INFORMATION SECURITY

INCIDENT RESPONSE & INVESTIGATION SERVICES « PENETRATION TESTING SECURITY RESEARCH -«
SOFTWARE ENGINEERING SECURITY ASSURANCE ¢ SECURITY ARCHITECHTURE & DESIGN ASSURANCE « TRAINING

Pixel Pertect Timing Aftacks
Paul Stone (@pdjstone)

Research. Response. Assurance. %' @CTXIS

Timing Aftacks

Using timing information to discover the
secrets of a ‘black box’

ml
? 2
v

Pt] ot 2

Browser Black Boxes

« Same Origin Policy: Site A cannot read
or modity data from site B
« Can still make requests to other sites
e
o <script src="...">
« XMLHttpRequest
» But cannot (usually) read results

Browser Black Boxes

e Link Colours — information from browser
history

e |frames —load 39 party site inside your
own

« But bbrowser restrictions prevent page
JavasScript from ‘seeing’ these things

Browser Black Boxes

 How much private information is
shown here<¢

(‘ =l = http://evilsite.com

www.google com
am azo n.ﬁﬂ.uh Paul's Amazon

Shop by

Searc All »
Department ~ earch

Amazon.co.uk Warehouse Deals Subscribe & Save

Your Account

www.reddit.com

<

Browser Black Boxes
« What the page ‘sees’.

eddit.com

INn this talk

» Browser History Sniffing via Timing Attack

« Reading pixels from frames via Timing
Atftack

» Using new browser features (HTMLS-ish)

Page Request Timing
* |s the user logged info GMail?

var start = Date.now(); // current time in ms
var img = new Image();

img.onerror = function() { // callback function
var t = Date.now() - start;

}

img.src = 'http://gmail.com’; // not actually an image

hitp://crypto.stanford.edu/~dabo/papers/webtiming.pdf

Page Request Timing

img.src =

Image request is our black box htp://gmail.com’
URL is our input

onerror callback is our output 20
Date.now() is our stopwatch -

4
&
VWS
<Y 75
N 55 BHUE" o
~ 2
50 10

onerror

start = Date.now() 11 = Date.now() - start

Page Request Timing

URL Domain Size Remote IP

+ GET mail 302 Moved Temporarily mail.google.com 3526 173.194.34.36:8

| GET Serv accounts.google.com 24, 1 KB 73.194.66.84:443

2 reguests 244 KB (24.1 KB from cache)

URL Domain

+ GET mail 302 Moved Temporarily mail.google.com

+ GET Servic 302 Moved Tempora accounts.google.com 3606
+ GET ?pli=1i 302 Moved Temporarily mail.google. com 4458
+ GET ?pli=1i 302 Moved Temporarily mail.google.com 0B
+ GET ?shwva:= 200 OK mail. google. com 12 KB

5 requests 13.1 KB

1200

1000

800

600

Time (ms)

400

200

Page Request Timing

VAN

|~

1 2 3 4 5 6 7 8 9 10 11

—Logged In
—Logged Out

Page Request Timing

 Can | tell it you're logged into Gmaile

* | measure a time of 500 ms on your
computer

* |s that logged in or note

Timing Attack Problems

 Network latency, jitter

 Unknown baseline

 How long does server take to responde
 How fast is the user’'s connectione
 How fast Is the user's computer

« Unstable local environment
« Other running programs

« Other open browser tabs
« Other network fraffic

Timing Attack Problems

» Nefwork latency, jitter Take multiple
« Unknown baseline measurements

Calibrate against
known target

 Unstable local environr

Wait until idle

Part 1 — Sniffing History

CSS History Sniffing
* Long long ago... (before 2010)

<style>a { color: blue }
a:visited { color: red } </style>

<script>
var link = document.getElementById('l");

window.getComputedStyle(link).color;

CSS History Sniffing

« Study In 2010 surveyed top 50,000 sites
» 485 Inspected history via CSS

« 46 were confirmed to be doing history
Salliilale

 Sites were festing between 20 — 200
URLS

http://cseweb.ucsd.edu/~dljang/papers/ccs10.pdf

CSS History Sniffing
THE WALL STREET JOURNAL

FEDRGPEEDIMION® 1/ondzy Decemioer & 2010
Home WWorkd Europs LK. LE Businsss Marksts Markst Data Tec:h Life & Cufture - Oipdnlon Heard on the Strest Propsrly

TOF STORIES IN TECHNOLDEY

Demand Woes AT&T's Profit Falls 2.1% Telefonica to Buy KPN's Juniper Networks P
S | Eit=Apple German Unit Surges: CEO to Retire

Sult to Snuff Out 'History Sniffing' Takes Aim at Tracking
Web Users

Article ‘ WD stock Quotss Commants (3}

Eeman dmennt s @ Ei &

UNMLOCK EXCLUSIVE SUBSCRIBER COMTENT LT
S1ESCRIBE FOR FULL SMTE ACCESS GET A FREE1 MONTHTRIAL » J, i‘ ‘m

A lawsuit filed Friday for alleged use of "history sniffing,” a method for SEAM LESS CLGU |
surreptitiously detecting what websites a person has visited, is the latest to take aim FORTHE WORLD
at technologies that harvest Internet users’ personal information. FIMD OUT BACHRE ¥

CSS History Sniffing

 But nowe
» History sniffing is history...
» Fix proposed by Mozilla in 2010
» All browsers have implemented it

« Can only change color of visited links, not
text size, background image eftc..

