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Abstract 

As electronic health records (EHR) become more 

widespread, they enable clinicians and researchers to 

pose complex queries that can benefit immediate 

patient care and deepen understanding of medical 

treatment and outcomes.  However, current query 

tools make complex temporal queries difficult to 

pose, and physicians have to rely on computer 

professionals to specify the queries for them.  This 

paper describes our efforts to develop a novel query 

tool implemented in a large operational system at the 

Washington Hospital Center (Microsoft Amalga, 

formerly known as Azyxxi). We describe our design of 

the interface to specify temporal patterns and the 

visual presentation of results, then summarize the 

feedback gathered during early testing with 

physicians.  The use case described in the paper 

focuses on adverse reactions following radiology 

studies using contrast. 

Introduction 

As the use of electronic health records (EHRs) 

spreads, there are growing opportunities for use in 

clinical research and patient care.  Queries often have 

a temporal component. For example “Find all 

patients who were discharged from the emergency 

room then admitted again within a week”. Another 

example is  “Find patients who had a normal serum 

creatinine lab test less than 2 days before a radiology 

test with intravenous contrast, followed by an 

increase in serum creatinine by more than 50% and of 

more than 1.0 mg/dl  within  5 days after the contrast 

administration”. Currently available user interfaces 

make possible simple queries such as “Find patients 

who had a radiology test with contrast and a high 

value of creatinine, leaving users with the burden of 

shuffling through large numbers of results in search 

for matching patients.   

Specifying temporal queries in SQL is difficult even 

for computer professionals specializing in such 

queries. Scientific research has made progress in 

representing temporal abstractions and executing 

complex temporal queries (e.g. Shahar98; Shahar00, 

Augusto05, Stacey07) but there is very little research 

that focuses on making it easy for clinicians and 

medical researchers to specify the queries and to 

examine the results visually. 

We believe that interactive query interfaces allowing 

researchers and clinicians to explore data that have 

specific temporal patterns in both numerical and 

categorical data can dramatically increase the benefits 

of EHR databases.  Comprehensive presentation of 

the results can then help users see patterns and 

exceptions in the data they retrieved, and refine their 

query accordingly.  This paper describes our efforts 

to implement such an interface in a large operational 

working system at the Washington Hospital Center 

(Microsoft Amalga, formerly known as Azyxxi).   

Temporal searches are used in many situations, from 

clinical trial recruitment, clinical research, general 

patient care (e.g. tracking the application of 

guidelines) or alarm specification. For example, 

setting an alarm for patients on Heparin with a 

precipitous drop in platelet counts (heparin-induced 

thrombocytopenia) requires specificity around the 

definition of “precipitous”.  By querying existing 

EHR databases, physicians designing the alarm can 

iteratively test the logic of the alarm (e.g.  Should an 

absolute drop or a relative drop be used as a marker? 

What is the appropriate time range to use?) and 

validate it with a large amount. Clinical medicine is 

always concerned about changes from some baseline 

state. A blood pressure of 90/60 may be normal for a 

25 year old female but may represent severe 
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hypotension in a 65 year old male hypertensive 

patient whose blood pressure during previous visits 

was 160/100. Clinicians are always seeking changes 

in the value of some clinical measure to determine 

whether or not an intervention should be taken.  

We believe that interactive query interfaces allowing 

researchers and clinicians to explore data that have 

specific temporal patterns in both numerical and 

categorical data can dramatically increase the benefits 

of EHR databases.  Comprehensive presentation of 

the results can then help users see patterns and 

exceptions in the data they retrieved, and refine their 

query accordingly.  This paper describes our efforts 

to implement such an interface - called PatternFinder, 

in a large operational system (Microsoft Amalga, 

formerly known as Azyxxi) at the Washington 

Hospital Center (Figure 1).   

 

Figure 1 PatternFinder‟s main screen. The user has specified the following query: “Find patients who had a normal 

serum creatinine lab test (the baseline event) less than 2 days before a radiology test with intravenous contrast (the 

index event), followed by an increase in serum creatinine by more than 50% and of more than 1.0 mg/dl relative to 

the baseline measurement, within 5 days after the contrast administration”. The query returned 12 patients.  For each 

patient a timeline show the timing of events that match the query, aligned by the index event. Each event is drawn as 

a color coded tick marks.  In this query all baseline events appear on the left side of the index event, and follow on 

are on the right side.  Options allow users to display the numerical values as well.   Zooming reveals more details.                                        

NOTE: Medical records and dates have been modified and hidden to produce this figure. 

