
1

PatternFinder in Microsoft Amalga:

Temporal Query Formulation and Result Visualization in Action

Stanley Lam

University of Maryland, Department of Computer Science

Honors Paper for Spring 2008 under the supervision of Dr. Ben Shneiderman

Abstract

As electronic health records (EHR) become more

widespread, they enable clinicians and researchers to

pose complex queries that can benefit immediate

patient care and deepen understanding of medical

treatment and outcomes. However, current query

tools make complex temporal queries difficult to

pose, and physicians have to rely on computer

professionals to specify the queries for them. This

paper describes our efforts to develop a novel query

tool implemented in a large operational system at the

Washington Hospital Center (Microsoft Amalga,

formerly known as Azyxxi). We describe our design of

the interface to specify temporal patterns and the

visual presentation of results, then summarize the

feedback gathered during early testing with

physicians. The use case described in the paper

focuses on adverse reactions following radiology

studies using contrast.

Introduction

As the use of electronic health records (EHRs)

spreads, there are growing opportunities for use in

clinical research and patient care. Queries often have

a temporal component. For example “Find all

patients who were discharged from the emergency

room then admitted again within a week”. Another

example is “Find patients who had a normal serum

creatinine lab test less than 2 days before a radiology

test with intravenous contrast, followed by an

increase in serum creatinine by more than 50% and of

more than 1.0 mg/dl within 5 days after the contrast

administration”. Currently available user interfaces

make possible simple queries such as “Find patients

who had a radiology test with contrast and a high

value of creatinine, leaving users with the burden of

shuffling through large numbers of results in search

for matching patients.

Specifying temporal queries in SQL is difficult even

for computer professionals specializing in such

queries. Scientific research has made progress in

representing temporal abstractions and executing

complex temporal queries (e.g. Shahar98; Shahar00,

Augusto05, Stacey07) but there is very little research

that focuses on making it easy for clinicians and

medical researchers to specify the queries and to

examine the results visually.

We believe that interactive query interfaces allowing

researchers and clinicians to explore data that have

specific temporal patterns in both numerical and

categorical data can dramatically increase the benefits

of EHR databases. Comprehensive presentation of

the results can then help users see patterns and

exceptions in the data they retrieved, and refine their

query accordingly. This paper describes our efforts

to implement such an interface in a large operational

working system at the Washington Hospital Center

(Microsoft Amalga, formerly known as Azyxxi).

Temporal searches are used in many situations, from

clinical trial recruitment, clinical research, general

patient care (e.g. tracking the application of

guidelines) or alarm specification. For example,

setting an alarm for patients on Heparin with a

precipitous drop in platelet counts (heparin-induced

thrombocytopenia) requires specificity around the

definition of “precipitous”. By querying existing

EHR databases, physicians designing the alarm can

iteratively test the logic of the alarm (e.g. Should an

absolute drop or a relative drop be used as a marker?

What is the appropriate time range to use?) and

validate it with a large amount. Clinical medicine is

always concerned about changes from some baseline

state. A blood pressure of 90/60 may be normal for a

25 year old female but may represent severe

2

hypotension in a 65 year old male hypertensive

patient whose blood pressure during previous visits

was 160/100. Clinicians are always seeking changes

in the value of some clinical measure to determine

whether or not an intervention should be taken.

We believe that interactive query interfaces allowing

researchers and clinicians to explore data that have

specific temporal patterns in both numerical and

categorical data can dramatically increase the benefits

of EHR databases. Comprehensive presentation of

the results can then help users see patterns and

exceptions in the data they retrieved, and refine their

query accordingly. This paper describes our efforts

to implement such an interface - called PatternFinder,

in a large operational system (Microsoft Amalga,

formerly known as Azyxxi) at the Washington

Hospital Center (Figure 1).

Figure 1 PatternFinder‟s main screen. The user has specified the following query: “Find patients who had a normal

serum creatinine lab test (the baseline event) less than 2 days before a radiology test with intravenous contrast (the

index event), followed by an increase in serum creatinine by more than 50% and of more than 1.0 mg/dl relative to

the baseline measurement, within 5 days after the contrast administration”. The query returned 12 patients. For each

patient a timeline show the timing of events that match the query, aligned by the index event. Each event is drawn as

a color coded tick marks. In this query all baseline events appear on the left side of the index event, and follow on

are on the right side. Options allow users to display the numerical values as well. Zooming reveals more details.

NOTE: Medical records and dates have been modified and hidden to produce this figure.

Related Work

Handling time-related concepts is essential in

medicine. A survey (Augusto05) lists the many

applications that use the history of temporal events,

and review the latest contributions to time-aware

decision support systems. Research into causality,

natural language, argumentation is very hot topic in

AI and Medicine research community. However,

Augusto observed that there are still opportunities for

providing much needed search tools. Some research

systems provide temporal access languages to

support limited visual queries from end-users

(Catarci97; Cheng97; Cheng 99; Jensen 99), but

many of these suffer the same accessibility

difficulties of SQL or they require an understanding

of the underlying database structure. The large body

of related computer science work can be grouped into

three general areas: time theory, databases, and

visualizations. None of the systems discussed in

those papers enable query or visualizations of

patterns across multiple entities (e.g. temporal cross-

patient queries). This is a major contribution of our

work which will combine power of temporal queries

3

with graphical visualizations, integrated in an

operational EHR system.

