
INCIDENT RESPONSE & INVESTIGATION SERVICES • PENETRATION TESTING • SECURITY RESEARCH •

SOFTWARE ENGINEERING SECURITY ASSURANCE • SECURITY ARCHITECHTURE & DESIGN ASSURANCE • TRAINING

Research. Response. Assurance. @CTXIS

Pixel Perfect Timing Attacks

Paul Stone (@pdjstone)

Timing Attacks
Using timing information to discover the

secrets of a ‘black box’

 Input 1

Output 1

t1 t2

Input 2

Output 2

Browser Black Boxes

• Same Origin Policy: Site A cannot read

or modify data from site B

• Can still make requests to other sites

•

• <script src="…">

• XMLHttpRequest

• But cannot (usually) read results

Browser Black Boxes

• Link Colours – information from browser

history

• Iframes – load 3rd party site inside your

own

• But browser restrictions prevent page

JavaScript from ‘seeing’ these things

Browser Black Boxes

• How much private information is

shown here?

Browser Black Boxes

• What the page ‘sees’:

In this talk

• Browser History Sniffing via Timing Attack

• Reading pixels from frames via Timing

Attack

• Using new browser features (HTML5-ish)

var start = Date.now(); // current time in ms
var img = new Image();

img.onerror = function() { // callback function
 var t = Date.now() – start;
}

img.src = ‘http://gmail.com’; // not actually an image

Page Request Timing

• Is the user logged into GMail?

var start = Date.now(); // current time in ms
var img = new Image();

img.onerror = function() { // callback function
 var t = Date.now() – start;
}

img.src = 'http://gmail.com'; // not actually an image

http://crypto.stanford.edu/~dabo/papers/webtiming.pdf

Page Request Timing

• Image request is our black box

• URL is our input

• onerror callback is our output

• Date.now() is our stopwatch

img.src =

'http://gmail.com'

onerror

t1 = Date.now() - start start = Date.now()

Page Request Timing

Page Request Timing

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
 (

m
s)

Logged In

Logged Out

Page Request Timing

• Can I tell if you’re logged into Gmail?

• I measure a time of 500 ms on your

computer

• Is that logged in or not?

Timing Attack Problems

• Network latency, jitter

• Unknown baseline

• How long does server take to respond?

• How fast is the user’s connection?

• How fast is the user’s computer

• Unstable local environment

• Other running programs

• Other open browser tabs

• Other network traffic

Timing Attack Problems

• Network latency, jitter

• Unknown baseline

• How long does server take to respond

• How fast is user’s connection?

• How fast is user’s computer

• Unstable local environment

• Other running programs

• Other open browser tabs

• Other network traffic

Take multiple

measurements

Calibrate against

known target

Wait until idle

Part 1 – Sniffing History

<style>a { color: blue }

 a:visited { color: red } </style>

<script>
var link = document.getElementById('l');

window.getComputedStyle(link).color;

CSS History Sniffing

• Long long ago… (before 2010)

<style>a { color: blue }

 a:visited { color: red } </style>

<script>
var link = document.getElementById('l');

window.getComputedStyle(link).color;

CSS History Sniffing

• Study in 2010 surveyed top 50,000 sites

• 485 inspected history via CSS

• 46 were confirmed to be doing history

sniffing

• Sites were testing between 20 – 200

URLs

http://cseweb.ucsd.edu/~d1jang/papers/ccs10.pdf

CSS History Sniffing

CSS History Sniffing

• But now?

• History sniffing is history…

• Fix proposed by Mozilla in 2010

• All browsers have implemented it

• Can only change color of visited links, not

text size, background image etc..

• getComputedStyle will lie to you about

link color!

History Sniffing 2013

• History sniffing was fun, let’s bring it

back!

• …using a timing attack

requestAnimationFrame

• Like setTimeout, but linked to refresh

rate of display

• Registers a function that is called just

before the next frame is painted

• Will be called back roughly 60 times

per second (or every 16.66… ms)

* not technically part of HTML5 – see http://www.w3.org/TR/animation-timing/

requestAnimationFrame

• Can use it to measure frame rate of

web page

• If JS or rendering is too slow, frame rate

will drop

• Can rendering time be used for a

timing attack?

Your Browser, In Slow Motion

Your Browser, In Slow Motion

2. JS inserts link onto page – www.google.com

3. Browser fires async query in history DB

4. Browser paints

link as unvisited

5. DB query completes

- URL is visited

6. Browser re-paints

link as visited
1. Page begins

loading

. . .