 

Related Work  

Handling time-related concepts is essential in 

medicine.  A survey (Augusto05) lists the many 

applications that use the history of temporal events, 

and review the latest contributions to time-aware 

decision support systems. Research into causality, 

natural language, argumentation is very hot topic in 

AI and Medicine research community. However, 

Augusto observed that there are still opportunities for 

providing much needed search tools. Some research 

systems provide temporal access languages to 

support limited visual queries from end-users 

(Catarci97; Cheng97; Cheng 99; Jensen 99), but 

many of these suffer the same accessibility 

difficulties of SQL or they require an understanding 

of the underlying database structure. The large body 

of related computer science work can be grouped into 

three general areas: time theory, databases, and 

visualizations. None of the systems discussed in 

those papers enable query or visualizations of 

patterns across multiple entities (e.g. temporal cross-

patient queries). This is a major contribution of our 

work which will combine power of temporal queries 
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with graphical visualizations, integrated in an 

operational EHR system. 

 

Time Theory: Much of the seminal work in 

computer science relating to time stems from 

artificial intelligence, time reasoning, and early 

natural language processing (Bruce72; Allen83; 

Kahn77). Time can be characterized by point or 

interval events. Snodgrass defines instance events as 

being absolute and intervals as being relative 

distances between two instances (Snodgrass99). 

Allen introduces time intervals as the primitive for 

automated reasoning over temporally structured data 

(Allen83). Our early prototype PatternFinder 

supports intervals, including: start/stop event pairs, 

and as sets of events that share a user-defined 

characteristic, which together span an extent of time. 

Although overlapping queries are possible, our 

proposed approach supports temporal sequence 

patterns more directly. 

Databases: Due to the complexity of formulating 

SQL queries, several approaches have made database 

query more accessible to a broader spectrum of users, 

e.g. Query By Example (QBE) presents the structure 

of the database as skeleton tables, and is the visual 

query mechanism used in Microsoft‟s Access 

(Microsoft00).  Although visual query languages 

facilitate database query by avoiding SQL syntax, 

users must still understand the relational tables and 

formulate queries, using variables and other difficult 

concepts. Our work will presents users with visual 

constructs for querying the temporal relationships 

among events. 

Numerous extensions to the relational model have 

been proposed to incorporate time, such as TSQL2 

(Jensen99), an extension to the SQL-92 (ANSI86) 

language standard. A hybrid between QBE and 

Extended Entity-Relationship diagrams (EER) 

represents queries visually as EER objects for which 

attributes and variables can be instantiated 

(Kouramajian95). Temporal queries are supported by 

temporal operator objects in the diagram including 

the qualifiers: before, during, after, start and end. 

This work was expanded by (Silva97). Neither work 

visually encodes temporal aspects and relationships 

in a succinct or orderly way taking advantage of the 

ordered nature of time. MQuery (Dionisio96) targets 

various types of streaming data. Temporal features 

can be captured by before/after date specifications 

and left to right positioning of query objects, but it 

does not provide a higher level representation of the 

temporal aspects of the data or the query itself. 

Visualizations: Chittaro and Combi proposed three 

alternative visual metaphors for querying temporal 

intervals (Chittaro03). Hibino and Rudensteiner 

introduced a direct manipulation Temporal Visual 

Query Language (TVQL) (Hibino97) to support 

Allen‟s 13 relational primitives.  Interestingly, none 

of the work described above address the visualization 

of the returned results. However, applications such as 

TimeSearcher (Hochheiser04), DataJewel 

(Ankerst03), KNAVE (Cheng97) and LifeLines 

(Plaisant98) offer visualizations that cluster results 

and highlight temporal patterns. LifeLines provides a 

compact hierarchical timeline visualization for 

personal histories organized by facets, such as doctor 

visits, lab tests, and medications (Plaisant98). It focus 

on a single record and does not offer a query 

mechanism for discovery across multiple records. 

Many systems have built on LifeLines (e.g. Bade04).  

Shahar proposes a Knowledge Based Temporal 

Abstraction model RÉSUMÉ (Shahar98)  

Again, we emphasize that none of the systems 

discussed above enable query or visualizations of 

patterns across multiple entities (e.g. cross-patient 

query). This is one of the major contributions of the 

proposed work which will combine power of 

temporal queries with graphical visualizations. 

The implementation of PatternFinder in Amalga 

builds on early prototypes developed at the Human-

Computer interaction Lab  (Fails06). A limited set of 

temporal filters could be chained together with 

changes always relative to the previous event.  Those 

prototypes only read small datasets from flat files. 

We worked with physicians to refine the prototypes 

and develop a taxonomy of query types.  Later on 

class student project usability tested the early user 

interfaces and generated recommendations 

(www.cs.umd.edu/hcil/patternfinder).  Lifelines 2 focuses in 

the exploration of the results once a query has been 

specified, and demonstrated the benefit of alignement 

(e.g. on index events) to see patterns in the data 

(Wang 2008). 

 

Description of PatternFinder 

A successful application to enable physicians, clinical 

researcher, or administrators to search electronic 

health records must include components for query 

specification, rapid execution, and display of results. 

Interfacing with Amalga: While Amalga has a wide 

range of databases, the basic concept is that the 

databases are presented to the PatternFinder 

application using an event-value table data format.  