« getComputedStyle will lie to you about
ink color!

History Sniffing 2013

 History sniffing was fun, let’s bring it
back!

 ...USINg a timing attack

requestAnimationFrame

e Like setTimeout, but linked to refresh
rate of display

» Registers a function that is called just
before the next frame is painted

* Will be called back roughly 60 times
per second (or every 16.66... ms)

* not technically part of HTML5 - see hitp://www.w3.org/TR/animation-timing/

requestAnimationFrame

« Can use it fo measure frame rate of
web page

* |t JS orrendering is too slow, frame rate
will drop

» Can rendering time be used for a
fiming aftacke

Your Browser, In Slow Motion

Your Browser, In Slow Motion

2. JS inserts link onto page — www.google.com 5. DB query completes
3. Browser fires async query in history DB . . . - URL is visited

/SSESEISEESEEEEEEEEEEEEENEBEEEE

- www.goll www.god www.gol www.go

SRS . BREREEEEERENNRERRL BEEENT

1. Page begins 4. Browser paints 6. Browser re-painfts
loading link as unvisited link as visited

Your Browser, In Slow Motion

2. JS inserts link onto page — www.google.com 5. DB query completes
3. Browser fires async query in history DB . . . - URL is not visited

/SSESEISEESEEEEEEEEEEEEENEBEEEE

- www.gog www.gog www.goga Www.go

A A A A Al Al i1 i111111131

1. Page begins 4. Browser paints
loading link as unvisited

Detecting Repaints

 |f we can detect repaints, we can
determine if the link is visited

o ...but requestAnimationFrame will do
callback whether repaint has
happened or not

 We need 1o slow down painfing so we
can detect it

Make Painfing Sloooowg

e text-shadow: 5px 5px 10px red
~~—

offset blur radius

www.google.com

*This is a lie

Detecting Repaints

Quick repaints — every frame is equadl

S SSESEESEEEEEEEEEEEEEEEBEEEE

- www.goll www.god www.gol www.go

AAA A AR A iRl iiiiiiiii1i1111

16ms 16ms 16ms 16ms 16ms

Detecting Repaints

Slow repaints are now detectable

LI L L L L L Ll Ll L
ale ale

16ms 60ms 16ms 16ms 60ms

The Black Box Analogy
(again)
Page rendering is our black
OoX
Link URL is our input

callback is our output ? ?

Delay between frames is our o
fiming data

link.href =
'hitp://site.com’

requestAnimationFran
callback

History Sniffing Timing Aftfack #1

e For each URL:

« Make N link elements with text-shadow

» Use requestAnimationFrame o fime
next few frames

e If 1 slow frame, then URL not visited
e If 2slow frames, then URL is visited

Chrome

« Chrome does not do async URL lookups
* Does lookup before paint

« But, will repaint if link href changes and
new URL is visited

var link = document.getElementById('l"');
link.href="http://www.google.com';
link.style.color="red"’;
link.style.color=""; // force restyle

History Sniffing Timing Aftfack #2

* Make N link elements with text-shadow

* For each URL:
« Update link hrefs to URL
* Time next frame with requestAnimationFrame
e |f frame was slow, link is visited
« Update link hrefs to non-visited URL

Link Painting

Async DB Repaint after
Lookup href changes

v 4

<)
e .
P

History Sniffing Timing Attack

 Practicalities:

« Need to calibrate number of links and
amount of blur for text-shadow

« We can make links invisible
e Chrome demo tests ~16 URLs / sec
e Can we do bettere

History Sniffing Timing Attack #3

» Display 1000 different URLs at once

* |f repaint is detected, divide in two sefts
of 500 - A,B

» Display each set separately, check for
repaints

« Continue testing + dividing until we get
individual URLSs

History Sniffing Timing Aftack #

 INIET0O we can test 1000 URLs In ~16
SecCs

* Roughly 60 URLs per second

e Interclick.com tested ~200 URLs in 2010

 Practical attack would take a few
seconds

Part 2 - Reading Pixels

SVG

« Scalable Vector Graphics

« XML graphics format
« <Circle>, <rect>, <path>
» Supported by all recent browsers
« HTMLS allows mixing SVG and HTML

* OK, technically SVG is a separate spec that predates HTML5

SVG

SVG Filter Effects

SVG Filter Effects

16 basic operations
« Convolution, blur, displacement map...

Combine filters to make fancy effects
» bump Mmapping, drop shadow

Alters element appearance only — JS
cannot ‘see’ the result

Can apply SVG filters to HTML elements!

