Math Practice Pages

Patterns \& Relationships

Whole Number Multiplication \& Division
Fractions, Decimals, and Percents Measurement, Data, and Geometry Word Problem Analysis

These are skills that we have covered within our math outcomes this year

Patterns 8 Relationships

Rounding to the Nearest Ten and Hundred

(凶) \times
 o×

Materials 8 inches of yarn per pair
To round 77 to the nearest ten, answer 1 to 6 .

1. Plot 73 on the number line below.

2. Use the yarn to help you decide whether 73 is closer to 70 or 80 . Which is it closer to?
3. So, what is 73 rounded to the nearest ten?
4. Plot 77 on the number line above.
5. Use the yarn to help you decide whether 77 is closer to 70 or 80 . Which is it closer to?
6. So, what is 77 rounded to the nearest ten?

To round 336 to the nearest hundred, answer 7 to 12 .
7. Plot 380 on the number line below.

300				

8. Use the yarn to help you decide whether 380 is closer to 300 or 400 . Which is it closer to?
9. So, what is 380 rounded to the nearest hundred?
10. Plot 336 on the number line above.
11. Use the yarn to help you decide whether 336 is closer to 300 or 400 . Which is it closer to?
12. So, what is 336 rounded to the nearest hundred?
\qquad
\qquad

Rounding to the Nearest Ten and Hundred (continued)

Round 459 to the nearest hundred by answering 13 to 17 .
13. What digit is in the hundreds place in 459 ? \qquad
14. What digit is to the right of the 4 ? \qquad
15. Is the digit to the right of 4 less than 5, or is it 5 or greater?

If the digit to the right of the number is 5 or more, the number rounds up. If the digit is less than 5 , the number rounds down.
16. Do you need to round 459 up or down? \qquad
17. Change the 4 to the next higher digit and change the 5 and 9 to 0 s. So, what is 459 rounded to the nearest hundred?

Round to the nearest ten.
18. 54
19. 37
\qquad
Round to the nearest hundred.
22. 609
23. 351
24. 491
25. 850
26. A rancher has 43 cattle in his herd. To the nearest ten, how many cattle are in the rancher's herd?
27. A new computer costs $\$ 876$. To the nearest hundred, how many dollars does the computer cost?
28. Reasoning Round 549 to the nearest hundred and round 551 to the nearest hundred. Do you get the same answers? Explain.

Reading and Writing 4-Digit Numbers

1. Write 2,537 in the place-value chart below.

thousands	hundreds	tens	ones

2. What place is the 2 in? \qquad So its value is 2,000 .
3. What place is the 5 in? \qquad So what is its value? \qquad
4. What place is the 3 in? \qquad So what is its value? \qquad
5. What place is the 7 in? \qquad So what is its value? \qquad
6. In expanded form, 2,537 equals $2,000+$ \qquad $+$ \qquad $+7$.
7. Write 2,537 in words.
thousand, \qquad hundred thirty-
8. Write 6,084 in the place value chart below.

thousands	hundreds	tens	ones

9. What place is the 6 in? \qquad So what is its value? \qquad
10. What place is the 0 in? \qquad So it has no value.
11. What place is the 8 in? \qquad So what is its value?
12. What place is the 4 in? \qquad So what is its value? \qquad
13. In expanded form, 6,084 equals \qquad $+$ \qquad $+$ \qquad .
14. Write 6,084 in words.
\qquad thousand, \qquad

Reading and Writing 4-Digit Numbers (continued)

Write each number in standard form.
15. $1,000+500+20+7$
\qquad
17. $8,000+100+30$
19. $4,000+500+2$

Write each number in expanded form.

21. 3,716

22. 2,091
\qquad

Write the value of the underlined digit.
23. $1,8 \underline{6} 3$
24. 9,504
25. $5,12 \underline{2}$
26. 183
\qquad
27. Write 3,995 in words.
\qquad
28. Write 4,716 in words.
29. Use the digits $1,5,7$, and 3 . Write the greatest possible four-digit number using each of the digits only once.
30. Reasoning What number would make the number sentence $5,000+800+\square+6=5,826$ true?

Rounding Numbers Through Millions

Round $4,307,891$ to the nearest million by answering 1 to 5 .

1. What digit is in the millions place?
2. What digit is to the right of the 4 ?
3. Is the digit to the right of 4 less than 5, or is it 5 or greater?

If the digit to the right of the number is 5 or more, the number rounds up. If the digit is less than 5 , the number rounds down.
4. Do you need to round up or down?
5. Keep the 4 and change the other digits to 0 s. What is $4,307,891$ rounded to the nearest million?

Round 6,570,928 to the nearest hundred thousand by answering 6 to 11 .
6. Which digit is in the hundred thousands place?
7. What digit is to the right of the 5 ?
8. Is the digit to the right of 5 less than 5, or is it 5 or greater?
9. Do you need to round up or down?
10. Change the 5 to the next highest digit and change the other digits to 0 s. What is $6,570,928$ rounded to the nearest hundred thousand?
11. What is $6,570,928$ rounded to the nearest thousand?

Rounding Numbers Through Millions (continued)

Round 1,581,267 to each place.
12. ten \qquad
14. thousand
16. hundred thousand \qquad
Round each number to the nearest ten.
18. $3,194,764$ \qquad 19. $8,967,001$
15. ten thousand \qquad
17. million \qquad
13. hundred \qquad

Round each number to the nearest hundred.
20. 1,265,906 \qquad 21. $6,906,294$ \qquad
Round each number to the nearest thousand.
22. $8,070,126$ \qquad 23. $9,264,431$ \qquad
Round each number to the nearest ten thousand.
24. 7,514,637 \qquad 25. $2,437,894$ \qquad
Round each number to the nearest hundred thousand.
26. $1,395,384$ \qquad 27. $3,992,460$ \qquad
Round each number to the nearest million.
28. $4,578,952$ \qquad 29. $5,022,121$ \qquad
30. $2,439,019$ \qquad 31. $8,888,888$ \qquad
32. Reasoning A number rounded to the nearest million is $4,000,000$. One less than the same number rounds to $3,000,000$ when rounded to the nearest million.
What is the number?

Comparing and Ordering Numbers Through Millions

Compare $45,872,723$, and $45,891,827$ by answering 1 to 4 .

1. Write the numbers so the digits are lined up.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Starting on the left, in the ten millions place, compare the digits in each place. In what place do the digits become different?
3. Compare the ten thousands. 90,000 \qquad 70,000
4. Write $>,<$, or $=.45,891,872$ 45,872,723.

Order these numbers from least to greatest by answering 5 to 10 .
734,876,934
72,859,277
73,884,900
7,119,020
5. Write the numbers so the digits are lined up by answering 5 to 10 .
\qquad
If a number has fewer digits than all the others, it is the least.
6. Which number is the least? \qquad

If a number has more digits than all the others, it is the greatest.
7. Which number is the greatest? \qquad

Comparing and Ordering Numbers
Through Millions (continued)

(囚) 징밍

8. The other two numbers have the same number of digits. Since both have a 7 in the ten millions place, compare the millions.

2,000,000 \qquad 3,000,000
9. Write $>,<$, or $=.72,859,277$ \qquad 73,884,900.
10. Write the numbers in order from least to greatest.

Write $>,<$, or $=$ in each blank.
11. 1,689,000 \qquad $1,679,000$
12. $43,914,500$ 43,925,000
13. $62,441,300$ \qquad 62,329,500
14. $518,495,000$ \qquad 517,954,000
15. 45 million \qquad 42 million
16. 17 million \qquad 7 million

Order the numbers from greatest to least.
17. 96,$500 ; 8,400,509 ; 8,946,000 ; 81,000,900$
18. $746,589,415 ; 497,956,881 ; 749,300,000 ; 719,995,800$
19. Which of these four countries has the smallest area? Brazil, 3,286,472 square miles;
Canada, $3,851,788$ square miles;
China, 3,704,426 square miles;
U.S., $3,617,827$ square miles
20. Reasoning How can you quickly tell that $87,243,572$ is less than $870,243,572$?
\qquad

Exponents and Place Value

1. Complete the table.

Exponential Expression	Expanded Form	Standard Form
10^{0}	none	
10^{1}	10	1
10^{2}	10×10	10
10^{3}		
10^{4}		
10^{5}		
10^{6}		

2. Reasoning Compare the exponents to the number of zeros in each number when written in standard form. What do you notice?
3. Write $7,245,000$ in expanded form with exponents by filling in the blanks.

7,245,000
= 7,000,000
$=(7 \times 1,000,000)$
$=\left(7 \times 10^{6}\right)$ \qquad $+$ \qquad $+$ \qquad
4. Write $4,507,298$ in expanded form three ways.

4,000,000 +
$(4 \times 1,000,000)+$
$\left(4 \times 10^{6}\right)+$

Exponents and Place Value (continued)

Write each number in expanded form three ways.
5. 65,784
6. $3,170,245$
7. 725,418
8. A library has eight million, two hundred twenty-three thousand, twelve books. Write this number in expanded form using exponents.
9. Reasoning How can you tell what exponent to use with the 6 when writing $2,682,943$ in expanded form with exponents?
\qquad

Order of Operations

To evaluate an expression, you must follow the order of operations.

1. Follow the steps to simplify the expression.

Order of Operations

- Parentheses
- Multiplication and/or Division from left to right
- Addition and/or Subtraction from left to right
$=37-\quad$ Do multiplication before subtraction.
$=\quad$ Subtract.
So, $(21+16)-6 \times 4=$ \qquad

2. Follow the steps to find the value of $(15-c)+24 \div 9$ when $c=8$.

So, when $c=8,(15-c)+27 \div 9=$ \qquad
3. What do you do first to simplify $5 \times 8-(3+5) \div 4$?

Order of Operations (continued)

Use the order of operations to simplify each expression.
4. $2 \times(1+5)$
5. $5+(6 \div 3)$
6. $(7-3)+(4+5)$
7. $49 \div(10-3)$
8. $(2 \times 3)+(4 \times 2)$
9. $8+(3 \times 4)$
10. $(6 \times 2)+(8 \div 4)$
11. $15+(25 \times 4)-52$
12. $18-(12-9) \times 3$
\qquad
13. $6-2 \times 3+12$
14. $(12 \div 3)+(7 \times 2)$
15. $9+16 \div(3+1)$

Evaluate each expression for $a=20$.
16. $a+5 \div 5-3$
17. $a-(12+3)$
\qquad
18. $(13+6)-(a-14)$

Find the value of each expression for $\mathrm{g}=4$.
19. $6+5 \times 2+g$
20. $(22-g) \div(3 \times 2)$
21. $75+(25 \times g)-67$
22. William has 3 jars of marbles that he wishes to share equally with his brother. In the first jar there are 12 marbles, in the second jar there are 21 marbles, and in the third jar there are 17 marbles. Write an expression with parentheses to show how many marbles each boy will get. Then simplify the expression.
23. Reasoning Eddie simplified the expression $8-2 \times 3+10$ and got an answer of 28. Is Eddie correct? If not, what did he do wrong?

Multiplication

\&
Division

\qquad

When Joseppi added 43 and 28 , he got a sum of 71 . To check that this answer is reasonable, use estimation.

