
Patterns and the B Method: Bridging
Formal and Informal Development

Edward Chan(ekfchan@gmail.com)
& Brett Welch(brett.welch@gmail.com)

& Ken Robinson(k.robinson@unsw.edu.au)

UNSW–CSE–TR–0620

Technical Report December 2006

School of Computer Science & Engineering

THEUNIVERSITYOF

NEW SOUTH WALES

Abstract

In a world increasingly dependent on software controlled systems,

the need for the verification of software safety and correctness has

never been greater. Traditional software development methods

leave much to be desired in this aspect, relying heavily on testing

which can be costly and time inefficient. A more efficient and less

error prone approach is to use formal methods, in particular the B

method, to develop software.

This thesis explores concepts and methods to assist developers in

using formal methods by borrowing concepts from the Object Ori-

ented world of software development. Previous attempts at doing

this have attempted to adapt the B method to the Object Ori-

ented paradigm. This thesis presents an alternative approach that

adapts concepts borrowed from the Object Oriented paradigm, to

the B method. By concentrating on commonly occurring patterns

in software development and drawing inspiration from the tradi-

tional Gang of Four design patterns, this thesis presents a series of

patterns adapted to and specialised for the B method, demonstrat-

ing how the beginnings of complex and significant systems can be

modelled in B.

2

Contents

1 Introduction 8

1.1 Goals . 9

1.2 Summary of research . 9

1.3 Document overview . 9

2 Background 10

2.1 Formal methods . 10

2.1.1 What are formal methods . 10

2.1.2 The advantages of formal methods . 10

2.1.3 The disadvantages of formal methods . 11

2.1.4 Development using B . 11

2.1.5 Usage of B and other formal methods . 12

2.2 Object Oriented software development . 12

2.2.1 Advantages of OO development . 12

2.2.2 Disadvantages of OO development . 12

2.2.3 Design Patterns . 13

3 Previous work in bridging formal and informal methods 14

3.1 Evaluating previous work . 14

3.2 UML-B and U2B . 16

3.2.1 Evaluation . 17

3

3.3 The reuse of specification patterns within B . 19

3.3.1 Evaluation . 21

3.4 Industrial and privately funded projects . 22

3.4.1 RODIN . 22

3.4.2 BOOSTER . 22

3.4.3 Siemens automatic generation of B-0 code . 22

3.5 Analysis . 23

4 Exploring formalisations of Object Oriented Design Patterns 24

4.1 Thesis goals . 24

4.2 Research approach . 25

4.3 Modelling Classes and Objects in B . 26

4.3.1 Modelling a single class . 26

4.3.2 Modelling associations between classes using B-machine composition 29

4.3.3 Research Findings . 35

4.4 Examining individual patterns in a generic context . 35

4.4.1 The Observer pattern . 35

4.4.2 The Flyweight Pattern . 44

4.4.3 The Iterator Pattern . 53

4.4.4 The Command Pattern . 66

4.5 Analysis of Findings . 78

5 Patterns in B and a B centric pattern taxonomy 79

5.1 The traditional taxonomy of Object Oriented Design Patterns . 79

5.2 A B centric Pattern Taxonomy . 80

5.3 Patterns as platform features . 81

5.3.1 The Singleton Pattern . 81

5.3.2 The Bridge Pattern . 82

4

5.3.3 The Visitor Pattern . 82

5.3.4 The State Pattern . 82

5.4 Examining B specific Patterns . 82

5.4.1 Foundation Patterns . 83

5.4.2 An Implementation Pattern . 95

6 Applying a pattern based approach to developing systems in B 103

6.1 Case study: A Share Price watching system . 104

6.1.1 System requirements . 104

6.1.2 Pattern usage: Observer . 104

6.1.3 Specification . 105

6.1.4 Case analysis . 118

6.2 Case study: A simple calculator with undo/redo . 119

6.2.1 System requirements . 119

6.2.2 Pattern usage: Command . 119

6.2.3 Formal Specification . 121

6.2.4 A case-study on implementation . 136

6.2.5 Case analysis . 147

6.3 Case study: A Chess game . 147

6.3.1 System requirements . 147

6.3.2 Pattern usage: Strategy . 147

6.3.3 Formal Specification . 148

6.3.4 Case analysis . 163

6.4 Case study: A Spreadsheet Engine . 163

6.4.1 Motivation and System Requirements . 163

6.4.2 A Discussion of Pattern Composition . 164

6.4.3 Formal Specification . 165

5

6.4.4 Case analysis . 188

7 Conclusion 189

8 Bibliography 191

6

List of Figures

3.1 UML-B translation of class diagram to MicroB . 18

3.2 B-Model of the Composite Design Pattern . 20

4.1 Modelling a class using a B machine . 28

4.2 Modelling 1-to-1 unidirectional class relationships . 32

4.3 Modelling 1-to-m bidirectional class relationships . 34

4.4 Modelling class specialisation in B . 36

4.5 Graphical representation of how the Observer pattern is translated to B 38

4.6 Graphical representation of how the Flyweight pattern is translated to B 45

4.7 Graphical representation of how the Iterator pattern is translated to B 54

4.8 Graphical representation of how the Command pattern is translated to B 67

5.1 Graphical representation of the Interface pattern in B . 84

5.2 Implementing a B specification derived from a Class . 97

6.1 Comparing Class Diagram and B machine structure for Share Watcher System 106

6.2 Comparing the Class Diagram and B machine structure for ’CommandCalculator’ 120

6.3 B machine structure for ’CommandCalculator’ including implementation machines 137

6.4 Class diagram for ’Chess Game’ . 148

6.5 B Machine structure diagram for the ’Chess Game’ . 149

6.6 Different methods to compose patterns . 166

6.7 Overview of the Spreadsheet system structure . 167

7

Chapter 1

Introduction

Modern software engineering is largely an informal affair. Most projects follow a standard software development

life-cycle, which take natural language requirements and follow through to specification and design, implemen-

tation and finally testing. System modelling such as the Unified Modelling Language (UML) are popularly used

in the design phase to provide a visualisation of design. Most UML diagrams are verified by the human eye. The

implementation phase carries through any errors from the design, and inevitably introduces new ones. Many of

these errors then await the testing phase, which follows a testing plan formulated from the requirements. Such

processes do incrementally assist in improving software quality, and many organisations further improve quality

by adopting quality and process standards, and by using an iterative version of the development life-cycle.

While such informal processes are useful, they do not attack a fundamental problem in software engineering: the

need for rigorous mathematical proof of software correctness with respect to the specification. Such a change

would replace the tedious process of testing for errors and fixing them, incrementally approaching some level of

usability. Instead we would know a program is correct; we just need to certify that it meets the user’s needs and

is a correct implementation of the requirements. Rigorous proof also allows software developers to guarantee

that the program will not behave in potentially dangerous ways - this is impossible with the informal approaches

mentioned earlier.

To date, software development using formal methods has mainly been confined to military use and a few mission

critical applications. Examples of such include the driver-less METEOR subway system in Paris. Such confined

usage may be due to ’... practitioners, in their constant search for an edge in productivity, judge formal methods

to be insufficiently beneficial to outweigh pragmatic problems’ [Snook & Butler 2004]. Practitioners also resist

formal methods because they are ”hard”; formal methods use a mathematical paradigm to solve problems - far

removed from the object-oriented paradigm, whose aim was to make abstracting problems easier. Finally, many

practitioners seem to believe that formal methods are too abstract to solve large scale industrial problems.

8

1.1 Goals

Our goals in this thesis are to

1. Espouse concepts and methods to assist developers in using formal methods by borrowing concepts from

the Object Oriented world of software development.

2. Utilise the above and build on the strengths of formal methods to examine how powerful, flexible and

robust systems can be built with the B Method (B).

3. To begin the collation of a library of development patterns in B which others may build upon with use.

These goals will be further clarified in chapter 4.

1.2 Summary of research

This thesis presents a pattern based approach to assist the development of complex industrial systems using

the formal method known as the B Method (B). By taking inspiration from object oriented Design Patterns,

we examine classical design patterns from a formal perspective. We then explore the characteristics of these

patterns in a formal context, and present some B specific patterns and how they can be classified. Finally, we

present a series of case studies designed to show how these patterns can be applied in B to assist in developing

systems.

1.3 Document overview

Chapter 2 provides some background on formal methods, the object oriented paradigm and design patterns.

Chapter 3 explores previous work done in the field of bridging formal and informal methods.

Chapter 4 further discusses the goals and approach of this thesis, and examines some classic OO design patterns

and abstraction techniques and how they can be modelled with B.

Chapter 5 discusses an alternate pattern taxonomy better suited to the B method, and presents some B specific

patterns.

Chapter 6 presents a series of case studies which use B patterns to solve commonly encountered problems.

Chapter 7 provides a final analysis of the work presented and potential future work.

9

Chapter 2

Background

2.1 Formal methods

2.1.1 What are formal methods

The term ”formal methods” encompasses a set of development methodologies that are based around the appli-

cation of mathematics to verify software systems. Thus all constructs are presented as sets and predicates in the

program, with operations using mathematically defined preconditions and post-conditions to express the desired

behaviour. An invariant is present to define what is always true and must never change - such as relationships

between sets and safety conditions.

Examples of formal methods

The most prominent formal methods are VDM , Z and B. Z is the precursor to B, and is not truly a development

method, rather a formal language to specify software. Jean-Raymond Abrial’s B Method is a complete software

development platform, allowing the developer to specify, refine, prove and implement their system. There are two

flavours of B, Event B and Classical B. Both flavours are supported by tools to support development. Classical

B is the platform used in this thesis.

2.1.2 The advantages of formal methods

Using formal methods has many advantages. These advantages include:

• The process of formalisation in itself is extremely useful. It forces the developer to deeply consider the

problem at hand and how to solve it in a logically consistent manner.

10

• Verifiable behaviour. The developer is able to prove their work maintains the invariant and the precon-

ditions of the operations. If the invariant and the preconditions are specified correctly in respect to the

specification, this enables the developer to guarantee correct behaviour.

• Safety of behaviour. The developer is able to utilise the Invariant to specify dangerous states that should

never be entered. Coupled with the above, the developer can prove his system will never enter a dangerous

state.

• Fewer bugs. Due to the ability to prove specification and implementation the occurrence of bugs is signifi-

cantly reduced, if not eliminated.

2.1.3 The disadvantages of formal methods

Using formal methods has some disadvantages. These disadvantages include:

• Steep learning curve. For those who haven’t used a formal method extensively, learning to work some

formal methods, such as B, is difficult. Working with B is a paradigm shift akin to moving from procedural

languages to functional programming languages.

• Mathematics is hard. For most, mathematics is difficult. Considering problems through the lens of set

theory and logic can be very difficult, which means specifying the right invariant and preconditions can be

a challenge.

• Resources are scarce. Finding examples, tutorials, documents and other resources on formal methods is

difficult. This makes learning formal methods like B very hard.

2.1.4 Development using B

Development within B is broken into three phases. These are:

• Specification. Specification involves modelling the desired system in an abstract manner, showing what

the system should do, not how. It is one step more abstract than design. During specification, we are

setting out to mathematically flesh out the requirements of the system.

• Refinement. Refinement involves mapping the specification to a more detailed model, one that starts to

reveal the direction of the implementation. It is akin to the traditional design phase of a project. During

refinement, we start to make some design decisions about the system we are building.

• Implementation. Implementation is a specialised case of refinement - it is legal to move directly from

a specification to an implementation if your specification is ”concrete” enough to implement directly.

Implementation is the final step of development, from which we generate code to create the final product.

11

2.1.5 Usage of B and other formal methods

It is obvious that inevitably formal methods requires more thought and effort to create a worthwhile system

than other popular methodologies. Thus it is necessary to point out that while formal methods are extremely

beneficial to any development, formal methods only need to be used in cases where formality is great benefit

or even a requirement. It is far more valuable to use B or other formal methods to create the nucleus or the

core of the system and then wrap that with peripheral code to provide user interaction and less mission critical

requirements. Most military systems, transport systems and medical systems would certainly benefit from a

more formal treatment. When a system can potentially threaten life or create significant disturbance in case of

failure, the rigour of formal methods is invaluable.

2.2 Object Oriented software development

Object Oriented - hereafter referred to as OO - software development is the current de-facto development method,

due to its widespread usage and uptake. OO programming languages are abundant - Java, C++, C# and Python

are popular examples of such. Almost all software practitioners are familiar with Object Oriented programming.

By grouping behaviour and state into one construct called an object, we can more easily model the world

around us. This development methodology is supported by a loose diagramming standard called the Unified

Modelling Language, or UML. UML lets software designers express a high level class design by specifying inter-

class relationships and interactions, as well as user-system interactions.

2.2.1 Advantages of OO development

Using OO development has some advantages. These advantages include:

• Ease of abstraction. Ours is a world filled with objects, and OO recognises this by allowing programmers

to work the way the world works. Further to this, using UML to model a system can also be extremely

useful to conceptualise a system.

• Fast development. Every OO programming language has features like inheritance and polymorphism, and

a large library of functions the developer can call on to enable building useful systems faster.

• Widespread usage. The OO community is huge, with large amounts of documentation and support available

no matter what language you are using.

2.2.2 Disadvantages of OO development

Using OO also has some disadvantages. These disadvantages include:

12

• Lack of rigour. UML diagrams are generally judged correct by the designer simply looking at it. Thus it

is very easy for errors in the design to carry through to the developer, or even the end user.

• Significant reliance on testing. In general, the only way to verify an OO system works is through testing.

It is near impossible to test every single case, and so inevitably bugs will slip through the gaps.

2.2.3 Design Patterns

Design patterns are structured descriptions of abstract solutions to commonly occurring problems. Most famous

of these are the patterns described by the Gang of Four (GoF) in 1994, although their history began in 1987

with work by Cunningham and Beck. Patterns are not complete designs of a system, but rather describe a

generic design that can be transformed into a specific solution given a specific problem. Patterns are useful for

the following reasons:

• They are a vocabulary to communicate common design concepts. Many developers are familiar with some

design patterns, and this enables a team to communicate a complex concept using a pattern’s name.

• They are a form of knowledge management. Design patterns are a way to codify commonly used solutions

in a highly generic fashion. As such, the concepts and design practices encoded in the patterns ultimately

enables novices to become experts faster. In addition, repeated use ensures that the pattern can be improved

with time, making the pattern user’s design more robust.

Overall patterns are simply an attempt to collect knowledge and best practices surrounding software design and

implementation. They are best employed as a tool to communicate and to educate others in software design.

13

Chapter 3

Previous work in bridging formal and

informal methods

There have been a number of developments made with respect to incorporating informal and formal methods.

These include object oriented versions of Z and VDM, such as Object-Z, Z++ and VDM++ where OO concepts

such as inheritance, encapsulation and collections of objects are incorporated into the formal framework. How-

ever, the scope of this thesis will be narrowed to focus on developments that have attempted to enhance B using

OO concepts.

3.1 Evaluating previous work

To evaluate previous work, the following high-level evaluation framework has been proposed.

• How much does this work or development enhance the ease-of-use of B? B is currently used by the majority

of B practitioners with two publicly available toolkits, the B-Toolkit by B-Core of the UK and AtelierB,

both toolkits and learning B itself requiring a high investment in training and education. Does the research

make it easier to develop B-systems?

• Does the new development or work enable the development of more complex and mainstream applications

using B? Currently, applications developed using B are restricted to the academic world and a few select

mission critical systems.

• Does the development give this thesis any concepts or work to build upon?

14

This framework it is not meant to be used for quantitative analysis of the virtue of previous works. Rather it is

a broad framework for qualitative analysis from which we can extract merits of each work that can be applied

in this thesis.

15

3.2 UML-B and U2B

UML-B [Snook & Butler 2004] is the definition of a UML profile that takes a subset of full UML notations and a

subset of the B Abstract Machine Language to use for system modelling. The purpose of this is strengthen UML

so that is is ’precise and semantically well-defined’ and can be converted using a tool called U2B to the equivalent

B system which can be refined and implemented. On the UML side, class diagrams, state-chart diagrams and

packages have been retained while formally, microB, the definition of the formal language, is based heavily on

B. Butler and Snook have recognised the limitations of B with respect to object orientation, that is B does

not support more than one machine calling another machines operations, it does not support operations calling

other operations within the same machine among others. This precluded a direct mapping between classes and

machines and instead, they mapped an entire class diagram to a single machine - the conceptual ’structure is

provided by the UML rather than by B’. This is certainly a possible approach that this thesis can take.

16

An example of how classes map to a B machine using UML-B is shown in fig. 2.1:

All three classes have been modelled within the one machine using the MicroB language defined in the UML-B

profile. Three different variables are used to represent the three different sets of instances for each class. Deferred

sets are used to define the class types i.e. PHONE SET maps to the PHONE class, CELL SET to the CELL

class. The variables are specified as an element of the power-set of these deferred sets to present the set of objects

currently in existence. Snook & Butler have used functions from the set of objects to predefined sets such as

NAT, BOOL and STRING to model the attributes of the class. Classes can have collections as attributes too

because the objects may be mapped to sequences (arrays), and can refer to other classes by having a function

map the instantiations of one class to another class e.g the PHONE variable may have a total function to the

CELL variable.

These are just some of the examples of how Snook and Butler have incorporated object oriented concepts into

B that are useful for this thesis. However, modelling multiple classes within a single machine is not without

limitations. There can be no method calling between the classes because B does not allow operations within one

machine to call other operations within the same machine. The initial solution for this was to ’cut and paste’

operation bodies where a method call is being made - this is cumbersome and inelegant. Snook and Butler then

proposed to use B ’DEFINITIONS’ similar to macros to define operation bodies and include these definitions in

the operations that required them which they have ’found to be very effective’

3.2.1 Evaluation

Snook and Butler have recognised that developers have trouble with abstracting to formal representations of

a system. Indeed, the goal of UML-B is to address that. Industrial partners also gave input into the UML-B

proposal with Praxis (UK) using an early definition of UML-B on a case-study system. UML-B also allows

for graphical representations of formally developed software making it easier to abstract systems. It can be

concluded that while UML-B is quite an interesting work in bridging formal and informal methods, it does not

go far enough. In some ways UML-B has shoe-horned OO ideas into B, which results in B specifications that

are hard to read and unwieldy. Furthermore, a novice to formal methods would still encounter much difficulty in

using UML-B. Despite this, UML-B can still provides some of the concepts needed for mapping OO constructs

to B and provides some valuable work for this thesis to be built on.

17

Figure 3.1: UML-B translation of class diagram to MicroB

18

3.3 The reuse of specification patterns within B

Blazy, Gervais and Laleau of the Institut d’Informatique d’Entreprise in France published a paper on using

GoF Design Patterns with B, perhaps the most relevant previous work to be analysed. The have ’defined how to

define specification patterns in B, how to reuse them directly in Bhow to reuse the proofs associated...’ [Blazy,

Gervais, Laleau]. Using the examples of the Composite design pattern and the Resource Allocation pattern, they

present a process one can follow to specify systems with reusable design patterns using B.

Firstly, they specify a whole design pattern in one single machine. For example, when specifying the Composite

Design Pattern, they specify sets to contain the instantiations of Composite and the Leaf much like the UML-B

process. Referring to figure 2.2 the variables model the instances of the Component Class, the Leaf Class and

the Composite Class. The invariant of the Composite machine specifies the relationships between each class and

in the operations section, all the methods needed in each class to implement the composite pattern have been

included.

19

Figure 3.2: B-Model of the Composite Design Pattern

What’s interesting is that this paper also presents a process for composing a system of two or more design

patterns. They have specified three different approaches:

1. Composition By Juxtaposition - Two design pattern machines can be linked by specifying machine

that uses the EXTENDS clause to extend both design pattern machines. In this case the new machine has

access to all the operations of the extended machines and these operations form part of the new machines

interface for other machines to access. No explicit link is expressed between the classes of one design

pattern and the classes of another design pattern - they are considered to be disjoint.

2. Composition By Inter-Pattern Links - A new machine is specified to include the design pattern

machines using the INCLUDES clause in B. This means that the machine has access to the variables,

invariant and operations of the design patterns but the operations of the design patterns do not become

part of the new machine. The new machine can specify mappings from classes in different design patterns

by specifying this in its own new invariant.

3. Composition By Unification - A new machine is specified to include the design patterns. If the design

20

patterns contain the same classes - that is, the objects have the same type across different design pattern

machines - then they can be unified by specifying the the sets must always be equal in the invariant of the

including machine. There is a synchronisation requirement such when one operation changes the state of

one design pattern machine, another operation must be called in parallel in the unified design pattern to

ensure its state is the same.

3.3.1 Evaluation

The work presented promotes ease-of-use because it gives the developer freedom to breakdown the specification

of a system using the usual GoF design patterns and then follow a process to manually translate that into a B

system. No industry input was given on this project. The method espoused also promoted the creation of very

large B machines since entire patterns were defined within one machine. While this would inevitably be ’difficult

and hard to maintain’, many useful concepts can be gained from this paper to incorporate design patterns into

B, in particular the composition processes presented to build systems from design pattern components.

21

3.4 Industrial and privately funded projects

3.4.1 RODIN

The developer of the AtelierB toolkit, ClearSy System Engineering, recently (September 2004) announced the

initiation of the RODIN project. RODIN stands for Rigorous Open Development Environment for Complex

Systems. It is a project to create an open source formal methods toolkit/framework with ’generic mechanisms

to support component reuse and composition’ [RODIN Website].

RODIN is built for B and is backed by European industry partners. The open framework is to allow the plugging

in of Model Checkers, UML-B, Code Generators while the IDE itself comprises of project management tools,

specification tools using Event-B, proof obligation generators and a theorem prover. To date, the project is still

very young and will not provide this thesis with much work to extend. However, it promises to deliver formal

and informal methods integration to a new level because it will probably be the first integrated development

environment to support both formal and informal methods side by side.

3.4.2 BOOSTER

BOOSTER stands for B Object Oriented Set Theory Entity Relationships. It is a semiformal class specification

method which uses specifications to drive the base generator of the B toolkit. This results in complete, imple-

mented systems. While it cannot be considered a one hundred percent formal process, the system is built on the

precepts of formal methods. According to B-Core, the creator of BOOSTER and the developer of the B-Toolkit,

pilot projects initiated at Oxford university have been promising.

Due to the nature of this project and the valuable IP behind it, we have been unable to gain more insight into

BOOSTER. BOOSTER promises to be a significant step forward in software development, but we are unable to

glean any gainful information to use in this thesis.

3.4.3 Siemens automatic generation of B-0 code

Siemens, who develop driver-less train systems using B, have developed a process to automatically generate an

implementation from a B specification. Used privately within Siemens, we have learned that this method works

by restricting the way the user specifies machines. This narrowing of focus enables B to be used more like a

programming language, which enables Siemens to then auto-generate implementations for their specifications,

which they can then prove. Once again, such work promises to be a significant step forward in the world of

software development, but we are unable to draw any valuable lessons to build upon in this thesis.

22

3.5 Analysis

It can be seen that there have been several useful efforts to make B easier to use by approaching B from an

Object Oriented perspective. However, there is certainly room for improvement:

• Object Orientation can be represented in B, but not in a complete manner - operations cannot be called

machine to machine, and operations are also uncallable within the same machine. To address this, current

methods need to use ”workarounds” to achieve their goals. Implementation of inheritance and polymor-

phism is also a somewhat open question.

• Both methodologies presented advocate a single machine ”monolithic” approach to developing systems.

This is detrimental to maintainability, and readability, which is paramount to any specification. It can also

cause trouble during implementation, as a ”monolithic” implementation strategy is required - this means

that the implementation cannot be carried out in steps, but must be completed all at once. Much flexibility

in specification, refinement and implementation comes from composing a system out of multiple machines.

• Little work has been done in regards to implementation of object oriented machines and design patterns.

23

Chapter 4

Exploring formalisations of Object

Oriented Design Patterns

The previous chapter outlined current state of the art and past attempts incorporating formal and informal

methods. It has been shown that while useful, previous attempts are flawed in some aspect, or do not fully

address the problem at hand.