Time Theory: Much of the seminal work in

computer science relating to time stems from

artificial intelligence, time reasoning, and early

natural language processing (Bruce72; Allen83;

Kahn77). Time can be characterized by point or

interval events. Snodgrass defines instance events as

being absolute and intervals as being relative

distances between two instances (Snodgrass99).

Allen introduces time intervals as the primitive for

automated reasoning over temporally structured data

(Allen83). Our early prototype PatternFinder

supports intervals, including: start/stop event pairs,

and as sets of events that share a user-defined

characteristic, which together span an extent of time.

Although overlapping queries are possible, our

proposed approach supports temporal sequence

patterns more directly.

Databases: Due to the complexity of formulating

SQL queries, several approaches have made database

query more accessible to a broader spectrum of users,

e.g. Query By Example (QBE) presents the structure

of the database as skeleton tables, and is the visual

query mechanism used in Microsoft‟s Access

(Microsoft00). Although visual query languages

facilitate database query by avoiding SQL syntax,

users must still understand the relational tables and

formulate queries, using variables and other difficult

concepts. Our work will presents users with visual

constructs for querying the temporal relationships

among events.

Numerous extensions to the relational model have

been proposed to incorporate time, such as TSQL2

(Jensen99), an extension to the SQL-92 (ANSI86)

language standard. A hybrid between QBE and

Extended Entity-Relationship diagrams (EER)

represents queries visually as EER objects for which

attributes and variables can be instantiated

(Kouramajian95). Temporal queries are supported by

temporal operator objects in the diagram including

the qualifiers: before, during, after, start and end.

This work was expanded by (Silva97). Neither work

visually encodes temporal aspects and relationships

in a succinct or orderly way taking advantage of the

ordered nature of time. MQuery (Dionisio96) targets

various types of streaming data. Temporal features

can be captured by before/after date specifications

and left to right positioning of query objects, but it

does not provide a higher level representation of the

temporal aspects of the data or the query itself.

Visualizations: Chittaro and Combi proposed three

alternative visual metaphors for querying temporal

intervals (Chittaro03). Hibino and Rudensteiner

introduced a direct manipulation Temporal Visual

Query Language (TVQL) (Hibino97) to support

Allen‟s 13 relational primitives. Interestingly, none

of the work described above address the visualization

of the returned results. However, applications such as

TimeSearcher (Hochheiser04), DataJewel

(Ankerst03), KNAVE (Cheng97) and LifeLines

(Plaisant98) offer visualizations that cluster results

and highlight temporal patterns. LifeLines provides a

compact hierarchical timeline visualization for

personal histories organized by facets, such as doctor

visits, lab tests, and medications (Plaisant98). It focus

on a single record and does not offer a query

mechanism for discovery across multiple records.

Many systems have built on LifeLines (e.g. Bade04).

Shahar proposes a Knowledge Based Temporal

Abstraction model RÉSUMÉ (Shahar98)

Again, we emphasize that none of the systems

discussed above enable query or visualizations of

patterns across multiple entities (e.g. cross-patient

query). This is one of the major contributions of the

proposed work which will combine power of

temporal queries with graphical visualizations.

The implementation of PatternFinder in Amalga

builds on early prototypes developed at the Human-

Computer interaction Lab (Fails06). A limited set of

temporal filters could be chained together with

changes always relative to the previous event. Those

prototypes only read small datasets from flat files.

We worked with physicians to refine the prototypes

and develop a taxonomy of query types. Later on

class student project usability tested the early user

interfaces and generated recommendations

(www.cs.umd.edu/hcil/patternfinder). Lifelines 2 focuses in

the exploration of the results once a query has been

specified, and demonstrated the benefit of alignement

(e.g. on index events) to see patterns in the data

(Wang 2008).

Description of PatternFinder

A successful application to enable physicians, clinical

researcher, or administrators to search electronic

health records must include components for query

specification, rapid execution, and display of results.

Interfacing with Amalga: While Amalga has a wide

range of databases, the basic concept is that the

databases are presented to the PatternFinder

application using an event-value table data format.

An event-value table joins patient information with

event information, requiring a field for categorical or

numerical event data in addition to a date-time

associated with the event. Each row in the event-

4

value table contains information describing at least

one event. Although Amalga uses a post-relational

data model, the event-value tables used in Amalga

are constructed as virtual tables by creating views

that join multiple databases and tables together,

which can have up to hundreds of fields. Figure 1

shows the interface linked to a data table containing

radiology events with contrast and creatinine labs.

Query Specification Interface: To minimize the

learning time for Amalga users, the PatternFinder

interface has the look and feel of Amalga‟s existing

data filtering tool, to which we added support for

temporal functionality, i.e. the ability to specify

multiple events, define relationships between events

using a time basis, and compare values between

events. While we aim to create a very general

interface to handle a large number of medically

interesting temporal patterns, we chose to focus our

initial attention on the relationships of index events,

baseline and follow-on events.