An event-value table joins patient information with 

event information, requiring a field for categorical or 

numerical event data in addition to a date-time 

associated with the event.  Each row in the event-
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value table contains information describing at least 

one event.  Although Amalga uses a post-relational 

data model, the event-value tables used in Amalga 

are constructed as virtual tables by creating views 

that join multiple databases and tables together, 

which can have up to hundreds of fields. Figure 1 

shows the interface linked to a data table containing 

radiology events with contrast and creatinine labs. 

Query Specification Interface: To minimize the 

learning time for Amalga users, the PatternFinder 

interface has the look and feel of Amalga‟s existing 

data filtering tool, to which we added support for 

temporal functionality, i.e. the ability to specify 

multiple events, define relationships between events 

using a time basis, and compare values between 

events.   While we aim to create a very general 

interface to handle a large number of medically 

interesting temporal patterns, we chose to focus our 

initial attention on the relationships of index events, 

baseline and follow-on events.   

Users first define a specific temporal scope for the 

query (top left) e.g. choosing a date range for the 

radiology exam.  Next they specify the index event, 

baseline event and follow-on event of interest in the 

three separate filter widgets.  In the example of 

Figure 1, the index event is the radiology exam 

during which intravenous contrast was administered, 

the baseline event is a lab test result of  a normal 

serum creatinine level, and the follow-on event is 

another serum creatinine lab test which shows an 

increase in serum creatinine level of at least 50% 

relative to the baseline value and of at least 1 mg/dl. 

The events are linked together using the temporal 

definition fields and dialog boxes (Figure 2). A date-

time field asks users to select the appropriate 

database field to use if multiple date-time fields exist 

in the data source – a likely scenario in Amalga‟s 

database tables and views.  The addition of these 

fields in the event definition interface serves as a 

visual reminder for the steps necessary for fully 

defining a temporal pattern (Our first iterations of 

PatternFinder did not include this separate date-time 

widget, so some users forgot to temporally link the 

events together).  Most operators are relative to other 

event times or values and we allow users to select the 

event to be used as reference.  Arrows on the left of 

the filter widgets indicate the chosen temporal 

connections between widgets (Figure 1). 

 

Figure 2 Defining the temporal relationship 

 

The temporal relationships use various operators and 

allow users to specify the reference time (e.g. here 

the index event or the baseline event).   

The „operators‟ available in any given event allow 

users to specify changes in field values between 

events. For numeric fields, examples of new 

operators include:  

 “relative increase greater than X” 

 “relative increase greater than X%” 

 “relative decrease greater than X” 

 “relative decrease greater than X%” 

 “less than value in event X” 

 “equal to value in event X 

 “not equal to value in event X” 

For date time fields, new operators include: 

 “within X prior to (relative)” 

 “within X following (relative)” 

 “after X (relative)” 

 “before X (relative)” 

  “is equal to (relative)”  

For text fields, new operators include: 

 “equal to value in event X” 

 “not equal to value in event X” 

 

Display of Results: PatternFinder for Amalga uses 

two methods for showing results, a table view that 

mirrors the existing Amalga “Grid” view and a 

graphical view which combines aspects from 

LifeLines (Plaisant 98) and an earlier PatternFinder 

version using a ball and chain metaphor (Fails 06). 

On the lower left part of the screen the table view 

breaks result pairings up and places each event in a 

single row. Users can review all events, the list of 

patient ID that satisfy the query, or view all events 

for a single selected patient. To increase readability, 



5 

 

duplicate rows were eliminated from the table as 

events could trigger multiple result pairs/triplets.  At 

the right end of each row, additional columns indicate 

which filter the event was matched to. 

 

 

Figure 3 Additional filter columns shown on the grid 

result display for a three-event temporal query. 

 

On the right side of the screen the graphical display 

shows all records in the result set, labeled by the 

patient number (hidden in figure 1).  For each patient 

a simplified LifeLines-based timeline summarizes all 

the events that match the query for that patient. A tick 

mark is drawn to indicate the time of each event, 

colored to match the event type, allowing users to see 

which events relate to each filter of the temporal 

query.  Numerical values can be displayed below the 

tick marks (in our example the creatinine serum level 

value would be shown there) 

Based on the result of our previous research 

(Wang08) an “align by” control was added to 

interactively align the records (either by the index 

event or the 1
st
 baseline or 1

st
 follow-on event).  This 

action makes the time scale relative to the aligned 

event. In figure 1, the LifeLines have been aligned by 

the index event i.e. the time of the radiology exam.  

 

 

Figure 4 A snapshot of the lifelines visualization of 

result-set using "align by" capability.  Green hashes 

indicate the first event, purple hashes indicate the 

second event, and the red hashes indicate the third 

event.  All patterns have been aligned by the purple 

secondary event. 