1. Round each addend to the nearest ten.

43 rounded to the nearest ten is \qquad .

28 rounded to the nearest ten is \qquad .
2. Add the rounded numbers.
$40+30=$ \qquad
Since 71 is close to 70 , the answer is reasonable.
When Ling added 187 and 242 , she got a sum of 429 . To check that this answer is reasonable, use estimation.
3. Round each addend to the nearest hundred.

187 rounded to the nearest hundred is \qquad

242 rounded to the nearest hundred is \qquad .
4. Add the rounded numbers.
$200+200=$ \qquad
Since 429 is close to 400 , the answer is reasonable.
\qquad

Estimate by rounding to the nearest ten.
5. $71+36$
6. $24+81$
7. $43+91$
8. $54+66$
9. $68+27$
10. $19+93$
11. $89+75$
12. $54+33$

Estimate by rounding to the nearest hundred.

13.	367	14
+141		
17.		
	$940+190$	

20. $369+481$
21. $151+260$
\qquad
22. Reasoning Jaime was a member of the school chorus for 3 years. Todd was a member of the school band for
2 years. The chorus has 43 members and the band has for 3 years. Todd was a member of the school band for
2 years. The chorus has 43 members and the band has 85 members. About how many members do the two groups have together?
23. Luis sold 328 sport bottles and Jorge sold 411. About how many total sport bottles did the two boys sell?
24. $675+460$
\qquad
25. 458
$+249$
891
26. $531+776$
27. $705+936$
\qquad Reasoning What is larget number
28. Reasoning What is the largest number that can be added to 46 so that the sum is 70 when both numbers are rounded to the nearest ten? Explain.

Estimating Differences

When Jarvis subtracted $41-29$, he got a difference of 12 .
To check that this answer is reasonable, use estimation.

1. Round each number to the nearest ten.

41 rounded to the nearest ten is \qquad _.

29 rounded to the nearest ten is \qquad .
2. Subtract the rounded numbers.
$40-30=$ \qquad
Since 12 is close to 10 , the answer is reasonable.
DaNitra subtracted 685 - 279 and got a difference of 406.
To check that this answer is reasonable, use estimation.
3. Round each number to the nearest hundred.

685 rounded to the nearest hundred is \qquad

279 rounded to the nearest hundred is \qquad .
4. Subtract the rounded numbers.
$700-300=$ \qquad
Since 406 is close to 400 , the answer is reasonable.

Estimate by rounding to the nearest ten.
5. 47
6. 82
7. $67-51$
8. $94-48$
-19
-34
9. 71
10. 65
-12
-49
13. 93
14. 88
-45
-32

Estimate by rounding to the nearest hundred.
17. $\begin{array}{r}586 \\ -\quad 195 \\ \hline\end{array}$
17. $\begin{array}{r}586 \\ -\quad 195 \\ \hline\end{array}$
18. 941
18. $\begin{array}{r}941 \\ -362 \\ \hline\end{array}$
19. $442-181$
20. $861-298$
15. $57-18$
16. $28-17$
\qquad
\qquad
11. $89-24$
12. $51-38$
\qquad
\qquad

Adding Two-Digit Numbers

Materials place-value blocks: 6 tens and 13 ones per pair
There are 25 boys and 38 girls at the library. How many students total?

1. Show 25 using place-value blocks.
2. Show 38 using place-value blocks.
3. Add $25+38$ to find the total students.

Add the ones. $5+8=$ \qquad
4. Do you have more then 10 ones?
5. Since you have 13 ones, regroup them into tens and ones

13 ones $=$ \qquad ten and \qquad ones
6. Record the 3 ones at the bottom of the ones column of the Tens and Ones chart. Record
 the 1 ten at the top of the tens column.
7. Add the tens. Add the 1 ten that you regrouped, the 2 tens from the 25 , and the 3 tens from the 38 .

1 ten +2 tens +3 tens $=$ \qquad tens
8. Record the tens at the bottom of the tens column of the Tens and Ones chart.
9. So, $25+38=$ \qquad

How many students are at the library? \qquad | Tens | Ones |
| :---: | :---: |
| \square | |
| | |
| | 4 |
| 2 | 6 |
| | 9 |
| | |

Add.
11.

12.

Add. Use a tens and ones chart if you like.
13.

$$
\begin{array}{r}
58 \\
+\quad 17 \\
\hline 75
\end{array}
$$

17. 46
$+45$
18. 56
$\begin{array}{r}11 \\ \hline\end{array}$
19. 36
17

+

19. 17
$+49$
20. 45
21. 18

19
+1
16. 20
$+28$
21.

$$
\begin{array}{r}
32 \\
+\quad 66 \\
\hline
\end{array}
$$

22. 26

$$
+37
$$

23. 22
$+65$
24. 33

+33

25. 21

$$
\begin{array}{r}
+39 \\
\hline
\end{array}
$$

27. 36
28. 64

$$
\begin{array}{r}
+29 \\
\hline
\end{array}
$$

$$
+16
$$

$$
+27
$$

29. A puppy weighs 15 pounds. His mother weighs 65 pounds. How much do the puppy and his mother weigh together?
30. Reasoning What number do you add to 19 to get 30?

Subtracting Two-Digit Numbers

Materials place-value blocks: 3 tens and 20 ones per pair
There are 34 kittens and 16 puppies. How many more kittens than puppies are there?

1. Show 34 with place-value blocks.

2. Do you have enough ones to take away 6 ones?
3. Regroup 1 ten into 10 ones. Show this with your place-value blocks.

3 tens and 4 ones $=$ \qquad tens and 14 ones
4. Cross out the 3 tens in the Tens and Ones chart and write 2 above it. Cross out the 4 ones and write 14 above it.
5. Now, take away 6 ones and write the difference at the bottom of the ones column.

14 ones -6 ones $=$ \qquad ones
6. Subtract the tens and write the difference at the bottom of the tens column.

2 tens -1 ten $=$ \qquad ten
7. So, $34-16=$ \qquad .

How many more kittens than puppies are there?
8. Use place-value blocks and the Tens and Ones chart to subtract 56-27.

\qquad
Subtracting Two-Digit Numbers (continued)

Subtract.
9.

Subtract. Use a Tens and Ones chart if you like.
11.

35

- 17

15. 74
-45
16.

22
-18
17.
-18
13.

45
-39
14. 61
-38
19.

95
-69

20.

$\begin{array}{r}34 \\ -\quad 7 \\ \hline\end{array}$
21.

61
-26
22.
90
-74
23. Thompson has 32 flowers. If he plants 18 flowers in the front yard, how many will he have left?
24. Reasoning In which problem do you need to regroup to subtract, $53-28$ or $58-23$? Explain.

Mental Math Strategies

You can add or subtract mentally by breaking apart numbers.
Find the difference of $647-235$.

1. Break apart each number into its expanded form.

$$
647=600+\ldots+\ldots+30+\ldots
$$

2. Subtract the hundreds in both numbers.
3. Subtract the tens in both numbers. \qquad
4. Subtract the ones in both numbers.
$-5=$ \qquad
5. Add the differences of the hundreds, tens, and ones.

$$
400+10+2+=
$$

\qquad
6. So, $647-235=$ \qquad .

You can also add or subtract mentally by using compensation.
Find the sum of $235+197$.
7. Find the number closest to a multiple of 100 and round.

197 rounded to the nearest hundred is \qquad .
8. Solve the new problem.
$235+200=$ \qquad
9. Since you rounded 197 to 200 , did you add too much or too little to 235 ?
10. How much more is 200 ? \qquad
11. Since 200 is 3 more than 197, you added too much. You now must subtract 3 from the sum to compensate for adding 3 .

$$
435-3=
$$

\qquad
12. So, $235+197=$ \qquad

Add or subtract mentally. Use breaking apart.
13. $313+216$
14. $842+115$
15. $283+114$
16. $254+621$
\qquad
\qquad
\qquad
17. $365+423$
18. $457+222$
19. $947-516$
20. $786-314$
\qquad
21. $466-325$
22. $579-256$
23. $688-232$
24. $875-231$
\qquad
Add or subtract mentally. Use compensation.
25. $462+399$
26. $618+296$
27. $256+195$
28. $326+295$
29. $145+197$
\qquad
33. 916 - 497
36. $683-499$
\qquad
30. $328+598$
34. 732 - 296
35. $867-395$
31. $540-298$
\qquad
\qquad
\qquad
37. On vacation, the Gonzales family traveled 595 miles in one day. Their destination is 949 miles from their home. How much farther do they need to travel to get there?
38. Reasoning To subtract $767-496$, Wang first found $767-500=267$. Now should he add 4 to 267 or subtract 4 from 267 ?

Adding and Subtracting Money

(凶) 징
 Ø

To find $\$ 2.67+\$ 3.25$, add as you would with whole numbers.

1. Add the pennies.
2. Since you have 12 pennies, regroup them into dimes and pennies.

12 pennies $=$ \qquad dime
and \qquad pennies
3. Record the 2 pennies at the bottom of the
 pennies column of the chart. Record the 1 dime at the top of the dimes column.
4. Add the dimes. $1+6+2=$ \qquad dimes
Record this value at the bottom of the dimes column.
5. Add the dollars. $2+3=$ \qquad dollars Record this value at the bottom of the dollars column.
6. Write the answer in dollars and cents by placing the dollar sign and decimal point.

So, $\$ 2.67+\$ 3.25=$ \qquad .

To find \$5.73 - \$ 1.91 , subtract as you would with whole numbers.
7. Subtract the pennies. $3-1=$ \qquad Record this value at the bottom of the pennies column.
8. Since you cannot subtract 9 dimes from 7 dimes, regroup 1 dollar into 10 dimes.

5 dollars and 7 dimes $=4$ dollars
 and ___ dimes
9. Record this regrouping in the chart. Cross out the 5 dollars and write 4 above it. Change the 7 dimes to 17 dimes.
10. Subtract the dimes. $17-9=$ \qquad dimes
Record this value at the bottom of the dimes column.
11. Subtract the dollars. $4-1=$ \qquad dollars
Record this value at the bottom of the dollars column.
12. Write the answer in dollars and cents by placing the dollar sign and decimal point.

So, $\$ 5.73-\$ 1.91=$ \qquad
Add or subtract.
13. $\$ 2.92$
14. $\$ 2.78$
15. $\$ 0.99$
$+0.74$
$+0.94$
$+2.49$
16. $\$ 5.70$
-1.35
17. $\begin{array}{r}\$ 2.30 \\ +1.95 \\ \hline\end{array}$
18.
19. $\$ 4.84$
-1.36
20. $\begin{array}{r}\$ 6.65 \\ +3.25 \\ \hline\end{array}$
21. $\$ 8.42$
22. $\$ 9.11$
-2.08
$+0.09$
23. $\begin{array}{r}\$ 5.03 \\ +3.58 \\ \hline\end{array}$
24.
$\begin{array}{r}\$ 6.45 \\ -\quad 1.26 \\ \hline\end{array}$
25. $\$ 3.58$
26. $\$ 7.40$
27. $\$ 5.68$
$\begin{array}{r}+0.29 \\ \hline\end{array}$
-1.26
$\begin{array}{r}+0.90 \\ \hline\end{array}$
28. $\begin{array}{r}\$ 4.41 \\ -4.17 \\ \hline\end{array}$
29. Reasoning Which is easier for you to subtract, $\$ 3.87$ - $\$ 1.63$ or $\$ 4.15$ - $\$ 2.89$? Explain.