4.1 Thesis goals

Elaborating on the goals expressed in the introduction, our goals for this thesis are to:

• Espouse concepts and methods to assist developers in using formal methods by borrowing concepts from the

Object Oriented world of software development. By taking useful ideas such as encapsulation of behaviour

and data (objects) and by utilising well known OO patterns, we want to show how rigorous systems can

be built that are easier to conceptualise than pure mathematical models. In addition, most developers are

familiar with OO concepts and many are familiar with design patterns. By referencing and building on

this knowledge, we provide a point of reference for OO practitioners to enable a better understanding of

B.

• Utilise the above and building on the strengths of formal methods to examine how powerful, flexible and

robust systems can be built with B. The misconception that B cannot be used to develop ”real” systems

is incorrect. We plan to show how B can be used to build such ”real” systems, by working with some OO

concepts adapted to work in the B paradigm.

• To begin the collation of a library of development patterns in B which others may build upon with use.

24

Design patterns are useful to software professionals because they provide a robust, time-worn solution to

common problems. Code examples given with most patterns show how and when one could use the pattern,

and sometimes when not to use the pattern. Such a body of knowledge is invaluable, and our final goal is

to begin the collation of such a library for B specific patterns.

The above goals are useful in describing our motivations, however would likely take a lifetime to achieve success-

fully. More specifically and in support of the above, this thesis aims to:

• Streamline development with B to enable complex, modern and mainstream systems to be built in a more

rigorous manner by providing pattern based case studies of common patterns in system development.

• Provide insight into how OO concepts and patterns can be beneficially adapted to B.

• Develop understanding about the relationship between B and OO design patterns, and how patterns can

manifest themselves in B.

• Enhance the understand-ability and usability of Formal methods, thereby encouraging the use of formal

methods in the wider software development community.

4.2 Research approach

The approach of the work outlined in the previous chapter has been to force B into the shape of an OO paradigm.

Our research has explored this path briefly and found it to be a challenging and yet somewhat fruitless path. As

a result we changed our emphasis by taking some OO concepts and applying them into the B paradigm. This is

a far more natural approach, and such a polar shift of emphasis yielded more satisfying results.

Originally this thesis was focussed on producing a specific process and tool for the reuse of OO design patterns

in B. Before long we discovered this approach was too narrow, and might only work on a small set of patterns.

While we still believe a tool could be created, we no longer focus on it. Instead we have taken a more general

approach, examining common problems in software development. By taking inspiration from the traditional

Gang of Four design patterns, we consider how these problems are solved in B and show how patterns manifest

themselves within B. This approach can be broken down into the following steps.

1. First, we will consider the useful concept of an object and how it is modelled in B. Building on this, we will

model some commonly used design patterns in a generalised way to gain an understanding of how common

patterns are modelled in B.

2. We will then explore the different families of patterns as they are known to the OO world, and how these

families might share similarities in the context of B. We will also explore a potential B specific family of

patterns.

25

3. Finally we will provide some demonstration of how B can be used to model systems that solve commonly

encountered problems using case studies. We will also demonstrate how more complex systems can be

composed with a pattern based approach.

4.3 Modelling Classes and Objects in B

A process has been devised to model classes and objects in B. This is by no means a shift of B into the Object

Oriented paradigm but rather a mechanism for the user to model systems in B using object abstractions of the

physical world. These object machines are useful for encapsulating the data and behaviour for a single self-

contained class and help to resolve the common difficulty that practitioners encounter when using mathematical

constructs in B to model systems.

At the most primitive level this is carried out by treating a single B machine as a class. This B machine class

would have a variable representing instantiated objects at runtime and a multitude of attribute variables to rep-

resent the mappings between the set of instantiated objects and their attributes. The machines operations are

then used to model constructor and destructor methods, accessor and mutator methods as well as self-contained

behavioural methods which are capable of modifying the objects state or returning the result of some processing.

Having a process to create object-like machines in B not only gives the user an object-centric abstraction by

which they can model real-world objects within B but also provides a mechanism to model and formalise GoF

design patterns in B where required. However, it must be noted that this process is not a silver bullet for

either converting B into a pure object oriented language or directly porting GoF design patterns into B and the

limitations of this approach will be discussed in the findings below.

4.3.1 Modelling a single class

Classes

Mapping a single class with attributes into a B machine is quite straightforward. A class type can be defined by

using a deferred set and its runtime object instantiations by a variable which is specified in the machine invariant

to be a subset of the deferred set. At runtime initialisation, the set of objects that this B Machine models is

empty. Objects must be added to this set at runtime using a constructor-like operation to non-deterministically

assign a new object to the instantiations set. The constructor will also map the newly constructed object to its

initial attribute states if required. A destructor is specified by an operation which removes the object from the

instantiations set modelling the deletion of an object from memory. The destructor operation must also remove

26

all attribute relationships from the attribute variables for the deleted object.

Attributes

To model the classes attributes, extra variables are added to the machine to map the object elements to their

corresponding attribute states. At the specification stage of B, a number of primitive types are provided by the

B-Toolkit through SEEING type machines provided in the B-Toolkits SLIB library. These include:

• Int TYPE integers

• Scalar TYPE scalars

• String TYPE strings

• Char TYPE characters

• Bool TYPE booleans

The B-Toolkit also provides corresponding operation machines to change the values of the types specified above.

To refer to a non-primitive type, then the user can define that type by using a deferred set placed in a user-defined

context machine that is SEEN by the class machine being modelled.

To model a reference to a collection, an object can be specified to refer to an ordered sequence of attributes, or

simply a set of attributes. There are also a number of different methods for specifying the relationships between

the objects and their attributes. The most often used methods include: specifying a partial function from an

object to its attribute which means that an attribute reference is optional, or a total function which states that

it is mandatory for an object to be referring to an attribute state.

Methods

The class methods are modelled by Operations in the B-machine. Each operation is always given the object as

the first argument so the machine knows which object to change the state for. The operation parameters are

given in the subsequent arguments.

Please refer to the annotated generic B-Machine ’Class’ which shows how the above-mentioned approach is

applied to the class shown in the following figure.

27

B Representation of a Single Class

Class
objectString : String
objectNat : int
// Constructor and Destructor

Class(int initialNat);
Class~();

// Accessors and Mutators

void setObjectString(String str);
String getObjectString();

void setObjectNat(int nat);
int getObjectNat();

// Behavioural Methods

int incrementNat();
int squareNat();

B Machine: Class
Variables

 objects
 objectString
 objectNat

Invariant

 object <: OBJECT &
 objectString : objects +-> STRING &
 objectNat : objects --> NAT

Operations

newObject <-- Instantiate(iniitalNat)
Destroy(object)

SetObjectString(obj, str)
str <-- GetObjectString(obj)
SetObjectNat(obj, nat)
num <-- GetObjectNat(obj)

num <-- IncrementNat(obj)
num <-- SquareNat(obj)

Figure 4.1: Modelling a class using a B machine

28

4.3.2 Modelling associations between classes using B-machine composition

Given a process to model a single class using a B machine, a methodology is required to model associations

between classes. The similarities between object-oriented classes and B machine representations of classes in the

above study are quite pronounced. However, where modelling of associations between machines is concerned, the

methodology used here in B diverges from the Object Oriented paradigm. B-machines can be composed using

several different types of machine composition:

Summary of B Machine Composition mechanisms

1. SEES - Machine M1 seeing M2 will have read-only access to M2s sets, constants and variables but cannot

refer to these in its (M1) own invariant. Any number of machines can SEE M2 and ’Seeing’ machines

cannot invoke M2s operations unless those operations do not change the state of M2. SEES is useful for

allowing all the machines within a system access to a context machine that contains all the deferred sets

and consequently the user-defined non-primitive types.

2. USES - The uses relationship is a generalisation of sees relationship [Schneider,2001] A machine M1 that

USES M2 as within the sees relationship also has read only access to M2s sets, constants and variables, the

difference being that M1 can refer to M2s variables in in it’s own invariant. B places a constraint on the

USES relationship by requiring that if M1 uses M2, then a machine M3 must be created that INCLUDES

both M1 and M2 for the purposes of discharging proof obligations since M2 has no control of M1 but a

state change in M1 may violate the invariant of M2. For the purposes of developing a process to model

class associations using B, the USES relationship will not be considered.

3. INCLUDES - If machine M1 ’INCLUDES’ machine M2, then M1 is able to change the state of M2 by

calling the operations of M2. M1 also has access to the sets, constants and variables of M2 and can

refer to these in its invariant. Includes relationships are useful because it allows one machine to call the

operations of another machine to change it’s state which fits neatly with object encapsulation in object

oriented programming. However, the limitation is that a machine can only be included by at most one

other machine. One machine can however include multiple machine. When M1 includes M2, M1 also has

the ability to promote M2s operations to its own interface for a higher level machine to call.

4. EXTENDS - Extending is a special form of the includes relationship, in a case where M2 EXTENDS

M1, then M2 has read access to the sets, constants and variables Machine M1 can EXTEND machine M2

meaning it can call all the operations of M2 as well as refer to the state of M2. EXTENDS and INCLUDES

is that with EXTEND, M2’s operations form part of the interface for M1 if M1 EXTENDS M2.

29

A process for modelling different types of relationships between classes

Given the above outline of B machine composition mechanisms, a process has been developed to model differ-

ent types of relationships between classes. Only EXTENDS and INCLUDES composition mechanisms are used

because these enable machines to refer to the state of another machine within their invariant and also allow the

calling of operations in the included machine.

The most basic class association is a 1-to-1 unidirectional mapping between two classes A and B. This means A

refers to a single instance of B in its attributes and uses this reference to call B’s operations. This is modelled

by having machine A and machine B representing class A and B respectively. Machine A includes Machine B so

it will have access to Bs operations and can specify a relationship between the set of A instantiations and the set

of B instantiations inside Machine A’s invariant by using a function, injection or a bijection, each relationship

with its own logical implications for the system that will be discussed in Chapter 6.

In the example shown in the following diagram, an Owner class and an Car class are represented by B machines

Owner and Car. The owner class contains a reference to a car in its attributes and this is represented by Owner

including Car. We use a total function to specify a relationship between the owners and the cars variable inside

the invariant of the Owner machine. Thus we each owner instantiation has a relationship to a car instantiation

and can also call operations inside the Car machine by providing the car instantiation as the first parameter.

30

To model bidirectional mapping between class A and class B, then a simple INCLUDES relationship between

the machines modelling those classes is not enough as the variables of the including machine are hidden from

the included machine. To overcome this problem a third machine, an ’association machine’ is introduced which

includes both the machines modelling class A and B. The association machine has access to the variables and

operations of both and can have a bidirectional relationship specified between the two within its invariant.

An example is shown in the following diagram where there is a Campaign class and a CampaignStaff class

being modelled in B. Here, not only is bidirectional mapping modelled but also 1-to-many relationships. The

Campaign class has a reference to an array of CampaignStaff objects in its attribute while the CampaignStaff

has a reference to a single Campaign object. To model this in B, the association machine specifies within its

invariant a function from the campaigns variable to an element of the powerset of the campaign staff variable

which represents a 1-to-many relationship. Conversely, a function is used to map campaignstaff to campaign

as a 1-to-1 relationship in the opposite direction. Any operation that affects both campaign and campaignstaff

variables must be specified in the association machine.

31

B Representation of Class Coupling

Unidirectional Association (1-to-1) - Car Owner Example using <<INCLUDES>>
Standard Object Oriented Representation

Owner
name: String
address : String
licencePoints : int
ownedCar : Car

Car
regoNumber : String
make: String
model : String
colour : String

owns

1 1

B Machine Composition Reprensentation using B Class Modelling

Machine: Owner
Variables
 owners,
 name,
 address,
 licencePoints,
 ownedCar
Invariant
 ownedCar : owners >-> cars &
 ..
Operations
..

Machine: Car
Variables
 cars,
 regoNumber,
 make,
 model,
 colour
Invariant
 cars : CAR &
 regoNumber : cars >-> REGO &
 make : cars --> MAKE &
 model : cars --> MODEL &
 colour : cars --> COLOUR

Operations
..

Includes

total bijection between owners and cars is
used to specify the association

Figure 4.2: Modelling 1-to-1 unidirectional class relationships

32

Finally, the EXTENDS operation in B is a quasi-representation of subclassing or class specialisation in B. In

the example in the following diagram, there is a Account class and a MortgageAccount class which is a subclass

of the Account class so it will contain the operations and variables of the superclass. Using extends with an

Account and a MortgageAccount machine, this is an equivalent representation in B with MortgageAccount having

read-access to Account ’s variables and also promoting the Account operations to its own interface.

33

B Representation of Class Coupling

B-Machine: Association
Variables
 campaignStaff
 staffCampaign
Invariant
 campaignStaff : campaign --> POW(staff)
 staffCampaign: staff --> campaign

Operations

addCampaignStaff(campaign, staffmember)
assignToCampaign(staffmember, campaign

Class: Campaign
- title : String
- campaignStartDate : Date
- campaignFinishDate : Date
- estimatedCost : Float
- costToDate : Float
- campaignStaff : CampaignStaff[]

boolean checkBudget();
addCampaignStaff();
fireCampaignStaff();

Class: CampaignStaff
staffNo : int
staffName : String
staffStartDate : Date
staffCampaign : Campaign
calculatePay()
assignToCompaign()

Bidirectional Association (1-to-many) - Election Campaign Example
Standard Object Oriented Representation

B Machine Composition Reprensentation using B Class Modelling

1 0..n

Machine: CampaignStaff
Variables
 staff
 staffNo
 staffName
 staffStartDate
Invariant
 staff <: STAFF &
 staffNo : staff --> NAT &
 staffName : staff --> STRING &
 staffStartDate : staff --> DATE

Operations
..

Machine: Campaign
Variables
 campaign
 title
 estimatedCost
 ..
Invariant
 campaign : CAMPAIGN &
 title : campaign --> STRING &
 estimatedCost : campaign --> NAT &
 ..
Operations
..

Includes Includes

Figure 4.3: Modelling 1-to-m bidirectional class relationships

34

Limitations of this process

It must be noted that even though this process allows the modelling of OO systems in B, it does have some

limitations. While EXTENDS provides a method to model subclassing, this is not totally equivalent as it is

not a model of inheritance. Abstract classes and operations cannot be modelled in B and there is no ability to

override the operations of extended machines. Dynamic typing is also absent from this model. These limitations

prevent the modelling of GoF design patterns where there is a reliance on these object oriented features.

Also of note is that machines can not be included by multiple machines. Therefore situations where multiple

classes refer to a single class within their attributes are also hard to model - however this has advantage of

decreasing coupling between classes in a modelled object-oriented system.

4.3.3 Research Findings

A clear process for modelling certain types of object oriented classes in B has been developed. This itself can be

considered a pattern to be part of a B developers toolkit as it allows for easier abstraction of problems into B.

Given this process, a foundation has been laid for modelling some of the GoF patterns to bring their solutions

across to B.

4.4 Examining individual patterns in a generic context

For each of the following design patterns, we have taken the functionality of that pattern and attempted to

reproduce that functionality in B in a generic, context independent manner. Since they lack any problem specific

context, the resulting B Machines could be used as a template to begin building a system, or as a reference point

for how a certain effect or functionality can be modelled using B.

4.4.1 The Observer pattern

Observer pattern usage and goals

Also known as ”publish-subscribe”, the Observer pattern should be used when a one-to-many relationship be-

tween objects exists, such that a state change in one ”observed” machine results in its ”observers” being auto-

matically updated. It aims to maintain loose coupling between the observers and the subject, such that each

party needs to know little or nothing about the other, while allowing the state of the observer to depend on the

subject’s state.

Formalising the Observer Pattern - from OO to B

35

B Representation of Semi - Inheritance
Inheriting variables and functions from another class can be represented by using <<EXTENDS>>

Standard Object Oriented Representation

B Machine Composition Reprensentation using B Class Modelling

Account
accountName : STRING
balance : Float
credit()
debit()

MortgageAccount
interestRate : Float
calculateInterest()

B Machine:
Account

Variables
 accounts
 accountName,
 balance,
Invariant
 accounts <: ACCOUNT &
 ..
Operations ..

 B Machine: Mortgage
Variables:
 interestRate
Invariant
 interestRate : accounts --> NAT
Operations ..

<<EXTENDS>>

Figure 4.4: Modelling class specialisation in B

36

Formalising the Observer Pattern - B Specifications

Below we have included the B specifications of the machines that model the Observer pattern.

37

ObserverPattern
Invariant:
observations : observers <-> subjects
Operations:
Attach(observer,subject)
Detach(observer,subject)
NotifyAndUpdate(subject, newstate)

Subject
Operations:
InstantiateSubject(state)
DeleteSubject(subject)
ModifySubjectState(subject,state)

Observer
Operations:
UpdateObserver(state)
UpdateAllObservers(observers,newState)
InstantiateObserver()
DeleteObserver(object)

ConcreteSubject
GetState()
SetState(state)
subjectstate

StockObserver
Update()
observerstate

Subject
Attach(Observer)
Detach(Observer)
Notify()

Observer
Update()observers

subject

Traditional OOP Observer Pattern

B Model of the Observer Pattern

Includes

Includes

Here we attempt to capture the broad
functionality of the observer pattern.
While many of the methods present
in each class have been moved, this
B model correctly models the
functionality of the observer pattern.
This highlights the differences in how
design concepts are expressed in B.

The Subject and Observer Machines simply model the
observer and subject classes, without reference to the

communications model outlined in the design pattern itself.

The ObserverPattern machine models
the relationship between observers and
subjects. This machine represents the

crux of the design pattern

Figure 4.5: Graphical representation of how the Observer pattern is translated to B

38

MACHINE Observer

The Observer machine models the set of observer objects and their behaviour.

SEES Observer TYPE , ObjectState TYPE

VARIABLES

observers ,

observerstate

observers represents the set of observer objects that have been instantiated. observerState models that state

of each observer.

INVARIANT

observers ⊆ OBSERVER ∧

observerstate ∈ observers → STATE

INITIALISATION

observers := {}

OPERATIONS

Update all observer’s in the set observerset, setting their state to newstate

UpdateAllObservers (observerset , newstate) =̂

PRE

observerset ⊆ observers ∧

newstate ∈ STATE

THEN

We construct a new function that maps every observer in the set to the new state

ANY obsfn

39

WHERE obsfn ∈ observers 7→ STATE ∧

dom (obsfn) = observerset ∧

ran (obsfn) = { newstate } ∧

∀ oo . (oo ∈ observerset ⇒ obsfn (oo) = newstate)

THEN

Finally we override the old observerstate function with our new function. The observers who do not care

about this subject are not affected.

observerstate := observerstate <+ obsfn

END

END ;

Update an observer’s state

UpdateObserver (obs , state) =̂

PRE

obs ∈ observers ∧

state ∈ STATE

THEN

observerstate (obs) := state

END ;

Simple constructor returning a new observer object

observer ←− InstantiateObserver =̂

BEGIN

ANY newobserver , state

WHERE newobserver ∈ OBSERVER − observers ∧ state ∈ STATE

THEN observers := observers ∪ { newobserver } ‖

observer := newobserver ‖

observerstate (observer) := state

END

40

END ;

Delete an Observer

DeleteObserver (object) =̂

PRE

object ∈ observers

THEN

observers := observers − { object }

END

END

41

MACHINE ObserverPattern

ObserverPattern models the Observer Design Pattern using the Subject and Observer machines which model

subject and observer classes. This machine is the linkage between the observer and the subject. Any methods

in the Observer pattern that affect both the observer and the subject both go in this machine.

SEES

ObjectState TYPE ,

Observer TYPE ,

Subject TYPE

INCLUDES

Subject ,

Observer

VARIABLES

observations

observations models the fact that one observer can observe multiple subjects and a subject can be observed

by multiple observers. We also model the fact that the state of the observers relies on the state of the subject.

INVARIANT observations ∈ observers ↔ subjects ∧

∀ (obs , sub) . (obs ∈ observers ∧ sub ∈ subjects ∧ obs 7→ sub ∈ observations

⇒

subjectstate (sub) = observerstate (obs))

INITIALISATION observations := {}

OPERATIONS

Attach (obs , subj) =̂

PRE

obs ∈ observers ∧

subj ∈ subjects

42

THEN

observations [{ obs }] := observations [{ obs }] ∪ { subj } ‖

UpdateObserver (obs , subjectstate (subj))

END ;

Detach (obs , subj) =̂

PRE

obs ∈ dom (observations) ∧

subj ∈ ran (observations) ∧

obs 7→ subj ∈ observations

THEN

observations := observations − { obs 7→ subj }

END ;

NotifyAndUpdate models both the observers Notify operation and the subject’s Update operation. This is

necessary due to the requirement in B specifications that sequential composition is not allowed the operation

is only ever allowed to embody a single state change. So instead we have specified that the subject and its

observers’ state are completely synchronized, and that the notify and update happen in parallel.

NotifyAndUpdate (subject , newstate) =̂

PRE

subject ∈ subjects ∧

newstate ∈ STATE

THEN

ModifySubjectState (subject , newstate) ‖

We take all the observers that are watching the given subject, and call the observer machine to update all of

the observers

UpdateAllObservers (observations −1 [{ subject }] , newstate)

END

END

43

Please note we have not included the subject machine as it does not add much to this discussion. The subject

machine can be found in the Appendix.

Analysing the Observer Pattern

Modelling the Observer pattern presented some difficulty. This was due to the conceptual divide between OO

and B, and the fact that B presents ways of modelling the intent of the observer pattern in multiple ways. The

first major hurdle is presented by the update operation. In a B machine, each operation must model a state

change. It cannot model sequential state changes, which is implied by the observer pattern - the state of the

subject changes, and then the state of the observers change. This sequence cannot be modelled in a specification,

so it was necessary to simultaneously update both.

An interesting side effect of this is that we now need to prove that the abstract ”state” of the subject is always

mirrored by the observer. This effect is not directly expressed in the intent of the observer pattern, but it is

certainly implied. Technically speaking, the pattern only requires an observer to be notified of a change - whether

a state change occurs or not is up to the developer. The B model, however, requires this state mirroring in order

to explicitly model the update operation.

4.4.2 The Flyweight Pattern

Flyweight Pattern usage and goals

The Flyweight pattern uses object sharing to manage a high number of objects efficiently. Proper usage of the

flyweight results in a lower memory footprint since objects that are the same are shared instead of duplicated.

Formalising the Flyweight Pattern - from OO to B

Formalising the Flyweight Pattern - B Specifications

Below we present three B machines that represent the flyweight pattern.

44

FlyweightPattern
Invariant:
flyweight_clients: clients<->flywweights
Operations:
GetFlyweight(intrinsic_state)
MapClient2Flyweight(client, flyw)
RemoveClientMapping(client)

Flyweight
Invariant:
intrinsic_states : flyweights >-> states
Operations:
GetNewFlyweight(intrinsic_state)
GetExistingFlyweight(intrinsic_state)
DeleteFlyweight(flyweight)
FlyweightOperation(flyw, client_state)

Client
Operations:
InstantiateClient()
DeleteClient(client)
ComputeState(client)

Traditional OOP Flyweight Pattern

B Model of the Flyweight Pattern

Includes
Includes

The flyweight pattern
presented relies heavily on the
factory method implemented by the
GetFlyweightMethod. When
compared to the B model of the
observer pattern many similarities
can be seen in the way the machines
are structured.

The FlyweightPattern machine models the
relationship between flyweights and client,

and enforces sharing. This machine
represents the crux of the design pattern.

FlyweightFactory
GetFlyweight(key)

Client
state

Flyweight
Operation_1(extrinsicState)
 ...
Operation_N(extrinsicState)

ConcreteFlyweight
Operation_1(extrinsicState)
 ...
Operation_N(extrinsicState)
intrinsicState

flyweights

Note: we have
omitted the
"unshared

ConcreteFlyweight"
for the sake of

concision

The flyweight machine models the flyweight object itself.
each flyweight is mapped to a unique intrinsic state, or
key. This machine does not enforce sharing, as shown
by the two operations, GetNew..() and GetExisiting..().
The decision of which operation to call is made by the

flyweight pattern machine. The FlyweightOperation
operations provide a method to model the client calling

a flyweight method, giving the extrinsic state as an
argument.