Users first define a specific temporal scope for the

query (top left) e.g. choosing a date range for the

radiology exam. Next they specify the index event,

baseline event and follow-on event of interest in the

three separate filter widgets. In the example of

Figure 1, the index event is the radiology exam

during which intravenous contrast was administered,

the baseline event is a lab test result of a normal

serum creatinine level, and the follow-on event is

another serum creatinine lab test which shows an

increase in serum creatinine level of at least 50%

relative to the baseline value and of at least 1 mg/dl.

The events are linked together using the temporal

definition fields and dialog boxes (Figure 2). A date-

time field asks users to select the appropriate

database field to use if multiple date-time fields exist

in the data source – a likely scenario in Amalga‟s

database tables and views. The addition of these

fields in the event definition interface serves as a

visual reminder for the steps necessary for fully

defining a temporal pattern (Our first iterations of

PatternFinder did not include this separate date-time

widget, so some users forgot to temporally link the

events together). Most operators are relative to other

event times or values and we allow users to select the

event to be used as reference. Arrows on the left of

the filter widgets indicate the chosen temporal

connections between widgets (Figure 1).

Figure 2 Defining the temporal relationship

The temporal relationships use various operators and

allow users to specify the reference time (e.g. here

the index event or the baseline event).

The „operators‟ available in any given event allow

users to specify changes in field values between

events. For numeric fields, examples of new

operators include:

 “relative increase greater than X”

 “relative increase greater than X%”

 “relative decrease greater than X”

 “relative decrease greater than X%”

 “less than value in event X”

 “equal to value in event X

 “not equal to value in event X”

For date time fields, new operators include:

 “within X prior to (relative)”

 “within X following (relative)”

 “after X (relative)”

 “before X (relative)”

 “is equal to (relative)”

For text fields, new operators include:

 “equal to value in event X”

 “not equal to value in event X”

Display of Results: PatternFinder for Amalga uses

two methods for showing results, a table view that

mirrors the existing Amalga “Grid” view and a

graphical view which combines aspects from

LifeLines (Plaisant 98) and an earlier PatternFinder

version using a ball and chain metaphor (Fails 06).

On the lower left part of the screen the table view

breaks result pairings up and places each event in a

single row. Users can review all events, the list of

patient ID that satisfy the query, or view all events

for a single selected patient. To increase readability,

5

duplicate rows were eliminated from the table as

events could trigger multiple result pairs/triplets. At

the right end of each row, additional columns indicate

which filter the event was matched to.

Figure 3 Additional filter columns shown on the grid

result display for a three-event temporal query.

On the right side of the screen the graphical display

shows all records in the result set, labeled by the

patient number (hidden in figure 1). For each patient

a simplified LifeLines-based timeline summarizes all

the events that match the query for that patient. A tick

mark is drawn to indicate the time of each event,

colored to match the event type, allowing users to see

which events relate to each filter of the temporal

query. Numerical values can be displayed below the

tick marks (in our example the creatinine serum level

value would be shown there)

Based on the result of our previous research

(Wang08) an “align by” control was added to

interactively align the records (either by the index

event or the 1
st
 baseline or 1

st
 follow-on event). This

action makes the time scale relative to the aligned

event. In figure 1, the LifeLines have been aligned by

the index event i.e. the time of the radiology exam.

Figure 4 A snapshot of the lifelines visualization of

result-set using "align by" capability. Green hashes

indicate the first event, purple hashes indicate the

second event, and the red hashes indicate the third

event. All patterns have been aligned by the purple

secondary event.

Users can click on a “LifeLine” to expand it and see

more details about the matches. Two options are

available: 1) a single triplet display to show only one

set of events matching the filters (i.e. events that are

the closest to the index event) or 2) a display of all

the possible triple combinations of events that match

the query for that patient (this display is called a ball

and chain display (Fails06).) Users can also zoom in

to enlarge the display, or zoom out to see more

patients and events at once. By hovering over any of

the tick-marks from the LifeLines display (or balls in

the ball-and-chain display) users can see detailed

textual information for that specific event (date and

time, test name, units etc.)

Rapid Execution

The PatternFinder converts the specified temporal

query into a T-SQL (Transact-SQL, a

Microsoft/Sybase extension of SQL) query using a

series of self-joins to sequence multiple events

together. A series of self-joins can be prohibitively

expensive on large databases such Microsoft

Amalga‟s and can form a bottleneck preventing rapid

execution due to the massive amount of data the

database is required to handle. These self-joins

combine rows from the table with itself based on the

conditions presented in a query, and have a worst

case asymptotic complexity of roughly O(n
2
) for each

self-join used. We found that preprocessing the 25.6

million rows of data from the virtual tables that our

application queried from greatly helped in our goal of

achieving rapid execution.

Sample SQL Query:

SELECT TOP 200

 *

FROM

 Labs Labs_1,

 Labs Labs_2

WHERE

 Labs_1.Observation = 'HGB'

AND

 Labs_1.Value BETWEEN '8' AND '9'

AND

 Labs_1.DtTm > '2005-12-30

 01:36:00.000'

AND

 Labs_2.Observation = 'HGB'

AND

 Labs_2.Value > (Labs_1.Value *

 (1 + .2))

AND

 Labs_2.DtTm > Labs_1.DtTm AND

 Labs_2.DtTm < dateadd(Hour, 5,

 Labs_1.DtTm)

AND

 Labs_1.MRN = Labs_2.MRN

Figure 5 A generated SQL query, searching for a 20%

rise in hemoglobin levels within 5 hours

To accommodate for data sources that use multiple

tables, a SQL view can be created in advance joining

the tables of interest together into a single virtual

table. This technique is used to narrow the scope of

the queries possible and reduce the amount of data

6

exposed to PatternFinder, increasing the relevancy of

the search data and reducing the overall query

execution time. Preprocessing the source data and

converting the virtual table into a real one, before

using PatternFinder, also eliminates some of the work

the SQL server has to do when performing temporal

searches and was found to be an essential step

towards providing results in real-time.