Writing Multiplication Stories

Follow 1 to 5 below to write a multiplication story for 5×4 that is about hamburgers and pickle slices.

1. 5×4 means \qquad groups of \qquad .
2. So, 5×4 might mean \qquad hamburgers with \qquad pickle slices each.
3. Write a story about 5 hamburgers with 4 pickle slices each.

Mrs. \qquad went through a drive thru and bought \qquad hamburgers. Each hamburger had \qquad pickle slices. How many \qquad were there in all?
4. Draw a picture to find how many pickle slices there were in all.
$5 \times 4=$ \qquad
5. How many pickle slices were there in all? \qquad
6. Write a multiplication story for 6×3 about nests and eggs.

Mr. \qquad found \qquad nests. Each nest had
\qquad eggs. How many \qquad did he find in all?
7. Draw a picture to find how many eggs he found in all.
$6 \times 3=$ \qquad
8. How many eggs did he find in all? \qquad

Write a multiplication story. Then find the product.
9.

$2 \times 5=$ \qquad

Write a multiplication story for Exercises 10 and 11.
Draw a picture to find each product.
10. $6 \times 6=$ \qquad
11. $4 \times 5=$ \qquad
12. There are 4 houses on Oak Street. Four people live in each house. How many people live on Oak Street?

Writing Division Stories

Materials counters, 18 per student or pair of students
To write a division story for $18 \div 3$ that is about 18 grapes and 3 sisters, fill in the blanks below.

1. Mrs. \qquad put \qquad grapes into
a bowl. Mrs. \qquad 's daughters,
\qquad \longrightarrow, and
\qquad shared the grapes equally. How
many \qquad did each sister get?
2. Use counters to show how many grapes there were in all.
3. Divide the 18 counters into 3 equal groups.

4. How many grapes did each sister get? \qquad
5. Write a division story for $10 \div 5$ about apples and bags.

Mr. \qquad bought \qquad apples. He
put \qquad apples into each bag. How many \qquad
did he use?
6. Use counters to show how many apples he bought.
7. Divide the 10 counters into groups with 5 in each group.
8. How many bags did he use? \qquad bags

Writing Division Stories (continued)

Write a division story for each number sentence below. Use the pictures to help. Then use counters or draw a picture to solve.
9. $15 \div 5=$ \qquad

10. $12 \div 3=$

Write a division story. Then use counters or draw a picture to solve.
11. $14 \div 2=$ \qquad

Estimating Products

ro
 징밍

During Field Day, the students at Sunrise Elementary were placed into 4 activity groups. Each group had 78 students.
About how many students were in all 4 groups?
Estimate 4×78.

1. What is 78 rounded to the nearest ten? \qquad
2. What is 4×80 ? \qquad
3. What is a good estimate for 4×78 ? \qquad
4. About how many students were in all 4 groups during Field Day? \qquad students
5. Reasoning How do the place-value blocks below show that 320 is a good estimate for 4×78 ?

Estimate 6×345.
6. What is 345 rounded to the nearest hundred? \qquad
7. What is 6×300 ? \qquad
8. What is a good estimate for 6×345 ?

Estimate each product.
9. 7×38
10. 8×34
11. 5×91
\qquad
12. 4×57
13. 7×47
14. 3×72
15. 6×52
16. 2×75
17. 3×87
\qquad
18. 2×623
19. 5×177
20. 4×532
\qquad
21. 3×318
22. 4×863
23. 2×804
\qquad
24. Each of the eight delivery trucks carried 94 packages. About how many packages were there altogether?
25. There are 43 carrots in each of 7 bags of carrots. About how many carrots altogether?
26. Reasoning What is a good estimate for 6×26 ? Explain how you estimated.
27. Reasoning Mark estimated the product of 4×54 to be about 280. Was his estimation reasonable? Explain your reasoning.

Estimating Quotients

The city soccer league has 47 children, between the ages of 8 and 10 , signed up to play soccer. The people in charge of the soccer league want to put 9 children on each team. About how many teams should they make?

Estimate $47 \div 9$ by answering 1 to 4 .

1. What number is close to 47 and can be easily divided by 9 ?
2. What is $45 \div 9$? \qquad
3. What is a good estimate of $47 \div 9$? \qquad
4. About how many soccer teams should the city make? \qquad
You can use compatible numbers to help you estimate a quotient.
Estimate $543 \div 8$ by answering 5 to 10 .
5. Is $5 \div 8$ a basic fact? \qquad
6. Is $54 \div 8$ a basic fact? \qquad
7. What is a basic fact that is close to $54 \div 8$? \qquad
8. Is 560 close to 543 ? \qquad
9. What is $560 \div 8$? \qquad
10. What is a good estimate of $543 \div 8$? \qquad
Estimate $615 \div 2$ by answering 11 to 14 .
11. Is $6 \div 2$ a basic fact? \qquad
12. Is 600 close to 615 ? \qquad
13. What is $600 \div 2$? \qquad
14. What is a good estimate of $615 \div 2$? \qquad
15. Reasoning Show how you would estimate $2,398 \div 4$?

Estimating Quotients (continued)

Estimate each quotient. Write the numbers you used.
16. $75 \div 4=$
17. $31 \div 2=$
18. $824 \div 9=$
\qquad
19. $465 \div 9=$
\qquad
22. $56 \div 3=$
\qquad
25. $564 \div 6=$
\qquad
28. $3 \longdiv { 9 2 3 }$
\qquad
31. $6 \longdiv { 1 1 7 }$
\qquad
34. The Spencer family drove in their car to their favorite vacation spot. Mrs. Spencer likes to travel at a rate of 55 miles per hour. The Spencers traveled 849 miles in 3 days. Estimate the number of miles driven each day.
35. A manufacturer is packaging paper towels. If 6 rolls complete a package, about how many packages can be made from 327 rolls?
36. Reasoning Is 30 a reasonable quotient for $264 \div 9$? Explain your reasoning.

Multiplication and Arrays

＊짐잉

Materials place－value blocks： 9 tens and 40 ones for each group

To multiply 3×38 ，answer 1 to 7 ．
1．Show an array of 3 rows with 38 in each row，using place－value blocks．

2．How many tens in all？ \qquad tens

3． 9 tens $=$ \qquad
4．How many ones in all？ \qquad
5． 24 ones $=$ \qquad
6．Add the tens and the ones together．
9 tens +24 ones $=$ \qquad $+$ \qquad
\qquad
7．What is 3×38 ？ \qquad

To multiply 4×27 ，answer 8 to 11 ．
8．Show an array of 4 rows with 27 in each row，using place－value blocks．

$$
\begin{aligned}
& \text { 田田田回日 }
\end{aligned}
$$

9．How many tens in all？ \qquad tens $=$ \qquad
10．How many ones in all？ \qquad
11．What is 4×27 ？ $4 \times 27=$ \qquad $+$ \qquad $=$

Find each product. Draw a picture to help.
12. 3×16
13. 5×21

14. 2×23
15. 3×18

Find each product. Draw a picture to help you multiply with greater numbers.
16. $3 \times 35=$ \qquad 17. $6 \times 23=$
18. $5 \times 18=$ \qquad 19. $2 \times 34=$ \qquad
20. $6 \times 14=$ \qquad
21. $4 \times 28=$ \qquad
22. $7 \times 13=$ \qquad
23. $5 \times 42=$ \qquad
24. Reasoning If you draw an array to find 4×35, how many tens will you draw? \qquad tens How many ones will you draw? \qquad ones So, $4 \times 35=$ \qquad .

Breaking Apart Numbers to Multiply

国

Materials place-value blocks: 16 tens and 48 ones per student or pair

Find 8×26 by answering 1 to 6 .

1. Show an array of 8 rows with 26 in each row, using place-value blocks.
2. $26=$ \qquad tens + \qquad ones

$$
=\underline{ـ}+
$$

3. Multiply the ones by 8 and write the product on the left.26
$8 \times$ \qquad ones $=$ \qquad ones
 murnonger

 murnomern

Find each product.
9.
32
$\begin{array}{r}32 \\ \times 3 \\ \hline\end{array}$ multiply ones
+90 multiply tens product
12.

45
$\times \quad 2$

10.

+200 multiply tens
product
13.
64
$\begin{array}{r}\times 4 \\ \times \\ \hline\end{array}$
14.
\$23

$\times \quad 5$

11. $\$ 64$
12. $\begin{array}{r}\$ 64 \\ \times \quad 3 \\ \hline\end{array}$

Interpret the Remainder

Materials counters

Division is an operation that is used to find the number of equal groups or the number of objects that are in each group. Sometimes there is an extra amount. The leftover amount is called the remainder.

Can Leroy sort his collection of 14 sports cards into 3 equal piles?
\bigcirc

$\bigcirc \bigcirc$

$\bigcirc \bigcirc$
$\bigcirc \bigcirc$

Leroy can't sort 14 sports cards into 3 equal piles. He can put 4 cards in each of the 3 piles, but 2 sports cards are left. The remainder is 2 and can be written as R2; $14 \div 3$ is 4 R2. Leroy can either give the extra sports cards to a friend or save them until he gets enough to make another pile of 4 .

Use counters to solve the following problems.

1. 28 stickers, 5 stickers on a page

How many pages are full? \qquad
What is the remainder? \qquad
What does the remainder mean? \qquad
\qquad
2. 19 books, 6 books on a shelf

How many shelves are full? \qquad
What is the remainder? \qquad
What does the remainder mean? \qquad
\qquad
3. 34 marbles, 5 marbles in a group

How many groups are complete? \qquad
What is the remainder?
What does the remainder mean? \qquad

Solve each of the following problems.
4. 62 buttons, 7 buttons on a shirt

How many shirts can be made? \qquad
What is the remainder? \qquad
What does the remainder mean? \qquad
5. 95 pens, 10 pens in a package

How many complete packages of pens are there? How many pens are extra?
6. 40 action figures, 6 action figures in a row

How many complete rows of action figures are there? How many action figures are extra?
\qquad
7. 74 apples, 9 apples in a bag

How many bags are full? How many apples are extra?
\qquad
8. Robert claims that 57 game tokens can be shared equally among himself and 5 friends without having any extra tokens. Is Robert correct? Explain.
\qquad
\qquad
9. Mary is organizing her collection of 37 crayons in groups of 5 . How many complete groups will she have? Are there any extra crayons? What can Mary do with any extra crayons?

Divisibility by 2, 3, 5, 9, and 10

A number such as 256 is divisible by a number like 2 if $256 \div 2$ has no remainder. If 256 is a multiple of 2 , then 256 is divisible by 2 .

Use the divisibility rules and answer 1 to 10 to determine if 256 is divisible by $2,3,5,9$, or 10 .

Divisibility Rules	
Number	Rule
2	The last digit is even: $0,2,4,6,8$.
3	The sum of the digits is divisible by 3.
5	The last digit ends in a 0 or 5.
9	The sum of the digits is divisible by 9.
10	The ones digit is a 0.

