## Pauli, Hund and Aufbau The Periodic Table



| *Lanthanide series | $\mathbf{C e}$ | $\mathbf{P r}$ | $\mathbf{N d}$ | $\mathbf{P m}$ | $\mathbf{S m}$ | $\mathbf{E u}$ | $\mathbf{G d}$ | $\mathbf{T b}$ | $\mathbf{D y}$ | $\mathbf{H o}$ | $\mathbf{E r}$ | $\mathbf{T m}$ | $\mathbf{Y b}$ | $\mathbf{L u}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| †Actinide series | $\mathbf{T h}$ | $\mathbf{P a}$ | $\mathbf{U}$ | $\mathbf{N p}$ | $\mathbf{P u}$ | $\mathbf{A m}$ | $\mathbf{C m}$ | $\mathbf{B k}$ | $\mathbf{C f}$ | $\mathbf{E s}$ | $\mathbf{F m}$ | $\mathbf{M d}$ | $\mathbf{N o}$ | $\mathbf{L r}$ |

[^0]
## Hydrogen atom quantum numbers

$$
\left|n, l, m_{l}, m_{s}\right\rangle
$$

n is called the principal quantum number.
$n=1,2,3 \ldots$
I is called the orbital angular momentum quantum number.
$I=0,1,2 \ldots(n-1)=s, p, d, f \ldots$
$m_{l}$ is called the magnetic quantum number.
$m_{I}=I,|-1, \ldots-|$ : a total of $2|+1 ;|=0$ to $n-1$
$\mathrm{m}_{\mathrm{s}}$ is called the spin magnetic quantum number.
$m_{s}=1 / 2,-1 / 2:$ a total of $2 s+1 ; s=1 / 2$

## Multi-electron atoms

$$
\left|n, l, m_{l}, m_{s}\right\rangle
$$

- Aufbau (building-up) Principle:

Fill the atomic orbitals with electrons starting at the lowest available energy states before filling higher states.

- Pauli Exclusion Principle:

No two electrons can have the same 4 quantum numbers.
O Hund's Rule (one of three)
For an electron shell with multiple orbitals, the term with maximum number of unpaired spins has the lowest energy.

There are exceptions to Aufbau principle and Hund's Rules, but not the Pauli exclusion principle

$H-1 s^{1}$


## $\mathrm{He}-1 \mathrm{~s}^{2}$

## $S=0$

Pauli exclusion principle: $11,0,0,1 / 2\rangle$ and $|1,0,0,-1 / 2\rangle$


$$
\mathrm{Li}-[\mathrm{He}] 2 \mathrm{~s}^{1}
$$

$$
S=\text { ? }
$$



## $\mathrm{Li}-[\mathrm{He}] 2 \mathrm{~s}^{1}$

$$
S=I / 2
$$

## Multi-electron atom quantum numbers

## $L$ and $S$

For multi-electron atoms, we replace $I$ and $s$ with $L$ and $S$, where $L$ is the TOTAL orbital angular momentum quantum number, and $S$ is the TOTAL electron spin quantum number. In this case, S is $\mathrm{N} / 2$ where N is the number of unpaired electron spins. Spectroscopists use TERM SYMBOLS to describe the angular momentum state of an atom:

$$
{ }^{2 S+1} \mathrm{~L}
$$

where the letter corresponding to the $L$ quantum number is used (e.g., $0, I, 2 \ldots$ becomes S, P, D...) .

# Multi-electron atom quantum numbers 

## $L$ and $S$

For example, the $1 s^{2} 2 s^{\prime}$ ground state of Lithium is called the "doublet $S$ " state ( $L=0, S=I / 2$ ), and the $I s^{2} 2 p^{\prime}$ excited state is called the "doublet P" state ( $\mathrm{L}=\mathrm{I}, \mathrm{S}=\mathrm{I} / 2$ ):

## $\mathrm{Li}-[\mathrm{He}] 2 \mathrm{~s}^{1}{ }^{2} \mathrm{~S},{ }^{2} \mathrm{P} \quad \mathrm{Li}-[\mathrm{He}] 2 p^{1}$



## Li Grotrian Diagram

For example, the $I s^{2} 2 s^{1}$ ground state of Lithium is called the "doublet S " state ( $\mathrm{L}=0, \mathrm{~S}=\mathrm{I} / 2$ ), and the $1 s^{2} 2 p^{1}$ excited state is called the "doublet P " state (L=I, S=I/2):

## ${ }^{2} S$ ${ }^{2} \mathrm{P}$

Fig. 24. Energy Level Diagram of the Li Atom [after Grotrian (8)]. The wave lergths of the spectral lines are written on the connecting lines representing the transitions. Doublet structure (see Chapter II) is not included. Some unobserved levels are indicated by dotted lines. The true principal quantum numbers for the $S$ terms are one greater than the empirical running numbers given (see p. 61); for the remaining terms, they are the same.