Preprocessing a virtual table with over 25.6 million

rows of lab and patient information took 1 hour 13

minutes, and created a new table with only 600,000

rows. The table was later analyzed and optimized

with additional indices. Without indices loaded into

memory, a query against the 25.6 million row table

took 20 minutes to finish whereas the same query

against the 600,000 row table took 15 seconds to

complete. With indices loaded into memory, the

same query respectively took 6 minutes and 1 second

to finish.

Readers should note the widely varying y-axes for

the execution times, indicating the many orders of

magnitude variations in performance with large data

sets.

Figure 6 Speed advantages of preprocessing data.

Preprocessing the data in advance showed a 80 to

360-fold decrease in query execution time.

Figure 6 above illustrates the speed differential

between queries between preprocessed data and raw

data, and cache indices and uncached indices. The

first query in a multiple-query set against a new data

source typically runs the slowest since Microsoft

SQL Server has not loaded the indexes into memory

yet. Once the indices have been loaded, significant

speedups in query performance times can be gained.

Therefore for consistency purposes, all performance

test timing results, unless otherwise noted, are

returned from a database using cached indices.

For a given dataset, the execution time for queries

with multiple events can grow at a geometric rate,

depending on the number of results returned by each

event during the actual query. Therefore by placing

tight constraints on the initial event in the temporal

query, the total execution time can be significantly

reduced.

 Figure 7 The performance of a two-filter query shows

series degradations as the event range expands. Going

from a 10-year to 20-year to 40-year produced a total

35-fold increase in the query execution time.

Figure 8 The performance of a one filter query with

increasing initial event sets. Despite the increasing

range of age conditions, the query execution time stayed

the same.

In a two event filter performance test, we found that

modifying the initial event and increasing the range

of patient ranges greatly affected performance times

as shown in figure 7. However, in a single filter

query scenario, figure 8 demonstrates that modifying

the event range seemed to provide no improvements.

0

200

400

600

800

1000

1200

1400

Cached Uncached

Ti
m

e
 (

se
cs

)

Query

Pre-processing Timings

Live

Optimized

0

5

10

15

20

25

30

35

40

20-30 20-40 20-60

Ti
m

e
 (

se
cs

)

Initial Event Range (age)

Two Filter Performance

0

1

2

3

4

5

6

20-30 20-40 20-60

Ti
m

e
 (

se
cs

)

Initial Event Range (age)

One Filter Performance

7

Figure 9 The performance of a two filter query with

increasing distance between events. Increasing the time

range between events from 1-year to 5- years produced

a 60-fold increase in query execution time.

Increasing the temporal aspect of the query and

changing acceptable time between the events from 1

year to 5 years caused a 60x increase in query

execution times, as shown in figure 9.

Figure 10 The performance of queries with varying # of

events. Each increase in the number of events caused a

60-fold increase in query execution time.

A similar relationship was also demonstrated in our

dataset by increasing the number of events in the

temporal query, as shown in figure 10. For each

event filter added to the temporal query, an additional

self-join is used in the SQL query – which can

quickly increase the overall query execution time.

During our initial testing, performance, however, did

not seem to be a major concern for physicians using

the temporal querying tool. Users were willing to

trade performance and execution times for the ability

to query as much data as possible. This propelled the

application towards an integrated client-server model

where the query would be handled by Microsoft

Amalga‟s separate reporting server and a separate

replicated database as well as a batch querying

processing system.

The option to save and load the raw results returned

for the temporal queries was added to PatternFinder,

allowing users to save and export the data for later

analysis. In the intended Microsoft Amalga

environment, users are expected to protect the saved

and exported information if the data contains

confidential patient information.

Saved queries could also be executed against

different data sources as long as the data sources

contain the same table and fields names used by the

query, allowing users to reuse previously defined

queries in multiple environments.

Implementation Difficulties

Query performance became a recurring issue during

the implementation phase, especially when all of the

initial tests were performed on Washington Hospital

Center‟s development and research servers. The

development server acted as a staging ground for

building the advanced querying tool as an integrated

Microsoft Amalga component. For testing purposes,

PatternFinderS was instructed to use the Washington

Hospital Center‟s research database server. The

research server allowed the complex temporal queries

the tool produced to run on replicated snapshots of

the hospital‟s 7 terabyte database, without putting

excessive load on real Amalga servers used on the

hospital floor. Although this configuration was

immensely helpful in testing the tool in a realistic

environment, getting new iterations of the tool onto

the servers was a multiple step process alone and

generating and running queries could take upwards of

one hour depending on the table used and the

complexity of the temporal query. By creating a

stand-alone version of the application that could run

independently outside of Microsoft Amalga and

using a smaller test dataset, time between iterations

was greatly improved, allowing for more rapid

development to occur.