1. Is the last digit in 256 an even number? \qquad
2. Is 256 divisible by 2 ? \qquad
3. Is the last digit in 256 a 0 or 5 ? \qquad
4. Is 256 divisible by 5 ? \qquad
5. Is 256 divisible by 10 ? \qquad
6. What is the sum of the digits of 256 ? $2+5+6=$ \qquad
7. Is the sum of the digits of 256 divisible by 3 ? \qquad
8. Is 256 divisible by 3 ? \qquad
9. Is the sum of the digits of 256 divisible by 9 ? \qquad
10. Is 256 divisible by 9 ? \qquad
Use the divisibility rules to determine if 720 is divisible by $2,5,9$, or 10 .
11. Is 720 divisible by 2 ?
12. Is 720 divisible by 5 ?
13. Is 720 divisible by 10 ? \qquad 14. Is 720 divisible by 9 ? \qquad

Divisibility by 2, 3, 5, 9, and 10 (continued)

Test each number to see if it is divisible by $2,3,5,9$, or 10 . List the numbers each is divisible by.
15. 56
16. 78
17. 182
18. 380
19. 105
20. 126
21. 4,311
22. 8,356
23. 2,580
\qquad
24. 7,265
25. 4,815
26. 630
27. Feliz has 225 baseball trophies. He wants to display his trophies on some shelves with an equal number of trophies on each. He can buy shelves in packages of 5,9, or 10 . Which shelf package should he NOT buy? Explain.
28. Reasoning Are all numbers that are divisible by 5 also divisible by 10 ? Explain your reasoning.
29. Reasoning Are all numbers that are divisible by 10 also divisible by 5 ? Explain your reasoning.

Exponents

O
 징
 ठ×

Scott is planning to run in a race and asked 2 friends to sponsor him. The following week, each friend asked 2 more friends to sponsor Scott. If this continued, how many sponsors did Scott have after seven weeks?

1. Complete the table.

Week	Number of Sponsors (Expanded Form)	Number of Sponsors (Exponential Form)	Number of Sponsors (Standard Form)
1	2	2^{1}	2
2	2×2	2^{2}	4
3	$2 \times 2 \times 2$	2^{3}	8
4	$2 \times 2 \times 2 \times 2$	2^{4}	
5	$2 \times 2 \times 2 \times 2 \times 2$		
6			
7			

2. How many sponsors will Scott have on the 10th week?

Expanded form: \qquad
Exponential form: \qquad Standard form: \qquad
3. If Scott started by asking 3 friends to sponsor him and each of those friends asked three friends, how many sponsors would he have on the 4th week?

Expanded form: \qquad
Exponential form: \qquad Standard form: \qquad
4. Use the table above to complete the following patterns.

$$
16,8,4,2
$$

\qquad

$$
2^{4}, 2^{3}, 2^{2}, 2^{1}
$$

\qquad
$2^{0}=1$. Any number, except zero, to the zero power is 1.
5. What is 5° ? \qquad

Exponents (continued)

Write each expression in exponential form.
6. $4 \times 4 \times 4$
7. $7 \times 7 \times 7 \times 7 \times 7$
8. $6 \times 6 \times 6$
9. $10 \times 10 \times 10 \times 10$
10. 5×5
11. $3 \times 3 \times 3 \times 3$

Write each expression in standard form.
12. 2^{7}
13. 1^{7}
14. 6^{3}
15. 83^{1}
16. 4^{3}
17. 11^{2}
18. 2^{8}
19. 10^{4}
20. 7^{2}
21. 0^{5}
22. 3^{3}
23. 12^{0}

Write each expression in expanded form.
24. 12^{4}
25. 8^{3}
26. 4^{4}
27. 32^{5}
28. 3^{4}
29. 200^{2}
30. Reasoning Is 2^{5} the same as 5^{2} ? Check by writing both numbers in standard form.

Estimating Products

Mrs. Wilson's class at Hoover Elementary School is collecting canned goods. Their goal is to collect 600 cans. There are 21 students in the class and each student agrees to bring in 33 cans. Answer 1 to 7 to find if the class will meet their goal.

Estimate 21×33 and compare the answer to 600 .
Round each factor to get numbers you can multiply mentally.

1. What is 21 rounded to the nearest ten?
2. What is 33 rounded to the nearest ten?
3. Multiply the rounded numbers.
$20 \times 30=$ \qquad
The answer is the same as the number needed to meet the goal.
4. 21 was rounded to 20 . Was it rounded up or down?
5. 33 was rounded to 30 . Was it rounded up or down?
6. Is 21×33 more or less than 21×30 ?
7. Will the goal be reached?

Hoover Elementary School had a goal to collect 12,000 canned goods. There are 18 classes and each class collects 590 cans.
Answer 8 to 13 to find if the school will meet their goal.
Estimate 18×590 and compare the answer with 12,000 .
Round each factor to get numbers you can multiply mentally.
8. What is 18 rounded to the nearest ten?
9. What is 590 rounded to the nearest hundred?
10. Multiply the rounded numbers.

$$
20 \times 600=
$$

\qquad
The answer is the same as the number needed to meet the goal.

Estimating Products (continued)
11. 18 was rounded to 20 . Was it rounded up or down? 590 was rounded to 600 . Was it rounded up or down?
12. Is 18×590 more or less than 20×600 ?
13. Will the goal be reached?

Round each factor so that you can estimate the product mentally.
14. 71×382
\qquad
\qquad
17. 58×176
\qquad
\qquad
20. 87×67
\qquad
\qquad
23. Debra spends 42 minutes each day driving to work. About how many minutes does she spend driving to work each month?
24. Reasoning If 64×82 is estimated to be 60×80, would the estimate be an overestimate or an underestimate? Explain.

Dividing by Multiples of 10

Use the multiplication sentences to find each quotient. Look for a pattern.

1. $4 \times 20=$ \qquad $80 \div 20=$ \qquad
$40 \times 20=$ \qquad

$$
800 \div 20=
$$

\qquad
$400 \times 20=$ \qquad

Name
Dividing by Multiples of 10 (continued)

Divide. Use mental math.
6. $300 \div 30=$ \qquad
7. $60 \div 20=$ \qquad
8. $200 \div 40=$ \qquad
9. $240 \div 60=$ \qquad
10. $490 \div 70=$ \qquad 11. $450 \div 90=$ \qquad
12. $100 \div 50=$ \qquad
13. $2,700 \div 90=$ \qquad
14. $1,800 \div 60=$ \qquad
15. $3,500 \div 70=$ \qquad 16. $1,500 \div 30=$ \qquad 17. $800 \div 40=$ \qquad
18. $640 \div 80=$ \qquad
19. $3,600 \div 60=$ \qquad
20. $140 \div 70=$ \qquad
21. $1,200 \div 20=$ \qquad 22. $8,100 \div 90=$ \qquad 23. $560 \div 80=$ \qquad
24. $600 \div 30=$ \qquad
27. $1,200 \div 40=$ \qquad 28. $2,500 \div 50=$ \qquad 29. $2,100 \div 70=$ \qquad
30. $4,500 \div 90=$ \qquad 31. $480 \div 80=$ \qquad 32. $450 \div 50=$ \qquad
33. Dan has a coin collection. His sister Michaela has just started collecting. Michaela has 20 coins, and Dan has 400 coins. About how many times larger is Dan's collection?
34. Hector must store computer $C D$ in cartons that hold 40 CDs each. How many cartons will he need to store 2,000 CDs?
35. Reasoning Write another division problem with the same answer as $2,700 \div 90$.

Estimating Quotients with Two-Digit Divisors

A charity needs to mail 209 boxes. The workers can mail 28 boxes each day. About how many days do they need to mail all the boxes?

Estimate the quotient of $209 \div 28$ by answering 1 to 7 .

1. What is 28 rounded to the nearest ten?
2. To find compatible numbers for 209 and 30 , list some of the multiples of 3 .

3, 6, \qquad
\qquad - \qquad , \qquad
3. Which multiple of 3 is closest to the first digit or two of 209 ?
4. What is 209 rounded to the nearest compatible number?
5. What is $210 \div 30$?
6. What is a good estimate for $209 \div 28$?
7. About how many days do the workers need to mail all the boxes? \qquad days

Estimate the quotient of $4,156 \div 72$ by answering 8 to 10 .
8. What is 72 rounded to the nearest ten?
9. What is 4,156 rounded to the nearest compatible number?
10. What is a good estimate for $4,156 \div 72$?
\qquad \div \qquad $=$ \qquad
Estimate the quotient of $8,273 \div 43$ by answering 11 to 13 .
11. What is 43 rounded to the nearest ten?
12. What is 8,273 rounded to the nearest compatible number?
13. What is a good estimate for $8,273 \div 47$?
\qquad \div \qquad $=$ \qquad

Estimate each quotient. Write the compatible numbers you used.
14. $465 \div 89=$
\qquad
\qquad
17. $3,561 \div 37=$
\qquad
\qquad
20. $564 \div 62=$
\qquad
\qquad
23. $1,590 \div 42=$
\qquad
\qquad
26. $3 2 \longdiv { 9 0 2 }$
\qquad
\qquad
29. The school band is raising money to go on a trip. The 68 members hope to raise $\$ 6,400$. The trip will be 4 days in length. Estimate the amount that each member should raise.
22. $3,118 \div 57=$
\qquad
\qquad
25. $7,118 \div 77=$
\qquad
\qquad
28. $2 8 \longdiv { 2 , 1 1 2 }$
\qquad
\qquad
\qquad
27. $6 2 \longdiv { 1 , 1 3 0 }$
19. $4,149 \div 73=$
\qquad
\qquad
21. $7,198 \div 82=$
24. $1,235 \div 19=$
\qquad
\qquad
\qquad

16. $637 \div 82=$
\qquad
\qquad

Fractions,
 Decimals, \& Percents

Using Models to Compare Fractions

(8) 지
 व㐅

Materials fraction strips

Use $>,<$, or to compare $\frac{4}{5}$ and $\frac{2}{3}$ by answering 1 to 3 .

1. Show $1, \frac{4}{5}$, and $\frac{2}{3}$ with fraction strips.
2. Compare. Which is greater in total length, $\frac{4}{5}$ or $\frac{2}{3}$?

3. Since $\frac{4}{5}$ is longer than $\frac{2}{3}$. $\frac{4}{5}$ is greater than $\frac{2}{3}$. Write $>,<$, or $=$.
Compare $\frac{1}{10}$ and $\frac{1}{4}$ by answering 4 to 6 .
4. Show $1, \frac{1}{10}$, and $\frac{1}{4}$ with fraction strips.
5. Compare. Which is greater in total length, $\frac{1}{10}$ or $\frac{1}{4}$?

6. Since $\frac{1}{10}$ is shorter than $\frac{1}{4^{\prime}}$
$\frac{1}{10}$ is less than $\frac{1}{4}$. Write $>,<$, or $=$.
7. Since $\frac{1}{10}$ is shorter than $\frac{1}{4^{\prime}}$
$\frac{1}{10}$ is less than $\frac{1}{4}$. Write $>,<$, or $=$.