The Client machine has the added
responsibility in this model of

computing the extrinsic state to pass
to flyweight methods, hence
"ComputeState()" operation.

Figure 4.6: Graphical representation of how the Flyweight pattern is translated to B

45

The Flyweight machine models and manages the shared flyweight objects. Each Flyweight has its intrinsic state

- a state that never changes. Flyweight operations usually provide a result by taking in an extrinsic state and

applying it to their intrinsic state.

MACHINE Flyweight

SEES ObjectState TYPE , Flyweight TYPE , Result TYPE

The flyweight object has an operation that takes an extrinsic state and it’s own intrinsic state and does

something with it. Because we don’t know what that something is, we provide eval, a function that maps all

external states to the intrinsic states that map to a resulting state.

CONSTANTS

eval

PROPERTIES

eval ∈ STATE → (STATE → STATE)

VARIABLES

flyweights ,

states ,

intrinsic states

INVARIANT

flyweights ⊆ FLYWEIGHT ∧

states ⊆ STATE ∧

Flyweights are meant to be shared. As such, there should never be two flyweights with the same intrinsic

state since the original flyweight with that intrinsic state should be reused. A Total Function is required since

flyweights can’t exist without an intrinsic state

intrinsic states ∈ flyweights � states

INITIALISATION

flyweights := {} ‖

states := {} ‖

46

intrinsic states := {}

OPERATIONS

To support sharing, two operations are provided, keyed on the state of the flyweight. If a flyweight exists

with the given state, GetExistingFlyweight should be called. Otherwise a new Flyweight is constructed by

GetNewFlyweight

flyw ←− GetNewFlyweight (i state) =̂

PRE

i state ∈ STATE ∧

i state 6∈ ran (intrinsic states)

THEN

ANY fly

WHERE

fly ∈ FLYWEIGHT − flyweights

THEN

flyweights := flyweights ∪ { fly } ‖

states := states ∪ { i state } ‖

intrinsic states (fly) := i state ‖

flyw := fly

END

END ;

flyw ←− GetExistingFlyweight (i state) =̂

PRE

i state ∈ ran (intrinsic states)

THEN

flyw := intrinsic states −1 (i state)

END ;

DeleteFlyweight (flyw) =̂

PRE

flyw ∈ FLYWEIGHT ∧

flyw ∈ flyweights

47

THEN

flyweights := flyweights − { flyw } ‖

intrinsic states := { flyw } −C intrinsic states

END ;

We apply the eval function to the client and the flyweight state get a result.

result ←− FlyweightOperation (flyw , client state) =̂

PRE

flyw ∈ FLYWEIGHT ∧

client state ∈ STATE

THEN

result := eval (client state) (intrinsic states (flyw))

END

END

48

The Client machine models the flyweight client the user of the flyweight objects. For the Client, the shared

nature of flyweights is invisible.

MACHINE Client

SEES ObjectState TYPE , Client TYPE

VARIABLES clients ,

context state

For the Flyweight pattern, clients are required to be able to generate or provide a context dependent state.

This state is provided as part of the arguments to the flyweight itself, and becomes the extrinsic state. This

is represented by the context state variable

INVARIANT

clients ⊆ CLIENT ∧

context state ∈ clients → STATE

INITIALISATION

clients := {} ‖

context state := {}

OPERATIONS

This operation allows the pattern machine to compute what state needs to be passed to the flyweight machine.

state ←− ComputeState (client) =̂

PRE

client ∈ CLIENT ∧

client ∈ dom (context state)

THEN

state := context state (client)

END ;

49

We create a new Client in the standard way, ensuring it’s context state is initialised also.

cl ←− InstantiateClient =̂

PRE clients 6= CLIENT

THEN

ANY client , state

WHERE

client ∈ CLIENT − clients ∧

state ∈ STATE

THEN

clients := clients ∪ { client } ‖

context state (client) := state ‖

cl := client

END

END ;

DeleteClient (client) =̂

PRE

client ∈ CLIENT ∧

client ∈ dom (context state)

THEN

clients := clients − { client } ‖

context state := { client } −C context state

END

END

50

The FlyweightPattern machine maintains and enforces the sharing relationship between the Flyweights and their

clients. This sharing relationship resulted in the creation of a factory method in the GetFlyWeight operation.

MACHINE FlyweightPattern

SEES

ObjectState TYPE ,

Flyweight TYPE ,

Result TYPE ,

Client TYPE

INCLUDES

Flyweight ,

Client

VARIABLES

flyweight clients

INVARIANT

Every client that has a flyweight needs to reference it. a client can map to many flyweights, and flyweights

are shared by many clients

flyweight clients ∈ clients ↔ flyweights

INITIALISATION

flyweight clients := {}

OPERATIONS

Flyweights are usually instantiated through a factory method to enforce sharing. We recreate flyweight

sharing here using the same concept of a factory expressed and constrained mathematically here and in the

Flyweight machine.

flyw ←− GetFlyweight (i state) =̂

PRE

i state ∈ STATE

51

THEN

SELECT

i state 6∈ ran (intrinsic states)

THEN

flyw ←− GetNewFlyweight (i state)

WHEN

i state ∈ ran (intrinsic states)

THEN

flyw ←− GetExistingFlyweight (i state)

END

END ;

After creating a flyweight, a client can be attached to the flyweight using MapClient2Flyweight

MapClient2Flyweight (client , flyw) =̂

PRE

client ∈ clients ∧

flyw ∈ flyweights

THEN

flyweight clients := flyweight clients ∪ { client 7→ flyw }

END ;

RemoveClientMapping (client) =̂

PRE

client ∈ CLIENT ∧

client ∈ dom (flyweight clients)

THEN

flyweight clients := { client } −C flyweight clients

END

END

52

Analysing the Flyweight Pattern

The flyweight pattern presented an interesting challenge. To make flyweight work, we needed to support the

sharing of objects. This meant that we needed an approach similar to the factory method - yet another design

pattern. In fact, the flyweight pattern could be called a specialised formalisation of the factory method, since

factory provides the most crucial mechanism - object sharing- of the entire pattern.

4.4.3 The Iterator Pattern

Iterator Pattern usage and goals

The Iterator pattern shows how to access the members of a collection of objects without exposing the representa-

tion of the collection. As such a tree collection could be accessed in the same manner as a stack, or a hashtable’s

key collection. Different iterators can provide different methods of traversing a collection.

Formalising the Iterator Pattern - from OO to B

Formalising the Iterator Pattern - B Specifications

Below are the salient B specifications for the Iterator pattern.

53

Iterator_Pattern
Invariant:
iteratorItems : iterators +-> (seq itemObjects) &
iteratorPointers : iterators +-> NAT1 &
iteratorContainers : iterators +-> containers
Operations:
AttachIterator(itr,container)
BeginIterator(itr)
IsEnd(itr) : 0/1
Next(itr) : Item
Prev(itr) : Item

IteratorContainer
Invariant:
containerItems : containers +-> POW(itemObjects)
Operations:
Add(container,item)
Remove(container,item)
GetItem(container) : Item
NewContainer()

IteratorItem
Operations:
CompareItem(itm1,itm2)
NewItem()
DestroyItem(itm)

Traditional OOP Iterator Pattern

B Model of the Iterator Pattern

Includes

Includes

The Iterator pattern is the first
pattern we examine where certain
operations see no use in the specification
stage. This is because they relate more
closely to the implementation of the
iterator, and are to concrete to be used at
the specification state.

The Iterator_Pattern machine models the
iterator itself.

Aggregate
CreateIterator()

ConcreteAggregator

Iterator
First()
Next()
isDone()
CurrentItem()

ConcreteIterator

Each IteratorContainer maps to a set of
itemObjects. GetItem() is unused at the specification
level, but in refinement should be select an item to
get out of the container based on CompareItem().

This is how one would implement alternate iteration
strategies.

The IteratorItem machine models
the item which makes up the

aggregate container's contents.
CompareItem() is unused at
present, but will be used in

refinement to enable
IteratorContainer to compare items.

Client

Figure 4.7: Graphical representation of how the Iterator pattern is translated to B

54

The Iterator Pattern machine models the iterator behaviour. It manages the iteration strategy and the internal

iterator pointer.

MACHINE Iterator Pattern (ATTRIBUTE , max instance)

CONSTRAINTS max instance ∈ N1

SEES Class CTX

INCLUDES IteratorContainer (ATTRIBUTE , max instance)

VARIABLES iterators , iteratorItems , iteratorContainers , iteratorPointers

iterators models the iterator objects. iteratorItems models an internal sequence of itemObjects, mapped to

an iterator. This is necessary to impose order on an unordered set and hence consistently iterate over a set

with next() and prev() operations. iteratorPointers maps each iterator to a number which represents the

current position of the iterator itself. iteratorContainers maintains a reference to each iterator’s attached

container.

INVARIANT iterators ⊆ OBJECT ∧

iteratorItems ∈ iterators 7→ seq (itemObjects) ∧

iteratorPointers ∈ iterators 7→ N1 ∧

iteratorContainers ∈ iterators 7→ containers

INITIALISATION iterators := {}

‖ iteratorItems := {}

‖ iteratorPointers := {}

‖ iteratorContainers := {}

OPERATIONS

AttachIterator wraps the given iterator around the given container

AttachIterator (itr , container) =̂

PRE

itr ∈ iterators ∧

container ∈ containers

55

THEN

iteratorContainers (itr) := container ‖

iteratorItems (itr) := []

END ;

BeginIterator simply sets the iterator’s internal pointer to the first position. If the iterator has already iterated

across some items, this allows us to iterate in the same order.

BeginIterator (itr) =̂

PRE

itr ∈ iterators ∧

itr ∈ dom (iteratorContainers)

THEN

iteratorPointers (itr) := 1

END ;

IsEnd must be called before calling Next. It tells us if the iterator has items or if it is finished

bb ←− IsEnd (itr) =̂

PRE

itr ∈ iterators

THEN

If the iterator hasn’t been initialised, then isEnd is true.

SELECT itr 6∈ dom (iteratorContainers) THEN

bb := 1

If the iterator hasn’t had BeginIterator called, then isEnd is true.

WHEN itr 6∈ dom (iteratorPointers) THEN

bb := 1

56

If the iterator has begun, and the cardinality of our internal sequence of items is equal to the cardinality of

the attached container, IsEnd is True.

WHEN size (iteratorItems (itr)) = card (containerItems (iteratorContainers (itr))) THEN

bb := 1

ELSE

In all other cases, IsEnd is false.

bb := 0

END

END ;

Next returns the next item in the iterator. If the iterator pointer is alreader pointing to the end of it’s internal

sequence in iteratorItems, we get a random item from the container that we have not visited yet and append

it to the end of our sequence of visited items in iteratorItems.

itm ←− Next (itr) =̂

PRE

itr ∈ iterators ∧

itr ∈ dom (iteratorItems) ∧

itr ∈ dom (iteratorContainers) ∧

itr ∈ dom (iteratorPointers)

THEN

SELECT iteratorPointers (itr) < size (iteratorItems (itr))

THEN

itm := iteratorItems (itr) (iteratorPointers (itr) + 1) ‖

iteratorPointers (itr) := iteratorPointers (itr) + 1

ELSE

ANY obj

WHERE

obj ∈ itemObjects ∧

obj ∈ containerItems (iteratorContainers (itr)) ∧

57

obj 6∈ ran (iteratorItems (itr))

THEN

itm := obj ‖

iteratorItems (itr) := iteratorItems (itr) ← obj ‖

iteratorPointers (itr) := iteratorPointers (itr) + 1

END

END

END ;

Previous returns the last viewed item. It decrements the iteratorPointer. Previous and Next can be called in

any order and we can guarantee that the same order of items will be presented due to the use of our internal

sequence of iterator items.

itm ←− Previous (itr) =̂

PRE

itr ∈ iterators ∧

itr ∈ dom (iteratorContainers) ∧

itr ∈ dom (iteratorPointers) ∧

iteratorPointers (itr) > 1

THEN

itm := iteratorItems (itr) (iteratorPointers (itr) − 1) ‖

iteratorPointers (itr) := iteratorPointers (itr) − 1

END ;

itr ←− NewIterator =̂

BEGIN

ANY ii

WHERE

ii ∈ OBJECT − iterators

THEN

itr := ii ‖

iterators := iterators ∪ { ii }

END

58

END

END

59

IteratorContainer Models the container that the iterator will iterate across. In this case, the container is simply

an unordered Set of items, also known as a Bag of items.

MACHINE IteratorContainer (ATTRIBUTE , max size)

max size models the maximum size of the container.

CONSTRAINTS max size ∈ N1

SEES Class CTX

INCLUDES IteratorItem (ATTRIBUTE , max size)

VARIABLES containerItems , containers

containers model the container objects, while containerItems map each container to an unordered set of

itemObjects. Note that in this container, it is impossible to have the exact same itemObject more than once

in the container.

INVARIANT containers ⊆ OBJECT ∧

containerItems ∈ containers 7→ P (itemObjects)

INITIALISATION containerItems := {} ‖

containers := {}

OPERATIONS

NewContainer instantiates a new Container of items

container ←− NewContainer =̂

BEGIN

ANY tt

WHERE tt 6∈ containers ∧

tt ∈ OBJECT

THEN

container := tt ‖

60

containers := containers ∪ { tt }

END

END ;

Add adds an Item to a container.

Add (container , item) =̂

PRE

container ∈ containers ∧

item ∈ itemObjects

THEN

SELECT container ∈ dom (containerItems)

THEN

containerItems (container) := containerItems (container) ∪ { item }

ELSE

containerItems (container) := { item }

END

END ;

Remove removes an item from a container.

Remove (container , item) =̂

PRE

container ∈ containers ∧

item ∈ itemObjects ∧

container ∈ dom (containerItems) ∧

item ∈ containerItems (container)

THEN

containerItems (container) := containerItems (container) − { item }

END ;

61

GetItem randomly retrieves an item from a container. This is random since the container is a simple set, so

no concept of order exists. The only get operation possible is a random get.

itm ←− GetItem (container) =̂

PRE

container ∈ containers ∧

container ∈ dom (containerItems) ∧

containerItems (container) 6= {}

THEN

ANY ii

WHERE ii ∈ containerItems (container)

THEN

itm := ii

END

END

END

62

This machine models a generic object contained in an Iterator container. When Iterator.Next() gets called, an

itemObject is returned.

MACHINE IteratorItem (ATTRIBUTE , max instance)

CONSTRAINTS max instance ∈ N1

SEES Class CTX

VARIABLES itemObjects , itemAttribute

itemObjects models the pool of allocated items in the iterator collection. itemAttribute maps each object to

a generic attribute, which will be used for comparison.

INVARIANT itemObjects ⊆ OBJECT ∧

itemAttribute ∈ itemObjects 7→ ATTRIBUTE

INITIALISATION itemObjects , itemAttribute := {} , {}

OPERATIONS

A Generic comparison operation. This would need to be modified to fit the problem at hand. The comparison

could change depending on what sort of iteration you needed to perform or the attribute you need to compare.

retVal ←− CompareItem (itm1 , itm2) =̂

PRE

itm1 ∈ itemObjects ∧

itm2 ∈ itemObjects ∧

itm1 ∈ dom (itemAttribute) ∧

itm2 ∈ dom (itemAttribute)

THEN

SELECT itemAttribute (itm1) = itemAttribute (itm2)

THEN

retVal := 0

WHEN itemAttribute (itm1) > itemAttribute (itm2)

THEN

63

retVal := 1

END

END ;

InstantiateItem constructs a new ytem to be put in an Iterator collection

newItem ←− InstantiateItem =̂

PRE

itemObjects 6= OBJECT

THEN

ANY itm

WHERE

itm ∈ OBJECT ∧

itm 6∈ itemObjects

THEN

itemObjects := itemObjects ∪ { itm } ‖

newItem := itm

END

END ;

DestroyItem destroys an item

DestroyItem (itm) =̂

PRE

itm ∈ itemObjects

THEN

itemObjects := itemObjects − { itm } ‖

itemAttribute := { itm } −C itemAttribute

END ;

64

SetItemAttribute assigns the attribute of the given item to the state given.

SetItemAttribute (itm , newAttribState) =̂

PRE

itm ∈ itemObjects ∧

newAttribState ∈ ATTRIBUTE

THEN

itemAttribute (itm) := newAttribState

END ;

GetItemAttribute returns the current state of the item’s attribute.

attr ←− GetItemAttribute (itm) =̂

PRE

itm ∈ itemObjects ∧

itm ∈ dom (itemAttribute)

THEN

attr := itemAttribute (itm)

END

END

65

Analysing the Iterator Pattern

The Iterator pattern is a subtly powerful pattern. Capturing the power of Iterator required the specification

of both an Item, a Container and an Iterator, all in a linear inclusion hierarchy. This is a departure from our

previous patterns, which have all involved a pattern machine including its participants. In this development, the

pattern machine itself is an object that uses the container.

The container provided is purely a set. It does not allow duplicate entries, and is unordered. That means that

the Iterator is faced with two challenges:

1. How to iterate through a container with no inherent order.

2. How to maintain the path of iteration to consistently support Next() and Previous() operations.

To solve this required consideration on the nature of the Iterator. The Iteratorregardless of implementation or

the container to iterate over - must impose its own concept of order on the collection. Two iterators can iterate

differently across a container because their concept of order is different. Since a Set has no concept of order, we

decided to use a random iteration strategy, pulling elements out of the set at random to place in a sequence of

objects. This sequence solves the second problem, as it allows us to consistently present the same results as we

traverse the set.

4.4.4 The Command Pattern

Command Pattern Usage and Goals

The Command pattern encapsulates a system ”command” as a single object which can be passed through the

system. This can assist in synchronising asynchronous requests through a request queue and allows undo and

redo operations.

Formalising the Command Pattern - from OO to B

Formalising the Command Pattern - B Specifications

Below are the salient B specifications for the command pattern.

66

CommandPattern
Invariant:
invokerCommand : invoker --> command
invokerUndoCommands : invoker --> seq(command)
invokerRedoCommands : invoker --> seq(command)
commandReceivers : command --> receiver
command <: COMMAND
Operations:
Execute(command)
Undo(command)
Redo(command)

CommandReceiver
Invariant:
receiver : RECEIVER
Operations:
ReceiverAction(rcvr)
ReceiverUndoAction
(rcvr)

CommandInvoker

invoker : INVOKER

Traditional OOP Command Pattern

B Model of the Command Pattern

Includes

Includes

This B model of the command pattern
also shows how to specify undo and redo
as well as encapsulating a command. It
uses the Association machine that
doubles as the command object to be
passed between the invoker and the
receiver.

The CommandPattern machine models
the command itself.

Receiver
Action()

Command
Execute()

ConcreteCommand
Execute()
state

The command receiver machine models the
receiver in the Command pattern and has a

ReceiverAction() operation that the command object
can call when it is invoked. In this case a

ReceiverUndoAction command has been included
to reverse a state change given the correct

parameters.

The Invoker machine models the
invoker class in the pattern. In this

case, the invoker is an empty
machine for which the user can

specify behaviour.

Client

Invoker

receiver->Action()

Invariant

Figure 4.8: Graphical representation of how the Command pattern is translated to B

67

MACHINE CommandReceiver (ATTRIBUTE , max instance)

The CommandReceiver machine models the receiver in the Command Design pattern. The interface includes

a ReceiverAction operation which is called by the command object when it is invoked. There is also a

ReceiverUndoAction operation that can be called which reverts the receiver object to a previous state

CONSTRAINTS max instance ∈ N1

SEES Class CTX

In this command desig pattern template, variables are required to model the set of receiver objects and an

arbitrary attribute. The user can change this machine so it carries out useful operations by remodelling the

attributes.

VARIABLES receiverObjects , receiverAttribute

INVARIANT receiverObjects ⊆ OBJECT ∧

receiverAttribute ∈ receiverObjects 7→ ATTRIBUTE

INITIALISATION receiverObjects , receiverAttribute := {} , {}

OPERATIONS

ReceiverAction is a skip operation in this templatised example and is the operation called by the invoked

command object in the CommandPattern machine that includes this machine

ReceiverAction (rcvr) =̂

PRE

rcvr ∈ receiverObjects

THEN

skip

END ;

68

UndoAction, given a parameter undo what was done by ’ReceiverAction’ and return this receiver to its

previous state. Because this machine holds no state, it is a skip operation that can be changed by the user.

ReceiverUndoAction (rcvr) =̂

PRE

rcvr ∈ receiverObjects

THEN

skip

END ;

Standard class operations: constructor, destructor, accessor and mutator are specified below using the stan-

dard process for modelling a class in B.

newReceiver ←− InstantiateReceiver =̂

PRE

receiverObjects 6= OBJECT

THEN

ANY rcvr

WHERE

rcvr ∈ OBJECT ∧

rcvr 6∈ receiverObjects

THEN

receiverObjects := receiverObjects ∪ { rcvr } ‖

newReceiver := rcvr

END

END ;

DestroyReceiver (rcvr) =̂

PRE

rcvr ∈ receiverObjects

THEN

receiverObjects := receiverObjects − { rcvr } ‖

receiverAttribute := { rcvr } −C receiverAttribute

69

END ;

SetReceiverAttribute (rcvr , newAttribState) =̂

PRE

rcvr ∈ receiverObjects ∧

newAttribState ∈ ATTRIBUTE

THEN

receiverAttribute (rcvr) := newAttribState

END ;

attr ←− GetReceiverAttribute (rcvr) =̂

PRE

rcvr ∈ receiverObjects ∧

rcvr ∈ dom (receiverAttribute)

THEN

attr := receiverAttribute (rcvr)

END

END

70

MACHINE CommandPattern (RCVRATTRIBUTE , IVRATTRIBUTE , maxInstance)

Models the Command Design Pattern using generic Receiver and Invoker class machines. This machine is

a model of the Command Class itself within the pattern as well as modelling the relationships between the

Invoker and Receiver objects and their command objects.

CONSTRAINTS maxInstance ∈ N1

The system-wide context machine used in this development only contains the a generic ’Object’ type so the

types of the attributes for the CommandReceiver and CommandInvoker machines are passed to them via

machine parameters. In an application of this command design pattern, a context machine would be used to

define types.

SEES Class CTX

Variables are required to map invokers to the:

• current command are going to invoke

• the stack of commands that have been executed (Undo stack)

• the stack of commands that have been undone and need to be re-executed (Redo stack)

A variable is also required to map command objects to their receiver so and also to hold the set of instantiated

command objects in the system.

INCLUDES CommandReceiver (RCVRATTRIBUTE , maxInstance) , CommandInvoker (IVRATTRIBUTE , maxInstance)

VARIABLES

Invoker to Command associations

invokerCommand ,

invokerRedoCommands ,

invokerUndoCommands ,

Command to Receiver association

71

commandReceivers ,

Set of command instantiations

commandObjects

The invariant is used to specify the relationships between the class instantiations (invokers, receivers and

commands) in this pattern. What is particular about this invariant is the use of B sequences to model stacks.

Because command are placed in undo and redo stacks, the ordering of the collection that the invoker refers

to is important which mandates the use of sequences.

INVARIANT commandObjects ⊆ OBJECT ∧

commandReceivers ∈ commandObjects → receiverObjects ∧

invokerCommand ∈ invokerObjects 7→ commandObjects ∧

invokerUndoCommands ∈ invokerObjects 7→ seq (commandObjects) ∧

invokerRedoCommands ∈ invokerObjects 7→ seq (commandObjects)

INITIALISATION invokerCommand ,

invokerRedoCommands ,

invokerUndoCommands ,

commandReceivers ,

commandObjects := {} , {} , {} , {} , {}

OPERATIONS

Operations within this machine are divided into three segments.

• Invoker operations these always take an invoker object as the first argument and are part of the invoker

interface.

• Command operations these take a command object as the first argument and are part of the command

interface.