Another issue experienced with the SQL based

PatternFinder is that the query can timeout depending

on the complexity of the query and the size of the

dataset. Without the proper database optimizations,

query performance deteriorated to the point where it

became difficult to verify whether or not queries

were correctly constructed as no results were returned

within a reasonable timeframe. To combat the

extensive query times found by querying against the

7 TB datasets, smaller datasets of interest were

extracted from the live Amalga database for

0

20

40

60

80

100

120

140

1 5

Ti
m

e
 (

se
cs

)

Event Distance (years)

Two Filter Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3

Ti
m

e
 (

se
cs

)

of Events

Query Complexity

8

development purposes. Using a smaller limited

dataset reduced the scope of queries available but

allowed the more complex queries to complete within

a few minutes. As the confidence level in the tool‟s

query specification and SQL generation capabilities

rose, the timeout time was increased.

As the waiting time for each query to complete grew,

it became more and more obvious that some kind of

query management system for running queries was

needed. The job management system implemented

stored query results and queries in a binary file on the

Amalga client‟s machine, which later proved to be

problematic in terms of providing backward-

compatibility for previously created queries even

though query parameters were stored using XML.

Due to the changing definitions used to generate the

SQL queries in the tool, old queries could be

invalidated when functionality in the tool was added,

replaced or removed. An alternate method to store

the query history, such as .NET class serialization,

was initially used during development but was later

dropped due to difficulties experienced in the actual

Amalga environment.

Another factor which made the implementation more

difficult was limited domain-knowledge with medical

terminology and the databases within Microsoft

Amalga made it difficult to create meaningful test

queries that accurately represented the same type of

queries our intended users, physicians, would be

creating. Even physicians who were already familiar

with the existing Microsoft Amalga system reported

that it was difficult to create certain queries since it

required users to know in advance where the data of

interest was located, and what each field in the

database meant. During an initial demonstration,

physicians at the Washington Hospital Center who

were more familiar with the Microsoft Amalga

databases made corrections to our demonstration

temporal query that searched for patients with

heparin induced thrombocytopenia.

Design Evolution

The first iteration of the design split each event in the

temporal queries into multiple tabs, with each tab

representing a single event. Although this allowed

users to specify a lengthy series of events without

cluttering the query building interface, this tab-based

approach was later replaced with a more compact,

inline approach. Placing the controls for multiple

events into a single window instead of spreading

them out across multiple tabs reduced the number of

interactions required to both define and view queries.

The graphical visualizations only currently display

data that match the specified temporal query, and do

not show all event / patient information like the

original LifeLines and PatternFinder applications do.

Only a subset of the information is available since

providing full patient information requires the

application to have a full understanding of the data-

source, which requires an appropriately created

ontology that is outside of the scope of the

PatternFinder for Microsoft Amalga project

Various changes were made to the query

specification interface to allow events to be defined

in a non-sequential order. The contrast and creatinine

query formulated during our tests sequenced the

events in a 2 – 1 – 3 order, positioning the first event

specified (a radiology exam) in the middle of the

temporal sequence of events. To reduce confusion,

arrows were added into the interface to indicate how

each event is related to the others.

Figure 11 - Menu bar addition to UI, allowing the user

to specify various visualization options

In the later iterations, many simplifications were

made to improve usability. For example, many of the

buttons and checkboxes for various features and

options in the tool window were moved out of plain

sight into the tool‟s menu bar. This addition greatly

reduced the amount of clutter on the interface while

preserving previous functionality. When specifying

the temporal operator between events, all of the non-

relational operators were removed to reduce

confusion.

Based on user feedback, various assumptions were

added in an attempt to more closely align the tool to

the user‟s expectations. For example, the temporal

time field, when not specified, defaults to be the same

as the time field used in the user specified data-scope.

The concept of implicit parameter inheritance, where

old parameters would “fall-through” to other events

unless overridden with new parameters, was also

tested but was found to be confusing, particularly in

the case of non-sequential temporal queries.

9

Initial Evaluation

While laboratory-based controlled experiments are

effective to measure the performance of interfaces,

our expertise evaluating user interfaces suggests that

the complex cognitive skills and domain expert

knowledge involved here mean that usability testing

and case study methods are more effective in

revealing problems and identifying strengths in

interfaces such as PatternFinder. Adoption and the

value of the findings obtained using the interface

eventually become the measures of success.

During the past 3 months we worked with 4 senior

emergency medicine physicians and researchers from

the Washington Hospital Center. During each

individual meeting we reviewed the interface, let

physicians use it on their own, and discussed needed

improvements. The interface was revised between

each meeting. We first used a small de-identified

dataset provided by the Washington Hospital

Center‟s emergency department, then recently

connected to a replicated database mirroring the live

database. Being familiar with the Amalga interface

and the data available, participants had no problems

getting starting using the interface and were able to

define some temporal queries with some limited help.

The first iteration of the interface was very generic

causing some confusion understanding what was

possible or not, they suggested simplifying the

interface to tackle simple problems more elegantly.

