

# Patterns, Equations, and Graphs 

## Section 1-9

## Goals



## Goal

- To use tables, equations, and graphs to describe relationships.


## Vocabulary



- Solution of an equation
- Inductive reasoning


## Review: Graphing in the Coordinate Plane

The coordinate plane is formed by the intersection of two perpendicular number lines called axes. The point of intersection, called the origin, is at 0 on each number line. The horizontal number line is called the $x$-axis, and the vertical number line is called the $y$-axis.


## Graphing in the Coordinate Plane

Points on the coordinate plane are described using ordered pairs. An ordered pair consists of an $x$-coordinate and a $y$-coordinate and is written $(x, y)$. Points are often named by a capital letter.

## Reading Math

The $x$-coordinate tells how many units to move left or right from the origin. The $y$-coordinate tells how many units to move up or down.

## Example: Graphing in the Coordinate Plane

Graph each point.
A. $\boldsymbol{T}(-4,4)$

Start at the origin.
Move 4 units left and 4 units up.
B. $\boldsymbol{U}(0,-5)$

Start at the origin.
Move 5 units down.
C. $V(-2,-3)$

Start at the origin.


Move 2 units left and 3 units down.

## Your Turn:

## Graph each point.

A. $\boldsymbol{R}(2,-3)$

Start at the origin.
Move 2 units right and 3 units down.
B. $\boldsymbol{S}(\mathbf{0}, \mathbf{2})$

Start at the origin.
Move 2 units up.
C. $\boldsymbol{T}(-2,6)$

Start at the origin.


Moynits 2 un.

## Graphing in the Coordinate Plane

The axes divide the coordinate plane into four quadrants. Points that lie on an axis are not in any quadrant.


## Example: Locating Points

Name the quadrant in which each point lies.
A. $E$

Quadrant ll
B. $F$
no quadrant ( $y$-axis)
C. $G$

Quadrant 1
D. $H$

Quadrant 111


## Your Turn:

Name the quadrant in which each point lies.
A. $T$
no quadrant ( $y$-axis)
B. $U$

Quadrant 1
C. $V$

Quadrant 111
D. $W$

Quadrant 11


## The Rectangular Coordinate System



## SUMMARY: The Rectangular Coordinate System

- Composed of two real number lines - one horizontal (the $x$-axis) and one vertical (the $y$-axis). The $x$ - and $y$-axes intersect at the origin.
- Also called the Cartesian plane or $x y$-plane.
- Points in the rectangular coordinate system are denoted $(x, y)$ and are called the coordinates of the point. We call the $x$ the $x$-coordinate and the $y$ the $y$-coordinate.
- If both $x$ and $y$ are positive, the point lies in quadrant I; if $x$ is negative, but $y$ is positive, the point lies in quadrant II; if $x$ is negative and $y$ is negative, the point lies in quadrant III; if $x$ is positive and $y$ is negative, the point lies in quadrant IV.
- Points on the $x$-axis have a $y$-coordinate of 0 ; points on the $y$-axis have an $x$-coordinate of 0 .


## Equation in Two Variables

An equation in two variables, $x$ and $y$, is a statement in which the algebraic expressions involving $x$ and $y$ are equal. The expressions are called sides of the equation.

$$
x+y=15 \quad x^{2}-2 y^{2}=4 \quad y=1+4 x
$$

Any values of the variables that make the equation a true statement are said to be solutions of the equation.

$$
x+y=15
$$

The ordered pair $(5,10)$ is a solution of the equation.

$$
\begin{aligned}
5+10 & =15 \\
15 & =15
\end{aligned}
$$

## Solutions to Equations

## Example:

Determine if the following ordered pairs satisfy the equation $2 x+y=5$.

$$
\text { a.) } \begin{array}{rlrl}
(2,1) & \text { b.) }(3,-4) \\
2 x+y & =5 & 2 x+y & =5 \\
2(2)+(1) & =5 & 2(3)+(-4) & =5 \\
4+1 & =5 & 6+(-4) & =5 \\
5 & =5 \text { True } & 2 & =5 \text { False }
\end{array}
$$

$(2,1)$ is a solution.
$(3,-4)$ is not a solution.

## Equation in Two Variables

An equation that contains two variables can be used as a rule to generate ordered pairs. When you substitute a value for $x$, you generate a value for $y$. The value substituted for $x$ is called the input, and the value generated for $y$ is called the output.

## Output Input $y=10 x+5$

## Table of Values

Use the equation $y=6 x+5$ to complete the table and list the ordered pairs that are solutions to the equation.

|  | $x$ | $y$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
|  | -2 |  | $(-2,-7)$ |
|  | 0 |  | $(0,5)$ |
|  | 2 |  | $(2,17)$ |
| $x=-2$ |  | $x=0$ | $x=2$ |
| $y=6 x+5$ |  | $y=6 x+5$ | $y=6 x+5$ |
| $y=6(-2)+5$ |  | $y=6(0)+5$ | $y=6(2)+5$ |
| $y=-12+5$ |  | $y=0+5$ | $y=12+5$ |
| $y=-7$ |  | $y=5$ | $y=17$ |

## Example: Application



An engraver charges a setup fee of $\mathbf{\$ 1 0}$ plus $\mathbf{\$ 2}$ for every word engraved. Write a rule for the engraver's fee. Write ordered pairs for the engraver's fee when there are 5,10 , 15, and 20 words engraved.