Invoker Operations

ExecuteCommand part of the invoker interface and specifies that the current command that the invoker

is referencing should be executed on the receiver by calling ReceiverAction in the receiver machine. The

command is then added to the undo stack for its invoker

72

ExecuteCommand (ivkr) =̂

PRE

ivkr ∈ dom (invokerCommand)

THEN

ReceiverAction (commandReceivers (invokerCommand (ivkr))) ‖

Everytime we execute a comand we need to clear the Redo queue

invokerRedoCommands (ivkr) := [] ‖

The command is added to the undo stack in the following B segment

SELECT

ivkr ∈ dom (invokerUndoCommands)

THEN

Pushing a comand onto a stack by prepending to the sequence

invokerUndoCommands (ivkr) := invokerCommand (ivkr) → invokerUndoCommands (ivkr)

ELSE

If a sequence for that invoker is non-existant, then specify the creationg of a new sequence

invokerUndoCommands (ivkr) := [invokerCommand (ivkr)]

END

END ;

Undo is a specification of how to undo an operation. A command must be popped from the undo stack and

executed by the ReceiverUndoAction in the receiver machine. This command is then pushd onto the redo

stack for the invoker that was given as the argument.

Undo (ivkr) =̂

PRE

ivkr ∈ dom (invokerUndoCommands) ∧

size (invokerUndoCommands (ivkr)) > 0

THEN

73

Specifying non-deterministically how to pop the first command from the undo stack. This is done by specifying

that the command required is the first command in the undo sequence

ANY firstCmd

WHERE firstCmd ∈ ran (invokerUndoCommands (ivkr)) ∧

firstCmd = invokerUndoCommands (ivkr) (1) ∧

firstCmd ∈ dom (commandReceivers)

THEN

After acquiringg the first command, then the sequence is re-assigned to its tail

invokerUndoCommands (ivkr) := tail (invokerUndoCommands (ivkr)) ‖

Calling the correct receiver to carry out undo using the command object

ReceiverUndoAction (commandReceivers (firstCmd)) ‖

Push undo action to the Redo LIFO

SELECT

ivkr ∈ dom (invokerRedoCommands)

THEN

invokerRedoCommands (ivkr) := firstCmd → invokerRedoCommands (ivkr)

ELSE

invokerRedoCommands (ivkr) := [firstCmd]

END

END

END ;

Redo is the reversal of the Undo operation and is specified exactly in exactly the same style but the command

object is popped from the redo queue, processed using a receiver and then pushed onto the undo queue.

Redo (ivkr) =̂

PRE

ivkr ∈ dom (invokerRedoCommands) ∧

74

size (invokerRedoCommands (ivkr)) > 0

THEN

ANY firstCmd

WHERE firstCmd ∈ ran (invokerRedoCommands (ivkr)) ∧

firstCmd = invokerRedoCommands (ivkr) (1) ∧

firstCmd ∈ dom (commandReceivers)

THEN

invokerRedoCommands (ivkr) := tail (invokerRedoCommands (ivkr)) ‖

ReceiverAction (commandReceivers (firstCmd)) ‖

SELECT

ivkr ∈ dom (invokerUndoCommands)

THEN

invokerUndoCommands (ivkr) := firstCmd → invokerUndoCommands (ivkr)

ELSE

invokerUndoCommands (ivkr) := [firstCmd]

END

END

END ;

Assigning a command object to an invoker object for execution.

AddCommand (ivkr , cmd) =̂

PRE

ivkr ∈ invokerObjects ∧

cmd ∈ commandObjects

THEN

invokerCommand (ivkr) := cmd

END ;

The Command Operations below take a command object as the first argument and are part of the comand

interface

75

Constructor for a command object

newCommand ←− InstantiateCommand (rcvr) =̂

PRE

commandObjects 6= OBJECT ∧

rcvr ∈ receiverObjects

THEN

ANY cmd

WHERE

cmd ∈ OBJECT ∧

cmd 6∈ commandObjects

THEN

commandObjects := commandObjects ∪ { cmd } ‖

commandReceivers (cmd) := rcvr ‖

newCommand := cmd

END

END ;

SetCommandReceiver assigns a receiver to a command object so the command object will call the correct

receivers methods when it is invoked

SetCommandReceiver (cmd , rcvr) =̂

PRE

cmd ∈ commandObjects ∧

rcvr ∈ receiverObjects

THEN

commandReceivers (cmd) := rcvr

END ;

rcvr ←− GetCommandReceiver (cmd) =̂

PRE

cmd ∈ commandObjects ∧

cmd ∈ dom (commandReceivers)

76

THEN

rcvr := commandReceivers (cmd)

END

END

77

Analysing the Command Pattern

Like the Iterator B model, the Command B model uses the association-machine pattern to model the relationship

between the invokers and receivers. The association-machine itself is used to model the command objects so

that that relationships can be specified between an invoker and its command, and command and the receiver

it will call the action() methods. Invoker and Receiver specific behaviour can be specified by the user in the

corresponding machines. What is central to the command pattern is modelled in the CommandPattern machine

and these are the three operations Execute, Undo and Redo which are all given only the invoker as the argument.

These operations will cause the current command referred to by the invoker to call the action the receiver it

refers to allowing the encapsulation of method calls as is described in the GoF command design pattern.

4.5 Analysis of Findings

Our goal for this chapter has been to examine how an ”Object” abstraction can be introduced and used in B. We

examined how classes interact in OO can be modelled easily in B, and modelled four design patterns in B using

this methodology. However, this process is far from bullet-proof. Not all patterns can or should be modelled

using the ”Object” abstraction, when B might have a more natural way of expression.

Furthermore, we have attempted to provide abstract specifications of these four design patterns, such that the

specifications could conceivably be modified and used in a real, context-ful system. This is possible because the

patterns presented all encapsulate some functionality that can be expressed. Many other patterns - the majority

of patterns - cannot be modelled this abstractly and still be of use, because they rely too heavily on the problem

context. Examples of such patterns include Adapter and Mediator.

Finally, we have found that divide between OO methodologies and B can cause issues when specifying OO design

patterns. Some patterns do not make sense in a specification because they are far more relevant to an implemen-

tation strategy. Specification in B is not intended to decide an implementation route for the implementer, rather

it should guide the implementer in their decisions so that the invariant and preconditions in the specification

are held true by the implementation. Most design patterns almost do decide an implementation route for the

implementer. In fact, it would be fair to say that some of the specifications listed above are not abstract enough

for B specifications, and should be made more flexible. This is likely due to our attempts to specify a system

design. This is somewhat akin to providing implementation details and some code in a UML class diagram. It

is not exactly wrong, just not really the best way of doing things.

78

Chapter 5

Patterns in B and a B centric pattern

taxonomy

Patterns exist in many forms, across development paradigms and even across disciplines. The concept of a design

pattern was first recognised by the architect Christopher Alexander, who said

”each pattern describes a problem which occurs over and over again in our environment, and then

describes the core of the solution to that problem, in such a way that you can use this solution a

million times over without ever doing it the same way twice” [A Pattern Language, Alexander et al,

1977]

While he was discussing patterns in constructing cities and buildings, when we talk about patterns in computer

science, the same could be said. Patterns exist in many different shapes and forms, and they can be categorised

based on shared traits. In this chapter we examine how we can categorise the patterns that occur in the world

of B, how that compares and contrasts with those that occur in the world of OO, as laid out in Design Patterns,

Elements of Reusable Object-Oriented Software, Gamma et al, 1995.

5.1 The traditional taxonomy of Object Oriented Design Patterns

Design Patterns, Elements of Reusable Object-Oriented Software categorises patterns into three categories, based

on the context and intent of the pattern. These categories are:

• Creational - These patterns all describe methods of creating objects for certain situations. Examples of

creational patterns include the Factory Method and Singleton patterns.

79

• Structural - These patterns describe ways to structure your system to acheive a certain result. Examples

include the Adapter, Flyweight, Composite and Facade patterns.

• Behavioral - These patterns describe methods to reproduce commonly required system behaviours. Ex-

amples include the Observer, Strategy,Iterator and Command patterns.

These are good categories for patterns that exist in the OO world. B, However, is an entirely different development

paradigm. B’s three phases of development outlined in chapter two do not map directly with the phases of an

OO development, such that when working with B, some patterns sometimes shift in emphasis enough to be

reclassified. For example the only difference between the Flyweight and Observer pattern in B is the functional

intent and the sharing of Flyweight objects. In many ways, Flyweight can be considered a Creational pattern

in B. Aside from these shifts in emphasis, many patterns can be achieved in entirely different ways that in the

OO world. Some patterns are almost features of B. Overall, there are many compelling reasons to consider a

new taxonomy of patterns specific to B to aid understanding how patterns manifest themselves in the world of

B. These reasons include:

• Higher levels of abstraction B specifications are more abstract than a design. Thus some patterns

cannot become apparent until later stages of refinement or even implementation. This unavoidably alters

the perception of a pattern, its functional emphasis alaflyweight and even its usage.

• Redundant patterns It can be said that some cases a pattern is in fact a sign of a dearth of sufficiently

powerful programming abstractions. When working with B, some patterns are not needed as the intent

behind the pattern is provided by inbuilt features.

Overall, this makes a case for us to consider how a B centric pattern taxonomy might appear, and how we could

reclassify patterns in order to more naturally understand how they are modelled in B.

5.2 A B centric Pattern Taxonomy

Patterns in B appear in different shapes and at different stages in development. Some patterns are similar to

those that appear in the OO world, others are strangers to the OO world, and yet more are foundational - they

don’t appear in the OO world as patterns because they are platform features, or they are irrelevant to the OO

world. We propose the following categories best capture the different types of patterns in B.

• Foundational Patterns provide abstraction concepts. They are the foundation that other patterns build

on. Examples are B specific patterns such as Object and Interface and will be discussed in detail in the

following section.

80

• Behavioural Patterns are much the same as for OO design patterns. These patterns describe methods

to reproduce commonly required system behaviours. Examples include the Observer, Strategy,Iterator and

Command patterns.

• Structural Patterns are much the same as for OO design patterns. These patterns describe how to

compose machines to achieve a certain outcome. Examples include Bridge, Adapter and Facade

• Implementation Patterns describe patterns that appear while undertaking the process of Implemen-

tation. They describe common ways to implement machines that are specified in a certain manner. The

Object Implementation Pattern is an example to be discussed in the next section.

• Invariant Patterns describe patterns that are mainly specified within the Invariant of a machine. Thus

they constrain the state of the machine and hence the behaviour it can support. These patterns are simply

targeted usage of predicates to attain an outcome supported by certain operations Examples include the

Singleton pattern.

The Creational patterns category has not been included, since such patterns are often Invariant patterns sup-

ported by operations to acheive a certain constraint on how elements of sets are distributed to the user. It

must be mentioned that the above are no longer necessarily design patterns, since they can be seen and used

in any phase of a B development. It is clear that more research needs to be done in this area to document B

specific patterns. It would also be worth exploring how all of the GoF OO design patterns identified fit into

these categories, but that is outside the scope of this thesis.

5.3 Patterns as platform features

Some mention before was made of patterns that are redundant or made significantly easier in B due to features

of the platform. In this section we will cover some of those patterns and how they can be achieved in B.

5.3.1 The Singleton Pattern

We have classified the Singleton pattern as an Invariant pattern, because it’s intent is achieved almost solely

through an Invariant. The Invariant for the Singleton pattern would simply need to express the fact that the

object’s set must have a cardinality of 1. Once this is specified, operations surrounding that would need to check

if the cardinality of the set is 0, and if not, return the only object in that set.

81

5.3.2 The Bridge Pattern

The Bridge pattern is largely dealt with as part of B. Once a machine is specified, it can be refined and

implemented in as infinitely many ways as the developer desires. Thus the intent of Bridge, which is to allow

abstract representations of a system to vary independently of the implementations of the system, is satisfied by

the mechanisms B already has in place. However, due to the nature of the pattern, we have still classified it as

a structural pattern since it relies on the structuring of developments to acheive its goal.

5.3.3 The Visitor Pattern

The Visitor pattern is about separating a data structure from the operations you want to perform on that data

structure. This is achieved in the OO world by the use of a functor or function object passed in to an operation to

’visit’ the data structure. When using B, this is unnecessary since any function can be passed in as an argument

to the operation. Also, B allows lambda abstractions which can be used to aid the developing of Visitors for a

data-structure. The Visitor pattern is a truly interesting example of a pattern which changes significantly in the

B paradigm, and deserves further research that is outside the scope of this work.

5.3.4 The State Pattern

The State pattern allows an object to alter its behaviour when its internal state changes and is derived from a

finite state machine model. B machines are particularly well suited to modelling FSMs because the invariant

can be used to constrain the state of the machine. One possible method of doing this is to have a set of states

that the machine can enter into and use the invariant to determine whether or not a machine should be in

that state. The machines behaviour can then be altered by looking at which state the machine is in using

SELECT..WHEN..THEN clauses that specify different behaviours within an operation dependent on the state.

In fact, the B specification of the Interface pattern closely approximates the behaviour of the State pattern.

5.4 Examining B specific Patterns

While developing our case studies in the following chapter we began to discover several patterns that occur com-

monly when developing with B. We have briefly introduced them above when placing them in certain categories.

Here we will define and discuss them in more detail.

82

5.4.1 Foundation Patterns

Modelling Classes in B : The Object Pattern

In chapter four we outlined how classes and objects can be modelled in B. After seeing this pattern re-occur in

many of our developments did we come to realise that this was a pattern - one that was obviously not required

in the OO world, but can be very useful when working with B.

Dynamic Typing, Polymorphism and Interfaces in B : The Interface Pattern

Many OO patterns require the concept of polymorphism, and still more refer to the concept of a shared interface.

While developing the case study which involved usage of the Strategy pattern, it became apparent that we would

need some concept of an Interface in B to support the pattern. Further work showed that an Interface can be

specified in B in a generic fashion that can easily be reused.

Pattern Structure and Behaviour

In mathematical terms, an interface or a superclass can be represented by a set, in which all implementations

resides. By building on the Object pattern, we begin by specifying an interface object. Each interface object

maps to a type, and using this type we can ascertain object’s implementation identity.

A corollary to this is that object creation must be managed through the Interface machine in order to correctly

maintain the pool of interface objects, ensuring no object can be two objects at once. Furthermore operations

are called on the Interface machine, not on the implementation machines. The operations are then re-delegated

to the implementation machine based on the implementation type of the object. The abstract nature of the

interface makes it difficult to express in a generic fashion. As such, we present a simple shape interface, with

three implementers : Square, Rectangle and Triangle. The following figure shows an overview of the B machines

and the development hierarchy.

A Shape Interface: Requirements

• We create a Shape Interface, representing a generic two dimensional geometric shape.

• The interface will have two methods which could be applied to any shape: Area and Perimeter.

• We will implement this interface for three shapes; Square, Rectangle and Triangle, demonstrating that

calling the same Area() and Perimeter() operation for each shape can provide different results according

to the particulars of each shape.

83

Square
SideLength
Squares

NewSquare(shape,sidelength)
SquareArea(shape)
SquarePerimeter(shape)

Rectangle
Rectangles
Height
Width

NewRectangle(shape,height,width)
RectangleArea(shape)
RectanglePerimeter(shape)

Triangle
Triangles
LeftSide
RightSide
Height
Base

NewTriangle(shape,height,base,left,right)
SquareArea(shape)
SquarePerimeter(shape)

Shape
SHAPE_TYPE = {RECTANGLE, TRIANGLE, SQUARE}
Shapes
Shapes : Shapes --> SHAPE_TYPE

Rectangle(height,width)
Triangle(height,base,left,right)
Square(sidelength)

Area(shape)
Perimeter(shape)

These methods are
constructors. They
generate a new shape
and pass the shape
through to the concrete
object's constructor.

These methods are the
interface methods.
 Based on the type
associated with the given
shape, they redirect the
call to the <Type>Area()
operation in the
appropriate concrete
Machine.

Includes

Figure 5.1: Graphical representation of the Interface pattern in B

84

A Shape Interface: B Specifications

The following B machines are the Interface machine and the Triangle and Rectangle implementations. The

Square follows much along the lines of others and adds little to the discussion. However, the full development is

listed in the appendix.

85

The Shape Interface machine provides constructors for each type that implements the Shape interface, and the

operations belonging to the Interface, namely Area and Perimeter.

MACHINE Shape Interface

The Interface machine must include all of the machines that ’implement’ the interface, in this case the Shapes

Rectangle, Square and Triangle.

SEES Shape ctx

INCLUDES Shape Rectangle , Shape Square , Shape Triangle

Each shape needs to declare its shape type here, to allow us to distinguish what Shape a ShapeID corresponds

to.

SETS SHAPE TYPE = { SQUARE , RECTANGLE , TRIANGLE }

The variable Shapes is the set of all s belonging to instantiated shapes. The variable Shapes maps Shapes to

their SHAPE TYPE.

VARIABLES

Shapes ,

ShapeTypes

Our invariant shows that the set Shapes is in fact the union of all the Shapes: Rectangles, Squares and

Triangles, which are managed in the shape’s individual machine. We also assert that all the sets of individual

shape identifiers are invariantly disjoint, i.e that their mutual intersection is constantly the empty set. This

ensures that a Triangle cannot simultaneously be a Rectangle!

INVARIANT

Shapes ⊆ SHAPE ∧

ShapeTypes ∈ Shapes → SHAPE TYPE ∧

Shapes = Rectangles ∪ Squares ∪ Triangles ∧

86

Rectangles ∩ Squares ∩ Triangles = {}

INITIALISATION

Shapes := {} ‖

ShapeTypes := {}

OPERATIONS

The Interface machine has two types of operations. The first type are constructors, which take in the

shape’s parameters, and allocate a unique ID to the shape. They then call upon the shape’s own machine,

passing through the unique ID and parameters to actually create the object. This allows us to maintain the

SHAPE TYPE of each shape in accordance with our invariant, while the individual characteristics of the

shape are managed by the shape’s own machine.

The second type are the operations of the interface itself. We pass in the shape’s id that we want to operate

on, and the operation delegates the call to a specific shape machine, based on the object’s type. In this way

we can simulate a B flavoured version of polymorphism a set of shapes can be treated as a set of shapes, yet

they can provide different responses when queried.

sid ←− Rectangle (height , width) =̂

PRE

height ∈ N1 ∧

width ∈ N1

THEN

ANY rid

WHERE

rid ∈ SHAPE − Shapes

THEN

sid := rid ‖

Shapes := Shapes ∪ { rid } ‖

ShapeTypes (rid) := RECTANGLE ‖

NewRectangle (rid , height , width)

END

END ;

sid ←− Square (side) =̂

87

PRE

side ∈ N1

THEN

ANY rid

WHERE

rid ∈ SHAPE − Shapes

THEN

sid := rid ‖

Shapes := Shapes ∪ { rid } ‖

ShapeTypes (rid) := SQUARE ‖

NewSquare (rid , side)

END

END ;

sid ←− Triangle (left , right , base , height) =̂

PRE

left ∈ N1 ∧

right ∈ N1 ∧

base ∈ N1 ∧

height ∈ N1

THEN

ANY rid

WHERE

rid ∈ SHAPE − Shapes

THEN

sid := rid ‖

Shapes := Shapes ∪ { rid } ‖

ShapeTypes (rid) := TRIANGLE ‖

NewTriangle (rid , left , right , base , height)

END

END ;

88

These are the Interface’s Operations, Area() and Perimeter(). Each one will query the shape to find the

correct calculation of the particular shape’s area.

ans ←− Area (sid) =̂

PRE

sid ∈ Shapes

THEN

SELECT ShapeTypes (sid) = SQUARE ∧ sid ∈ Squares THEN

ans ←− SquareArea (sid)

WHEN ShapeTypes (sid) = RECTANGLE ∧ sid ∈ Rectangles THEN

ans ←− RectangleArea (sid)

WHEN ShapeTypes (sid) = TRIANGLE ∧ sid ∈ Triangles THEN

ans ←− TriangleArea (sid)

END

END ;

ans ←− Perimeter (sid) =̂

PRE

sid ∈ Shapes

THEN

SELECT ShapeTypes (sid) = SQUARE ∧ sid ∈ Squares THEN

ans ←− SquarePerimeter (sid)

WHEN ShapeTypes (sid) = RECTANGLE ∧ sid ∈ Rectangles THEN

ans ←− RectanglePerimeter (sid)

WHEN ShapeTypes (sid) = TRIANGLE ∧ sid ∈ Triangles THEN

ans ←− TrianglePerimeter (sid)

END

END

END

89

The Shape Rectangle machine provides the Shape Interface’s operations for a rectangle. It tracks each Rectangle’s

height and width parameters and uses these to calculate it’s area and perimeter.

MACHINE Shape Rectangle

SEES Shape ctx

VARIABLES

Rectangles ,

Height ,

Width

INVARIANT

Rectangles ⊆ SHAPE ∧

Height ∈ Rectangles → N1 ∧

Width ∈ Rectangles → N1

INITIALISATION

Rectangles := {} ‖

Height := {} ‖

Width := {}

OPERATIONS

The NewRectangle operation instantiates a new rectangle with the height and width provided. The new

rectangle’s ID is provided by the Shape Interface machine to keep consistency with the other Shapes.

NewRectangle (ids , ht , wd) =̂

PRE ids 6∈ Rectangles ∧

ids ∈ SHAPE ∧

ht ∈ N1 ∧

wd ∈ N1

THEN

Rectangles := Rectangles ∪ { ids } ‖

Height (ids) := ht ‖

90

Width (ids) := wd

END ;

RectangleArea() is called by the Shape Interface machine’s operation Area(). Using a rectangle’s height and

width attributes, it returns the area of the rectangle. RectanglePerimeter() operates in a similar manner.

ans ←− RectangleArea (ids) =̂

PRE ids ∈ Rectangles

THEN

ans := Height (ids) × Width (ids)

END ;

ans ←− RectanglePerimeter (ids) =̂

PRE ids ∈ Rectangles

THEN

ans := Height (ids) × 2 + Width (ids) × 2

END

END

91

The Shape Triangle machine provides the Shape Interface’s operations for a triangle. It is built in the same

fashion as the Rectangle, but providing for the characteristics of a triangle.

MACHINE Shape Triangle

SEES Shape ctx

VARIABLES

Triangles ,

SideLeft ,

SideRight ,

Base ,

Vertical

INVARIANT

Triangles ⊆ SHAPE ∧

SideLeft ∈ Triangles → N1 ∧

SideRight ∈ Triangles → N1 ∧

Base ∈ Triangles → N1 ∧

Vertical ∈ Triangles → N1

INITIALISATION

Triangles := {} ‖

SideLeft := {} ‖

SideRight := {} ‖

Base := {} ‖

Vertical := {}

OPERATIONS

NewTriangle (ids , sideL , sideR , bs , ht) =̂

PRE ids 6∈ Triangles ∧

ids ∈ SHAPE ∧

sideL ∈ N1 ∧

sideR ∈ N1 ∧

92

bs ∈ N1 ∧

ht ∈ N1

THEN

Triangles := Triangles ∪ { ids } ‖

SideLeft (ids) := sideL ‖

SideRight (ids) := sideR ‖

Base (ids) := bs ‖

Vertical (ids) := ht

END ;

ans ←− TriangleArea (ids) =̂

PRE ids ∈ Triangles

THEN

ans := Base (ids) × Vertical (ids) / 2

END ;

ans ←− TrianglePerimeter (ids) =̂

PRE ids ∈ Triangles

THEN

ans := SideLeft (ids) + SideRight (ids) + Base (ids)

END

END

93

Discussion

One difficulty presented by this pattern was that we needed a way to model calling a single method DoSomething,

while having the implementation of that method changeable on the fly, to a faster DoSomething or a more mem-

ory efficient DoSomething. This resulted in the adopted approach - the ”Interface” methods simply query the

type of the object and redirect the Operation call to a concrete, implemented machine, and returns the answer.

In this manner, the operations in the implementing machines do not need to name these methods in the same

way. Instead the client calls the Interface machine, and the Interface decides how to handle it.