Compare $\frac{2}{5}$ and $\frac{4}{10}$ by answering 7 to 9 .
7. Show $1, \frac{2}{5}$, and $\frac{4}{10}$ with fraction strips.
8. Compare. Which is greater in total length, $\frac{2}{5}$ or $\frac{4}{10}$?
9. Since $\frac{2}{5}$ and $\frac{4}{10}$ are the same length,
 $\frac{2}{5}$ is equal to $\frac{4}{10}$. Write $>,<$, or $=$.

Name
Using Models to Compare Fractions (continued)

Compare. Write $<,>$, or $=$.
10.

$\frac{1}{4}$		
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

12. $\frac{2}{3}$

$\frac{1}{3}$		$\frac{1}{3}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

14.

16.

11. $\frac{3}{4} \circlearrowleft \frac{2}{8}$

$\frac{1}{4}$		$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{8}$	$\frac{1}{8}$		

13.

$\frac{1}{5}$				
$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$

15.

| $\frac{1}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{4}$ | | | $\frac{1}{4}$ | $\frac{1}{4}$ | | |
| | | | | | | |

17.

$\frac{3}{5} \bigcirc \frac{1}{4}$

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
$\frac{1}{4}$		

18. Reasoning Give 3 fractions with different
denominators that are less than $\frac{4}{6}$.
19. Reasoning Two students are writing stories.

Eric's story is $\frac{2}{3}$ of a page. Alba's story is $\frac{4}{6}$ of
a page. Whose story is longer?

Comparing Fractions on the Number Line

Materials 21 index cards for each pair; crayons or markers,
13 craft sticks for each pair; 1 yard of yarn for each pair

1. Write numbers on index cards, one number on each card.

One partner writes the following numbers.
$0, \frac{1}{3}, \frac{2}{3} 1,1 \frac{1}{3}, 1 \frac{2}{3}, 2,2 \frac{1}{3}, 2 \frac{2}{3}, 3,3 \frac{1}{3}, 3 \frac{2}{3}$, and 4
The other partner writes the following numbers.
$\frac{1}{3}, \frac{2}{3}, 1 \frac{1}{3}, 1 \frac{2}{3}, 2 \frac{1}{3}, 2 \frac{2}{3}, 3 \frac{1}{3}$, and $3 \frac{2}{3}$
2. Create a number line, like the one shown below, with the yarn, craft sticks, and the first set of index cards.

3. Shuffle the other set of cards. Both you and your partner draw a card.
4. Match the numbers on the cards you drew with numbers on the number line you created.

Which number is farther to the right?
On the number line, fractions increase in value from left to right. So the fraction farther to the right is greater.
5. Write a comparison of your two numbers, such as $2 \frac{2}{3}<3 \frac{1}{3}$.

Set the first two cards aside. Continue drawing cards and writing comparisons until all the cards are gone.
6. \qquad 7. \qquad
8. \qquad 9. \qquad

Name
Comparing Fractions on the Number Line (continued)

For 10-18, use the number line below. Compare. Write $<,>$, or $=$.

For 19-24, use the number line below. Compare. Write $<,>$, or $=$.

19.

20. $2 \frac{1}{3} \bigcirc 1 \frac{2}{3}$
$21.1 \frac{1}{3} \bigcirc 2 \frac{1}{3}$
22.

23. $2 \frac{2}{3}$

$2 \frac{1}{3}$
24.

25. Reasoning Why is $2 \frac{1}{8}$ greater than $1 \frac{7}{8}$, even though $\frac{1}{8}$ is less than $\frac{7}{8}$?
26. Reasoning Explain how you can use the number line above to compare $6 \frac{1}{3}$ and $6 \frac{2}{3}$.

Equivalent Fractions

Materials crayons or markers

1. Show $\frac{2}{3}$ by coloring 2 of the $\frac{1}{3}$ strips.
2. Color as many $\frac{1}{6}$ strips as it takes to cover the same region as the $\frac{2}{3}$.

1					
$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

How many $\frac{1}{6}$ strips did you color? \qquad
3. So, $\frac{2}{3}$ is equivalent to four $\frac{1}{6}$ strips. $\frac{2}{3}=\frac{\square}{6}$

You can use multiplication to find a fraction equivalent to $\frac{2}{3}$. To do this, multiply the numerator and the denominator by the same number.
4. What number is the denominator
of $\frac{2}{3}$ multiplied by to get 6 ?

5. Since the denominator was multiplied by 2 , the numerator must also be multiplied by 2 . Put the product of 2×2 in the numerator of the second fraction above.

Multiply the numerator and denominator of each fraction by the same number to find a fraction equivalent to each.
6.

7.

8. Show $\frac{9}{12}$ by coloring 9 of the $\frac{1}{12}$ strips.
9. Color as many $\frac{1}{4}$ strips as it takes to cover the same region as $\frac{9}{12}$. How many $\frac{1}{4}$ strips did you color? \qquad

10. So, $\frac{9}{12}$ is equivalent to three $\frac{1}{4}$ strips. $\frac{9}{12}=\frac{\square}{4}$

You can use division to find a fraction equivalent to $\frac{9}{12}$. To do this, divide the numerator and the denominator by the same number.
11. What number is the denominator of $\frac{9}{12}$ divided by to get 4 ? \qquad

12. Since the denominator was divided by 3 , the numerator must also be divided by 3 . Put the quotient of $9 \div 3$ in the numerator of the second fraction above.

Divide the numerator and denominator of each fraction by the same number to find a fraction equivalent to each.
13.

14.

If the numerator and denominator cannot be divided by anything else, then the fraction is in simplest form.
15. Is $\frac{5}{12}$ in simplest form? \qquad 16. Is $\frac{6}{8}$ in simplest form?
\qquad
Find each equivalent fraction.
17. $\frac{1}{5}=\frac{\square}{15}$
18. $\frac{8}{10}=\frac{\square}{5}$
19. $\frac{2}{8}=\frac{\square}{4}$
20. $\frac{7}{10}=\frac{\square}{20}$
21. $\frac{6}{14}=\frac{\square}{7}$
22. $\frac{8}{11}=\frac{\square}{22}$

Write each fraction in simplest form.
23. $\frac{6}{8}$
24. $\frac{8}{12}$ \qquad 25. $\frac{7}{35}$
-
26. $\frac{16}{24}$
27. Reasoning Explain why $\frac{4}{6}$ is not in simplest form.

Simplest Form

Anita saw that $\frac{12}{30}$ of the students in her class wore t-shirts one day.
Write $\frac{12}{30}$ in simplest form by answering 1 to 5 .
To write a fraction in simplest form, you need to use the greatest common factor (GCF) for the numerator and the denominator.

1. What is the GCF of 12 and 30 ? \qquad
2. Divide both the numerator and the denominator by the GCF to find an equivalent fraction.

$$
\frac{12 \div 6}{30 \div 6}=\frac{\square}{5}
$$

3. What is the fraction that you found that is equivalent to $\frac{12}{30}$? \qquad
A fraction is in simplest form when the GCF of the numerator and the denominator is 1 .
4. Is the GCF of the numerator and the denominator of the fraction you found 1 ? \qquad
5. What is $\frac{12}{30}$ in simplest form? \qquad
Nine out of 24 girls on the cross county team went to the state finals.
6. What fraction of the girls went to the state final?

Write $\frac{9}{24}$ in simplest form by answering 7 to 11 .
7. What is the GCF of 9 and 24 ?
8. Divide both the numerator and the denominator by the GCF to find an equivalent fraction.

$$
\frac{9 \div 3}{24 \div 3}=\frac{\square}{\square}
$$

9. What is the GCF of the numerator and the denominator of the fraction you found?
10. Is this fraction written in simplest form?
11. What fraction in simplest form represents the part of girls on the cross country team that went to the state finals?

Simplest Form (continued)

Write each fraction in simplest form. If it is in simplest form, write simplest form.
12. $\frac{5}{10}$
13. $\frac{14}{16}$
14. $\frac{27}{45}$
15. $\frac{10}{15}$
16. $\frac{5}{20}$
17. $\frac{14}{18}$
18. $\frac{5}{11}$
19. $\frac{1}{15}$
20. $\frac{6}{20}$
21. $\frac{36}{45}$
22. $\frac{11}{33}$
23. $\frac{24}{60}$
24. $\frac{18}{24}$
25. $\frac{12}{160}$
26. $\frac{6}{12}$
27. $\frac{9}{81}$
28. $\frac{16}{48}$
29. $\frac{7}{13}$
30. $\frac{21}{25}$
31. $\frac{14}{35}$
32. Reasoning Explain how to tell $\frac{100}{105}$ is not in simplest form without finding all the factors.

Fractions and Mixed Numbers on the Number Line

Each fraction names a point on the number line below. Use the number line to answer 1 to 7 .

1. How many equal lengths is the distance between 0 and 1 divided into?
2. How many equal lengths is the distance between 1 and 2 divided into?

Since the distance between 0 and 1 and the distance between 1 and 2 are each divided into 10 equal lengths, each length is $\frac{1}{10}$ of the whole length.
3. To name point A, count by tenths. $\frac{1}{10}, \frac{2}{10^{\prime}}$ \qquad
4. What fraction is represented by point A on the number line above? \qquad
5. To name point B, continue counting.

$$
\frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \frac{8}{10}, \frac{9}{10}, \frac{10}{10}
$$

6. What improper fraction is represented by point B ?
7. Write point B as a mixed number.

Plot point C at $\frac{3}{5}$ on the number line above by answering 8 and 9 .
8. What fraction with a denominator of 10 is equivalent to $\frac{3}{5}$?
9. Plot point C at $\frac{6}{10}$. This point represents $\frac{3}{5}$.

$$
\frac{3}{5}=\frac{\square}{10}
$$

Plot point D at $1 \frac{4}{5}$ on the number line above by answering 10 and 11 .
10. What improper fraction with a denominator of 10 is equivalent to $1 \frac{4}{5}$?

$$
1 \frac{4}{5}=1 \frac{\square}{10}=\frac{\square}{10}
$$

Fractions and Mixed Numbers on the Number Line (continued)
11. Plot point D at $\frac{18}{10}$. This point represents $1 \frac{4}{5}$.
12. Reasoning On a number line, numbers increase in value from left to right. Use the number line on the previous page to help you order $\frac{3}{10}, 1 \frac{1}{2}, \frac{3}{5}$, and $1 \frac{4}{5}$ from least to greatest.

Plot each point on the number line below.

13. Point A at $\frac{3}{4}$ 14. Point B at $1 \frac{1}{4}$ 15. Point C at $2 \frac{1}{2}$ 16. Point D at $3 \frac{1}{2}$

Use the number lines below. What fraction or mixed number represents each point?

17. Point A \qquad 18. Point B \qquad 19. Point C \qquad
20. Point D \qquad 21. Point E \qquad 22. Point F \qquad
Use the number lines below. What number represents each point? If a point can be represented by both an improper fraction and a mixed number, give both.

23. Point A \qquad 24. Point B \qquad 25. Point C \qquad
26. Point D \qquad 27. Point E \qquad 28. Point F \qquad

Subtracting Mixed Numbers

Materials fraction strips

On Monday, Carmen swam $2 \frac{3}{4}$ miles and Katie swam $1 \frac{5}{8}$ miles. Answer 1 to 8 to find how much farther Carmen swam than Katie.