 

Users can click on a “LifeLine” to expand it and see 

more details about the matches.  Two options are 

available:  1) a single triplet display to show only one 

set of events matching the filters (i.e. events that are 

the closest to the index event) or 2) a display of all 

the possible triple combinations of events that match 

the query for that patient (this display is called a ball 

and chain display (Fails06).)  Users can also zoom in 

to enlarge the display, or zoom out to see more 

patients and events at once.  By hovering over any of 

the tick-marks from the LifeLines display (or balls in 

the ball-and-chain display) users can see detailed 

textual information for that specific event (date and 

time, test name, units etc.) 

 

Rapid Execution 

The PatternFinder converts the specified temporal 

query into a T-SQL (Transact-SQL, a 

Microsoft/Sybase extension of SQL) query using a 

series of self-joins to sequence multiple events 

together.  A series of self-joins can be prohibitively 

expensive on large databases such Microsoft 

Amalga‟s and can form a bottleneck preventing rapid 

execution due to the massive amount of data the 

database is required to handle.   These self-joins 

combine rows from the table with itself based on the 

conditions presented in a query, and have a worst 

case asymptotic complexity of roughly O(n
2
) for each 

self-join used.  We found that preprocessing the 25.6 

million rows of data from the virtual tables that our 

application queried from greatly helped in our goal of 

achieving rapid execution. 

 

Sample SQL Query: 

 
SELECT TOP 200 

  *  

FROM 

  Labs Labs_1, 

  Labs Labs_2 

WHERE 

  Labs_1.Observation = 'HGB' 

AND 

  Labs_1.Value BETWEEN '8' AND '9'  

AND 

  Labs_1.DtTm > '2005-12-30  

  01:36:00.000'  

AND 

  Labs_2.Observation = 'HGB'  

AND 

  Labs_2.Value > (Labs_1.Value * 

  (1 + .2))  

AND 

  Labs_2.DtTm > Labs_1.DtTm AND  

  Labs_2.DtTm < dateadd(Hour, 5,  

  Labs_1.DtTm)  

AND 

   Labs_1.MRN = Labs_2.MRN 

 

Figure 5 A generated SQL query, searching for a 20% 

rise in hemoglobin levels within 5 hours 

 

To accommodate for data sources that use multiple 

tables, a SQL view can be created in advance joining 

the tables of interest together into a single virtual 

table.  This technique is used to narrow the scope of 

the queries possible and reduce the amount of data 
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exposed to PatternFinder, increasing the relevancy of 

the search data and reducing the overall query 

execution time.  Preprocessing the source data and 

converting the virtual table into a real one, before 

using PatternFinder, also eliminates some of the work 

the SQL server has to do when performing temporal 

searches and was found to be an essential step 

towards providing results in real-time. 

Preprocessing a virtual table with over 25.6 million 

rows of lab and patient information took 1 hour 13 

minutes, and created a new table with only 600,000 

rows.  The table was later analyzed and optimized 

with additional indices.  Without indices loaded into 

memory, a query against the 25.6 million row table 

took 20 minutes to finish whereas the same query 

against the 600,000 row table took 15 seconds to 

complete.  With indices loaded into memory, the 

same query respectively took 6 minutes and 1 second 

to finish.  

Readers should note the widely varying y-axes for 

the execution times, indicating the many orders of 

magnitude variations in performance with large data 

sets. 

 

Figure 6 Speed advantages of preprocessing data.  

Preprocessing the data in advance showed a 80 to 

360-fold decrease in query execution time. 

 

Figure 6 above illustrates the speed differential 

between queries between preprocessed data and raw 

data, and cache indices and uncached indices.  The 

first query in a multiple-query set against a new data 

source typically runs the slowest since Microsoft 

SQL Server has not loaded the indexes into memory 

yet.  Once the indices have been loaded, significant 

speedups in query performance times can be gained.  

Therefore for consistency purposes, all performance 

test timing results, unless otherwise noted, are 

returned from a database using cached indices. 

For a given dataset, the execution time for queries 

with multiple events can grow at a geometric rate, 

depending on the number of results returned by each 

event during the actual query.   Therefore by placing 

tight constraints on the initial event in the temporal 

query, the total execution time can be significantly 

reduced.  

 Figure 7 The performance of a two-filter query shows 

series degradations as the event range expands. Going 

from a 10-year to 20-year to 40-year produced a total 

35-fold increase in the query execution time. 

 

 

Figure 8 The performance of a one filter query with 

increasing initial event sets. Despite the increasing 

range of age conditions, the query execution time stayed 

the same. 

 

In a two event filter performance test, we found that 

modifying the initial event and increasing the range 

of patient ranges greatly affected performance times 

as shown in figure 7. However, in a single filter 

query scenario, figure 8 demonstrates that modifying 

the event range seemed to provide no improvements. 