For example, originally the interface had filter labels

such as Filter 1, 2 and 3 and had no notion of index

events. Providing a more guided interface seem to

naturally lead users toward useful queries which can

be correctly specified. Identifying the needed data

table in Amalga remains a challenging step for many

users. It may have a significant impact on the overall

usability of our interface (even if unrelated to our

design) which we hope will be addressed with the

development of an interactive data dictionary for

Amalga. Participants also identified additional

temporal operators that are missing from the initial

application: “event count” and “absence of”. All

physicians were very eager to see the prototype

upgraded to the live Amalga system to access the live

data, which is now possible. A simple interface

allows users to submit multiple queries in batch

mode, monitor the progress of long queries, review

past queries and results and attach comments to them.

The case study of adverse reaction to contrast

materials illustrates the potential benefit of

PatternFinder. A significant decline in renal function

after administration of intravenous contrast material

is a not uncommon and potentially serious

consequence of modern medical care. Its incidence is

estimated at 2% - 7% of all administrations of

contrast media. Most hospitals are unable to specify

in real time (or even retrospectively) which patients

and the percentage of patients who have had contrast

nephropathy. The ability to identify and track these

patients in real time is helpful at several levels. At the

individual patient level, the dose of many

medications needs to be modified in the face of

reduced renal function. Second, at a population level,

hospitals are increasingly being asked to provide

objective measurement of quality of care. The

overall hospital incidence of contrast-induce

nephropathy reactions (which typically is not tracked

in most hospitals) could become a standardized

measure across hospitals if there were a simple way

to gather the information. The temporal query

methodology we describe here would provide such a

way.

While the query does a good job at identifying

populations of interest, PatternFinder needs to link

each result directly to the detail views of the

individual patient records (e.g. seeing all the lab

results of a patient, instead of just those that match

the query) to achieve maximum effectiveness.

Similarly it will be useful to define an alarm based on

a query, or to schedule queries to run at regular

intervals to track performance metrics.

Project Progress

Major features / changes to the PatternFinder for

Microsoft Amalga tool made during this development

period included:

1) minimal configuration, domain-agnostic

SQL support using Open Database

Connectivity (ODBC)

2) multiple event temporal query specification

interface, modeled off of Microsoft

Amalga‟s filter interface

3) a client-side job management system which

saves results and their respective queries

while running queries in the background

4) the initial data-scope filter to the interface,

as well as the option to do out-of-order

temporal queries

5) a visualization core, which include “align

by” and other options

6) session logging, tracking user actions and

queries performed

7) Microsoft Amalga component integration as

well as an independent stand-alone mode.

10

Future Work

Directly integrating PatternFinder‟s temporal query

building capabilities into Microsoft Amalga is

ultimately the Washington Hospital Center and

Microsoft‟s goal for this project. By extending the

current filter options in Amalga with the temporal

functionality provided by this tool, Amalga will be

able to explore a new dimension within the data that

it manages as a Unified Intelligence System.

Adding integration hooks or data export capabilities

will allow other systems, such as Taowei David

Wang‟s Align-Rank-Filter visualization tool, to

leverage the functionality provided by the tool.

Removing the restriction of a single view or table and

adding support for multi-table joins or dynamic view

(virtual table) generation would allow the tool to be

used against normalized databases. Currently, the

tool can produce multi-table SQL queries with the

appropriate metadata describing how tables are

joined together, but no interface into Amalga‟s

system has been developed yet.

Server-side logging and job management on Amalga

servers would allow users to operate the tool from

any machine without losing previous query history

and to close the tool without stopping the currently

running query. This functionality is necessary for

continued development into the Amalga environment

since users routinely use their Amalga accounts on

different computers. Without server-side support,

users lose session data as they move from machine to

machine.

The addition of alarm-based querying and repeating

queries for reporting purposes, will also allow users

to generate a set of performance metrics in which

they can use to improve the quality of service

provided in their hospitals. The use of a robust and

real-time metrics system will help hospitals meet and

exceed standards on the 17 key performance

indicators used to assess hospitals. The current

Amalga system has report-building functionality, but

does not support the temporal queries that

PatternFinder is capable of creating.

Conclusion

By bridging the worlds of data bases, user interface

design and information visualization, we believe that

we can create the next generation of potent visual

analytic tools and information technology-enabled

work environments. Each participant in our study

found ways to use PatternFinder to search for

patterns that their current tools could not locate

today. Continued development into this area will

allow users to potentially find answers to questions

that they were never able to ask, and formulate a

whole new set of questions that allow for a

retrospective view of previous hospital performance.

Acknowledgements

We would like to thank Mark Smith, David Roseman

and Greg Marchand from the Washington Hospital

Center for supporting this project through funding the

work, providing a research database, provisioning

development systems, giving valuable and insightful

feedback, participating in our usability tests and

more. We would also like to thank Michael Gillam,

Craig Feied, Jonathan Handler and Hank Rappaport

from the Microsoft Corporation for providing their

expertise on electronic health systems, project

coordination and technical guidance.

Lastly, we would like to thank Ben Shneiderman and

Catherine Plaisant from the University of Maryland‟s

Human-Computer Interaction Laboratory and

Department of Computer Science for their continued

support and guidance through the project, making

this project possible.

References

1. Allen, J. F., Maintaining knowledge about temporal

intervals, Communications of the ACM, 26, 1983,

832-843

2. Ankerst, M., D. H. Jones, A. Kao, and C. Wang,

DataJewel: Tightly integrating visualization with

temporal data mining, ICDM Workshop on Visual

Data Mining, 2003.

