Range sensors
 - Time of flight
 - Triangulation based
 - Structured light
 - Stereo vision
 - Ultrasonic
- Kinect
 - Structured light 3D depth sensor
 - Returns RGBD Red, Green, Blue and Depth
 - Inexpensive at 150\$


Pattern Recognition in 3D Data versus Pictures

PR in Robotics 7/24 Dr. Juliar Rvde

Introduction

Challenge

Example Application

- More difficult for humans
- More suitable for computers?
 - 3D data is more independent of observer position
 - Many objects are rigid or articulated so 3D shape is important and invariant
 - For features invariant is good
 - implies reliable/repeatable extraction
- Camera images susceptible to
 - illumination changes
 - Ioss of information in conversion from 3D to 2D

Considerations specific to mobile robotics

PR in Robotic: 8/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications Summary Autonomy

- There can be no guarantee of continuous connection. Therefore a certain level of autonomy is required for reliable continuous operation.
- Power consumption
 - Restricted processing power
 - Especially for indoor and smaller robots that run on batteries
- Real-time constraints
 - Pedestrian recognition has to be fast and reliable for automotive applications
 - Batch algorithms not really suitable
 - For long term operation robot ultimately has to process data as fast as it receives it.

Localisation and Mapping

PR in Robotics 9/24

Challenges

Localisation

- For most applications need to have an awareness of location
- Augment the robots workspace with features
 - Possible but expensive for factories and other controlled environments

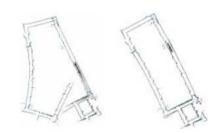
Mapping

- Learning a model of the operating workspace/environment
- Aids localisation
- Aids path planning
- Simultaneous Localisation and Mapping (SLAM)
 - The process of both inferring location from a map whilst simultaneously updating the map with new observed information.

Simultaneous Localisation and Mapping (SLAM)

Challenges

- SLAM is vital for indoor robots
 - Interestingly not used for the iRobot roomba
- Outside not as necessary where GPS coverage is available
- Various flavours of SLAM
 - Metric
 - Topological
- Matching
 - 2D/3D scan matching
 - Image


Loop Closing

PR in Robotics 11/24 Dr. Julia

ntroduction

Challenges

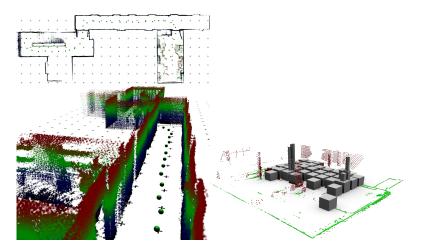
Example Applications Summary

- Closing of an open loop in a large (80m by 25m) cyclic environment from Konolige and Gutmann (1999)
- Improving map accuracy through loop closing
 - Have I been here before?
 - Recognising previously visited locations

Scan matching

- Robotics 12/24 Dr. Juliar
- Introduction
- Challenges
- Example Applications Summary

- Two scans taken from different poses
- Find features present in each scan
- Determine the correspondence between features
- Use this information to align the scans
- This gives the pose change between scans
- Much research done with 2D range scans
- Example with 3D scans or an indoor environment
 - Scan matching Ilustration


3D mapping indoors

Introduction

Challenges

Example Applications Summary

■ 3D map fly around video

Probabilistic robotics

PR in Robotic: 14/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications

- Return not only an answer but some idea of the probability distribution
 - For example the pose distribution can be multimodal
 - Many ways of representing these probablity density functions
 - Thus you have some idea of how likely the result is to be correct
- Algorithms in robotics need to be robust
 - Robust statistics e.g. median
 - contrast with sufficient statistics
 - Insensitive to outliers
 - Sufficient statistics e.g. mean
 - Mathematically analytic
 - Computational convenient
 - Sensitive to outliers

DARPA Grand and Urban Challenges

PR in Robotics 15/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications

Grand Challenge

- \$2 million Prize awarded to Stanford Racing Team
- 132 mile desert course in just under 7 hours
- Urban challenge
 - Follow on from the easier grand challenge
 - Autonomous vehicle drive through an urban environment
 - Drive in traffic
 - Maneuvers merging, passing, parking, negotiating intersections
 - Featured the first autonomous car crash
 - Reliable perception and interpretation vital
 - Final highlights
 - DARPA Urban challenge highlights video
- Key Enablers
 - Velodyne 3D laser scanner
 - Near to far learning