Your Browser, In Slow Motion

2. JS inserts link onto page – www.google.com

3. Browser fires async query in history DB

4. Browser paints

link as unvisited

5. DB query completes

- URL is not visited

1. Page begins

loading

. . .

Detecting Repaints

• If we can detect repaints, we can

determine if the link is visited

• …but requestAnimationFrame will do

callback whether repaint has

happened or not

• We need to slow down painting so we

can detect it

Make Painting Sloooow

• text-shadow: 5px 5px 10px red

offset blur radius

* This is a lie

Detecting Repaints

Quick repaints – every frame is equal

16ms 16ms 16ms 16ms 16ms

Detecting Repaints

Slow repaints are now detectable

16ms 60ms 16ms 16ms 60ms

The Black Box Analogy

(again)

• Page rendering is our black

box

• Link URL is our input

• callback is our output

• Delay between frames is our

timing data

link.href =

'http://site.com'

requestAnimationFrame

callback

History Sniffing Timing Attack #1

• For each URL:

• Make N link elements with text-shadow

• Use requestAnimationFrame to time

next few frames

• If 1 slow frame, then URL not visited

• If 2 slow frames, then URL is visited

var link = document.getElementById('l');

link.href='http://www.google.com';

link.style.color='red';

link.style.color=''; // force restyle

Chrome
• Chrome does not do async URL lookups

• Does lookup before paint

• But, will repaint if link href changes and

new URL is visited

var link = document.getElementById('l');

link.href='http://www.google.com';

link.style.color='red';

link.style.color=''; // force restyle

History Sniffing Timing Attack #2

• Make N link elements with text-shadow

• For each URL:

• Update link hrefs to URL

• Time next frame with requestAnimationFrame

• If frame was slow, link is visited

• Update link hrefs to non-visited URL

Link Painting

Async DB

Lookup

Repaint after

href changes

✔

✔

✘

✔

✔

✘

History Sniffing Timing Attack

• Practicalities:

• Need to calibrate number of links and

amount of blur for text-shadow

• We can make links invisible

• Chrome demo tests ~16 URLs / sec

• Can we do better?

History Sniffing Timing Attack #3

• Display 1000 different URLs at once

• If repaint is detected, divide in two sets

of 500 - A,B

• Display each set separately, check for

repaints

• Continue testing + dividing until we get

individual URLs

History Sniffing Timing Attack #3

• In IE10 we can test 1000 URLs in ~16

secs

• Roughly 60 URLs per second

• Interclick.com tested ~200 URLs in 2010

• Practical attack would take a few

seconds

Part 2 - Reading Pixels

SVG

• Scalable Vector Graphics

• XML graphics format

• <circle>, <rect>, <path>

• Supported by all recent browsers

• HTML5 allows mixing SVG and HTML

* OK, technically SVG is a separate spec that predates HTML5

SVG

SVG Filter Effects

SVG Filter Effects

• 16 basic operations

• Convolution, blur, displacement map…

• Combine filters to make fancy effects

• bump mapping, drop shadow

• Alters element appearance only – JS

cannot ‘see’ the result

• Can apply SVG filters to HTML elements!

SVG Filter Timing Attacks?

• SVG filters are complex algorithms

• We can apply a filter to any visual

element of a webpage

• Can we find a filter that takes different

times for different inputs?

A B T1 T2

<feMorphology>

• Used to make lines thicker or thinner

• Takes a ‘radius’ parameter that

controls the amount of erosion/dilation

Dilate

Erode

<feMorphology>
• Must pass filter box over every pixel of

source image

• Set each pixel to value of

darkest/lightest pixel within filter box

• Naïve case – w × h × rx × ry comparisons

h

w

rx

ry

feMorpology - Firefox
 // We need to scan the entire kernel
 if (x == rect.x || xExt[0] <= startX || xExt[1] <= startX ||
 xExt[2] <= startX || xExt[3] <= startX) {
 PRUint32 i;
 for (i = 0; i < 4; i++) {
 extrema[i] = sourceData[targIndex + i];
 }
 for (PRUint32 y1 = startY; y1 <= endY; y1++) {
 for (PRUint32 x1 = startX; x1 <= endX; x1++) {
 for (i = 0; i < 4; i++) {
 PRUint8 pixel = sourceData[y1 * stride + 4 * x1 + i];
 if ((extrema[i] >= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_ERODE) ||
 (extrema[i] <= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_DILATE)) {
 extrema[i] = pixel;
 xExt[i] = x1;
 yExt[i] = y1;
 }
 }
 }
 }
 } else { // We only need to look at the newest column
 for (PRUint32 y1 = startY; y1 <= endY; y1++) {
 for (PRUint32 i = 0; i < 4; i++) {
 PRUint8 pixel = sourceData[y1 * stride + 4 * endX + i];
 if ((extrema[i] >= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_ERODE) ||
 (extrema[i] <= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_DILATE)) {
 extrema[i] = pixel;
 xExt[i] = endX;
 yExt[i] = y1;
 }
 }
 }
 }