3. Augusto, J. C. 2005. Temporal reasoning for decision

support in medicine. Artif. Intell. Med. 33, 1, 2005, 1-

24

4. Bade, R., Schlechtweg, S., and S. Miksch,

Connecting time-oriented data and information to a

coherent interactive visualization, Proc. Conf. on

Human Computer Interaction CHI 2004, ACM,

2004, 105-112.

5. Bruce, B. C., A model for temporal references and its

application in a question answer program, Artificial

Intelligence, 3, 1-25, 1972.

6. Catarci, T., Costabile, M. F. Levialdi, S. and C.

Batini, Visual query systems for databases: a survey,

Journal of Visual Languages and Computing, 8, 215-

260, 1997.

7. Cheng, C., Shahar, Y. , Puerta, A. and D. Stites,

Navigation and visualization of abstractions of time-

oriented clinical data Stanford University Section on

11

medical informatics technical report SMI-97-0688,

1997.

8. Cheng C. and Shahar Y., Intelligent visualization and

exploration of time-oriented clinical data, Topics in

Health Information Management, 20, 15-31, 1999.

9. Chittaro L. and Combi, C. Visualizing queries on

databases of temporal histories: new metaphors and

their evaluation, Data and Knowledge Engineering,

44, 239-264, 2003.

10. Dionisio J. D. N. and Cardenas, A. F. MQuery: A

visual query language for multimedia timeline and

simulation data, Journal of Visual Languages and

Computing, 7, 377-401, 1996.

11. Fails, J., Karlson, A., Shahamat, L., Shneiderman, B.

A Visual Interface for Multivariate Temporal Data:

Finding Patterns of Events over Time

in Proc. of the IEEE Symposium on Visual Analytics

Science and Technology, IEEE, 2006, 167-174

12. Hochheiser, H. and Shneiderman, B., Dynamic query

tools for time series data sets, Timebox widgets for

interactive exploration, Information Visualization 3,

1, 2004, 1-18.

13. Hibino S. and Rundensteiner, E. A. User interface

evaluation of a direct manipulation temporal visual

query language, ACM Multimedia: ACM, 1997, 99-

107.

14. Jensen C. S. and R. T. Snodgrass, Temporal data

management, IEEE Transactions on Knowledge and

Data Engineering, 11, 1999, 36-44,

15. Kahn K. M. and Gorry, A. G. Mechanizing temporal

knowledge, Artificial Intelligence, 9, 1977, 87-108,

16. Kouramajian V. and Gertz, M. A graphical query

language for temporal databases, in Proc. of Object-

Oriented and Entity Relationship Modeling:

Springer-Verlag, 1995, 388-399.

17. Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller,

D., Shneiderman, B., LifeLines: Using visualization

to enhance navigation and analysis of patient records,

American Medical Informatics Association 1998

Annual Fall Symposium. AMIA, Bethesda MD,

1998, 76-80

18. Shahar, Y., Dynamic Temporal Interpretation

Contexts for Temporal Abstraction, Annals of

Mathematics and Artificial Intelligence, 22, 1998,

159-192.

19. Shahar, Y, Dimension of Time in Illness: An

Objective View, Annals of Internal Medicine, 132 , 1,

2000, 45-53

20. Silva, S. F., Schiel, U. and T. Catarci, Visual query

operators for temporal databases, in International

Workshop on Temporal Representation and

Reasoning, 1997, 46-53.

21. Snodgrass, R. T. Developing time-oriented database

applications in SQL. San Francisco: Morgan

Kauffman Publishers, Inc, 1999.

22. Stacey, M., McGregor, C., Temporal abstraction in

intelligent clinical data analysis: A survey, Artificial

Intelligence in Medicine, 2007, 39, 1-24

23. Wang, T., Plaisant, C., Quinn, A., Stanchak, R.,

Shneiderman, B., and Murphy, S.,

Aligning temporal data by sentinel events:

Discovering patterns in electronic health records,

ACM CHI2008 Conference (April 2008, to appear).

24. Weber, M. Alexa, M., and W. Muller, "Visualizing

time series on spirals," IEEE Symposium on

Information Visualization: IEEE Press, 2001, 7-14.

http://cgis.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2005-25
http://cgis.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2005-25

12

Appendix

13

Classes

Container Objects
 Field – DB field

 Table – DB table

 Join - connects two tables together for multi-table queries (not in use)

 Filter – contains an operator and the appropriate values

 Operator – a SQL operator

 DBDescription – holds database information

Utility Classes
 SQLGen – generates a SQL query based on filter information

 Expander – splits rows that contains multiple event data into multiple rows

 Logger – writes to a log file and to standard out

 SaveLoad – performs loading and saving functions

UI Objects
o BallChainLifeLinesVisual – interactive PiccoloX visualization component

o DBIdentityListGridForm – grid that displays a list of identities

o DBSingleListGridForm – grid that displays expanded result data for a single identity

o DBResultGridForm – grid that displays all expanded result data

o JobBrowser – tree that stores queued and finished queries

o CommentsDialog – dialog asking if the user wants to continue without writing a comment

o DatesSelector – dialog with up to two DateSelectors, used for the data scope

o IdentitySelector – dialog with fields, allows user to select an “identity” field

o LogMonitor – dialog with the current session log

o DBInfo - dialog prompt for db information when initial db connection attempt fails

o Guided/FilterControl – user control (available fields, scope, filters)

o FilterPanel (the user control for each “filter”)

o TemporalValueForm – editing form for temporal Filter component

o ValueForm – editing form for Filter component

o SnowForm – main application window (menu bar, status bar, resize, etc)

o snowman – user control (contains query specification interface, results, and visualization)

o SnowControl – UserControl wrapper around SnowForm (launch inside an Amalga environment)

o snowmanapp - application wrapper around SnowForm (launch outside an Amalga environment)