SVG Filter Timing Attacks?e

« SVG filters are complex algorithms

« We can apply a filter to any visual
element of a webpage

« Can we find a filter that takes different
fimes for different inputs?

T1 T2

<feMorphology>

e Used to make lines thicker or thinner

» Takes a ‘radius’ parameter that
conirols the amount of erosion/dilation

@ Dilate @

Erode
Abc

<feMorphology>

* Must pass filter box over every pixel of
source image

» Set each pixel to value of
darkest/lightest pixel within filter box

 Naive case —w x h X rx x ry comparisons
1., .

feMorpology - Firefox

// We need to scan the entire kernel
if (x == rect.x || xExt[0] <= startX || xExt[1] <= startX ||
XExt[2] <= startX || xExt[3] <= startX) {
PRUint32 1i;
for (i = 0; 1 < 4; i++) {
extrema[i] = sourceData[targIndex + i];
}
for (PRUint32 yl = startY; yl <= endY; yl++) {
for (PRUint32 x1 = startX; x1 <= endX; x1++) {
for (1 = 0; 1 < 4; i++) {
PRUint8 pixel = sourceData[yl * stride + 4 * x1 + 1i];
if ((extrema[i] >= pixel &&
op == nsSVGFEMorphologyElement::SVG_OPERATOR_ERODE) ||
(extrema[i] <= pixel &&
op == nsSVGFEMorphologyElement: :SVG_OPERATOR DILATE)) {
extrema[i] = pixel;
xExt[i] = x1;
yExt[i] = y1;

xExt[i] = x1;
yExt[i] = y1;
}
}
}
}

else { // We only need to look at the newest column

for (PRUint32 yl1 = startY; yl <= endY; yl++) {
for (PRUiInt32 i = 0; i < 4; i++) {

PRUint8 pixel = sourceData[yl * stride + 4 * endX + 1i];

if ((extrema[i] >= pixel &&
op == nsSVGFEMorphologyElement: :SVG_OPERATOR_ERODE) ||
(extrema[i] <= pixel &&
op == nsSVGFEMorphologyElement::SVG_OPERATOR DILATE)) {
extrema[i] = pixel;
XExt[i] = endX;
yExt[i] = y1;

feMorphology

» Best case —w x h x ry comparisons
« Occurs in areas of flat colour

<feMorphology

‘ operator="erode"
radius="2"/>

SVG Timing Attack Filter

<feComposite <felmage

operator="multiply"> <feMorphology>

Reading Pixels

« Can we read pixels from iframese
« Crop an iframe to a single pixel (0,0)
* Enlarge pixel by x100
« Apply SVG filter
* Time next frame with requestAnimationFrame
 Move 1o next pixel (0,1)
« Repeat for entire iframe

The Black Box Analogy
(again)
SVG filter rendering is our B ..
black box
Pixels are our input

callback is our output ? ?

Delay between frames is our o
fiming data

requestAnimationFran
callback

Reading Pixels

SVG <pafttern> and background: -moz-
element(#el)

Lets us take a ‘snapshot’ of elements, use
as backgrounds
« Avoids unpredictable timings unrelated to filters

Apply ‘threshold’ filfer to make pixels black
or white

CSS transform: scale(100) to zoom pixel
Toggle filter to read pixel

Reading Pixels

« Works greatf!
* Very slow ®

« Can we make some assumptions to
speed this up?
« Known font face, size
* Fixed width font
 Known location on page

Pixel Perfect OC

What can we steal?¢
‘Secret’ values in HTML source

<iframe src="view-source:http://...">
CSRF tokens!

@ Source of: http://192.168.56.101/ - Mozilla Firefox
e —

File Edit View Help

<head>
<title>uPost Rails Application

<link href="/
rel="styles}

Pixel Perfect OCR

« Are certain pixels unigue to some
charse

o |f this pixel is unique to ‘6’ then we
know it's a ‘6’

 What if there are no unique pixels for
some characterse

F

Pixel Perfect OCR - Binary Tree

Pixel-Perfect OCR

DlszESgdobeTSdabccder

0123456789abcdef

L N
2N N\

47df abce 0289 1356

= OB M
i

% @ x

4 B W 8 R A

Pixel Perfect OCR - Binary Tree
01234887232k cdet

Can read character set of 2n
characters with n reads

16 characters -> 4 reads (hex chars)

32 characters -> 5 reads (Q-z
lowercase + punctuation)

64 characters -> 6 reads (base 64,
MOost ascii text)

Pixel Reading

Apply SVG view-source

Filters to HTML in iframes
® . .,
P v

FIXIng TIming Attacks

Mozilla have fixed feMorphology in Firefox 22

Preventing timing differences is tricky

Graphics code is performance critical
Compiler optimisations
CPU cache

Other ways to prevent
Always redraw links — visited or not

Prevent filters from applying to iframes, links

Render iframes as blank, links as unvisited when
applying filters

FIXIng TIming Attacks

Sites can protect themselves with X-
Frame-Options

Users can protect themselves by
clearing history, using private browsing

Questions?

www.contextis.co.uk

@pdjstone