Find $2 \frac{3}{4}-1 \frac{5}{8}$.

1. Estimate. $2 \frac{3}{4}-1 \frac{5}{8}$ is about \qquad - \qquad $=$ \qquad .
2. Show $2 \frac{3}{4}$ and $1 \frac{5}{8}$ with fraction strips.

1	1		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$				

3. How many eighths equal $\frac{3}{4}$? Write the number in the box at the right.
4. Subtract the ones and subtract the fractions. Fill in the boxes at the right.

$$
\begin{aligned}
2 \frac{3}{4} & =2 \frac{\square}{8} \\
-1 \frac{5}{8} & =1 \frac{5}{8}
\end{aligned}
$$

5. What is $2 \frac{3}{4}-1 \frac{5}{8}$? \qquad
6. How much farther did Carmen swim than Katie? \qquad
7. Is $1 \frac{1}{8}$ close to the estimate of 1 ? \qquad
8. Is $1 \frac{1}{8}$ a reasonable answer? \qquad
On Wednesday, Carmen swam $2 \frac{1}{8}$ miles and Katie swam $1 \frac{3}{4}$ miles. Answer 9 to 18 to find how much farther Carmen swam than Katie.

Find $2 \frac{1}{8}-1 \frac{3}{4}$.
9. Show $2 \frac{1}{8}$ and $1 \frac{3}{4}$ with fraction strips.

1	1			$\frac{1}{8}$
1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	

10. What is the least common denominator of $\frac{1}{8}$ and $\frac{3}{4}$? \qquad
11. How many eighths equal $\frac{3}{4}$? Write the number in the box at the right.
12. Compare. Write $>,<$, or $=, \frac{1}{8} \bigcirc \frac{6}{8}$

$$
\begin{array}{r}
2 \frac{1}{8}=2 \frac{1}{8} \\
-1 \frac{3}{4}=1 \frac{\square}{8} \\
\hline
\end{array}
$$

Since $\frac{1}{8}$ is less than $\frac{6}{8}$, you need to regroup.
13. What is $1 \frac{1}{8}$ as an improper fraction? \qquad
14. What is the missing number?
$2 \frac{1}{8}=1+1 \frac{1}{8}=1+\frac{\square}{8}$

Write this number at the right.
15. Subtract the ones. What is $1-1$? \qquad
16. Subtract the fractions. What is $\frac{9}{8}-\frac{6}{8}$? Write 3 at the right.
17. What is $2 \frac{1}{8}-1 \frac{3}{4}$? \qquad

1	$\frac{1}{8}$							
1	$\frac{1}{8}$							
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$		

18. How much farther did Carmen swim than Katie on Wednesday? \qquad
Subtract. Simplify, if possible. Estimate to check.
19. $2 \frac{2}{3}$
20. $2 \frac{4}{10}$
$-1 \frac{1}{6}$
21. $5 \frac{1}{4}$
$\begin{array}{r}-\quad \frac{2}{5} \\ \hline\end{array}$
22. $6 \frac{7}{8}$
$-1 \frac{5}{6}$
23. To make a dress, $1 \frac{1}{6}$ yards of blue material is needed and $\frac{3}{4}$ yard of red material is needed. How much more blue material is needed than red material?
24. Reasoning If you have $7 \frac{3}{16}$ and you subtract $\frac{3}{16}$, how much do you have?

Understanding Division with Fractions

(凶) $\times{ }_{0}$

Materials crayons, markers, or colored pencils
Donna has 3 kilograms of clay. She uses $\frac{1}{2}$ kilogram for each vase. Answer 1 to 3 to find the number of vases she can make.

Find $3 \div \frac{1}{2}$.

1. Color each half of a rectangle at the right a different color. How many $\frac{1}{2}$'s are in 3 ? \qquad

2. What is $3 \div \frac{1}{2}$?
3. How many vases can Donna make? \qquad
You could also find $3 \div \frac{1}{2}$ by multiplying $3 \times \frac{2}{1}$.
The numbers $\frac{1}{2}$ and $\frac{2}{1}$ or 2 have a special relationship because $\frac{1}{2} \times 2=1$. The numbers $\frac{1}{2}$ and 2 are reciprocals. Similarly, $\frac{3}{4}$ and $\frac{4}{3}$ are reciprocals. Note that $\frac{3}{4} \times \frac{4}{3}=1$.
4. What is the reciprocal of $\frac{1}{3}$?
5. What is the reciprocal of $\frac{5}{7}$?

So, $3 \div \frac{1}{2}$ can be written as 3×2, because 2 is the reciprocal of $\frac{1}{2}$.
Thomas has $\frac{9}{10}$ kilogram of clay. He uses $\frac{3}{10}$ kilogram for each small bowl.
Answer 6 to 8 to find how many small bowls Thomas can make.
Find $\frac{9}{10} \div \frac{3}{10}$ using a model.
6. Color each $\frac{3}{10}$ of the rectangle at the right a different color. How many $\frac{3}{10}$'s are in $\frac{9}{10}$?

7. What is $\frac{9}{10} \div \frac{3}{10}$?
8. How many small bowls can Thomas make? \qquad
Find $\frac{9}{10} \div \frac{3}{10}$ by using the reciprocal.
9. What is the reciprocal of $\frac{3}{10}$?

Name
Understanding Division with Fractions (continued)
10. To find $\frac{9}{10} \div \frac{3}{10}$, can you multiply $\frac{9}{10}$ by the reciprocal of $\frac{3}{10}$?
11. Complete: $\frac{9}{10} \times \frac{10}{3}=\frac{9 \times 10}{10 \times \square}=\frac{90}{\square}=\square$
12. Is the answer to item 11 the same as item 8 ? \qquad
Find the reciprocal of each number.
13. $\frac{3}{4}$ \qquad 14. $\frac{1}{15}$
15. $\frac{7}{9}$
16. $1 \frac{3}{7}$

Find each quotient.
17. How many $\frac{1}{4}$ are in 2? \qquad 18. How many $\frac{1}{2}$ are in 3 ? \qquad
19. How many $\frac{1}{4}$ are in 4 ? \qquad 20. How many $\frac{3}{4}$ are in 3 ?
21. How many $\frac{1}{8}$ are in 2? \qquad 22. How many $\frac{2}{8}$ are in 1 ?
23. How many $\frac{3}{8}$ are in 3 ? \qquad 24. How many $\frac{6}{8}$ are in 3 ? \qquad
25. $3 \div \frac{1}{6}$
26. $9 \div \frac{3}{5}$ \qquad 27. $4 \div \frac{1}{4}$ \qquad
28. $10 \div \frac{5}{6}$ \qquad 29. $9 \div \frac{3}{4}$
30. $6 \div \frac{1}{3}$ \qquad
31. $2 \div \frac{1}{7}$ \qquad 32. $6 \div \frac{3}{5}$ \qquad 33. $10 \div \frac{1}{10}$
34. Bonnie is cutting 7 apples. Each apple is cut into eighths. How many slices of apple will she have?
35. Reasoning Explain how to find $\frac{3}{4} \div \frac{3}{8}$ by using the reciprocal of $\frac{3}{8}$.

1. What is the value of 1 nickel?
2. What is the value of 10 nickels?
3. What is the value of 100 nickels?
4. What is the value of 1 quarter?
5. What is the value of 10 quarters?
6. What is the value of 100 quarters?
7. Reasoning What do you notice about the decimal point as a decimal is multiplied by a multiple of 10 ?
8. Use the pattern to fill in the table and to find $1,000 \times 0.945$.

Multiply by	Expression	Product	Move the decimal point to the right:
1	1×0.945	0.945	0 places
10	10×0.945	9.45	
100	100×0.945		2 places
1,000	$1,000 \times 0.945$		

9. What is $1,000 \times 0.945$?

Find 2.8×100 by answering 10 and 11 .
10. How many places to the right do you need to move the decimal point when multiplying a decimal by 100 ?

To multiply 2.8×100, you need to move the decimal point two places to the right, but 2.8 only has one digit to the right of the decimal point. When this happens, use zeros as placeholders.
11. What is 2.8×100 ?

Use mental math to find each product.
12. $6.74 \times 1=$ \qquad
$6.74 \times 10=$ \qquad
$6.74 \times 100=$ \qquad
$6.74 \times 100=$ \qquad
14. $0.0125 \times 1=$ \qquad
$0.0125 \times 10=$ \qquad
$0.0125 \times 100=$ \qquad
$0.0125 \times 1,000=$ \qquad
16. $0.0007 \times 1=$ \qquad
$0.0007 \times 10=$ \qquad
$0.0007 \times 100=$ \qquad
$0.0007 \times 1,000=$ \qquad
13. $42.19 \times 1=$ \qquad $42.19 \times 10=$ \qquad
$42.19 \times 100=$ \qquad
$42.19 \times 1,000=$ \qquad
15. $295.81 \times 1=$ \qquad $295.81 \times 10=$ \qquad $295.81 \times 100=$ \qquad $295.81 \times 1,000=$ \qquad
17. $1,400 \times 1=$ \qquad

$$
1,400 \times 10=
$$

\qquad

$$
1,400 \times 100=
$$

\qquad
$1,400 \times 1,000=$ \qquad
18. One box weighs 3.25 pounds. What is the weight of 10 boxes?
19. Reasoning How is multiplying a decimal by 100 the same as multiplying a whole number by 100 ? How is it different?

Dividing Decimals by 10, 100, or 1,000

\times

1. If $\$ 250$ is divided evenly by 10 people, how much does each person get?
2. If $\$ 250$ is divided evenly by 100 people, how much does each person get?
3. If $\$ 250$ is divided evenly by 1,000 people, how much does each person get?
4. What do you notice about the decimal point as a decimal is divided by multiples of 10 ?
5. Use the pattern to fill in the table and to find $873.2 \div 1,000$.

Divide by	Expression	Answer	Move the decimal point to the left
1	$873.2 \div 1$	873.2	0 places
10	$873.2 \div 10$	87.32	
100	$873.2 \div 100$		2 places
1,000	$873.2 \div 1,000$		

6. What is $873.2 \div 1,000$?

Find $3.6 \div 100$ by answering 7 to 9 .
7. How many places to the left does the decimal point move when dividing by 100 ?

To divide $3.6 \div 100$, you need to move the decimal point two places to the left, but 3.6 only has one digit to the left of the decimal point. When this happens, use zeros as placeholders.
8. What is $3.6 \div 100$?
9. Reasoning How can you check your answer?