14

Code Structure

PatternFinder-S
o SnowForm

 snowman – user control (contains query specification interface, results, and

visualization)

 Query specification interface

o Guided/FilterControl – user control (available fields, scope, filters)

 FilterPanel (the user control for each “filter”)

 TemporalValueForm – editing form for temporal

Filter component

 ValueForm – editing form for Filter component

 Results interface

o JobBrowser – user control, tree (running jobs, finished jobs)

o DBResultGridForm – processes SQL results and stores raw &

processed result data. gridview shows expanded results with duplicates

removed

o DBIdentityListGridForm – gridview shows identities

o DBSingleListGridForm – gridview shows data from a single identity

 Visualization interface

o BallChainLifeLinesVisual – PiccoloX user component

15

PatternFinder-S User Manual
Last updated: 4/17/2008

Remote Desktop Connection
If PatternFinder-S is not available as a standalone application or a live Amalga component, PatternFinder-S for

Amalga is available for demonstration and testing purposes on a test Washington Hospital Center server under the

AZ-Hosp – Emergency app, and is currently connected to a replicated database of live Amalga data. To establish a

remote desktop connection, start the Remote Desktop Connection application under:

Start Menu > All Programs > Accessories > (Communications >) Remote Desktop Connections

and connect to

 172.26.190.39

Launching from Amalga
PatternFinder-S has been added under the Dev tab and should launch when you click the Dev button.

If the data source for PatternFinder-S needs to be adjusted, it can be configured through the Amalga Manager app

by editing the component method information. The default is configured to use view VisitList_LabDetails in

whcED database on the local server. (A stand-alone version is also available.)

Launching Standalone
To launch PatternFinder-S in standalone mode, navigate to the folder that contains the PatternFinderS executable

file and double-click it. If the data source for PatternFinder-S needs to be adjusted, it can be configured by editing

the settings.cfg file in the same folder. Here is a sample settings string:

Initial Catalog=master; Data Source=localhost; User ID=12user34;

Password=abpasscd; Target=contrast; Identity=[Account][MRN]

Initial Catalog: database name

Data Source: address of server

User ID: db login name

Password: db password

Target: table to use

Identity: possible fields to use for the unique identity. Each identity is enclosed in brackets

16

Selecting an Identity
Once PatternFinder-S is launched and connected, a prompt will pop up asking you to select the field from the

database you wish to use as the unique identifier if more than one identity is available. For the

VisitLab_LabDetails target, the MRN field is appropriate for identifying per-patient patterns and the Account field

is appropriate for identifying per-visit patterns. Clicking Select will launch the PatternFinder-S application.

17

Specifying Your Query
PatternFinder S will launch with multiple parts in a single window. The query specification portion will have the

fields from the database target listed, as well as the option to use up to three filters.

Each filter has a Date Time field that allows users to specify which field from the database should be used to

chronologically compare each event with the last one. The second and third filters have a temporal field that lets

users define how one filter is related to the previous one. Shown below is an example of a query that searches for

patients who have been discharged by the ER only to be re-admitted within one week.

18

Once the query has been specified, clicking the Search button will bring a prompt up asking for additional query

details. Enter a descriptive name for the query (for user slam, eg: heparin induced thrombo + slam) and the desired

maximum number of matches and click Run.

The query will be added to the job browser in the query results area.

Clicking the View SQL button for any query will show a dialogue with its SQL statement equivalent.

In the screenshot shown below, the SQL statement describes a search for patients who come in and report shortness

of breath (“sob” in the Complaint field) and are discharged with normal hemoglobin levels (between 13.8 and 17.2),

but come back within 48 hours and are admitted to the ER with less than normal hemoglobin levels.

19

Below is the filled out query specification interface that produces the SQL shown above.

20

Accessing Query Results
Below the query specification interface is the query results area. The query will initially show up under the In

Queue area, be moved down into Processing when the database is processing the query and be moved to Results

Available when finished.

Double clicking the query will populate the graphical visualization as well as the 2
nd

 and 3
rd

 tabs in the results area

with the matches returned from the database. Double clicking on any of the data rows in the 2
nd

 and 3
rd

 tabs will

populate the 4
th

 tab with results for the same identity. The visualization will also scroll to the appropriate location.

21

Controlling the Graphical Visualization
The visualization model has several options that can be toggled on and off.

Show Identifiers – causes labels to be drawn.

Show LifeLines view – causes a summary-view to be drawn for each identity.

Align By First – aligns results for each identity by the first event

Expand Ball-and-Chain View – causes each set of matches to be displayed individually.