Another issue related to the instantiation of ”objects”. There is a need to manage all new objects centrally to

ensure that an object is typed correctly and that no object can have two concrete types simultaneously, which is

undesirable in our current situation. This means that the B machine that implements the interface cannot assign

their own objects, but that this object must be handed down from a central location - the interface machine,

and the concrete machine then uses this object to map its typespecific attributes.

Pattern consequences

The interface pattern yields some interesting consequences.

• A system API is significantly easier to develop when the Interface pattern is used. This is because the

number of userfacing operations is reduced since each concrete type’s operations are hidden behind the

Interface machine. This helps reduce complexity for the API developer since protected operations for each

type are unneeded.

• Creating a new type to implement an interface requires changes to the Interface machine, including ”wiring

in” the new type’s information. However, the good news is that such a change is clearly a straight forward

process that could be implemented in a tool to help in the exercise.

• Since we are using B, we now have the ability to make stronger logical assertions about the relationship

between types that implement an interface.

• We are still left with the same problem that exists in the OO paradigm there is no guarantee that an

operation fulfils its behavioural contract as intended by the creator of the interface.

• We are unable to enforce that an implementing machine implements all of the interface’s operations; that

these operation’s preconditions are the same infacttheycannotbethesame; that the operations have the

same signature across each implemented type. The lattermost is largely unnecessary since the concrete

type’s operations remain unexposed.

94

• It is obvious that this pattern would benefit from a tool that can help a user enforce some rules across all

machines that implement an interface.

• While named the Interface pattern, this pattern shares similarities with Object Oriented inheritance. This

is most obvious in the relationship between concrete types and the abstract types, since the concrete type

is a subset of the abstract type. Added methods could be promoted through the interface where required,

yielding further specialisations of the object.

5.4.2 An Implementation Pattern

Outside the realm of OO, we believe that a discussion on B centric patterns would be incomplete without a pattern

to provide users a template and a process to implement their B specifications, specifically implementation of B

Class-specifications presented in the previous chapter. If users are able to repeat-ably use the B class specification

process to derive B machines representing their system from an OO abstraction, then it follows that there should

be a process for the user to follow for implementing that B specification of classes and class associations.

This section will present one such process for implementation by demonstrating how the Class specification

machine in Chapter 4 is implemented. Because Class specifications are relatively concrete, our process enables

the omission of the refinement process in B. If the specification were more abstract however, then the user may

need to incrementally refine the specification before implementing it, a discussion of refinement remains outside

the scope of this thesis as we are primarily concerned with developing patterns or repeatable processes for direct

implementations of specifications.

Implementing an Object using the B: Object Implementation

Implementation machines of B specifications are fully encapsulated and are unable to access the state of any

other implementations. They can only interact with other machines via the mechanism of importing specifications

which provides the interfaces to their own implementations. This is because implementations must contain a

set of Operation signatures that are congruent with the Operation signatures of the specification. Furthermore,

implementations do not have any state of their own.

Bearing these constraints in mind, one might ask how we intend to implement the variables within a specification

if an implementation does not have any state of its own. This is done through importing B SLIB machines

that represent data structures, such machines model arrays, functions, sets and have their own corresponding

implementation which is hidden from the user. These machines have their variables unified with the variables

of the user specification in the invariant of the implementation to provide the facility to prove correctness.

The implementations ’state’ is then changed by calling the operations within those SLIB machines that are

implementations of the variables. The following diagram shows how specifications can be made to map to their

95

B implementations.

The following is a fully annotated B implementation of the Class specification describing how to implement a B

specification model of a OO Class.

96

B Implementation of the Class Specification Machine

B Machine: Class
Variables

 objects
 objectString
 objectNat

Invariant

 object <: OBJECT &
 objectString : objects +-> STRING &
 objectNat : objects --> NAT

Operations

newObject <-- Instantiate(iniitalNat)
Destroy(object)

SetObjectString(obj, str)
str <-- GetObjectString(obj)
SetObjectNat(obj, nat)
num <-- GetObjectNat(obj)

num <-- IncrementNat(obj)
num <-- SquareNat(obj)

Specification Implementation

B Machine: ClassI
Invariant
 objects <: 1..max_instance
 dom(objectString_Nfnc) = objects
 dom(objectString_Vfnc) = objects

Operations

newObject <-- Instantiate(iniitalNat)
Destroy(object)

SetObjectString(obj, str)
str <-- GetObjectString(obj)
SetObjectNat(obj, nat)
num <-- GetObjectNat(obj)

num <-- IncrementNat(obj)
num <-- SquareNat(obj)

objectString_Vfnc

objectNat_Nfnc

objecttokens_Nvar

B SLIB machines

Imports

Implements

B Implementations must
import SLIB machines to

implement the variable state
of the specification

Figure 5.2: Implementing a B specification derived from a Class

97

IMPLEMENTATION ClassI

ClassI is an implementation of the Class specification machine presented in Chapter 4 demonstrating how to

model classes in B. This generic implementation will show how to implement a specification that follows the

B class model and forms the basis for a repeatable pattern/process to implement B specification models of

Object Oriented classes.

Implementation is a special case of refinement where the implementing machine does not have any variables

to store state. Instead it must import SLIB specification machines from the B library that are used to model

data structures such as arrays, sets, sequences etc and uses those to store the state of the variables. The

variables from the specification must be unified with the variables from the imported SLIB machines used to

implement those variables to be able to prove that the implementation matches the specification.

REFINES clause states which machine we are implementing, in this case the Class machine

REFINES Class

The SEES composition mechanism is still available in B implementations, so we have access to certain data

types, however, these seen machines also need to have a corresponding implementation. objectString str ctx

is used in substitution of the String TYPE machine in the specification.

SEES Class CTX , Bool TYPE , objectString str ctx , Int TYPE

IMPORTS

objecttokens Nvar is a enum variable machine that allows us to keep track of the value of the highest pointer

that has been assigned to an object.

objecttokens Nvar (max instance) ,

freepointers keeps a track of all the unused pointers in the system. We do not need to track the assinged

pointers in the system as that is up to the user

freepointers set (OBJECT , max instance) ,

objfree Nvar is used to store the index of the first free placeholder in the array so we can recycle ’pointer

addresses’ when objects are destroyed

objfree Nvar (max instance) ,

98

objectNat Nfnc is a function machine that maps object pointers to their objectNat attribute, Function ma-

chines used to map objects to attributes in the implementation process.

objectNat Nfnc (2147483646 , max instance) ,

objectString Vfnc is a function machine that maps object pointer to their objectString attribute. Vfnc ma-

chines allow pointer to map to a deferred type given as a parameter. In this case we have passed in the

STRING deferred set from the String TYPE machine.

objectString Vfnc (objectString STROBJ , max instance)

The PROPERTIES clause in an implementation can be used to make deferred sets concrete. Below, the

deferred set of OBJECTS is made to equal the set of integers rom 0 to max instance provided as a parameter

at the top. This is akin to OBJECTS being a set of ’pointers’.

PROPERTIES OBJECT = 0 . . max instance

The invariant in the implementation is used for drawing a relationship between the imported implementation

machines which hold the state of the implementation with the variables from the specification machine.

INVARIANT

objects ⊆ 1 . . max instance ∧

objects ∪ freepointers sset = 1 . . objecttokens Nvar ∧

objects ∩ freepointers sset = {} ∧

Creating a relationship between the objectNat variable and the objectNat Nfnc machine

dom (objectNat Nfnc) = objects ∧

Creating a relationship between the objectString variable and the object Vfnc machine

dom (objectString Vfnc) = objects

Operations in implementation must match the interface in the specification and implement the specification

operations. As shown, all ’state’ changes are made by calling the operations from the imported machine to

change that machines state.

OPERATIONS

99

Constructor

newObject ←− Instantiate (initInt) =̂

VAR bb , newfree IN

Test to see if we have any free pointers

bb ←− freepointers EMP SET ;

If there are no free pointers left then allocate more ’memory’ and return the pointer to the new allocation

IF bb = TRUE THEN

objecttokens INC NVAR ;

newfree ←− objecttokens VAL NVAR

ELSE

If there are free pointers, then return a random pointer

newfree ←− freepointers ANY SET ;

freepointers RMV SET (newfree)

END ;

objectNat STO NFNC (newfree , initInt) ;

newObject := newfree

END ;

Destructor

Destroy (obj) =̂

VAR bb1 , bb2 IN

bb1 ←− freepointers MBR SET (obj) ;

bb2 ←− objecttokens GEQ NVAR (obj) ;

IF bb1 = FALSE ∧ bb2 = TRUE THEN

freepointers ENT SET (obj)

END ;

objectNat RMV NFNC (obj) ;

objectString RMV FNC (obj)

100

END ;

Accessors and Mutators for both attributes

SetObjectNat (obj , num) =̂

VAR bb IN

bb ←− objectNat DEF NFNC (obj) ;

IF bb = TRUE THEN

objectNat STO NFNC (obj , num)

END

END ;

num ←− GetObjectNat (obj) =̂

VAR bb , vv IN

bb ←− objectNat DEF NFNC (obj) ;

IF bb = TRUE THEN

vv ←− objectNat VAL NFNC (obj) ;

num := vv

END

END ;

DEFINITIONS max instance =̂ 2147483646

IMPORTS is a composition mechanism that gives this implementation access to the imported machines

operations. If the imported machine is implemented as well as is the case with the B SLIB machines then the

implementation can have C-code generated for it. In this example, machines are imported to implement the

set of instantiations as well as implementing the objectString attribute and the objectNat attribute.

END

101

Analysis of Implementation Pattern

A process has been devised to take B specifications of classes through to implementation. This provides the

framework for which specifications of the GoF pattern templates presented in chapter 4 can be be implemented

in B. The idea being that the user is presented with both an specification template of a pattern as well as

the corresponding implementation template. Once they have modified the specification template to suit their

requirements, then a modification of the implementation template can be made to produce implementations

matching the specification which models the system. A case study of this implementation is presented in Chapter

6.

102

Chapter 6

Applying a pattern based approach to

developing systems in B

Using the research findings from the previous two chapters, the following section aims to demonstrate how to

apply the processes and patterns that have been developed to solving ’real-world’ problems in B. This will be

performed through a number of casestudies on simple systems that will have their requirements listed followed

by a class diagram to present a design using a pattern that will satisfy those requirements or solve that particular

problem. Following on from this, we will use the patterns and processes in chapters 4 and 5 to produce a B

specification of the solution that would enable an implementation using B.

The case studies presented will include:

1. Share Watcher a system to model investors watching share prices to showcase the observer pattern.

2. Calculator a simple arithmetic calculator that supports unlimited undo and redo to showcase the com-

mand pattern. This case-study will also demonstrate how to use the object implementation pattern to

implement the individual specification machines.

3. Chess Game models a game of chess between two AI players to showcase the strategy pattern in action.

4. Spreadsheet Engine a spreadsheet application back-end to demonstrate composition of different design

patterns, in this case the observer and the command pattern.

It is hoped that these case-studies will provide the reader with insight into how B combined with the design

pattern process makes it easier to solve significant problems in B whilst keeping formality as a goal.

103

6.1 Case study: A Share Price watching system

6.1.1 System requirements

The Share Price watching system must model a group of investors watching the prices of shares and automatically

making decisions based on the price movements of those shares. Each investor watches only one share but one

share can have any number of investors watching it.

The system must provide a facility to create new shares which stores a unique 3-letter share symbol for identi-

fication and its price in the form of an integer. The share class must also have a method for updating its price

when the price on the share-market changes.

Investors must have a name, a unique identifier, a reference to the share they are watching and also a status

which is either one of BUY, SELL or HOLD. An investor must be able to specify the minimum price for which

they they want to sell a share at and a maximum price for which they want to buy a share at. If the share price

is between these two thresholds, then the status for that investor is set to HOLD, if the share price is above the

sell threshold then the investor should sell, and if the share price is below the buy threshold, the investor should

buy.

The system does not model the process of trading shares.

6.1.2 Pattern usage: Observer

An observer pattern is used to solve this problem because when the share price is updated, a notification should

be sent to all investors watching that share to indicate a change in price has occurred and the investors should

update their statuses accordingly.

An object-oriented class diagram of this is shown in diagram 6.1 with two classes investor and share. Abstract

observer and subject classes as specified in the GoF design pattern have been omitted for brevity. Each share

references a collection of investors to send notifications but a investor only references one share to do its status

update when it receives its notification.

104

To model the same system using B with the Observer pattern template, three machines will be required. The

first machine Investor is a specification of the Investor class. This Investor machine is derived from the Observer

machine presented previously. Its interface will allow for the construction and destruction of investor objects as

well as:

• Changing the buy and sell price thresholds

• Getting the current status of the investor.

• Updating the status of the investor by giving the investor the new share price for the share they are

observing.

• Setting the share that the investor is watching.

A Share machine is used to model the Share class. It’s interface contains operations to construct and destroy

share objects and set the price of a share.

A ShareWatcher machine is derived from the ObserverPattern machine and specifies the relationship between

the shares and investors in its invariant with each share referring to a set of investors for which it will send

notifications to. The interface of the ShareWatcher machine includes operations to:

• Attach an investor to a share

• Detach an investor for a share

• Update a shares price and in the same operation, notify the shares as required.

6.1.3 Specification

A fully annotated B-specification of the ShareWatcher system is provided below. Only the Investor machine

showing the multiple update function and the ShareWatcher machine (the ObserverPattern machine) are shown

here. Please refer to the appendix for the specification of the Share machine which uses the B class modelling

process to model the Share class.

105

Investor
String name;
int status;
int buyprice;
int sellprice;
Share subject;
Investor()
Investor~()
notify()
setSellPrice(int p)
setBuyPrice(int p)
setSubject(Share s)

Share
String symbol;
int price;
Investor[] observers;
Share();
Share~();
setSymbol(String symbol)
attachInvestor(Investor i);
detachInvestor(Investor i);
updateSharePrice(int newprice) {
 this.price = newprice;
 foreach observer in observers {
 observer.notify();
 }
}

Class Diagram of the Share Watcher system using the Observer Pattern

1 1..n

B machine structure for the Share Watcher system using the Observer Pattern

Investor
Invariant
investors <: INVESTOR
investorName : investors --> NAME
investorStatus : investors --> STATUS
investorBuyPrice : investors --> NAT
investorSellPrice : investors --> NAT
Operations
SetInvestorSellPrice(investor, price)
SetInvestorBuyPrice(investor, price)
UpdateInvestorStatus(investor +-> STATUS)

Share
Invariant
shares <: SHARE
shareSymbol : shares >->
SYMBOL
sharePrice : shares --> NAT
Operations
SetSharePrice(share, new price

ShareWatcher
Invariant
shareInvestors : shares --> POW(investors)
Operations
AttachInvestor(share, investor)
DetachInvestor(share, investor)
UpdateAndNotify(share, newprice)

includes includes

Figure 6.1: Comparing Class Diagram and B machine structure for Share Watcher System

106

MACHINE Investor

Investor machine is a representation of the investor class inside this Observer Pattern case study. The investor

is the observer in the pattern and this machine models all the investor specific functions that are required.

SEES ShareWatcher CTX

Each investor object will have attributes to store the following information

• investorName is a form of human readable identification for the investor object

• investorStatus is an indicator of whether the investor should be buying, selling or holding the share that

they are watching.

• investorShare is a reference to a share so that the pattern machine including this participant will know

which shares the investors needs to observe.

• investorBuyPrice is the an integer representation of the highest price that the investor is willing to accept

for buying the share.

• investorSellPrice is the lowest price that the investor is willing to accept for selling that share

VARIABLES investors ,

investorName ,

investorStatus ,

investorShare ,

investorBuyPrice ,

investorSellPrice

The invariant in this investor machine simply draws relationships between each of the attribute variables

and their types in accordance with the process for modelling a class in B. However what B allows that isn’t

present in OO is the specification of the extra invariants at the bottom which states that any investors buy

price must be lower than their sell price for the share they are observing. This invariant must be enforced at

all times throughout the machine or else proof obligations will be generated.

107

INVARIANT investors ⊆ INVESTOR ∧

investorName ∈ investors → NAME ∧

investorStatus ∈ investors → STATUS ∧

investorShare ∈ investors → SHARE ∧

investorBuyPrice ∈ investors → N ∧

investorSellPrice ∈ investors → N ∧

∀ ii . (ii ∈ investors ⇒ investorBuyPrice (ii) ≤ investorSellPrice (ii))

Because all the attribute variables use total functions to map to their values, an assertion that the domain of

all these functions will be equal to the set of investors can be made

ASSERTIONS dom (investorName) = investors ∧

dom (investorStatus) = investors ∧

dom (investorShare) = investors ∧

dom (investorBuyPrice) = investors ∧

dom (investorSellPrice) = investors

INITIALISATION investors ,

investorStatus ,

investorName ,

investorShare ,

investorBuyPrice ,

investorSellPrice := {} , {} , {} , {} , {} , {}

OPERATIONS

Investor object constructor and destructor methods

investorID ←− ConstructInvestor (name , share , shareprice , buyprice , sellprice) =̂

PRE

name ∈ NAME ∧

investors 6= INVESTOR ∧

share ∈ SHARE ∧

shareprice ∈ N ∧

108

buyprice ∈ N ∧

sellprice ∈ N ∧

buyprice ≤ sellprice

THEN

ANY newinvestor

WHERE newinvestor ∈ INVESTOR − investors

THEN

investorID := newinvestor ‖

investors := investors ∪ { newinvestor } ‖

investorName (newinvestor) := name ‖

investorShare (newinvestor) := share ‖

investorBuyPrice (newinvestor) := buyprice ‖

investorSellPrice (newinvestor) := sellprice ‖

SELECT

shareprice < buyprice

THEN

investorStatus (newinvestor) := BUY

WHEN

shareprice > sellprice

THEN

investorStatus (newinvestor) := SELL

ELSE

investorStatus (newinvestor) := HOLD

END

END

END ;

DestroyInvestor (investor) =̂

PRE

investor ∈ investors

THEN

investors := investors − { investor } ‖

investorName := { investor } −C investorName ‖

109

investorStatus := { investor } −C investorStatus ‖

investorShare := { investor } −C investorShare ‖

investorBuyPrice := { investor } −C investorBuyPrice ‖

investorSellPrice := { investor } −C investorSellPrice

END ;

UpdateInvestorsStatus is a function that takes in a set of 2-tuples (investors, status) that is required to model

Observer pattern, Because all state changes to this machine must be carried out in parallel in the specification,

a function that allows multiple investors to be updated at once is required.

UpdateInvestorsStatus (isFunction) =̂

PRE

isFunction ∈ investors 7→ STATUS

THEN

investorStatus := investorStatus <+ isFunction

END ;

UpdateInvestorStatus is a function that calculates the new status of an investor based on the new shareprice

of the share they are watching which is provided as a parameter. This will be a helper function in the pattern

machine that includes this participant machine.

UpdateInvestorStatus (investor , shareprice) =̂

PRE

investor ∈ investors ∧

shareprice ∈ N

THEN

SELECT

shareprice < investorBuyPrice (investor)

THEN

investorStatus (investor) := BUY

WHEN

shareprice > investorSellPrice (investor)

110

THEN

investorStatus (investor) := SELL

ELSE

investorStatus (investor) := HOLD

END

END ;

Standard object accessor and mutator methods

name ←− GetInvestorName (investor) =̂

PRE

investor ∈ dom (investorName)

THEN

name := investorName (investor)

END ;

SetInvestorName (investor , name) =̂

PRE

investor ∈ investors ∧

name ∈ NAME

THEN

investorName (investor) := name

END ;

status ←− GetInvestorStatus (investor) =̂

PRE

investor ∈ dom (investorStatus)

THEN

status := investorStatus (investor)

END ;

SetInvestorStatus (investor , status) =̂

PRE

investor ∈ investors ∧

111

status ∈ STATUS

THEN

investorStatus (investor) := status

END ;

SetInvestorShare (investor , share , shareprice) =̂

PRE

investor ∈ investors ∧

share ∈ SHARE ∧

shareprice ∈ N

THEN

investorShare (investor) := share ‖

SELECT

shareprice < investorBuyPrice (investor)

THEN

investorStatus (investor) := BUY

WHEN

shareprice > investorSellPrice (investor)

THEN

investorStatus (investor) := SELL

ELSE

investorStatus (investor) := HOLD

END

END ;

share ←− GetInvestorShare (investor) =̂

PRE

investor ∈ investors

THEN

share := investorShare (investor)

END ;

SetInvestorBuyPrice (investor , buyprice) =̂

PRE

112

investor ∈ investors ∧

buyprice ∈ N ∧

buyprice ≤ investorSellPrice (investor)

THEN

investorBuyPrice (investor) := buyprice

END ;

price ←− GetInvestorBuyPrice (investor) =̂

PRE

investor ∈ investors

THEN

price := investorBuyPrice (investor)

END ;

SetInvestorSellPrice (investor , sellprice) =̂

PRE

investor ∈ investors ∧

sellprice ∈ N ∧

sellprice ≥ investorBuyPrice (investor)

THEN

investorSellPrice (investor) := sellprice

END ;

price ←− GetInvestorSellPrice (investor) =̂

PRE

investor ∈ investors

THEN

price := investorSellPrice (investor)

END

END

113

MACHINE ShareWatcher

ShareWatcher is the ’pattern’ machine within the Observer pattern case study. The machine itself does not

model either the observer or the subject but rather is the mechanism by which the observer and subject

classes can refer to each other. The ShareWatcher is used to model the intent of the Observer pattern which

is to ensure that each share can be observed by

SEES ShareWatcher CTX

ShareWatcher needs to include Investor and Share to have access to the operations of those machines to

alter their state. ShareWatcher also needs to be access the variables of those machines and use it within the

invariant to specify a one-to-many relationship.

INCLUDES

Share ,

Investor

Only one variable is required in ShareWatcher - we use shareInvestors to map each share to the set of investors

that are viewing it.

VARIABLES

shareInvestors

To specify an optional one-to-many relationship between shares and investors, we use a partial function from

shares to a powerset of investors with the further condition that investors cannot be observing multiple shares.

This is specified by a predicate that states that all sets of investors watching each share must be disjoint.

INVARIANT

shareInvestors ∈ shares 7→ P (investors)

OPERATIONS

114

AddInvestorToShare adds an investor to a shares’ observing list so that when the share is updated, the investor

is also updated as well.

AddInvestorToShare (investor , share) =̂

PRE

investor ∈ investors ∧

share ∈ shares ∧

∀ ii . (ii ∈ ran (shareInvestors) ⇒ investor 6∈ ii)

THEN

IF share ∈ dom (shareInvestors)

THEN

shareInvestors (share) := shareInvestors (share) ∪ { investor }

ELSE

shareInvestors (share) := { investor }

END ‖

SetInvestorShare (investor , share , sharePrice (share))

END ;

RemoveInvestorFromShare allows a investor to stop receiving notifications and updating its status when the

share it is observing is updated.

RemoveInvestorFromShare (investor , share) =̂

PRE

investor ∈ INVESTOR ∧

share ∈ dom (shareInvestors) ∧

investor ∈ shareInvestors (share)

THEN

Remove the investor from the set of investors that the specified share is watching

shareInvestors (share) := shareInvestors (share) − { investor }

END ;

115

UpdateAndNotify is an operation that allows a Shares price to be updated and then specifies that all interested

Investors must have their status updated (the ’Notification’) by using the UpdateInvestorsStatus function from

the Investors machine.