Learning for mobile autonomous systems

Robotic: 16/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications

- Pattern recognition enables systems to learn and generalise from new data.
- Interaction with humans provides plenty of opportunity for supervised learning.
- Amazon's mechanical turk
 - Humans working for the robots!
- DARPA urban challenge videos
 - near to far learning in images e.g. using laser data and corresponding vision results to train and so classify far image pixels.
- Self supervised learning
 - Training data might arrives at a later time for some cases
 - Training data provided by others sensors
 - e.g. Near to far learning

Near to Far Learning

Introduction

Challenges

Example Applications

ie Nap Integerbelie Polar RGB map and current path planning (white path Hyperbolic polar map overlay). accumulates the outputs from close-range and Short-range, low-res long-range vision stereo for close obstacle avoidance. Runs 5x faster than long-range vision. Outputs from long-range Long-range classifier sees vision classifier (left and from 5 meters to horizon right cameras). -Labeled data sent to the Stereo-based labels are classifier (left and right from 5 to 12 meters cameras).

Green=traversable Pink=footline of obstacle Red=obstacle

- Image and research from Raia Hadsell
- Online machine learning
 - Either laser or stereo provides reliable near range 5m classification (driveable or not based on smoothness)
 - Then used as training data for appearance based classifier for pixels beyond 5m

Solutions in Perception Challenge

PR in Robotics 18/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications Summary

Goal

- Rigid objects recognized and their 6DOF pose determined with the Kinect sensor
- Kinect sensor
- Best solutions likely to combine conventional image information with depth information
- Ideal opportunity to put into practice what you learn in this course

Field robotics

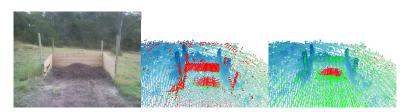
PR in Robotics 19/24

Dr. Julian Ryde

Introduction Challenges

Example Applications

- Work undertaken at the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Autonomous earth moving


Autonomous Skid Steer loader (Bobcat)

PR in Robotics 20/24

Rvde

Introduction

Example Applications

- Earth moving task
 - Move soil material from one location to another
- Ultimate goal is the design the terrain you want in a CAD package and have it replicated in the physical world by autonomous excavation and earth moving machines

Reliable Human/Novelty Detection

Robotics 21/24 Dr. Julian

Introduction Challenges

Example Applications

- Learn the operational environment
- Highlight those areas that have changed
- Essential for safety reasons
 - If unknown objects detected or the environment has been tampered with need to potentially stop operation

Handle noise, how much variation constitutes change?

Some active research questions related to Pattern Recognition

PR in Robotics 22/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications

Summary

SLAM

- Monocular camera based visual SLAM
- SLAM with RGBD sensors
- Correspondence problem
 - Finding corresponding points in multiple images
 - For stereo vision
- Object recognition in 3D data
 - 3D shape based retrieve and lookup
 - View and occlusion invariant hashing
 - Locality sensitive hashing
- Object recognition from a moving camera sensor
 - Different to object recognition in random images
 - Background subtraction for moving cameras

Recap

PR in Robotics 23/24

Dr. Julian Ryde

Introduction

Challenges

Example Applications

- What is (mobile) robotics?
- Example applications involving pattern recognition
 - Localisation
 - Mapping
 - Scan matching
 - Loop closing
 - Terrain classification for path planning
 - Near to far learning
 - Self supervised machine learning
 - Field robotics
 - Autonomous Earth moving
- Current work in the research community
- Solutions in Perception Challenge

Questions for consideration?

- Robotics 24/24 Dr. Juliar
- Introduction
- Challenges
- Example Applications
- Summary

- What is holding back mobile robotics?
 - Was the lack of low cost depth sensors, but now with the Kinect?
 - Low cost manipulator platforms? The PR2 is \$400,000
- Motivated by the recent debut of the Kinect how can existing computer vision pattern recognition algorithms be applied to RGBD data?