feMorpology - Firefox

 // We need to scan the entire kernel
 if (x == rect.x || xExt[0] <= startX || xExt[1] <= startX ||
 xExt[2] <= startX || xExt[3] <= startX) {
 PRUint32 i;
 for (i = 0; i < 4; i++) {
 extrema[i] = sourceData[targIndex + i];
 }
 for (PRUint32 y1 = startY; y1 <= endY; y1++) {
 for (PRUint32 x1 = startX; x1 <= endX; x1++) {
 for (i = 0; i < 4; i++) {
 PRUint8 pixel = sourceData[y1 * stride + 4 * x1 + i];
 if ((extrema[i] >= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_ERODE) ||
 (extrema[i] <= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_DILATE)) {
 extrema[i] = pixel;
 xExt[i] = x1;
 yExt[i] = y1;
 }
 }
 }
 }
 } else { // We only need to look at the newest column
 for (PRUint32 y1 = startY; y1 <= endY; y1++) {
 for (PRUint32 i = 0; i < 4; i++) {
 PRUint8 pixel = sourceData[y1 * stride + 4 * endX + i];
 if ((extrema[i] >= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_ERODE) ||
 (extrema[i] <= pixel &&
 op == nsSVGFEMorphologyElement::SVG_OPERATOR_DILATE)) {
 extrema[i] = pixel;
 xExt[i] = endX;
 yExt[i] = y1;
 }
 }
 }
 }

feMorphology

• Best case – w × h × ry comparisons

• Occurs in areas of flat colour

<feMorphology

operator="erode"
radius="2"/>

SVG Timing Attack Filter

×

×

<feComposite

operator=“multiply”>

<feImage

xlink:href=“noise.png”>

=

=

<feMorphology>

Reading Pixels

• Can we read pixels from iframes?

• Crop an iframe to a single pixel (0,0)

• Enlarge pixel by x100

• Apply SVG filter

• Time next frame with requestAnimationFrame

• Move to next pixel (0,1)

• Repeat for entire iframe

The Black Box Analogy

(again)

• SVG filter rendering is our

black box

• Pixels are our input

• callback is our output

• Delay between frames is our

timing data

requestAnimationFrame

callback

Reading Pixels

• SVG <pattern> and background: -moz-

element(#el)

• Lets us take a ‘snapshot’ of elements, use

as backgrounds

• Avoids unpredictable timings unrelated to filters

• Apply ‘threshold’ filter to make pixels black

or white

• CSS transform: scale(100) to zoom pixel

• Toggle filter to read pixel

Reading Pixels

• Works great!

• Very slow 

• Can we make some assumptions to

speed this up?

• Known font face, size

• Fixed width font

• Known location on page

Pixel Perfect OCR

What can we steal?

‘Secret’ values in HTML source

<iframe src="view-source:http://…">

CSRF tokens!

Pixel Perfect OCR

• Are certain pixels unique to some

chars?

• If this pixel is unique to ‘6’ then we

know it’s a ‘6’

• What if there are no unique pixels for

some characters?

Pixel Perfect OCR – Binary Tree

Pixel (4,5)

Pixel (1,2) Pixel(7,3)

A B C D

Pixel-Perfect OCR

47abcdef 01235689

0123456789abcdef

47df abce 0289 1356

7f 4d bc ea 20 98 51 36

Pixel Perfect OCR – Binary Tree

Can read character set of 2n

characters with n reads

16 characters -> 4 reads (hex chars)

32 characters -> 5 reads (a-z

lowercase + punctuation)

64 characters -> 6 reads (base 64,

most ascii text)

Pixel Reading

Apply SVG

Filters to HTML

view-source

in iframes

✔

✔

✘

✔

✘

✘

Fixing Timing Attacks

Mozilla have fixed feMorphology in Firefox 22

Preventing timing differences is tricky

Graphics code is performance critical

Compiler optimisations

CPU cache

Other ways to prevent

Always redraw links – visited or not

Prevent filters from applying to iframes, links

Render iframes as blank, links as unvisited when
applying filters

Fixing Timing Attacks

Sites can protect themselves with X-

Frame-Options

Users can protect themselves by

clearing history, using private browsing

Questions?

www.contextis.co.uk

@pdjstone