UpdateAndNotify (share , newprice) =̂

PRE

share ∈ shares ∧

newprice ∈ N

THEN

SetSharePrice (share , newprice) ‖

IF share ∈ dom (shareInvestors)

THEN

Non-deterministically specify a set of (share, status) tuples to be used to overrie the current share status in

the share machine using predicates

ANY isfunction

WHERE

Specifying that the function will contain a set of (share, status) tuples

isfunction ∈ investors 7→ STATUS ∧

Specify that the only investors that need updating are the ones watching this share

dom (isfunction) = shareInvestors (share) ∧

Use universal quantification to specify that investors should be set to BUY status if the new price is below

the buy threshold returned by investorBuyPrice

∀ ii . (ii ∈ dom (isfunction) ∧

newprice < investorBuyPrice (ii) ⇒ isfunction (ii) = BUY) ∧

Specify that investors should be set to SELL status if the new price is above the sell threshold

∀ kk . (kk ∈ dom (isfunction) ∧

newprice > investorSellPrice (kk) ⇒ isfunction (kk) = SELL) ∧

All investors should be set to HOLD status if the new price is between the sell and buy threshold

∀ jj . (jj ∈ dom (isfunction) ∧

116

newprice ≤ investorSellPrice (jj) ∧

newprice ≥ investorBuyPrice (jj) ⇒ isfunction (jj) = HOLD)

THEN

UpdateInvestorsStatus (isfunction)

END

END

END

END

117

6.1.4 Case analysis

This case study has demonstrated how to apply the B Observer pattern to an interesting publishsubscribe

style problem. Converting the object oriented design to a B model was a very straightforward process given

the ObserverPattern template. Of special note is how we have also shown it is possible to specify the update

of multiple investor objects in the absence of sequential composition. This was done through using a non-

deterministic set of (investor, status) tuples to override the investortostatus mapping. The B specification is

concerned most with the state of the investors before an update and then showing what the state should be after

an update to the share price, not with how to implement this using a loop.

118

6.2 Case study: A simple calculator with undo/redo

6.2.1 System requirements

The calculator system models a set of users and their calculators which are able to remember their state in a

client-server architecture. Users send requests to their calculator to make a calculation and this updates the

state of the calculator as well as returns the result to the user. Because of the client-server architecture, requests

for calculation need to be encapsulated as objects to be sent. This allows for queuing of requests as well as

providing an undo/redo functionality.

The calculators are required to have unlimited redo and undo levels and basic arithmetic operations such as add,

minus, divide and multiply. The system must allow for upgrading functionality for the calculator so a larger set

of mathematical operations can be carried out.

6.2.2 Pattern usage: Command

To solve the problem of request encapsulation so that undo and redo can be supported as well as a ’client-server’

architecture that doesn’t couple the User class and the Calculator class, the command design pattern will be

used. As well as the User class and Calculator class, this means a Command class is required to encapsulate the

function call and its parameters.

The User class is the command invoker in this case and is used to model the the calculator users. It will have a

minimal interface to set the name of the user. The calculator class will contain the logic to model an arithmetic

calculator including a ’UndoOperation’ which given an operator and an operand can reverse the state of the

calculator so that previous calculator states are not required to be stored by the command objects in the undo

stack.

The Command class models the encapsulation of method calls and stores the operation to be called as well as

the parameters for those operations. It also has a reference to a receiver so it knows which receivers methods it

must execute. To model the same system using B, the CommandPattern template with its three machines will

be used.

119

Class Diagram of the Command-Calculator system using the Command Pattern

B machine structure for the Command-Calculator system using the Command Pattern

Calculator
operation()
undoOperation()

Command
compute()

CalculatorCommand
Calculator calc
compute();
undo();
redo();

User
CalculatorCommand[]
commands
Calculator myCalc

Invoker

calculator->operation()

CalculatorCommand Machine
Invariant
 commands <: Command
 userCommand : users >+> command
 userUndoCommands : users >+> seq(commands)
 userRedoCommands : users >+> seq(commands)
 commandCalculator : commands --> calculators
Operations
 Compute(command);
 Undo(command);
 Redo(command);

User Machine
Invariant
 users <: USERS
Operations
user <-- InstantiateUser
DestroyUser(user)

Calculator Machine
Invariant
 calculators <: CALCULATOR
 calcState <: calculators --> NAT
Operations
 Operation(calc, operator, operand)
 UndoOperation(calc, operator, operand)

Includes Includes

This B model of the
command pattern does
not model the Invoker
class that is present in
the OO model because
this is modelled by
having an including
machine above the
CalculatorCommand that
contains the invoking
functionality

Figure 6.2: Comparing the Class Diagram and B machine structure for ’CommandCalculator’

120

6.2.3 Formal Specification

A fully annotated B-specification of the CalculatorCommand system is provided below. Only the Calculator-

Command machine which is derived from the CommandPattern machine showing the compute, undo and redo

operations and the Calculator machine derived from the Receiver are shown here. The Calculator machine con-

tains the Operation and UndoOperation operations that are called by the command ’objects’. These operations

are equivalent to the ReceiverAction and ReceiverUndoAction respectively. Please refer to the appendix for the

specification of the CalculatorUser machine which uses the B class modelling process to model the User class.

121

MACHINE Calculator (max instance)

The Calculator machine models a simple arithmetic calculator class that is capable of storing state. Only

ADD, SUB, MUL, DIV operations are available, however the user is free to specify more operations for the

calculator by appending to the Operation operation and also by specifying how to undo this operation by

adding the inverse operation to UndoOperation.

Operations are carried out by giving a calculator object an operator and an operand for which it will update

its own value to the result of the operation

The max instance constraint allows the user to specify what the maximum number of calculator objects can

be instantiated at any given time

CONSTRAINTS max instance ∈ N1

SEES Class CTX , Calculator CTX

Following the standard B representation of a class, there is a variable calculatorObjects that stores the set of

instantiated calculator objects and a variable calculatorValues that is used to map the calculator objects to

their current value

VARIABLES calculatorObjects , calculatorValues

INVARIANT calculatorObjects ⊆ OBJECT ∧

calculatorValues ∈ calculatorObjects → N

INITIALISATION calculatorObjects , calculatorValues := {} , {}

OPERATIONS

The Operation takes in 3 parameters, the calculator object to be used, the operator in the form of a string and

the operand. The pre-condition here states that if subtracting, then the operand cannot be greated than the

calculator value to prevent it from going into negative numbers which are not available in B Specifications. A

second pre-condition for this operation is that if the divide operation is being used, then the operand cannot

be 0 to protect from divide-by-zero errors.

result ←− Operation (calculator , operator , operand) =̂

122

PRE

calculator ∈ calculatorObjects ∧

operator ∈ OPERATOR ∧

operand ∈ N ∧

(operator = SUB ⇒ operand ≤ calculatorValues (calculator)) ∧

(operator = DIV ⇒ operand 6= 0)

THEN

SELECT operator = ADD THEN

calculatorValues (calculator) := calculatorValues (calculator) + operand ‖

result := calculatorValues (calculator) + operand

WHEN operator = SUB THEN

calculatorValues (calculator) := calculatorValues (calculator) − operand ‖

result := calculatorValues (calculator) − operand

WHEN operator = MUL THEN

calculatorValues (calculator) := calculatorValues (calculator) × operand ‖

result := calculatorValues (calculator) × operand

WHEN operator = DIV THEN

calculatorValues (calculator) := calculatorValues (calculator) / operand ‖

result := calculatorValues (calculator) / operand

END

END ;

The UndoOperation allows the invoker to undo an operation by providing the parameters for the last opera-

tion to return to the calculator to its previous state. In some implementations of the GoF command design

pattern, command objects must be capable of storing the state command receiver so that an undo operation

involves setting the receivers state to that stored in the command. However, in this case-study of the Undo-

Operation, the command objects themselves do not store the state, only the operator and the operand so an

UndoOperation is required to take these parameters and calculate the previous state

result ←− UndoOperation (calculator , operator , operand) =̂

PRE

calculator ∈ calculatorObjects ∧

123

operator ∈ OPERATOR ∧

operand ∈ N ∧

(operator = ADD ⇒ operand ≤ calculatorValues (calculator)) ∧

(operator = MUL ⇒ operand 6= 0)

THEN

SELECT operator = ADD THEN

calculatorValues (calculator) := calculatorValues (calculator) − operand ‖

result := calculatorValues (calculator) − operand

WHEN operator = SUB THEN

calculatorValues (calculator) := calculatorValues (calculator) + operand ‖

result := calculatorValues (calculator) + operand

WHEN operator = MUL THEN

calculatorValues (calculator) := calculatorValues (calculator) / operand ‖

result := calculatorValues (calculator) / operand

WHEN operator = DIV THEN

calculatorValues (calculator) := calculatorValues (calculator) × operand ‖

result := calculatorValues (calculator) × operand

END

END ;

Standard Class Operations

Calculator Object constructor

newCalculator ←− InstantiateCalculator =̂

PRE

calculatorObjects 6= OBJECT

THEN

ANY calc

WHERE

calc ∈ OBJECT ∧

calc 6∈ calculatorObjects

THEN

124

calculatorObjects := calculatorObjects ∪ { calc } ‖

calculatorValues (calc) := 0 ‖

newCalculator := calc

END

END ;

Calculator Object destructor - in B, to ensure the machine invariant is maintained, the reference to the

calculators value must also be removed from calculatorValues.

DestroyCalculator (calc) =̂

PRE

calc ∈ calculatorObjects

THEN

calculatorObjects := calculatorObjects − { calc } ‖

calculatorValues := { calc } −C calculatorValues

END ;

Standard set value operation to allow the user to change the value that the calculator is holding

SetCalculatorValue (calc , newValue) =̂

PRE

calc ∈ calculatorObjects ∧

newValue ∈ N

THEN

calculatorValues (calc) := newValue

END ;

Standard Get operation to allow the user to retrieve the value the calculator is holding

val ←− GetCalculatorValue (calc) =̂

PRE

125

calc ∈ calculatorObjects ∧

calc ∈ dom (calculatorValues)

THEN

val := calculatorValues (calc)

END

END

126

MACHINE CalculatorCommand (max instance)

The CalculatorCommand machine models the intent of the Command Pattern which is to be able to store

commands in objects so that they can be undone and redone. The Command Objects used in the Command

Design Pattern and also modelled here so they be passed between the invokers and receivers.

This machine follows the standard B representation of classes for modelling the Command Object as well as

adding functionality that is specified in a more orthodox method with respect to the B-Toolkit

CONSTRAINTS max instance ∈ N1

SEES Class CTX , Calculator CTX

The CalculatorUser and Calculator machines are included so that full access to the CalculatorUser (Invoker)

objects and the Calculator (Receiver) objects is given to this machine and so they can be referenced from

this machine to allow for the passing of command objects between them.

INCLUDES CalculatorUser (max instance) , Calculator (max instance)

From the included machines, the following operations are promoted to this machines interface so that the

user has access to them. These promoted operations do not affect of the state of the CalculatorCommand

machine and therefore do not need to be wrapped.

Notice that actual arithmetic Operation and UndoOperation that are inside the Calculator machine do not

get promoted as the user should not have direct access to them. Instead, the user must create a command

object, store the parameters inside it and then invoke them to carry out an operation

PROMOTES InstantiateCalcUser ,

DestroyUser ,

InstantiateCalculator ,

DestroyCalculator ,

SetCalculatorValue ,

GetCalculatorValue

There are two sets of variables - one set of variables userComand, userRedoCommands, and userUndoCom-

mands will be used to model the relationship between the invoker in this representation of the design pattern

127

to the command it needs to invoke, the queue of commands that can be undone and the queue of commands

that can be redone.

Then there will be the modelling of the actual command class commandObjects. Each command will hold a

calculator reference commandCalculator, an operator commandOperators and an operand commandOperands.

The operator specifies the actual function to be carried out while the operand is the parameter to that function.

VARIABLES

Variables to map CalculatorUser objects to the current command they will be invoking and also to queues

of undo commands and redo commands

userCommand ,

userRedoCommands ,

userUndoCommands ,

Variables to model the command objects and their attributes

commandObjects ,

commandCalculators ,

commandOperators ,

commandOperands

The invariant of this machine is used mainly to state the relationships between the variables. userUndoCom-

mands maps each calcUserObject to its sequence of undoable commands. userRedoCommands maps each

calcUserObject to its sequence of redoable commands. In the B-specification we can use ordered sequences

to represent a stack.

INVARIANT commandObjects ⊆ OBJECT ∧

commandCalculators ∈ commandObjects → calculatorObjects ∧

userCommand ∈ calcUserObjects 7→ commandObjects ∧

userUndoCommands ∈ calcUserObjects 7→ seq (commandObjects) ∧

userRedoCommands ∈ calcUserObjects 7→ seq (commandObjects) ∧

commandOperators ∈ commandObjects → OPERATOR ∧

commandOperands ∈ commandObjects → N ∧

dom (userCommand) = dom (userUndoCommands) ∧

dom (userCommand) = dom (userUndoCommands)

128

INITIALISATION userCommand ,

userRedoCommands ,

userUndoCommands ,

commandCalculators ,

commandObjects ,

commandOperators ,

commandOperands := {} , {} , {} , {} , {} , {} , {}

OPERATIONS

The operations of the CalculatorCommand class are also split into two sections. There are operations that

are for the CalculatorUser objects and also for the CalculatorCommand objects.

The reason for some of the CalculatorUser (invoker) operations being present in this machine and not in the

CalculatorUser machine is because of the need to associate these with the command objects which are only

visible inside this machine

CalculatorUser (Invoker) operations

Compute specifies that the user to invoke the operation that it’s currently referencing.

val ←− Compute (user) =̂

PRE

user ∈ dom (userCommand)

THEN

Invoke the operation by calling Operation on the calculator that the command object is referencing

val ←− Operation (commandCalculators (userCommand (user)) ,

commandOperators (userCommand (user)) ,

commandOperands (userCommand (user))) ‖

After invoking the command, the redo command queue for this invoker needs to be cleared by setting it to

the empty sequence

userRedoCommands (user) := [] ‖

The invoked command needs to be pushed onto the undo stack by prepending it onto the sequence

129

SELECT

user ∈ dom (userUndoCommands)

THEN

userUndoCommands (user) := userCommand (user) → userUndoCommands (user)

ELSE

userUndoCommands (user) := [userCommand (user)]

END

END ;

Undo is a specification of how to undo an operation. Within the context of this design pattern case study,

undo simply states that a command object should be popped from the undo operations stack and invoked

using the UndoOperation of the Calculator class to return the calculator object to its previous state.

The pre-condition states that the undo stack for the invoker cannot be empty for this operation to succeed

val ←− Undo (user) =̂

PRE

user ∈ dom (userUndoCommands) ∧

size (userUndoCommands (user)) > 0

THEN

Use predicates to specifying the command to be the top of the undo stack and that the command actually

references a calculator for which it will perform the undo

ANY firstCmd

WHERE firstCmd ∈ ran (userUndoCommands (user)) ∧

firstCmd = userUndoCommands (user) (1) ∧

firstCmd ∈ dom (commandCalculators)

THEN

The undo ’stack’ is specified to have its top element popped by assigning the undo command sequence to its

tail

userUndoCommands (user) := tail (userUndoCommands (user)) ‖

130

The UndoOperation inside the calculator is invoked here by passing the parameters which are the attributes

that the command object is referencing. ’firstCmd’ is the actual command object that holds the command

that needs to be undone.Using the relationship variables commandCalculators, commandOperators and com-

mandOperands we are able to reference the calculator object, operator and operand for that command object.

val ←− UndoOperation (commandCalculators (firstCmd) ,

commandOperators (firstCmd) ,

commandOperands (firstCmd)) ‖

Push the undone command onto the redo stack for that invoker

SELECT

user ∈ dom (userRedoCommands)

THEN

userRedoCommands (user) := firstCmd → userRedoCommands (user)

ELSE

userRedoCommands (user) := [firstCmd]

END

END

END ;

The Redo operation is the exact reverse of the Undo operation that is specified above. It states that the

command object should be popped from the redo operations stack, invoked and then pushed onto the undo

operations stack.

val ←− Redo (user) =̂

PRE

user ∈ dom (userRedoCommands) ∧

size (userRedoCommands (user)) > 0

THEN

ANY firstCmd

WHERE firstCmd ∈ ran (userRedoCommands (user)) ∧

firstCmd = userRedoCommands (user) (1) ∧

131

firstCmd ∈ dom (commandCalculators)

THEN

Redo stack has to have its first command popped

userRedoCommands (user) := tail (userRedoCommands (user)) ‖

Command from top of redo stack has to be invoked

val ←− Operation (commandCalculators (firstCmd) ,

commandOperators (firstCmd) ,

commandOperands (firstCmd)) ‖

The redo command object is pushed onto the undo stack for the invoker

SELECT

user ∈ dom (userUndoCommands)

THEN

userUndoCommands (user) := firstCmd → userUndoCommands (user)

ELSE

userUndoCommands (user) := [firstCmd]

END

END

END ;

Attach a command to a user (invoker), to carry out an operation

AddCommand (user , cmd) =̂

PRE

user ∈ calcUserObjects ∧

cmd ∈ commandObjects

THEN

userCommand (user) := cmd

END ;

132

Standard Command Class Operations

Constructor to create a command object

newCommand ←− InstantiateCommand (calc , operator , operand) =̂

PRE

commandObjects 6= OBJECT ∧

calc ∈ calculatorObjects ∧

operator ∈ OPERATOR ∧

operand ∈ N

THEN

ANY cmd

WHERE

cmd ∈ OBJECT ∧

cmd 6∈ commandObjects

THEN

commandObjects := commandObjects ∪ { cmd } ‖

commandCalculators (cmd) := calc ‖

commandOperators (cmd) := operator ‖

commandOperands (cmd) := operand ‖

newCommand := cmd

END

END ;

Standard mutator operations for the command object to modify and retrieve its attributes.

SetCommandCalculator (cmd , calc) =̂

PRE

cmd ∈ commandObjects ∧

calc ∈ calculatorObjects

THEN

commandCalculators (cmd) := calc

133

END ;

calc ←− GetCommandCalculator (cmd) =̂

PRE

cmd ∈ commandObjects ∧

cmd ∈ dom (commandCalculators)

THEN

calc := commandCalculators (cmd)

END ;

SetCommandOperator (cmd , operator) =̂

PRE

cmd ∈ commandObjects ∧

operator ∈ OPERATOR

THEN

commandOperators (cmd) := operator

END ;

operator ←− GetCommandOperator (cmd) =̂

PRE

cmd ∈ commandObjects

THEN

operator := commandOperators (cmd)

END ;

SetCommandOperand (cmd , operand) =̂

PRE

cmd ∈ commandObjects ∧

operand ∈ N

THEN

commandOperands (cmd) := operand

END ;

operand ←− GetCommandOperand (cmd) =̂

PRE

cmd ∈ commandObjects

134

THEN

operand := commandOperands (cmd)

END

END

135

6.2.4 A case-study on implementation

In this Command Pattern case study, as well as showing how to model the system using a B specification,

the system was also carried through to the implementation stage. Each machine of the Command Calculator

specification was implemented using the Object implementation pattern presented in chapter 5 and can be found

in the appendix. Because B-implementations are quite complex only the CalculatorCommandI implementation

will be discussed.

To implement the CalculatorCommand specification, are large number of SLIB machines for implementing the

variables were required to be imported into CalculatorCommandI. The operations of these SLIB machines are

then used to implement the functionality specified.

136

B Machine Structure for the Implementation of CommandCalculator

CalculatorCommand

CalculatorUser

Calculator

Calculator_CTX

IncludesIncludes

Sees

Specification Implementation

CalculatorCommandI

CalculatorUserI

CalculatorI

implements

implements

implements

B SLIB Machines for
Implementing
Variables

Imports

Figure 6.3: B machine structure for ’CommandCalculator’ including implementation machines

137

IMPLEMENTATION CalculatorCommandI

CalculatorCommandI is a B implementation of the CalculatorCommand machine which contains the the main

functionality needed to solve the problem of storing commands inside objects so that they can be stored to

be undone and redone. The specifications concreteness means that a refinement was not needed to do an

implementation.

REFINES CalculatorCommand

SEES Class CTX ,

Calculator CTX ,

Bool TYPE ,

Scalar TYPE ,

userRedoCommands seq ctx ,

userUndoCommands seq ctx

A large number of the B-Toolkits SLIB machines have been imported to implement the variables that are

present in the specification. This is in addition to importing Calculator (command receiver) and the Cal-

culatorUser machines (command invoker) so that their operations can be accessed or promoted to this im-

plementations interface so that the interfaces of both CalculatorCommandI and CalculatorCommand match

which is a requirement of B implementations.

IMPORTS Calculator (max instance) ,

CalculatorUser (max instance) ,

Below are the machines that have been imported from the SLIB to implement the variables that modelled

the relationship between user (invoker) objects and their current command object as well as the undo and

redo queues of command objects.

userCommand Vfnc (OBJECT , max instance) ,

userUndoCommands seq obj is a sequence machine that models a set of sequences and allows for the manip-

ulation of those sequences via its interface

userRedoCommands seq obj (OBJECT , max instance , max instance) ,

userUndoCommands seq obj (OBJECT , max instance , max instance) ,

138

Because of the limitations of accessing the different sequences inside the sequence machine, a userUndoSeqTo-

kens Nfnc machine and its corresponding redo sequence tokens machine was needed to map the user objects

to the token that allows access to the correct sequence in the sequence machine

userRedoSeqTokens Nfnc (MaxScalar , max instance) ,

userUndoSeqTokens Nfnc (MaxScalar , max instance) ,

The machines imported below are the ones that are used to implement the commandObjects.

• commandCalculators Vfnc is a function machine that implements the commandCalculators variable and

allows the each command object to map to its calculator.

• commandOperators Vfnc implements the commandOperators variable.

• commandOperands Nfnc implements the commandOperands variable.

commandObjects Nvar (max instance) ,

commandCalculators Vfnc (OBJECT , max instance) ,

commandOperators Vfnc (OPERATOR , max instance) ,

commandOperands Nfnc (MaxScalar , max instance) ,

freeCommandPointers set (OBJECT , max instance)

PROMOTES InstantiateCalcUser ,

DestroyUser ,

InstantiateCalculator ,

DestroyCalculator ,

SetCalculatorValue ,

GetCalculatorValue

To implement deferred sets, the deferred set OBJECT has been made to equal a set of integers from 1 to

max instance providing us with max instance number of object pointers

PROPERTIES OBJECT = 1 . . max instance ∧

userRedoCommands SEQOBJ = OBJECT ∧

userUndoCommands SEQOBJ = OBJECT

In the implementation invariant of the CalcuatlorCommandI machine, we are concerned mainly with unifying

the variables from the imported SLIB machines that are used to implement the specification variables with

the specification variables themselves this follows the standard Object implementation pattern and allows

for the implementation to be proven correct against the specification if all proof obligations are discharged.

139

INVARIANT commandObjects ⊆ 1 . . max instance ∧

commandObjects ∪ freeCommandPointers sset = 1 . . commandObjects Nvar ∧

commandObjects ∩ freeCommandPointers sset = {} ∧

dom (commandCalculators Vfnc) = commandObjects ∧

dom (commandOperators Vfnc) = commandObjects ∧

dom (commandOperands Nfnc) = commandObjects ∧

dom (userCommand Vfnc) = dom (userCommand) ∧

userRedoCommands seqtok = ran (userRedoSeqTokens Nfnc) ∧

userUndoCommands seqtok = ran (userUndoSeqTokens Nfnc) ∧

dom (userRedoCommands) = dom (userRedoSeqTokens Nfnc) ∧

dom (userUndoCommands) = dom (userUndoSeqTokens Nfnc) ∧

dom (userRedoCommands) ⊆ dom (userCommand) ∧

dom (userUndoCommands) ⊆ dom (userCommand)

The operations required in the CalculatorCommandI must match the interface of the CalculatorCommand

specification. To correctly model the command pattern with undo and redo, the interface contains the

Compute, Undo and Redo operations which are implementations of the specification.