 

0

200

400

600

800

1000

1200

1400

Cached Uncached

Ti
m

e
 (

se
cs

)

Query

Pre-processing Timings

Live

Optimized

0

5

10

15

20

25

30

35

40

20-30 20-40 20-60

Ti
m

e
 (

se
cs

)

Initial Event Range (age)

Two Filter Performance

0

1

2

3

4

5

6

20-30 20-40 20-60

Ti
m

e
 (

se
cs

)

Initial Event Range (age)

One Filter Performance



7 

 

 

Figure 9 The performance of a two filter query with 

increasing distance between events.  Increasing the time 

range between events from 1-year to 5- years produced 

a 60-fold increase in query execution time. 

 

Increasing the temporal aspect of the query and 

changing acceptable time between the events from 1 

year to 5 years caused a 60x increase in query 

execution times, as shown in figure 9.  

 

Figure 10 The performance of queries with varying # of 

events.  Each increase in the number of events caused a 

60-fold increase in query execution time. 

 

A similar relationship was also demonstrated in our 

dataset by increasing the number of events in the 

temporal query, as shown in figure 10.  For each 

event filter added to the temporal query, an additional 

self-join is used in the SQL query – which can 

quickly increase the overall query execution time. 

During our initial testing, performance, however, did 

not seem to be a major concern for physicians using 

the temporal querying tool.  Users were willing to 

trade performance and execution times for the ability 

to query as much data as possible.  This propelled the 

application towards an integrated client-server model 

where the query would be handled by Microsoft 

Amalga‟s separate reporting server and a separate 

replicated database as well as a batch querying 

processing system.   

The option to save and load the raw results returned 

for the temporal queries was added to PatternFinder, 

allowing users to save and export the data for later 

analysis.  In the intended Microsoft Amalga 

environment, users are expected to protect the saved 

and exported information if the data contains 

confidential patient information. 

Saved queries could also be executed against 

different data sources as long as the data sources 

contain the same table and fields names used by the 

query, allowing users to reuse previously defined 

queries in multiple environments. 

 

Implementation Difficulties  

Query performance became a recurring issue during 

the implementation phase, especially when all of the 

initial tests were performed on Washington Hospital 

Center‟s development and research servers.  The 

development server acted as a staging ground for 

building the advanced querying tool as an integrated 

Microsoft Amalga component.  For testing purposes, 

PatternFinderS was instructed to use the Washington 

Hospital Center‟s research database server. The 

research server allowed the complex temporal queries 

the tool produced to run on replicated snapshots of 

the hospital‟s 7 terabyte database, without putting 

excessive load on real Amalga servers used on the 

hospital floor.  Although this configuration was 

immensely helpful in testing the tool in a realistic 

environment, getting new iterations of the tool onto 

the servers was a multiple step process alone and 

generating and running queries could take upwards of 

one hour depending on the table used and the 

complexity of the temporal query.  By creating a 

stand-alone version of the application that could run 

independently outside of Microsoft Amalga and 

using a smaller test dataset, time between iterations 

was greatly improved, allowing for more rapid 

development to occur. 

Another issue experienced with the SQL based 

PatternFinder is that the query can timeout depending 

on the complexity of the query and the size of the 

dataset.  Without the proper database optimizations, 

query performance deteriorated to the point where it 

became difficult to verify whether or not queries 

were correctly constructed as no results were returned 

within a reasonable timeframe.  To combat the 

extensive query times found by querying against the 

7 TB datasets, smaller datasets of interest were 

extracted from the live Amalga database for 
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development purposes.  Using a smaller limited 

dataset reduced the scope of queries available but 

allowed the more complex queries to complete within 

a few minutes.  As the confidence level in the tool‟s 

query specification and SQL generation capabilities 

rose, the timeout time was increased.  

As the waiting time for each query to complete grew, 

it became more and more obvious that some kind of 

query management system for running queries was 

needed.  The job management system implemented 

stored query results and queries in a binary file on the 

Amalga client‟s machine, which later proved to be 

problematic in terms of providing backward-

compatibility for previously created queries even 

though query parameters were stored using XML.  

Due to the changing definitions used to generate the 

SQL queries in the tool, old queries could be 

invalidated when functionality in the tool was added, 

replaced or removed.  An alternate method to store 

the query history, such as .NET class serialization, 

was initially used during development but was later 

dropped due to difficulties experienced in the actual 

Amalga environment.  

Another factor which made the implementation more 

difficult was limited domain-knowledge with medical 

terminology and the databases within Microsoft 

Amalga made it difficult to create meaningful test 

queries that accurately represented the same type of 

queries our intended users, physicians, would be 

creating.  Even physicians who were already familiar 

with the existing Microsoft Amalga system reported 

that it was difficult to create certain queries since it 

required users to know in advance where the data of 

interest was located, and what each field in the 

database meant.  During an initial demonstration, 

physicians at the Washington Hospital Center who 

were more familiar with the Microsoft Amalga 

databases made corrections to our demonstration 

temporal query that searched for patients with 

heparin induced thrombocytopenia.  