## $\mathrm{Be}-[\mathrm{He}] 2 \mathrm{~s}^{2}$

$$
S=?
$$



## $\mathrm{Be}-[\mathrm{He}] 2 \mathrm{~s}^{2}$

$$
S=0
$$



B $-[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$


B $-[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$


C - [He]2s ${ }^{2} 2 p^{2}$

## Hund's Rule!



C - [He]2s ${ }^{2} 2 p^{2}$


N - [He]2s²2p3

## Hund's Rule!



$$
S=3 / 2
$$

N - [He]2s²2p3


Fig. 56. Energy Level Diagram for N I.

$\mathrm{O}-[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$

$\mathrm{O}-[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$

F - [He]2s²2p5

F - [He]2s²2p5

$\mathrm{Ne}-[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$

$\mathrm{Ne}-[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$

## The Periodic Table describes this filling method.



## Weirdness \#I: 4s fills before 3d (also 5,6,7)



## Weirdness \#2: 4f fills after La ([Xe]6s²5d')



## Other weird things...



## Other weird things...

## Cr

step I - count electrons. 24
step 2 - identify inert gas core [Ar]
step 3 - specify remainder of configuration: $\mathbf{4 s} \mathbf{s}^{\mathbf{2}} \mathbf{3} \mathbf{d}^{\mathbf{4}}$
result: [Ar] 4s²,3d ${ }^{\mathbf{4}}$ (...right?)

## Other weird things...

## Cr

step I - count electrons. 24
step 2 - identify inert gas core [Ar]
step 3 - specify remainder of configuration: $\mathbf{4 s} \mathbf{s}^{1,3 d^{5}}$
result: [Ar] 4s', $\mathbf{3 d}^{\mathbf{5}}$...right!

## watch out for "d ${ }^{4 " \%}$ and "d"". nature wants to be $d^{5}$ and $d^{10}$, so it robs from s in the first two rows of transition metals.