OPERATIONS

For Compute to correctly implement the specification, then we needed to implement the function call to the

calculator object as well as adding the object to the undo stack and clearing the redo stack

val ←− Compute (user) =̂

VAR bb , comm , calc , operator , operand , seqTok IN

bb ←− userCommand DEF FNC (user) ;

IF bb = TRUE THEN

comm ←− userCommand VAL FNC (user) ;

calc ←− commandCalculators VAL FNC (comm) ;

operator ←− commandOperators VAL FNC (comm) ;

operand ←− commandOperands VAL NFNC (comm) ;

val ←− Operation (calc , operator , operand) ;

140

Clear the Redo queue for this user or add a new empty queue for this user

bb ←− userRedoSeqTokens DEF NFNC (user) ;

IF bb = TRUE THEN

seqTok ←− userRedoSeqTokens VAL NFNC (user) ;

userRedoCommands CLR SEQ OBJ (seqTok)

ELSE

Need to create a new Sequence and associate that sequence with user

bb , seqTok ←− userRedoCommands CRE SEQ OBJ ;

IF bb = TRUE THEN

userRedoSeqTokens STO NFNC (user , seqTok)

ELSE

val := MaxScalar

END

END ;

Add command to the users undo queue, create an undo queue if there isn’t one

bb ←− userUndoSeqTokens DEF NFNC (user) ;

IF bb = TRUE THEN

seqTok ←− userUndoSeqTokens VAL NFNC (user) ;

bb ←− userUndoCommands PSH SEQ OBJ (seqTok , comm)

ELSE

bb , seqTok ←− userUndoCommands CRE SEQ OBJ ;

IF bb = TRUE THEN

userUndoSeqTokens STO NFNC (user , seqTok) ;

bb ←− userUndoCommands PSH SEQ OBJ (seqTok , comm)

END

END

ELSE

val := MaxScalar

END

END ;

141

The Undo operation is very similar to the Compute operation except it pop the command to be executed

from the Undo stack, undo the operation by calling UndoOperation from the Calculator machine, and then

place it onto the Redo stack

val ←− Undo (user) =̂

VAR bb1 , bb2 , comm , calc , operator , operand , seqTok IN

bb1 ←− userCommand DEF FNC (user) ;

IF bb1 = TRUE THEN

Get reference to correct Sequence Object

seqTok ←− userUndoSeqTokens VAL NFNC (user) ;

Pop the first command object from the queue

bb1 ←− userUndoCommands XST SEQ OBJ (seqTok) ;

bb2 ←− userUndoCommands EMP SEQ OBJ (seqTok) ;

IF bb1 = TRUE ∧ bb2 = FALSE THEN

comm ←− userUndoCommands VAL SEQ OBJ (seqTok , 1) ;

userUndoCommands CUT SEQ OBJ (seqTok , 1) ;

Extract operand, operator from command object

calc ←− commandCalculators VAL FNC (comm) ;

operator ←− commandOperators VAL FNC (comm) ;

operand ←− commandOperands VAL NFNC (comm) ;

Perform Undo on Calculator

val ←− UndoOperation (calc , operator , operand) ;

Now add Undone operation to Redo Queue

bb1 ←− userRedoSeqTokens DEF NFNC (user) ;

IF bb1 = TRUE THEN

seqTok ←− userRedoSeqTokens VAL NFNC (user) ;

bb1 ←− userRedoCommands PSH SEQ OBJ (seqTok , comm)

ELSE

bb1 , seqTok ←− userRedoCommands CRE SEQ OBJ ;

142

IF bb1 = TRUE THEN

userRedoSeqTokens STO NFNC (user , seqTok) ;

bb1 ←− userRedoCommands PSH SEQ OBJ (seqTok , comm)

END

END

ELSE

val := MaxScalar

END

ELSE

val := MaxScalar

END

END ;

Redo is implemented as the reverse of Undo

val ←− Redo (user) =̂

VAR bb1 , bb2 , comm , calc , operator , operand , seqTok IN

bb1 ←− userCommand DEF FNC (user) ;

IF bb1 = TRUE THEN

Get reference to correct Sequence Object

seqTok ←− userRedoSeqTokens VAL NFNC (user) ;

Pop the first command object from the redo queue

bb1 ←− userRedoCommands XST SEQ OBJ (seqTok) ;

bb2 ←− userRedoCommands EMP SEQ OBJ (seqTok) ;

IF bb1 = TRUE ∧ bb2 = FALSE THEN

comm ←− userRedoCommands VAL SEQ OBJ (seqTok , 1) ;

userRedoCommands CUT SEQ OBJ (seqTok , 1) ;

Extract operand, operator from command object

calc ←− commandCalculators VAL FNC (comm) ;

143

operator ←− commandOperators VAL FNC (comm) ;

operand ←− commandOperands VAL NFNC (comm) ;

Perform operation on Calculator

val ←− Operation (calc , operator , operand) ;

Now add Redone operation to Undo Queue

bb1 ←− userUndoSeqTokens DEF NFNC (user) ;

IF bb1 = TRUE THEN

seqTok ←− userUndoSeqTokens VAL NFNC (user) ;

bb1 ←− userUndoCommands PSH SEQ OBJ (seqTok , comm)

ELSE

bb1 , seqTok ←− userUndoCommands CRE SEQ OBJ ;

IF bb1 = TRUE THEN

userUndoSeqTokens STO NFNC (user , seqTok) ;

bb1 ←− userUndoCommands PSH SEQ OBJ (seqTok , comm)

END

END

ELSE

val := MaxScalar

END

ELSE

val := MaxScalar

END

END ;

AddCommand (user , cmd) =̂

VAR bb IN

bb ←− userCommand DEF FNC (cmd) ;

IF bb = TRUE THEN

userCommand STO FNC (user , cmd)

END

END ;

144

These are standard implementations of object constructor, accessor and mutator methods obtained by fol-

lowing the Object Implementation pattern presented in chapter 5.

newCommand ←− InstantiateCommand (calc , operator , operand) =̂

VAR bb , free IN

bb ←− freeCommandPointers EMP SET ;

IF bb = TRUE THEN

commandObjects INC NVAR ;

free ←− commandObjects VAL NVAR

ELSE

free ←− freeCommandPointers ANY SET ;

freeCommandPointers RMV SET (free)

END ;

commandCalculators STO FNC (free , calc) ;

commandOperators STO FNC (free , operator) ;

commandOperands STO NFNC (free , operand) ;

newCommand := free

END ;

SetCommandCalculator (cmd , calc) =̂

VAR bb IN

bb ←− commandCalculators DEF FNC (cmd) ;

IF bb = TRUE THEN

commandCalculators STO FNC (cmd , calc)

END

END ;

calc ←− GetCommandCalculator (cmd) =̂

VAR bb IN

bb ←− commandCalculators DEF FNC (cmd) ;

IF bb = TRUE THEN

calc ←− commandCalculators VAL FNC (cmd)

END

END ;

145

SetCommandOperator (cmd , operator) =̂

VAR bb IN

bb ←− commandOperators DEF FNC (cmd) ;

IF bb = TRUE THEN

commandOperators STO FNC (cmd , operator)

END

END ;

operator ←− GetCommandOperator (cmd) =̂

VAR bb , vv IN

bb ←− commandOperators DEF FNC (cmd) ;

IF bb = TRUE THEN

vv ←− commandOperators VAL FNC (cmd) ;

operator := vv

END

END ;

SetCommandOperand (cmd , operand) =̂

VAR bb IN

bb ←− commandOperands DEF NFNC (cmd) ;

IF bb = TRUE THEN

commandOperands STO NFNC (cmd , operand)

END

END ;

operand ←− GetCommandOperand (cmd) =̂

VAR bb , vv IN

bb ←− commandOperands DEF NFNC (cmd) ;

IF bb = TRUE THEN

vv ←− commandOperands VAL NFNC (cmd) ;

operand := vv

END

END

END

146

6.2.5 Case analysis

Like the Observer pattern case-study, the application of the B Command Pattern to modelling the user-calculator

example was very straightforward. Of particular note are the Operation and UndoOperation operations in the

Calculator showing how to add meaningful functionality to the calculator (receiver) that is executed by the

CalculatorCommand machine. This development was very concrete and had the ability to be animated to

show how specification matched the requirements. Using the CalculatorCommand machine to associate users

to commands and commands to calculators as well as modelling the command objects themselves presented an

interesting architecture.

However, when it came to implementing the system, although the system was implemented using the object im-

plementation pattern, the complexity of the implementation machines themselves was quite pronounced because

of the need to import so many SLIB machines to model the variables.

6.3 Case study: A Chess game

6.3.1 System requirements

The Chess game must model two virtual players playing a game of chess.

• Players should be able to make a move based on the chosen strategy, taking into consideration the state of

the board.

• Strategies available to choose from should be an Aggressive strategy, a defensive strategy and a random

strategy.

• Strategies should be able to be chosen at the beginning of the game.

• Pieces must be able to be set up in the correct initial position.

• Player can only make legal moves.

6.3.2 Pattern usage: Strategy

The Strategy pattern is particularly suited to this problem as it allows us to define a series of encapsulated,

interchangeable chess strategies. Using the Strategy pattern, players can alter their strategy during the game

without altering the game or board logic.

In the OO model of this pattern, we have the ChessGame class and the ChessBoard class, which together model

the state of the game. We have a ChessStrategy abstract class, references the board and defines the interface

147

ChessGame
Player playerWhite;
Player playerBlack;
ChessBoard board;
ChessGame()
ChessGame~()
StartGame()
RequestMove()

ChessStrategy

MakeMove(ChessBoard);

Class Diagram of the Chess Game system using the Strategy Pattern

1

ChessBoard
Hashtable PostionedPieces;
ChessBoard()
ChessBoard~()
MovePiece(piece,pc)

ChessPlayer
ChessStrategy strat;

Player()
Player~()
SetStrategy(ChessStrategy)
ChooseMove(ChessBoard)

1 *

ChessStrategyRandom

MakeMove(ChessBoard);

ChessStrategyAggressive

MakeMove(ChessBoard);

1
1

ChessStrategyDefensive

MakeMove(ChessBoard);

1

Figure 6.4: Class diagram for ’Chess Game’

of the strategy methods. Finally we have three strategy implementations, RandomChess, AggressiveChess and

DefensiveChess.

The B model of this pattern naturally differs from the above, but is also somewhat simplified due to its role as

specification, rather than a design. The ChessGame machine controls the state of the Chess game, while the

ChessBoard machine maintains the board. The ChessStrategies machine is a stateless machine that encapsulates

all of the chess strategies. However, since a B specification is not as detailed as a design, we do not need to

express in detail exactly how each strategy’s behaviour will be achieved. Instead, these decisions are modelled

as constant functions in the Chess CTX and ChessStrategies CTX machines, to be implemented more fully in

an implementation or refinement step.

6.3.3 Formal Specification

Included below is the full formal specification for the Chess development.

148

B Machine structure for the Chess Game system using the Strategy Pattern

ChessStrategies

Operations
MakeRandomMove(board, colour)
MakeAggressiveMove(board,colour)
MakeDefensiveMove(board,colour)

Chess_CTX
Sets
CHESSBOARDS;
CHESSPIECES;
WHITEPIECES;
BLACKPIECES;
POSITION;
CHESS PLAYER;
COLOUR = { BLACK, WHITE }

Constants
legalWhiteMoves,
legalBlackMoves,
Properties
...

ChessGame
Invariant
players <: CHESS_PLAYER
opponents : players +-> players &
playerGames : players --> chessBoards &
playerColour : players --> COLOUR
playing <: dom(playerColour)
Operations
NewPlayer()
AttachPlayerWhite(p1,board)
AttachPlayerBlack(p1,board)
PlayGame(p1,p2,board)

includes

ChessBoard
Invariant
chessBoards <: CHESS_BOARD
positions : chessBoards --> (POSITION +-> CHESS_PIECES)
Operations
NewBoard()
MovePiece(board, piece,newPos)

sees

sees

extends

StrategicChessGame

Operations
SetChessStrategy(player, strategy)
MakeMove(player)

includes

ChessStrategies_CTX
Sets
CHESS_STRATEGIES =
{ AGGRESSIVE, DEFENSIVE,
RANDOM }
Constants
legalAggressiveBlackMoves,
legalAggressiveWhiteMoves,
legalDefensiveWhiteMoves,
legalDefensiveBlackMoves

Properties
...

sees

seessees

Figure 6.5: B Machine structure diagram for the ’Chess Game’

149

MACHINE StrategicChessGame

The ChessGame Models the players of the game and their relationship with the chess board. Players are

associated with a strategy.

SEES

Chess ctx ,

ChessStrategies ctx

INCLUDES ChessStrategies

PROMOTES

NewPlayer ,

AttachPlayerWhite ,

AttachPlayerBlack

VARIABLES strategies

strategies tracks the player’s chosen strategy, and playerGames models the relationship between players and

the game they are currently engaged in.

INVARIANT

strategies ∈ players 7→ CHESS STRATEGIES ∧

playing ⊆ dom (strategies) ∧

playing ⊆ dom (strategies) ∧

playing ⊆ dom (playerGames)

INITIALISATION strategies := {}

OPERATIONS

SetChessStrategy simply sets a strategy to a given player, deciding how that player will play the game.

150

SetChessStrategy (player , strat) =̂

PRE player ∈ players ∧ strat ∈ CHESS STRATEGIES THEN

strategies (player) := strat

END ;

MakeMove makes a move for the given player, based on the player’s strategy.

MakeMove (player) =̂

PRE

player ∈ dom (playerGames) ∧

player ∈ playing

THEN

SELECT strategies (player) = RANDOM THEN

MakeRandomMove (playerGames (player) , playerColour (player))

WHEN strategies (player) = AGGRESSIVE THEN

MakeAggressiveMove (playerGames (player) , playerColour (player))

WHEN strategies (player) = DEFENSIVE THEN

MakeDefensiveMove (playerGames (player) , playerColour (player))

END

END

END

151

MACHINE ChessGame

The ChessGame Models the players of the game and their relationship with the chess board.

SEES Chess ctx

INCLUDES ChessBoard

PROMOTES NewBoard , MovePiece

VARIABLES players , opponents , playerGames , playerColour

opponents is a injective relationship mapping a player to their opponent.

playerColour maps each player to their colour, BLACK or WHITE.

INVARIANT

players ⊆ CHESS PLAYER ∧

opponents ∈ players 7� players ∧

playerGames ∈ players 7→ chessBoards ∧

playerColour ∈ players 7→ COLOUR ∧

playing ⊆ dom (playerColour)

INITIALISATION

players , opponents := {} , {} ‖

playerGames , playerColour := {} , {}

OPERATIONS

player ←− NewPlayer =̂

BEGIN

ANY pp WHERE

pp ∈ CHESS PLAYER − players THEN

player := pp ‖

152

players := players ∪ { pp }

END

END ;

AttachPlayerWhite attaches the first player to the white colour on a game

AttachPlayerWhite (p1 , board) =̂

PRE

p1 ∈ players ∧

p1 6∈ playing ∧

board ∈ chessBoards

THEN

playerColour (p1) := WHITE ‖

playerGames (p1) := board

END ;

AttachPlayerBlack attaches the second player to the black colour on a game

AttachPlayerBlack (p2 , board) =̂

PRE

p2 ∈ players ∧

p2 6∈ playing ∧

board ∈ chessBoards

THEN

playerColour (p2) := BLACK ‖

playerGames (p2) := board

END ;

153

PlayGame : The players are set as opponents and the game can begin

PlayGame (p1 , p2) =̂

PRE

p1 ∈ dom (playerColour) ∧ p2 ∈ dom (playerColour) ∧

p1 ∈ dom (playerGames) ∧ p2 ∈ dom (playerGames) ∧

p1 6∈ playing ∧ p2 6∈ playing ∧

p1 6= p2 ∧

playerGames (p1) = playerGames (p2)

THEN

opponents (p1) := p2

END

DEFINITIONS playing =̂ dom (opponents) ∪ ran (opponents)

END

154

MACHINE Chess ctx

The Basic Structure of the Game

SETS

CHESS BOARDS ;

CHESS PIECES ; WHITE PIECES ; BLACK PIECES ;

POSITION ;

CHESS PLAYER ;

COLOUR = { BLACK , WHITE }

CONSTANTS

legalMoves , legalBlackMoves , legalWhiteMoves ,

changeBoard

legalWhiteMoves and legalBlackMoves are constant functions which map a current board arrangement to

a function which takes a Chess Piece of a certain colour and returns its set of possible positions. These

can be constant since the number of board arrangements and possible moves, while very large is still finite

and could be instantiated.

PROPERTIES

WHITE PIECES ∪ BLACK PIECES = CHESS PIECES ∧

WHITE PIECES ∩ BLACK PIECES = {} ∧

card (WHITE PIECES) = card (BLACK PIECES) ∧

legalMoves ∈ BOARD → MOVES (CHESS PIECES) ∧

legalWhiteMoves ∈ BOARD → MOVES (WHITE PIECES) ∧

legalBlackMoves ∈ BOARD → MOVES (BLACK PIECES) ∧

legalMoves = legalWhiteMoves ∪ legalBlackMoves ∧

∀ bd . (bd ∈ BOARD ⇒ dom (legalMoves (bd)) ⊆ ran (bd)) ∧

changeBoard ∈ BOARD → (CHESS PIECES 7→ (POSITION 7→ BOARD)) ∧

∀ (bd , pc) . (bd ∈ BOARD ∧ pc ∈ CHESS PIECES ∧

155

pc ∈ dom (legalMoves (bd)) ⇒

pc ∈ dom (changeBoard (bd))) ∧

∀ (bd , pc , pos) . (bd ∈ BOARD ∧ pc ∈ CHESS PIECES ∧ pos ∈ POSITION ∧

pos ∈ legalMoves (bd) (pc) ⇒

pos ∈ dom (changeBoard (bd) (pc)))

DEFINITIONS

BOARD =̂ POSITION 7→ CHESS PIECES ;

MOVES (X) =̂ X 7→ P (POSITION)

END

156

ChessStrategies models different strategies that the players might use. The machine itself is stateless, oper-

ating directly on the board machine.

MACHINE ChessStrategies

SEES

ChessStrategies ctx ,

Chess ctx

EXTENDS ChessGame

OPERATIONS

MakeRandomMove: Based on the players colour, we make a random but legal move.

MakeRandomMove (board , colour) =̂

PRE board ∈ chessBoards ∧

colour ∈ COLOUR

THEN

If the piece’s colour is black, we check for all legal moves for black, then

1. Take a piece that can legally moved,

2. Choose any legal new position for that piece.

3. Move the chosen piece to the chosen position.

SELECT colour = BLACK THEN

ANY piece WHERE

piece ∈ BLACK PIECES ∧

piece ∈ dom (legalBlackMoves (positions (board)))

THEN

ANY pos WHERE

pos ∈ POSITION ∧

157

pos ∈ legalBlackMoves (positions (board)) (piece)

THEN MovePiece (board , piece , pos)

END

END

If the piece is white, we do the same as above but for white pieces.

WHEN colour = WHITE THEN

ANY piece WHERE

piece ∈ WHITE PIECES ∧

piece ∈ dom (legalWhiteMoves (positions (board)))

THEN ANY pos WHERE

pos ∈ POSITION ∧

pos ∈ legalWhiteMoves (positions (board)) (piece)

THEN MovePiece (board , piece , pos)

END

END

END

END ;

MakeAggressiveMove Based on the player’s colour we try to make a move that results in taking a piece. The

operation follows much the same logic as MakeRandomMove, but makes use of the legalAggressiveMoves

constant functions in Chess CTX.

MakeAggressiveMove (board , colour) =̂

PRE board ∈ chessBoards ∧

colour ∈ COLOUR

THEN

SELECT colour = BLACK THEN

ANY piece WHERE

piece ∈ dom (legalAggressiveBlackMoves (positions (board)))

THEN ANY pos WHERE

158

pos ∈ POSITION ∧

pos ∈ legalAggressiveBlackMoves (positions (board)) (piece)

THEN MovePiece (board , piece , pos)

END

END

WHEN colour = WHITE THEN

ANY piece WHERE

piece ∈ dom (legalAggressiveWhiteMoves (positions (board)))

THEN ANY pos WHERE

pos ∈ POSITION ∧

pos ∈ legalAggressiveWhiteMoves (positions (board)) (piece)

THEN MovePiece (board , piece , pos)

END

END

END

END ;

MakeDefensiveMove (board , colour) =̂

PRE board ∈ chessBoards ∧ colour ∈ COLOUR

THEN

SELECT colour = BLACK THEN

ANY piece WHERE

piece ∈ BLACK PIECES ∧

piece ∈ dom (legalDefensiveBlackMoves (positions (board)))

THEN ANY pos WHERE

pos ∈ POSITION ∧

pos ∈ legalDefensiveBlackMoves (positions (board)) (piece)

THEN MovePiece (board , piece , pos)

END

END

WHEN colour = WHITE THEN

ANY piece WHERE

piece ∈ dom (legalDefensiveWhiteMoves (positions (board)))

159

THEN ANY pos WHERE

pos ∈ POSITION ∧

pos ∈ legalDefensiveWhiteMoves (positions (board)) (piece)

THEN MovePiece (board , piece , pos)

END

END

END

END

END

160

ChessBoard models the chess board itself, with all its pieces mapped to positions. Its operations control the

movements of pieces, instantiation and placement.

MACHINE ChessBoard

SEES Chess ctx

VARIABLES

chessBoards , positions

chessBoards models all chess boards currently being played.

positions maps each chessBoard to its current state of play, mapping positions to pieces. positions is a total

function because every board must have pieces on it. However, chess pieces can not occupy every position

on a board, hence the second order part of the function is only partial.

INVARIANT

chessBoards ⊆ CHESS BOARDS ∧

positions ∈ chessBoards → BOARD

INITIALISATION chessBoards , positions := {} , {}

OPERATIONS

board ←− NewBoard =̂

BEGIN

ANY bb , startingPositions WHERE

bb ∈ CHESS BOARDS − chessBoards ∧

startingPositions ∈ BOARD THEN

board := bb ‖

chessBoards := chessBoards ∪ { bb } ‖

positions (bb) := startingPositions

END

END ;

161

MovePiece moves a piece to a new location, and removes pieces captured by the move. This function must be

protected by upper layer functions to ensure the move is legal. It will remove any piece currently occupying

the new position specified.

MovePiece (brd , pc , newPos) =̂

PRE

brd ∈ chessBoards ∧

pc ∈ CHESS PIECES ∧

pc ∈ ran (positions (brd)) ∧

newPos ∈ POSITION ∧

newPos ∈ legalMoves (positions (brd)) (pc) ∧

positions (brd) ∈ dom (changeBoard) ∧

pc ∈ dom (changeBoard (positions (brd))) ∧

newPos ∈ dom (changeBoard (positions (brd)) (pc))

THEN

positions (brd) := changeBoard (positions (brd)) (pc) (newPos)

END

END

162

6.3.4 Case analysis

Most interesting about this case is that it gave rise to the interface pattern in B. This because of how strategy

works the client is ignorant of the implementation of the strategy, and the implementation can be freely changed

without the client needing to change its behaviour. This led to thinking about how an interface should be

represented in B. However, the interface pattern was not usable with the current machine structure, since the

ChessStrategies machine must apply its move on the board. A machine in B can only be included once. Thus if

each strategy was encapsulated in its own machine, then the ChessBoard could not be included by all of them.

Another solution utilising multiple patterns

The solution above could be improved upon with the following changes involving other design patterns.

• Use the Command pattern to encapsulate a ”Move” command.

• Refactor the Strategy pattern to use an Interfacestyle structure, with each strategy encapsulated in a

machine and the strategy interface including all of the concrete strategy machines.

• The Strategy Machines would construct a ”Move” command and return it to the ChessGame machine

which could then apply the move.

While further investigation is required, at first glance the proposed solution appears promising.

6.4 Case study: A Spreadsheet Engine

To demonstrate the composition of design patterns to build a complex system, a case-study on a spreadsheet

engine specified in B will be presented.

6.4.1 Motivation and System Requirements

A spreadsheet engine is a good example of how B could be used to specify and implement the core of a system

where correctness is important. Producing a spreadsheet engine in B would allow a user interface layer to be

placed on top in a model-view-controller architecture where the lower levels have been formally verified. The

requirement for this spreadsheet engine is that it provides an interface of operations for the interface layer to

call. These interface need to allow the user to set the value of a cell whether this value is a formula, literal value

or formula. The interface also needs to allow for the retrieval of data from the spreadsheet. Furthermore, we

wish to specify having undo/redo as a requirement to be implemented in the spreadsheet engine.

163

To produce this system, we have decided not to proceed first with an object oriented design which is modelled

using B but instead jump straight into using the B design patterns that have been developed to model the

requirements. Another core requirement of a spreadsheet is that cells are automatically updated if the cells are

referencing in their formula undergo a change. As stated above, undo/redo is also a requirement.