 

Design Evolution 

The first iteration of the design split each event in the 

temporal queries into multiple tabs, with each tab 

representing a single event.  Although this allowed 

users to specify a lengthy series of events without 

cluttering the query building interface, this tab-based 

approach was later replaced with a more compact, 

inline approach.  Placing the controls for multiple 

events into a single window instead of spreading 

them out across multiple tabs reduced the number of 

interactions required to both define and view queries.   

The graphical visualizations only currently display 

data that match the specified temporal query, and do 

not show all event / patient information like the 

original LifeLines and PatternFinder applications do.  

Only a subset of the information is available since 

providing full patient information requires the 

application to have a full understanding of the data-

source, which requires an appropriately created 

ontology that is outside of the scope of the 

PatternFinder for Microsoft Amalga project 

Various changes were made to the query 

specification interface to allow events to be defined 

in a non-sequential order.  The contrast and creatinine 

query formulated during our tests sequenced the 

events in a 2 – 1 – 3 order, positioning the first event 

specified (a radiology exam) in the middle of the 

temporal sequence of events.  To reduce confusion, 

arrows were added into the interface to indicate how 

each event is related to the others. 

 

 

Figure 11 - Menu bar addition to UI, allowing the user 

to specify various visualization options 

 

In the later iterations, many simplifications were 

made to improve usability.  For example, many of the 

buttons and checkboxes for various features and 

options in the tool window were moved out of plain 

sight into the tool‟s menu bar.  This addition greatly 

reduced the amount of clutter on the interface while 

preserving previous functionality.  When specifying 

the temporal operator between events, all of the non-

relational operators were removed to reduce 

confusion.   

 

Based on user feedback, various assumptions were 

added in an attempt to more closely align the tool to 

the user‟s expectations.  For example, the temporal 

time field, when not specified, defaults to be the same 

as the time field used in the user specified data-scope.  

The concept of implicit parameter inheritance, where 

old parameters would “fall-through” to other events 

unless overridden with new parameters, was also 

tested but was found to be confusing, particularly in 

the case of non-sequential temporal queries. 
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Initial Evaluation 

While laboratory-based controlled experiments are 

effective to measure the performance of interfaces, 

our  expertise evaluating user interfaces suggests that 

the complex cognitive skills and domain expert 

knowledge involved here mean that usability testing 

and case study methods are more effective in 

revealing problems and identifying strengths in 

interfaces such as PatternFinder.  Adoption and the 

value of the findings obtained using the interface 

eventually become the measures of success. 

During the past 3 months we worked with 4 senior 

emergency medicine physicians and researchers from 

the Washington Hospital Center.  During each 

individual meeting we reviewed the interface, let 

physicians use it on their own, and discussed needed 

improvements. The interface was revised between 

each meeting. We first used a small de-identified 

dataset provided by the Washington Hospital 

Center‟s emergency department, then recently 

connected to a replicated database mirroring the live 

database.  Being familiar with the Amalga interface 

and the data available, participants had no problems 

getting starting using the interface and were able to 

define some temporal queries with some limited help. 

The first iteration of the interface was very generic 

causing some confusion understanding what was 

possible or not, they suggested simplifying the 

interface to tackle simple problems more elegantly. 

For example, originally the interface had filter labels 

such as Filter 1, 2 and 3 and had no notion of index 

events.   Providing a more guided interface seem to 

naturally lead users toward useful queries which can 

be correctly specified. Identifying the needed data 

table in Amalga remains a challenging step for many 

users. It may have a significant impact on the overall 

usability of our interface (even if unrelated to our 

design) which we hope will be addressed with the 

development of an interactive data dictionary for 

Amalga.  Participants also identified additional 

temporal operators that are missing from the initial 

application: “event count” and “absence of”.  All 

physicians were very eager to see the prototype 

upgraded to the live Amalga system to access the live 

data, which is now possible.  A simple interface 

allows users to submit multiple queries in batch 

mode, monitor the progress of long queries, review 

past queries and results and attach comments to them.  

The case study of adverse reaction to contrast 

materials illustrates the potential benefit of 

PatternFinder.  A significant decline in renal function 

after administration of intravenous contrast material 

is a not uncommon and potentially serious 

consequence of modern medical care. Its incidence is 

estimated at 2% - 7% of all administrations of 

contrast media. Most hospitals are unable to specify 

in real time (or even retrospectively) which patients 

and the percentage of patients who have had contrast 

nephropathy. The ability to identify and track these 

patients in real time is helpful at several levels. At the 

individual patient level, the dose of many 

medications needs to be modified in the face of 

reduced renal function. Second, at a population level, 

hospitals are increasingly being asked to provide 

objective measurement of quality of care.  The 

overall hospital incidence of contrast-induce 

nephropathy reactions (which typically is not tracked 

in most hospitals) could become a standardized 

measure across hospitals if there were a simple way 

to gather the information.  The temporal query 

methodology we describe here would provide such a 

way.  