Let $y$ represent the engraver's fee and $x$ represent the number of words engraved.


## Writing Math

The engraver's fee is determined by the number of words in the engraving. So the number of words is the input and the engraver's fee is the output.

## Example: Solution

| Number of <br> Words <br> Engraved | Rule | Charges | Ordered <br> Pair |
| :---: | :--- | :---: | :---: |
| $\mathbf{x ~ ( i n p u t ) ~}$ | $\mathbf{y = 1 0 + 2 x}$ | $\mathbf{y}$ (output) | $\mathbf{( x , y )}$ |
| 5 | $\boldsymbol{y}=\mathbf{1 0}+\mathbf{2 ( 5 )}$ | 20 | $(5,20)$ |
| 10 | $y=10+2(10)$ | 30 | $(10,30)$ |
| 15 | $y=10+2(15)$ | 40 | $(15,40)$ |
| 20 | $y=10+2(20)$ | 50 | $(20,50)$ |

## Your Turn:

What if...? The caricature artist increased his fees. He now charges a $\mathbf{\$ 1 0}$ set up fee plus $\mathbf{\$ 2 0}$ for each person in the picture. Write a rule for the artist's new fee. Find the artist's fee when there are $1,2,3$ and 4 people in the picture.

Let $y$ represent the artist's fee and $x$ represent the number of people in the picture.

| Artist's fee | is | $\$ 10$ | plus | $\$ 20$ | for each | person |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | $=$ | 10 | + | 20 | $\cdot$ | $x$ |

$$
y=10+20 x
$$

## Solution:

| Number of <br> People in <br> Picture | Rule | Charges | Ordered <br> Pair |
| :---: | :---: | :---: | :---: |
| $\mathbf{x}$ (input) | $y=10+20 x$ | $y$ (output) | $(x, y)$ |
| 1 | $y=10+20(1)$ | 30 | $(1,30)$ |
| 2 | $y=10+20(2)$ | 50 | $(2,50)$ |
| 3 | $y=10+20(3)$ | 70 | $(3,70)$ |
| 4 | $y=10+20(4)$ | 90 | $(4,90)$ |

## Graphing Ordered Pairs

When you graph ordered pairs generated by a function, they may create a pattern.

## Example: Graphing Ordered Pairs

Generate ordered pairs for the function using the given values for $x$. Graph the ordered pairs and describe the pattern.

$$
y=2 x+1 ; x=-2,-1,0,1,2
$$

| Input | Output | Ordered <br> Pair |
| :---: | :---: | :---: |
| $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{( x , y )}$ |
| -2 | $2(-2)+1=-3$ | $(-2,-3)$ |
| -1 | $2(-1)+1=-1$ | $(-1,-1)$ |
| 0 | $2(0)+1=1$ | $(0,1)$ |
| 1 | $2(1)+1=3$ | $(1,3)$ |
| 2 | $2(2)+1=5$ | $(2,5)$ |

The points form a line.

Your Turn: Generate ordered pairs for the function using the given values for $x$. Graph the ordered pairs and describe the pattern.

$$
y=\frac{1}{2} x-4 ; x=-4,-2,0,2,4
$$

| I nput | Output | Ordered <br> Pair |
| :---: | :---: | :---: |
| $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{( x , y )}$ |
| -4 | $-2-4=-6$ | $(-4,-6)$ |
| -2 | $-1-4=-5$ | $(-2,-5)$ |
| 0 | $0-4=-4$ | $(0,-4)$ |
| 2 | $1-4=-3$ | $(2,-3)$ |
| 4 | $2-4=-2$ | $(4,-2)$ |



The points form a line.

## Definition

- Inductive Reasoning - is the process of reaching a conclusion based on an observed pattern.
- Can be used to predict values based on a pattern.


## Inductive Reasoning



- Moves from specific observations to broader generalizations or predictions from a pattern.
- Steps:

1. Observing data.
2. Detect and recognizing patterns.
3. Make generalizations or predictions from those patterns.


## Example: Inductive Reasoning

Make a prediction about the next number based on the pattern.
2, 4, 12, 48, 240
Find a pattern:


The numbers are multiplied by $2,3,4$, and 5 .
Prediction: The next number will be multiplied by 6 . So, it will be (6)(240) or 1440.

Answer: 1440

## Your Turn:

Make a prediction about the next number based on the pattern.

$$
1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}
$$

Answer: The next number will be $\frac{1}{6^{2}}$ or $\frac{1}{36}$

## Joke Time

- What's a fresh vegetable?
- One that insults a farmer.
- What did one knife say to the other?
- Look sharp!
- What did one strawberry say to the other?
- "Look at the jam you've gotten us into!"