To model these two core requirements we have used a composition of the observer and the command design

pattern to build the system. Cells need to be able to observe other cells as a consequence of having formulae

entered so the observer pattern consist of a Cell machine as the participant and a Formula machine will be the

pattern machine that includes the participant. Because cells are observing themselves, there is no need for a

second participant in this Observer model. The Formula machine should also model the functionality required

of formulae and provide an interface for the above layer to manipulate the cells and formulae.

With undo/redo functionality required, there will be an instance of the Command pattern that includes the

Formula machine. This is called the Spreadsheet machine and provides the interface for which the user interface

can make function calls. The Spreadsheet layer needs to be able to encapsulate the function calls to the formula

machine so it will also include the SpreadsheetCommand machine that contains this functionality to complete

the Command Pattern.

These two patterns are composed using Inter-pattern links [Sandrine, Blazy et al] as one of the Command

Patterns participants, the Formula machine (Receiver) is also the Observer Pattern machine.

6.4.2 A Discussion of Pattern Composition

Going back to the research presented in Chapter 2, we have decided that the two most useful ways to compose

two or more patterns is to use inter-pattern links or pattern juxtaposition. Our interpretation of the interpattern

links method is the use of participant machines that also double as pattern machines within the system. Because

B machines must be structured in a Tree form as opposed to OO classes which can be represented by a graph,

having nodes (machines) that are both pattern and participants lends itself well. The other method canvassed was

to use an association machine to include two pattern machines and juxtapose them together. The association

machine can then just use the interface of both patterns and present this as a single interface. Using an

association machine to include two pattern machines also leaves open the possibility of specifying links between

the two pattern machines in the association machines invariant. All of these are valid methods to compose design

patterns to build complete systems in B and the user must decide which method bests suits their requirements.

In this spreadsheet case study, having interpattern links was decided to be the best method.

164

6.4.3 Formal Specification

165

Composition of Design Patterns to build systems

Composition of Design patterns
using Interpattern Links

Composition of Design patterns
using Juxtaposition

PatternMachine 1

Participant
(Class Model)

PatternMachine 2
and also Participant of

1st Pattern

Participant
(Class Model)

Participant
(Class Model)

includesincludes

includes includes

PatternMachine 1

Participant
(Class Model)

PatternMachine 2

Participant
(Class Model)

Participant
(Class Model)

includesincludes includes includes

Participant
(Class Model)

Association Machine to
link two patterns

together and use the
interface of both.

includes

Figure 6.6: Different methods to compose patterns

166

B Machine Structure of the Spreadsheet Case-Study

Spreadsheet
Invariant
 undoStack : seq(commands)
 redoStack : seq(commands)
..
Operations
..

Formula
Invariant
 cellObservations : cells +-> POW(cells)
 cellFormula : cells +-> FORMULA
..
Operations
..

Cell
Invariant
 cells <: CELL &
 cellValue : cell +-> NAT &
 cellString : cell +-> STRING
..
Operations
..

SpreadsheetCommand
Invariant
 commands <: COMMAND &
 commandCell : commands --> CELL
..
Operations
..

Observer Pattern

Command Pattern

Spreadsheet_CTX

String_TYPE

Seen Machines

Includes

Includes

Includes

Composition of Design patterns
using Interpattern Links

Figure 6.7: Overview of the Spreadsheet system structure

167

MACHINE Spreadsheet

The Spreadsheet machine represents the interface for the spreadsheet engine being specified. Ideally the fragile

operations of this machine would be protected by a robust Spreadsheet API machine but in the interests of

brevity and for the purposes of this case study, this API machine has been omitted.

This machine will contain the functionality required for undoing and redoing operations and forms part of

the observer pattern used in this development. Any of the spreadsheet commands that involve changing the

state of the spreadsheet will need to be encapsulated and stored. The spreadsheet machine will not need to

make references to the Formula machines invariant as it only needs to call operations in the Formula machine

without needing to know its state.

This machine will need to include the SpreadsheetCommand machine as this provides the functionality for

encapsulating commands

SEES Spreadsheet CTX , String TYPE

This machine itself models a singleton instantiation of the Formula class in the OO design. As such, we do not

require a set of objects to model the different instances of the spreadsheet application as the machine itself is

the object. Two attributes are required, these are for referencing the undo stack of operations (modelled by

undoStack) and the redo stack, (modelled by redoStack).

INCLUDES Formula , SpreadsheetCommand

The Spreadsheet CTX machine provides the systemwide context and is where all deferred sets that model the

different class types within this development are stored

VARIABLES undoStack ,

redoStack

The invariant constrains the two stacks by specifiying that they are a sequences of spreadsheetCommands, of

which SpreadsheetCommand models. To strengthen the invariant, a predicate to ensure that a single instance

of a command cannot exist both in the redo queue and the undo queue are specified. A further predicate

states that the intersection of the elements of both stacks will be equal to the set of instantiated commands.

168

INVARIANT undoStack ∈ seq (commands) ∧

redoStack ∈ seq (commands) ∧

ran (undoStack) ∪ ran (redoStack) = {} ∧

ran (undoStack) ∪ ran (redoStack) = commands

At initialisation, both stacks are set to empty as no commands have been called yet

INITIALISATION undoStack ,

redoStack := [] , []

The operations below form the interface for the spreadsheet. There are three operations for getting the values

from within spreadsheet (required because of the three different types of data that a cell can hold), similarly

there are three operations for setting the values inside the spreadsheet. These include being able to set a cell

to hold a formula, a string or a literal. Finally there are undo and redo operations to reverse any changes the

user has made.

OPERATIONS

Each of the set operations must call the corresponding operation within the cell machine and then encapsulate

the call and store it inside the SpreadsheetCommand machine.

SpreadsheetSetCellFormula (cell , formula) =̂

PRE

cell ∈ CELL ∧

formula ∈ FORMULA ∧

commands 6= COMMAND

THEN

Store command in the undo stack

ANY cc

WHERE cc ∈ COMMAND − commands

THEN

169

CreateFormulaCommand (cc , cell , formula) ‖

undoStack := cc → undoStack

END ‖

Clear the redo stack

redoStack := [] ‖

Call the operation in the formula machine

FormulaSetCellFormula (cell , formula)

END ;

SpreadsheetSetCellValue (cell , value) =̂

PRE

cell ∈ CELL ∧

value ∈ N ∧

commands 6= COMMAND

THEN

Store command in the undo stack

ANY cc

WHERE cc ∈ COMMAND − commands

THEN

CreateLiteralCommand (cc , cell , value) ‖

undoStack := cc → undoStack

END ‖

Clear the redo stack

redoStack := [] ‖

Call the operation in the formula machine

FormulaSetCellLiteral (cell , value)

END ;

SpreadsheetSetCellString (cell , string) =̂

PRE

170

cell ∈ CELL ∧

string ∈ STRING ∧

commands 6= COMMAND

THEN

Store command in the undo stack

ANY cc

WHERE cc ∈ COMMAND − commands

THEN

CreateStringCommand (cc , cell , string) ‖

undoStack := cc → undoStack

END ‖

Clear the redo stack

redoStack := [] ‖

Call the operation in the formula machine

FormulaSetCellString (cell , string)

END ;

SpreadsheetClearCell (cell) =̂

PRE

cell ∈ CELL ∧

commands 6= COMMAND

THEN

Store command in the undo stack

ANY cc

WHERE cc ∈ COMMAND − commands

THEN

CreateClearCommand (cc , cell) ‖

undoStack := cc → undoStack

END ‖

171

Clear the redo stack

redoStack := [] ‖

Call the operation in the formula machine

FormulaClearCell (cell)

END ;

The undo operation retrieves the first command from the undo stack and returns the spreadsheet to its

previous state. It then stores this commmand on the redo stack.

SpreadsheetUndo =̂

PRE

undoStack 6= []

THEN

ANY cmd

WHERE cmd = undoStack (1)

THEN

Determine the type of command that was called and undo it by setting the value of the cell back to its

previous value stored in the command object

SELECT commandtype (cmd) = SET VALUE

THEN FormulaSetCellLiteral (commandcell (cmd) , commandliteral (cmd))

WHEN commandtype (cmd) = SET STRING

THEN FormulaSetCellString (commandcell (cmd) , commandstring (cmd))

WHEN commandtype (cmd) = SET FORMULA

THEN FormulaSetCellFormula (commandcell (cmd) , commandformula (cmd))

WHEN commandtype (cmd) = CLEAR

THEN FormulaClearCell (commandcell (cmd))

END ‖

Add this cmd to redoStack

redoStack := cmd → redoStack

172

END ‖

undoStack := tail (undoStack)

END ;

The redo operation retrieves the first command from the redo stack and re-executes the command. It then

stores this commmand on the undo stack.

SpreadsheetRedo =̂

PRE

redoStack 6= []

THEN

ANY cmd

WHERE cmd = redoStack (1)

THEN

Determine the type of command that was called and undo it by setting the value of the cell back to its

previous value stored in the command object

SELECT commandtype (cmd) = SET VALUE

THEN FormulaSetCellLiteral (commandcell (cmd) , commandliteral (cmd))

WHEN commandtype (cmd) = SET STRING

THEN FormulaSetCellString (commandcell (cmd) , commandstring (cmd))

WHEN commandtype (cmd) = SET FORMULA

THEN FormulaSetCellFormula (commandcell (cmd) , commandformula (cmd))

WHEN commandtype (cmd) = CLEAR

THEN FormulaClearCell (commandcell (cmd))

END ‖

Add this cmd to undoStack

undoStack := cmd → undoStack

END ‖

redoStack := tail (redoStack)

END ;

173

The operations that model the retrieval of string values do not affect the redo stack and undo stack so they

are just return the state of the cell in the formula machine.

string ←− SpreadsheetGetCellString (cell) =̂

PRE

cell ∈ CELL

THEN

IF cell ∈ dom (cellString)

THEN

string ←− GetCellString (cell)

ELSE

string := []

END

END ;

value ←− SpreadsheetGetCellValue (cell) =̂

PRE

cell ∈ CELL

THEN

IF cell ∈ dom (cellValue)

THEN

value ←− GetCellValue (cell)

ELSE

value := 0

END

END ;

formula ←− SpreadsheetGetCellFormula (cell) =̂

PRE

cell ∈ dom (cellFormula)

THEN

formula := cellFormula (cell)

END

174

END

175

MACHINE SpreadsheetCommand

Them SpreadsheetCommand machine is responsible for encapsulating commands made in the spreadsheet

system so that they can be undone and redone. This is based on the Command pattern and this machine

models the Command class.

SEES Spreadsheet CTX , String TYPE

commands models the command objects that will exist in the system while the attributes variables command-

formula, comandliteral and comandstring are used to store the parameters for those commands. commandtype

stores the correct operation to call if the object is used in an undo or redo situation.

VARIABLES commands ,

commandtype ,

commandcell ,

commandformula ,

commandliteral ,

commandstring

The invariant maps the command objects to its attributes using the B-representation-of-class pattern

INVARIANT commands ⊆ COMMAND ∧

commandtype ∈ commands → COMMAND TYPE ∧

commandcell ∈ commands → CELL ∧

commandformula ∈ commands 7→ FORMULA ∧

commandliteral ∈ commands 7→ N ∧

commandstring ∈ commands 7→ STRING ∧

∀ cc . (cc ∈ dom (commandformula) ⇒ commandtype (cc) = SET FORMULA) ∧

∀ cc . (cc ∈ dom (commandliteral) ⇒ commandtype (cc) = SET VALUE) ∧

∀ cc . (cc ∈ dom (commandstring) ⇒ commandtype (cc) = SET STRING) ∧

∀ cc . (cc ∈ dom (commandcell) ⇒ commandtype (cc) = CLEAR)

INITIALISATION commands ,

176

commandtype ,

commandformula ,

commandliteral ,

commandstring := {} , {} , {} , {} , {}

The operations provided below form an interface for the Spreadsheet machine to store and retrieve command

objects

OPERATIONS

CreateStringCommand (command , cell , string) =̂

PRE

command ∈ COMMAND − commands ∧

cell ∈ CELL ∧

string ∈ STRING

THEN

commands := commands ∪ { command } ‖

commandtype (command) := SET STRING ‖

commandcell (command) := cell ‖

commandstring (command) := string

END ;

CreateFormulaCommand (command , cell , formula) =̂

PRE

command ∈ COMMAND − commands ∧

cell ∈ CELL ∧

formula ∈ FORMULA

THEN

commands := commands ∪ { command } ‖

commandtype (command) := SET STRING ‖

commandcell (command) := cell ‖

commandformula (command) := formula

END ;

177

CreateLiteralCommand (command , cell , literal) =̂

PRE

command ∈ COMMAND − commands ∧

cell ∈ CELL ∧

literal ∈ N

THEN

commands := commands ∪ { command } ‖

commandtype (command) := SET STRING ‖

commandcell (command) := cell ‖

commandliteral (command) := literal

END ;

CreateClearCommand (command , cell) =̂

PRE

command ∈ COMMAND − commands ∧

cell ∈ CELL

THEN

commands := commands ∪ { command } ‖

commandtype (command) := CLEAR ‖

commandcell (command) := cell

END ;

DeleteCommands (coms) =̂

PRE

coms ⊆ commands

THEN

commands := commands − coms ‖

commandtype := coms −C commandtype ‖

commandcell := coms −C commandcell ‖

commandliteral := coms −C commandliteral ‖

commandformula := coms −C commandformula ‖

commandstring := coms −C commandstring

END

178

END

179

MACHINE Formula

The Formula machine is based on the GoF Observer pattern. To solve the problem of each cell notifying any

cell which references the updated cell, an observer type relationship is required.

SEES Spreadsheet CTX , String TYPE

INCLUDES Cell

All operations which do not change the state of any machine can be promoted without writing a wrapper

function

PROMOTES GetCellValue ,

GetCellString

VARIABLES formulae ,

cellFormula ,

cellObservations

INVARIANT

formulae is the set of formulae that are currently being used in the spreadsheet

formulae ⊆ FORMULA ∧

cellFormula maps cells to formulae

cellFormula ∈ cells 7→ formulae ∧

cellObservations is based on the observer model - when a cell is updated it must notify the set of cells that

it maps to

cellObservations ∈ cells 7→ P (cells)

INITIALISATION formulae , cellFormula , cellObservations := {} , {} , {}

OPERATIONS

After the formula has been entered into the system then it can be attached to a cell. It also needs to be

evaluated to set the cells value. This is the purpose of the SetCellFormula

180

FormulaSetCellFormula (cell , formula) =̂

PRE

cell ∈ cells ∧

formula ∈ FORMULA

THEN

cellFormula (cell) := formula

All cells affected by this formula should be updated by calling SetMultipleCellValues in the Cell machine and

the CellObservation relationships between the cells should be updated here

END ;

In addition - we need to wrap the SetCellValue, SetCellString and the ClearCell operations because they are

update operations which may require notifications to be sent to other cells that are referencing them

FormulaSetCellLiteral (cell , value) =̂

PRE

cell ∈ cells ∧

value ∈ N

THEN

SetCellValue (cell , value)

All cells affected by this update should be updated by calling SetMultipleCellValues in the Cell machine and

the CellObservation relationships between the cells should be updated here with the correct function as a

parameter

END ;

FormulaSetCellString (cell , string) =̂

PRE

cell ∈ cells ∧

string ∈ STRING

THEN

SetCellString (cell , string)

181

All cells affected by this update should be updated by calling SetMultipleCellValues in the Cell machine with

the correct function as a parameter

END ;

FormulaClearCell (cell) =̂

PRE

cell ∈ cells

THEN

ClearCell (cell)

All cells affected by this formula should be updated by calling SetMultipleCellValues in the Cell machine with

the correct function as a parameter

END

END

182

MACHINE Cell

This machine is a the representation of the cells in the spreadsheet at the most basic level. The cells here can

only store values or store strings. Functionality that allows cells to reference other cells through formulas and

automatically notify cells that reference themselves will be specified in a higher level machine that includes

this one.

SEES Spreadsheet CTX , String TYPE

The variables will model a set of cell objects and their attributes which will include a reference to a string or

an integer value.

VARIABLES cells ,

cellValue ,

cellString

The CELL deferred set is a representation of the entire spreadsheet while cells which is a subset represents

only those cells that the user has populated with values or strings

INVARIANT cells ⊆ CELL ∧

cellValue ∈ cells 7→ N ∧

cellString ∈ cells 7→ STRING ∧

The invariant also specifies that any cell with an integer value cannot reference a string and vice versa.

dom (cellValue) ∩ dom (cellString) = {}

INITIALISATION cells := {} ‖

cellValue := {} ‖

cellString := {}

OPERATIONS

183

The Set operations for the cell objects will diverge from the standard object model that has been presented

throughout this thesis. Because CELL represents the entire spreadsheet, the set operations here will instan-

tiate cells as needed if the user provides a cell reference that hasn’t been used yet

SetCellValue (cell , value) =̂

PRE

cell ∈ CELL ∧

value ∈ N

THEN

IF cell 6∈ cells

THEN

cells := cells ∪ { cell }

END ‖

cellValue (cell) := value ‖

IF cell ∈ dom (cellString)

THEN

cellString := { cell } −C cellString

END

END ;

SetCellString (cell , string) =̂

PRE

cell ∈ CELL ∧

string ∈ STRING

THEN

IF cell 6∈ cells

THEN

cells := cells ∪ { cell }

END ‖

cellString (cell) := string ‖

IF cell ∈ dom (cellValue)

THEN

cellValue := { cell } −C cellValue

END

184

END ;

Set Multiple Cell values allows a group of cells to have their values updated at once. This is in keeping with

the observer pattern where the state of the observers is updated in parallel

SetMultipleCellValues (cellvaluefunc) =̂

PRE

cellvaluefunc ∈ cells 7→ N

THEN

cellValue := cellvaluefunc <+ cellValue

END ;

Get operations using the standard object model

returnVal ←− GetCellValue (cell) =̂

PRE

cell ∈ dom (cellValue)

THEN

returnVal := cellValue (cell)

END ;

returnStr ←− GetCellString (cell) =̂

PRE

cell ∈ dom (cellString)

THEN

returnStr := cellString (cell)

END ;

Empty cells are defined those that do not exist in the cells set but are part of the CELL set, to clear a cell,

it is removed from the cells set and its references to either a cellValue or a cellString are removed by using

domain subtraction

185

ClearCell (cell) =̂

PRE

cell ∈ cells

THEN

SELECT cell ∈ dom (cellString)

THEN cellString := { cell } −C cellString

WHEN cell ∈ dom (cellValue)

THEN cellValue := { cell } −C cellValue

END ‖

cells := cells − { cell }

END

END

186

MACHINE Spreadsheet CTX (length , width)

CONSTRAINTS length ∈ N1 ∧

width ∈ N1

In the specification we do not wish to include implementation details for how to evaluate a spreadsheet

formula. Instead, we will use a constant function Evaluate to that just maps a deferred set FUNCTION a

collection of cell,value pairs to produce a result.

This will allow the calculation of the spreadsheet formulae result to be implemented or refined in new machines

because at the specification stage we are only interested in specifying that cells with a formula should evaluate

to a result and that if cells reference other cells and the referenced cells are updated, then the evaluated result

of those formula cells may change

SETS CELL ;

FUNCTION ;

COMMAND TYPE = { SET VALUE , SET STRING , SET FORMULA , CLEAR } ;

COMMAND

CONSTANTS POSSIBLECELLVALUES ,

FORMULA ,

EVALUATE

PROPERTIES card (CELL) = length × width ∧

POSSIBLECELLVALUES = CELL × N ∧

FORMULA = FUNCTION × P (POSSIBLECELLVALUES) ∧

EVALUATE ∈ FORMULA → N

END

187

6.4.4 Case analysis

Unfortunately, due to time constraints, we were not able to present a fully specified formula machine. However,

what this case study demonstrates is that design pattern subsystems specified in B can be composed together

to produce a large system if the process is followed. It is also an example of what the architecture of a medium

sized B system looks like when it is built using design pattern subsystems. What is interesting about this case

study is that at no stage was OO abstraction employed before specifying in B. The requirements presented two

common problems in requiring updates and undo/redo and design patterns were used directly to solve these

problems.

188

Chapter 7

Conclusion

This thesis set out to explore how concepts and patterns from the OO paradigm can be beneficial in expediting

development of complex systems in B. By taking a pattern based approach, we have examined classical design

patterns in a formal context, and described how ”Objects” can be used as a useful abstraction within B to solve

problems. In the process of developing a series of pattern centric case studies, we have exposed several patterns

that are specific to B developments, and proposed a B centric pattern taxonomy to assist in the understanding

and conceptualisation of B patterns. Following this we have presented these case studies, which demonstrate how

the patterns and concepts described in chapters 4 and 5 can be applied to specify and in some cases implement

a solution. This culminated in the specification of a more complex system which demonstrates the composition

of several B patterns, achieving a robust solution.

Central to this thesis has been the goal of beginning a reference library, based on generic patterns and case

studies, which can then be re-used and adapted to different problems. By documenting and researching these

patterns in B, we have equipped the novice B practitioner to attack more complex problems with more confidence

in less time. By concentrating on only adapting those OO concepts that are useful within the B method, and not

attempting to bend B into an OO shape, we have been able to build on the strengths of both B and OO, resulting

in a more natural blend of the two methodologies. The majority of our case studies and patterns display both

OO and B representations, which will aid an experienced OO practitioner better understand how the patterns

they are familiar with can be modelled formally in B.

This thesis is only the beginnings of the work that needs to be undertaken in this area. Many of the patterns

presented here have room for improvement, and still more patterns exist that have not been discussed, and

should be documented and templated for others to reference. Further to this, it has become obvious that many

patterns that are unique to B are yet to be documented. It would also be of great interest to further examine

189

patterns in the refinement and implementation phases of B, in particular how the patterns presented in this

thesis can be driven toward implementation. Finally, in many cases we have noted that an automation tool to

assist in building pattern based machines would be very useful - a tool to assist in building Interface pattern

driven developments would be of great use, and we believe a tool to allow the extension of some behavioural and

structural patterns would also aid productivity.

190

Chapter 8

Bibliography

1. Colin Snook, Michael Butler UML-B: Formal Modelling and Design aided by UML University of Southamp-

ton 2004 UK

2. Sandrine Blazy, Frederic Gervais, Regine Laleau Reuse of Specification Patterns with the B-Method Insititut

d’Informatique d’Entreprise, Laboratoire CEDRIC, France

3. I. Johnson, C. Snook, A Edmunds, M Butler Rigorous Development of Reusable, Domain-Specific Compo-

nents, for complex applications AT Engine Controls Ltd., Portsmouth, UK. University of Southampton,

Southampton, UK

4. Jozef Hooman Towards Formal Support for UML-based Devlopment of Embedded Systems University of

Nijmegen, 2002 Netherlands

5. Steve Schneider, The B-Method: An Introduction Palgrave 2001, New York, NY, USA

6. Christopher Alexander et al, A Pattern Language, Oxford University Press 1977, New York, NY USA

7. Erich Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley

1994, Indianapolis, IN USA

8. Simon Bennett et al, Object-Oriented Systems Analysis and Design using UML, 2nd edition McGraw-Hill

2002, Berkshire UK

9. John Vlissides Pattern Hatching: Design Patterns Applied Addison-Wesley ISBN 0-201-43293-5

10. Ken Robinson Embedding Formal Development in Software Engineering

11. UNSW B Resource Site http://www.cse.unsw.edu.au/b@unsw.

12. Wikipedia, Design Patterns (computer science) http://en.wikipedia.org/wiki/Design pattern %28computer science%29

191

13. Data and Object Factory http://www.dofactory.com/

14. COMP2111. System Modelling and Development http://www.cse.unsw.edu.au/cs2111

15. COMP4001. Object Oriented Programming http://www.cse.unsw.edu.au/ cs4001

16. Peter Norvig, Design Patterns in dynamic languages http://www.norvig.com/design-patterns

17. John B. Wordsworth. Software Engineering with the B-Method. Addison-Wesley, 1996.

192