While the query does a good job at identifying 

populations of interest, PatternFinder needs to link 

each result directly to the detail views of the 

individual patient records (e.g. seeing all the lab 

results of a patient, instead of just those that match 

the query) to achieve maximum effectiveness.  

Similarly it will be useful to define an alarm based on 

a query, or to schedule queries to run at regular 

intervals to track performance metrics. 

 

 

Project Progress 

Major features / changes to the PatternFinder for 

Microsoft Amalga tool made during this development 

period included: 

1) minimal configuration, domain-agnostic 

SQL support using Open Database 

Connectivity (ODBC) 

2) multiple event temporal query specification 

interface, modeled off of Microsoft 

Amalga‟s filter interface 

3) a client-side job management system which 

saves results and their respective queries 

while running queries in the background 

4) the initial data-scope filter to the interface, 

as well as the option to do out-of-order 

temporal queries 

5) a visualization core, which include “align 

by” and other options 

6) session logging, tracking user actions and 

queries performed 

7) Microsoft Amalga component integration as 

well as an independent stand-alone mode.   
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Future Work 

Directly integrating PatternFinder‟s temporal query 

building capabilities into Microsoft Amalga is 

ultimately the Washington Hospital Center and 

Microsoft‟s goal for this project.  By extending the 

current filter options in Amalga with the temporal 

functionality provided by this tool, Amalga will be 

able to explore a new dimension within the data that 

it manages as a Unified Intelligence System.   

Adding integration hooks or data export capabilities 

will allow other systems, such as Taowei David 

Wang‟s Align-Rank-Filter visualization tool, to 

leverage the functionality provided by the tool.   

Removing the restriction of a single view or table and 

adding support for multi-table joins or dynamic view 

(virtual table) generation would allow the tool to be 

used against normalized databases.  Currently, the 

tool can produce multi-table SQL queries with the 

appropriate metadata describing how tables are 

joined together, but no interface into Amalga‟s 

system has been developed yet.  

Server-side logging and job management on Amalga 

servers would allow users to operate the tool from 

any machine without losing previous query history 

and to close the tool without stopping the currently 

running query.  This functionality is necessary for 

continued development into the Amalga environment 

since users routinely use their Amalga accounts on 

different computers.  Without server-side support, 

users lose session data as they move from machine to 

machine. 

The addition of alarm-based querying and repeating 

queries for reporting purposes, will also allow users 

to generate a set of performance metrics in which 

they can use to improve the quality of service 

provided in their hospitals.  The use of a robust and 

real-time metrics system will help hospitals meet and 

exceed standards on the 17 key performance 

indicators used to assess hospitals.  The current 

Amalga system has report-building functionality, but 

does not support the temporal queries that 

PatternFinder is capable of creating.   

 

Conclusion 

By bridging the worlds of data bases, user interface 

design and information visualization, we believe that 

we can create the next generation of potent visual 

analytic tools and information technology-enabled 

work environments.  Each participant in our study 

found ways to use PatternFinder to search for 

patterns that their current tools could not locate 

today.  Continued development into this area will 

allow users to potentially find answers to questions 

that they were never able to ask, and formulate a 

whole new set of questions that allow for a 

retrospective view of previous hospital performance.   
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Classes 

Container Objects 
 Field – DB field 

 Table – DB table 

 

 Join - connects two tables together for multi-table queries (not in use) 

 

 Filter – contains an operator and the appropriate values 

 Operator – a SQL operator 

 

 DBDescription – holds database information 

Utility Classes 
 SQLGen – generates a SQL query based on filter information 

 Expander – splits rows that contains multiple event data into multiple rows 

 Logger – writes to a log file and to standard out 

 SaveLoad – performs loading and saving functions 

UI Objects 
o BallChainLifeLinesVisual – interactive PiccoloX visualization component 

 

o DBIdentityListGridForm – grid that displays a list of identities 

o DBSingleListGridForm – grid that displays expanded result data for a single identity 

o DBResultGridForm – grid that displays all expanded result data 

o JobBrowser – tree that stores queued and finished queries 

 

o CommentsDialog – dialog asking if the user wants to continue without writing a comment 

o DatesSelector – dialog with up to two DateSelectors, used for the data scope 

o IdentitySelector – dialog with fields, allows user to select an “identity” field 

o LogMonitor – dialog with the current session log 

o DBInfo  - dialog prompt for db information when initial db connection attempt fails 

 

o Guided/FilterControl – user control (available fields, scope, filters) 

o FilterPanel (the user control for each “filter”) 

o TemporalValueForm – editing form for temporal Filter component 

o ValueForm – editing form for Filter component 

 

o SnowForm –  main application window (menu bar, status bar, resize, etc) 

o snowman – user control (contains query specification interface, results, and visualization) 

 

o SnowControl – UserControl wrapper around SnowForm (launch inside an Amalga environment) 

o snowmanapp - application wrapper around SnowForm (launch outside an Amalga environment) 
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Code Structure 