Name
Dividing Decimals by 10, 100, or 1,000 (continued)

Use mental math to find each quotient.
10. $18.4 \div 1=$ \qquad 11. $73 \div 1=$ \qquad
$18.4 \div 10=$
$73 \div 10=$ \qquad
12. $106.2 \div 1=$ \qquad
$18.4 \div 100=$ \qquad
\qquad
$18.4 \div 1,000=$ \qquad
$73 \div 1,000=$ \qquad
13. $9 \div 1=$ \qquad
$9 \div 10=$ \qquad
$9 \div 100=$ \qquad
$9 \div 1,000=$ \qquad
14. $45.3 \div 1=$ \qquad
$45.3 \div 10=$ \qquad
15. $575 \div 1=$ \qquad $575 \div 10=$ \qquad
$575 \div 100=$ \qquad
$575 \div 1,000=$ \qquad
16. $6.2 \div 10$
17. $83.9 \div 100$
18. $27.5 \div 1,000$
19. $375 \div 1,000$
\qquad
20. $93.3 \div 100$
21. $12.4 \div 10$
22. $214 \div 1,000$
23. $5.04 \div 100$
\qquad
24. $37 \div 10$
25. $564 \div 10$
26. $72.9 \div 1,000$
27. $4.1 \div 100$
\qquad
28. $97.6 \div 100$
29. $813 \div 1,000$
30. $3.7 \div 10$
\qquad
32. $17.65 \div 10$
33. $3,175 \div 1,000$
34. $0.54 \div 10$
35. $2.06 \div 100$
36. A 220 -foot long coil of rope is to be divided into 10 equal pieces. How long will each piece be?
37. A 40-acre plot of land is to be subdivided into 100 equal size plots. How large will each plot be?

Measurement, Data, \& Geometry

Using Customary Units of Length

A small paperclip is about 1 inch long.

A baseball bat is about 1 yard long.

A football is about 1 foot long.

Most people can walk a mile in about 15 minutes.

What is the best unit to measure each?

1. The length of your pencil
2. The length of the Mississippi River
3. The height of a desk
4. The length of your school

Answer 5 to 7 and use the table to find how many inches are in 4 feet.
5. 1 foot $=$ \qquad inches
6. To find how many inches are in 4 feet, multiply 4×12 inches.
4×12 inches $=$ \qquad inches
7. How many inches are in 4 feet? \qquad
Answer 8 to 10 and use the table to find how many feet are in 5 yards, 2 feet.
8. 1 yard $=$ \qquad feet
9. How many feet are in 5 yards?
10. How many feet are in 3 yards, 2 feet?

Customary Units of Length

1 foot (ft)	$=12$ inches
1 yard (yd)	$=3$ feet
1 yard	$=36$ inches
1 mile (mi)	$=5,280$ feet
1 mile	$=1,760$ yards

\qquad

Which unit would you use to measure each item?
Write inch, foot, yard, or mile.
11. The length of a gerbil
13. The height of a door

Circle the better estimate.
15. The distance you travel on an airplane

560 yards or 560 miles
17. The length of a bar of soap 3 inches or 7 inches
12. The length of a football field
\qquad
14. The distance to the sun
16. The height of a full grown adult giraffe

6 feet or 6 yards
18. The length of your bed

7 feet or 7 yards
20. 3 feet $=$ \qquad inches
21. 4 yards $=$ \qquad inches
23. 1 foot, 9 inches $=$ \qquad inches
24. 2 yards, 2 feet $=$ \qquad inches
25. Reasoning What unit would you use to measure the length of an earthworm? Explain why your choice is the best unit.

Converting Customary Units of Length

Mayla bought 6 yards of ribbon. How many feet of ribbon did she buy?

Answer 1 to 4 to change 6 yards to feet.
To change larger units to smaller units, multiply. To change smaller units to larger units, divide.

1. 1 yard $=$ \qquad feet
2. Do you need to multiply or divide to change from yards to feet?
3. What is 6×3 feet? \qquad feet
4. How many feet of ribbon did Mayla buy? \qquad
Deidra bought 60 inches of ribbon. How many feet of ribbon did she buy? Change 60 inches to feet by answering 5 to 8 .
5. 1 foot $=$ \qquad inches
6. Do you need to multiply or divide to change from feet to inches?
7. What is $60 \div 12$? \qquad
8. How many feet of ribbon did Deidra buy?

Troy ran 4 miles. How many yards did he run? Change 4 miles to yards by answering 9 to 11 .
9. 1 mile $=$ \qquad yards
10. Do you need to multiply or divide to change from miles to yards?
11. 4 miles $=$ \qquad yards
12. How many yards did Troy run? \qquad

Find each missing number.
13. $1 \mathrm{yd}=\ldots \mathrm{ft}$ ft 14. 72 in. $=$ \qquad ft
15. $3 \mathrm{mi}=$ \qquad ft
16. $5,280 \mathrm{ft}=$ \qquad mi 17. $5 \mathrm{mi}=$ \qquad yd
18. $4 \mathrm{yd}=$ \qquad ft
19. $48 \mathrm{in} .=$ \qquad ft
20. $1 \mathrm{yd}=$ \qquad in.
21. $6 \mathrm{mi}=$ \qquad ft
22. $5 \mathrm{yd}=$ \qquad ft
23. $3 \mathrm{mi}=$ \qquad yd
24. $2 \mathrm{ft}=$ \qquad in.
25. $21 \mathrm{ft}=$ \qquad yd
26. $3 \mathrm{yd}=$ \qquad in. 27. $4 \mathrm{yd}=$ \qquad in.

For Exercises 28 to 32 use the information in the table.
28. How many inches did Speedy crawl?
\qquad inches
29. How many inches did Pokey crawl?
\qquad inches
30. How many inches did Pickles crawl?

Turtle Crawl Results

Turtle	Distance
Snapper	38 inches
Speedy	3 feet
Pokey	2 yards
Pickles	4 feet

\qquad inches
31. Reasoning Which turtle crawled the greatest distance?
32. Reasoning Which turtle crawled the least distance?
33. Reasoning Explain how you could use addition to find how many yards are in 72 inches.

Converting Customary Units of Capacity

The bread recipe calls for 2 cups of milk. How many fluid ounces (floz) is that? Change 2 cups to fluid ounces by answering 1 to 3 .

To change larger units to smaller units, multiply. To change smaller units to larger units, divide.

Customary Units of Capacity
1 tablespoon (tbsp) $=3$ teaspoons (tsp)
1 cup $(\mathrm{c})=8$ fluid ounces (fl oz)
1 pint $(\mathrm{pt})=2$ cups (c)
1 quart $\left(\mathrm{q}^{t}\right)=2$ pints (pt)
1 gallon (gal) $=4$ quarts (q^{\dagger})

1. 1 cup $=$ \qquad fluid ounces
2. Do you need to multiply or divide to change from cups to fluid ounces?
3. What is 2×8 fluid ounces? \qquad fluid ounces
4. How many fluid ounces of milk is 2 cups? \qquad
Change 18 teaspoons to tablespoons by answering 5 to 8 .
5. 1 tablespoon $=$ \qquad teaspoons
6. Do you need to multiply or divide to change from teaspoons to tablespoons?
7. What is $18 \div 3$? \qquad
8. $\quad 18$ tablespoon $=$ \qquad teaspoons

Javier made 5 quarts of punch. How many pints did he make? Change 5 quarts to pints by answering 9 to 12 .
9. 1 quart $=$ \qquad pints
10. Do you need to multiply or divide to change from quarts to pints?
11. 5 quarts $=$ \qquad pints
12. How many pints of punch did Javier make? \qquad

Find each missing number.
13. $40 \mathrm{fl} \mathrm{oz}=$ \qquad c 14. $3 \mathrm{gal}=$ \qquad q^{\dagger}
15. $15 \mathrm{tsp}=$ \qquad tbsp
16. $4 \mathrm{q}^{\dagger}=$ \qquad pt
17. $12 \mathrm{pt}=$ \qquad q^{\dagger}
18. $8 \mathrm{c}=$ \qquad fl oz
19. 3 tbsp $=$ \qquad tsp
20. $18 \mathrm{c}=$ \qquad pt
21. $14 \mathrm{gal}=$ \qquad q^{\dagger}
22. $24 \mathrm{fl} \mathrm{oz}=$ \qquad c
23. $16 \mathrm{q}^{\dagger}=$ \qquad pt
24. $32 \mathrm{qt}^{\mathrm{t}}=$ \qquad gal
25. $3 \mathrm{pt}=$ \qquad c
26. $8 q^{\dagger}=$ \qquad gal
27. $4 \mathrm{c}=$ \qquad pt

Lee has the supplies listed in the table to use in his science fair project. Use the table for Exercises 28 to 32.
28. How many cups of orange

	Science Project Supplies	
	Liquid	Amount
_ cups	Orange Juice	32 fl oz
_ cups	Milk	1 pt
	Vinegar	3 c
_ cups	Water	3 pt

29. How many cups of milk does Lee have? \qquad cups
30. Reasoning Which liquid does Lee have the most of?
31. Reasoning Which liquid does Lee have the least of?
\qquad
32. How many cups of water does Lee have?都 ¡uice does Lee have?
33. Reasoning Lee also needs 4 tablespoons of baking
soda, but he can only find a teaspoon to measure with.
34. Reasoning Lee also needs 4 tablespoons of baking
soda, but he can only find a teaspoon to measure with. How many teaspoons of baking soda does he need?
\qquad
35. Reasoning Explain how to convert 6 pints to quarts.

Converting Metric Units

(8)
 区

The table shows how metric units are related. Every unit is 10 times greater than the next smaller unit. Abbreviations are shown for the most commonly used units.

kilometer (km)	hectometer	dekameter	meter (m)	decimeter	centimeter (cm)	millimeter (mm)
kiloliter	hectoliter	dekaliter	liter (L)	deciliter	centiliter	milliliter (mL)
kilogram (kg)	hectogram	dekagram	gram (g)	decigram	centigram	milligram (mg)

To change from one metric unit to another, move the decimal point to the right or to the left to multiply or divide by 10, 100, or 1,000.

The length of a sheet of paper is 27.9 centimeters. Convert 27.9 cm to millimeters by answering 1 to 3 .

1. To move from centimeters to millimeters in the table, do you move right or left?
2. How many jumps are there between centimeters and millimeters in the table?

Move the decimal one place to the right to convert from centimeters to millimeters. This is the same as multiplying by 10 .
3. What is the length of the paper in millimeters?
mm
Convert 27.9 cm to meters by answering 4 to 6 .
4. To move from centimeters to meters in the table, do you move right or left?
5. How many jumps are there between centimeters and meters in the table?

Move the decimal two places to the left to convert from centimeters to meters. This is the same as dividing by 100 .
6. What is the length of the paper in meters? \qquad m

Tell the direction and number of jumps in the table for each conversion. Then convert.
7. 742 cm to meters
\qquad jumps \qquad
m
8. $\quad 12.4 \mathrm{~kg}$ to g
\qquad jumps \qquad $\longrightarrow \mathrm{g}$
9. 0.62 L to mL
\qquad
\qquad mL
Write the missing numbers.
10. $150 \mathrm{mg}=\quad \mathrm{g}$
13. $\quad 300 \mathrm{~mL}=$ \qquad L
11. $2,600 \mathrm{~m}=$ \qquad km 12. $0.4 \mathrm{~L}=$ \qquad mL
16. $2,670 \mathrm{mg}=$ \qquad g 17. $34 \mathrm{~cm}=$ \qquad mm mg 15. $2.6 \mathrm{~m}=$ \qquad mm
14. $4 \mathrm{~kg}=$ \qquad

For Exercises 19 to 21 use the table at the right.
19. What is the height of the Petronas Towers in centimeters?
\qquad
20. What is the height of the CN Tower in meters?