PatternFinder-S 
o SnowForm  

 snowman – user control (contains query specification interface, results, and 

visualization) 

 Query specification interface 

o Guided/FilterControl – user control (available fields, scope, filters) 

 FilterPanel (the user control for each “filter”) 

 TemporalValueForm – editing form for temporal 

Filter component 

 ValueForm – editing form for Filter component 

 

 Results interface 

o JobBrowser – user control, tree (running jobs, finished jobs) 

o DBResultGridForm – processes SQL results and stores raw & 

processed result data.  gridview shows expanded results with duplicates 

removed 

o DBIdentityListGridForm – gridview shows identities 

o DBSingleListGridForm – gridview shows data from a single identity 

 Visualization interface 

o BallChainLifeLinesVisual – PiccoloX user component  
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PatternFinder-S User Manual 
Last updated: 4/17/2008 

 

Remote Desktop Connection 
If PatternFinder-S is not available as a standalone application or a live Amalga component, PatternFinder-S for 

Amalga is available for demonstration and testing purposes on a test Washington Hospital Center server under the 

AZ-Hosp – Emergency app, and is currently connected to a replicated database of live Amalga data.  To establish a 

remote desktop connection, start the Remote Desktop Connection application under: 

Start Menu > All Programs > Accessories > (Communications > ) Remote Desktop Connections 

and connect to  

 172.26.190.39 

 

Launching from Amalga 
PatternFinder-S has been added under the Dev tab and should launch when you click the Dev button.   

 

If the data source for PatternFinder-S needs to be adjusted, it can be configured through the Amalga Manager app 

by editing the component method information.  The default is configured to use view VisitList_LabDetails in 

whcED database on the local server.  (A stand-alone version is also available.) 

 

 

Launching Standalone 
To launch PatternFinder-S in standalone mode, navigate to the folder that contains the PatternFinderS executable 

file and double-click it. If the data source for PatternFinder-S needs to be adjusted, it can be configured by editing 

the settings.cfg file in the same folder.  Here is a sample settings string: 

Initial Catalog=master; Data Source=localhost; User ID=12user34; 

Password=abpasscd; Target=contrast; Identity=[Account][MRN] 

 

Initial Catalog:  database name 

Data Source:  address of server 

User ID:  db login name 

Password:  db password 

Target:   table to use 

Identity:  possible fields to use for the unique identity.  Each identity is enclosed in brackets 
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Selecting an Identity 
Once PatternFinder-S is launched and connected, a prompt will pop up asking you to select the field from the 

database you wish to use as the unique identifier if more than one identity is available.  For the 

VisitLab_LabDetails target, the MRN field is appropriate for identifying per-patient patterns and the Account field 

is appropriate for identifying per-visit patterns.  Clicking Select will launch the PatternFinder-S application. 
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Specifying Your Query 
PatternFinder S will launch with multiple parts in a single window.  The query specification portion will have the 

fields from the database target listed, as well as the option to use up to three filters.   

 

Each filter has a Date Time field that allows users to specify which field from the database should be used to 

chronologically compare each event with the last one.   The second and third filters have a temporal field that lets 

users define how one filter is related to the previous one.  Shown below is an example of a query that searches for 

patients who have been discharged by the ER only to be re-admitted within one week. 
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Once the query has been specified, clicking the Search button will bring a prompt up asking for additional query 

details.  Enter a descriptive name for the query (for user slam, eg: heparin induced thrombo + slam) and the desired 

maximum number of matches and click Run. 

 

The query will be added to the job browser in the query results area.   

 

 

 

Clicking the View SQL button for any query will show a dialogue with its SQL statement equivalent. 

 

In the screenshot shown below, the SQL statement describes a  search for patients who come in and report shortness 

of breath (“sob” in the Complaint field) and are discharged with normal hemoglobin levels (between 13.8 and 17.2), 

but come back within 48 hours and are admitted to the ER with less than normal hemoglobin levels. 
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Below is the filled out query specification interface that produces the SQL shown above. 
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Accessing Query Results 
Below the query specification interface is the query results area.  The query will initially show up under the In 

Queue area, be moved down into Processing when the database is processing the query and be moved to Results 

Available when finished.   

 

Double clicking the query will populate the graphical visualization as well as the 2
nd

 and 3
rd

 tabs in the results area 

with the matches returned from the database.  Double clicking on any of the data rows in the 2
nd

 and 3
rd

 tabs will 

populate the 4
th

 tab with results for the same identity.  The visualization will also scroll to the appropriate location. 
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Controlling the Graphical Visualization 
The visualization model has several options that can be toggled on and off.  

Show Identifiers – causes labels to be drawn. 

Show LifeLines view – causes a summary-view to be drawn for each identity. 

Align By First – aligns results for each identity by the first event 

Expand Ball-and-Chain View – causes  each set of matches to be displayed individually. 

 

 

 

 

 