Building	Height
John Hancock Center	344 m
Petronas Towers	452 m
Sears Tower	$44,200 \mathrm{~cm}$
CN Tower	$553,000 \mathrm{~mm}$

21. What is the height of the John Hancock Center in km?
\qquad
22. Reasoning Which is shorter, 15 centimeters or 140 millimeters? Explain.

Word

Problem

Analysis

Two-Step Problems

Max earns \$9 for every hour he rakes leaves. It took him 2 hours to rake the leaves in his yard. How much money did he earn raking leaves? If he already had $\$ 26$, how much does he have now?

Solve by answering 1 to 7 .
Answer 1 and 2 to understand the problem.

1. What do you know from reading the problem?

Max earns \qquad for every hour he rakes leaves.

He raked leaves for \qquad hours.

He already had \qquad .
2. What do you need to find?

The problem has two questions. Answer the first one. Then, answer the second one.

Answer 3 to 6 to plan and solve the problem.
3. How can you answer the first question? \qquad
4. Solve. How much did Max earn raking leaves?
5. How can you answer the second question? \qquad
6. Solve. How much money did Max have after raking leaves?

Two-Step Problems (continued)

Answer 7 to check your solution.
7. Reasoning Use an estimate to explain why your answer to how much money Max has now is reasonable.

Solve each problem. Answer both questions.
8. Ms. Olivia brought 7 bunches of bananas to the school picnic.

Each bunch had 5 bananas. She also brought 27 apples.
How many bananas did she bring? \qquad bananas
How many more bananas than apples did Ms. Olivia bring? \qquad more
9. There are 3 children and 2 adults in Zac's family. Each person in the family donated $\$ 5$ to charity.

How many people are in Zac's family? \qquad people

How much money did Zac's family donate to charity? \qquad
10. Monique read 45 pages on Saturday and 39 pages on Sunday. Her book has 113 pages.

How many pages did Monique read?
___ pages
How many more pages does she need to read to finish her book?
pages
11. Tandy bought 4 boxes of cat treats. Each box contains 2 packages. It takes 5 days to use each package of cat treats.

How many packages of cat treats did Tandy buy?
__ packages
How many days worth of cat treats did Tandy buy? \qquad days

Multi-Step Problems

At the sports store, Hannah bought 2 baseballs, and Jim bought 3 baseballs. The baseballs cost $\$ 6$ each. How much did they spend?

Solve by answering 1 to 8 .
Answer 1 and 2 to understand the problem.

1. What do you know from reading the problem?

Hannah bought \qquad .

Jim bought \qquad .

The baseballs cost \qquad each.
2. What do you need to find?

Answer 3 to 7 to plan and solve the problem.
3. How can you find how much Hannah and Jim spent?
4. Does the problem tell you how many baseballs Hannah and Jim bought altogether?
5. Do you have enough information to find out how many baseballs Hannah and Jim bought altogether?
"How many baseballs did Hannah and Jim buy altogether?" is the hidden question in the problem. You need to answer the hidden question before you can solve the problem.
6. How many baseballs did Hannah and Jim buy altogether?
7. How much money did Hannah and Jim spend on the baseballs?

Answer 8 to look back and check your solution to the problem.
8. Did you answer the right question?

Write and answer the hidden question. Then solve the problem.
9. Henry had 571 baseball cards. He sold 395 of them. He then bought 275 new baseball cards. How many cards does he have now?

Use the graph to answer Exercises 10 and 11 .
10. How many students voted for fruit or cheese?
11. How many more students voted for pretzels than voted for sandwiches?

Favorite Snack	
Fruit	(-) (0) (-)
Sandwiches	(-) (-)
Cheese	(0)
Pretzels	(-) (2) (-) (2)

Each $(\circ)=3$ votes .
12. It costs $\$ 3$ to rent a DVD. Sue rented 4 DVDs and Fran rented 3 DVDs. How much did they pay in all?
13. Reasoning Describe another way to find how much Sue and Fran paid in all for the DVDs in Exercise 12.

Two-Step Problems

Susan has 2 collections of stickers. She has 36 stickers in one collection and 25 stickers in the other collection. If she gives a friend 6 stickers from the first collection, how many stickers in all does she have left?

Solve by answering 1 and 2 to understand the problem.

1. What do you know from reading the problem?

Susan has __ collections of stickers.
One collection has \qquad stickers.

The other collection has \qquad stickers.

Susan gives \qquad stickers to a friend.
2. What do you need to find?

Answer 3 and 4 to plan and solve the problem.
This problem has a hidden question. You must solve the hidden question before you can solve the problem.
3. What is the hidden question?
\qquad
\qquad
Write and solve a number sentence to answer the Hidden Question.
\qquad $+$ \qquad $=$ \qquad
Answer to the Hidden Question: \qquad stickers
4. How many stickers are left after Susan gives 6 stickers to a friend? Write and solve a second number sentence.
\qquad - \qquad

$$
=
$$

\qquad
\qquad stickers

Two-Step Problems (continued)

Answer 5 to look back at how you solved the problem.
5. Reasoning Did you answer the right questions? Explain.

Solve each of the following problems. Remember to look for and write a hidden question that needs to be solved first.
6. Sally ordered 6 packages of pens and 5 packages of pencils for the school supply store. Each package contains 10 pens or pencils.
How many pens and pencils did she buy in all?
Hidden Question: \qquad
\qquad
Answer to the Hidden Question: \qquad
7. Mark has 4 pages of sports cards. Each page has 3 rows with 3 cards in each row. How many sports cards are on all 4 pages?

Hidden Question: \qquad
Answer to the Hidden Question: \qquad
8. John has $\$ 8$ and Bill has $\$ 16$. They want to buy a video game that costs $\$ 20$. Do they have enough money to buy the game? If so, how much money will they have left over?

Hidden Question: \qquad
Answer to the Hidden Question: \qquad

Multi-Step Problems

Carmen bought 2 DVDs on sale for $\$ 21.99$ each. She gave the clerk a $\$ 3$ discount coupon and a $\$ 50$ bill. The tax was $\$ 2.64$.
How much change should she receive?
Solve by answering 1 to 11 .
Answer 1 and 2 to understand the problem.

1. What do you know from reading the problem?

Carmen bought \qquad .

Each DVD cost \qquad .

Carmen gave the clerk a discount coupon worth \qquad .

Carmen gave the clerk a \qquad bill.

Tax was \qquad .
2. What do you need to find?

Answer 3 to 7 to plan and solve the problem.
3. How can you find how much change Carmen received?
4. Does the problem tell you the total cost?
5. Do you have enough information to find the total cost?
"What is the total cost?" is the hidden question in the problem. You need to answer the hidden question before you can solve the problem.
6. How can you find the total cost?
7. Does the problem tell you the total cost of the two DVDs before tax and the discount?
"What is the total cost of the two DVDS before tax and the discount?" is another hidden question in the problem.
8. What is the total cost of the two DVDS before tax and the discount?
9. What is the total cost of the two DVDS with tax and the discount?
10. How much change did Carmen receive?

Answer 11 to check your solution.
11. Reasoning Use an estimate to explain why your answer is reasonable.

Use the table for Exercises 12 and 13 .
12. The Kim family bought 3 adult tickets and 2 junior tickets. What was the total cost of the tickets?

Amusement Park Tickets	
Adults	$\$ 35.50$
Junior tickets (under 48 in.)	$\$ 27.00$
Starlight (after 5 P.M.)	$\$ 32.00$

13. The Bondi family purchased 4 Starlight tickets for the amusement park. How much money did they save by buying 4 Starlight tickets rather than 4 adult tickets?

Make an Organized List

Carrie and Susi are playing a game. They spin the two spinners shown. If the spinners land on the same color, Carrie gets a point. Otherwise, Susi gets a point. How many combinations of two spins are possible? Is the game fair?

Solve by answering 1 to 8 .
Answer 1 and 2 to understand the problem.

1. What do you know from reading the problem?

Carrie gets a point if \qquad

Susi gets a point if \qquad

\qquad .
2. What do you need to find?

Answer 3 to 7 to plan and solve the problem.
You can solve the problem by making an organized list.
3. Use R for red, B for blue, Y for yellow, and G for green. Complete the list at the right.

RR
RB
4. How many combinations
of spins are possible?
\qquad
Each combination is equally likely as any other.
5. For how many of the combinations does Carrie get a point?
6. For how many of the combinations does Susi get a point?
7. Is the game fair?

Answer 8 to look back at how you solved the problem.
8. Reasoning Did you answer the right questions? Explain.

Solve each problem.
9. At a jewelry store, you can have your purchase gift-wrapped in silver, gold, or red paper with a white, pink, or blue ribbon. You can choose one color of paper and one color of ribbon. How many gift-wrap combinations are available?
10. Mr. Johnson is making sandwiches. He has wheat bread and rye bread. He has ham and salami. He also has colby and cheddar cheese. Each sandwich will have one kind of bread, one kind of meat, and one kind of cheese. How many different kinds of sandwiches can he make?
11. Leslie has a penny, a nickel, and a dime in her pocket. If she picks out 2 coins, what amounts of money could she get?
12. Each child at Heather's party has chosen a sandwich and a drink. If there are 7 children at the party, can they each have a different lunch?

Sandwiches	Drinks
Turkey	Milk
Ham	Juice
Tuna	
Peanut butter	

Analyze Given Information

Use the table at the right to solve the problem.
Tim and Bob are looking for rocks for a science project. Tim finds a rock that weighs 2 pounds, and Bob finds a rock that weighs 30 ounces. Who found the heavier rock? Explain.

1 foot $=12$ inches
1 yard $=3$ feet
1 pound $=16$ ounces

Solve by answering 1 to 6 .
Answer 1 and 2 to understand the problem.

1. What do you know from reading the problem?

Tim's rock weighs \qquad pounds.

Bob's rock weighs \qquad ounces.
2. What do you need to find?

Answer 3 to 6 to plan and solve the problem.
3. You can compare both weights in ounces. Look at the information in the table to help. How many ounces are in 1 pound? \qquad ounces
4. Tim's rock weighs 2 pounds. You know how many ounces are in 1 pound.

So, how many ounces are in 2 pounds? \qquad ounces
5. Show how much each rock weighs in ounces.

Tim's rock weighs \qquad ounces.

Bob's rock weighs \qquad ounces.
6. Compare the weights of the rocks in ounces. Who found the heavier rock? Explain.

Analyze Given Information (continued)

Answer 7 to look back at how you solved the problem.
7. Explain how using the table helped you to find the correct answer.

Use the figure at the right to answer 8 and 9 .
8. During a baseball game, a catcher throws a baseball from home plate to first base as shown to the right.
How many yards did the catcher throw the baseball?
9. During a baseball game, a pitcher throws a baseball

> home plate from the pitching mound to home plate as shown to the right. How many inches did the pitcher throw the ball?

Answer 10 and 11 using the picture at the right.
A square has 4 equal sides as shown at the right.
10. What is the perimeter of the square in feet? \qquad
9 inches

11. What is the perimeter of the square in yards? \qquad
Use the following information to answer 12.
The Smith family drives for 3 hours and 40 minutes on the first day of the family's trip and 4 hours and 20 minutes on the second day of the family's trip. There are 60 minutes in an hour.
12. How many hours did the family drive in all? \qquad