| 1 A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1 \\ \mathbf{H} \\ 1 s^{1} \end{gathered}$ | 2A |  |  |  |  |  |  |  |  |  |  | 3A | 4A | 5A | 6A | 7A | $\begin{gathered} 2 \\ \mathrm{He} \\ 1 s^{2} \\ \hline \end{gathered}$ |
| $\begin{gathered} 3 \\ \mathbf{L i} \\ 2 s^{1} \\ \hline \end{gathered}$ | $\begin{gathered} 4 \\ \mathrm{Be} \\ 2 s^{2} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|c} 5 \\ \text { B } \\ 2 s^{2} 2 p^{1} \\ \hline \end{array}$ | $\begin{gathered} 6 \\ \mathbf{C} \\ 2 s^{2} 2 p^{2} \end{gathered}$ | $\mathbf{7}$ $\mathbf{N}$ $2 s^{2} 2 p^{3}$ | 8 0 $2 s^{2} 2 p^{4}$ | 9 $\mathbf{F}$ $2 s^{2} 2 p^{5}$ |  |
| $\begin{aligned} & 11 \\ & \mathrm{Na} \\ & 3 s^{1} \end{aligned}$ | $\begin{gathered} 12 \\ \mathrm{Mg} \\ 3 s^{2} \end{gathered}$ | 3B | 4B | 5B | 6 B | 7B |  | 8B |  | 1B | 2B |  |  | 15 $\mathbf{P}$ $3 s^{2} 3 p^{3}$ | 16 <br> S <br> $3 s^{2} 3 p^{4}$ |  |  |
| $\begin{gathered} 19 \\ \mathbf{K} \\ 4 s^{1} \end{gathered}$ | $\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 4 s^{2} \end{aligned}$ | $\begin{gathered} 21 \\ \mathbf{S c} \\ 3 d^{1} 4 s^{2} \end{gathered}$ | $\begin{gathered} 22 \\ \mathrm{Ti} \\ 3 d^{2} 4 s^{2} \end{gathered}$ | $\begin{array}{\|c\|} \hline 23 \\ \mathbf{V} \\ 3 d^{3} 4 s^{2} \\ \hline \end{array}$ | $\begin{gathered} 24 \\ \mathbf{C r} \\ 3 d^{5} 4 s^{1} \end{gathered}$ | $\begin{gathered} 25 \\ \mathbf{M n} \\ 3 d^{5} 4 s^{2} \end{gathered}$ | 26 <br> Fe <br> $3 d^{6} 4 s^{2}$ | 27 <br> $\mathbf{C o}$ <br> $3 d^{7} 4 s^{2}$ | $\begin{gathered} 28 \\ \mathrm{Ni} \\ 3 d^{8} 4 s^{2} \end{gathered}$ | $\begin{gathered} 29 \\ \mathrm{Cu} \\ 3 d^{10} 4 s^{1} \end{gathered}$ | $\begin{gathered} 30 \\ \mathbf{Z n} \\ 3 d^{10} 4 s^{2} \end{gathered}$ | $\begin{array}{\|c} 31 \\ \text { Ga } \\ 4 s^{2} 4 p^{1} \\ \hline \end{array}$ | $\begin{gathered} 32 \\ \mathrm{Ge} \\ 4 s^{2} 4 p^{2} \end{gathered}$ | 33 <br> $\mathbf{A s}$ <br> $4 s^{2} 4 p^{3}$ | $\begin{gathered} 34 \\ \mathrm{Se} \\ 4 s^{2} 4 p^{4} \end{gathered}$ | $\begin{gathered} 35 \\ \mathrm{Br} \\ 4 s^{2} 4 p^{5} \end{gathered}$ | $\begin{gathered} 36 \\ \mathbf{K r} \\ 4 s^{2} 4 p^{6} \end{gathered}$ |
| $\begin{gathered} 37 \\ \mathbf{R b} \\ 5 s^{1} \end{gathered}$ | $\begin{gathered} 38 \\ \mathrm{Sr} \\ 5 s^{2} \end{gathered}$ | $\begin{gathered} 39 \\ \mathbf{Y} \\ 4 d^{1} 5 s^{2} \end{gathered}$ | $\begin{gathered} 40 \\ \mathbf{Z r} \\ 4 d^{2} 5 s^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 41 \\ \mathbf{N b} \\ 4 d^{4} 5 s^{1} \end{gathered}$ | $\begin{gathered} 42 \\ \text { Mo } \\ 4 d^{5} 5 s^{1} \end{gathered}$ | $\begin{gathered} 43 \\ \mathbf{T c} \\ 4 d^{5} 5 s^{2} \end{gathered}$ | $\begin{gathered} 44 \\ \mathbf{R u} \\ 4 d^{7} 5 s^{1} \end{gathered}$ | 45 $\mathbf{R h}$ $4 d^{8} 5 s^{1}$ | $\begin{gathered} 46 \\ \mathbf{P d} \\ 4 d^{10} \end{gathered}$ | $\begin{gathered} 47 \\ \mathbf{A g} \\ 4 d^{10} 5_{s 1} \end{gathered}$ | $\begin{gathered} 48 \\ \mathrm{Cd} \\ d^{10} 5 s^{2} \end{gathered}$ | $\begin{array}{\|c\|} \hline 49 \\ \text { In } \\ 5 s^{2} 5 p^{1} \\ \hline \end{array}$ | $\begin{array}{\|c} 50 \\ \text { Sn } \\ 5 s^{2} 5 p^{2} \end{array}$ | $\begin{array}{\|c\|} \hline 51 \\ \mathbf{S b} \\ 5 s^{2} 5 p^{3} \\ \hline \end{array}$ | 52 <br> Te <br> $5 s^{2} 5 p^{4}$ | $\begin{gathered} 53 \\ \text { I } \\ 5 s^{2} 5 p^{5} \end{gathered}$ | $\begin{gathered} 54 \\ \mathbf{X e} \\ 5 s^{2} 5 p^{6} \end{gathered}$ |
| $\begin{aligned} & 55 \\ & \mathrm{Cs} \\ & 6 s^{1} \end{aligned}$ | $\begin{aligned} & 56 \\ & \mathrm{Ba} \\ & 6 s^{2} \\ & \hline \end{aligned}$ | $\begin{gathered} 57 \\ { }^{5} \mathbf{L a} \\ 5 d^{1} 6 s^{2} \end{gathered}$ | $\begin{gathered} 72 \\ \text { Hf } \\ 5 d^{2} 6 s^{2} \end{gathered}$ |  |  |  |  |  |  | $\begin{gathered} \mathbf{A} \mathbf{u} \\ 5 d^{10} 6 s^{1} \end{gathered}$ |  |  |  |  |  | 85 <br> At <br> $6 s^{2} 6 p^{5}$ |  |
| $\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & 7 s^{1} \end{aligned}$ | $\begin{aligned} & 88 \\ & \mathrm{Ra} \\ & 7 s^{2} \end{aligned}$ |  | $\begin{gathered} 104 \\ \mathbf{R f} \\ 6 d^{2} 7 s^{2} \end{gathered}$ |  | $\begin{gathered} 106 \\ \mathbf{S g} \\ 6 d^{4} 7 s^{2} \end{gathered}$ | $\begin{aligned} & 107 \\ & \text { Bh } \end{aligned}$ | $\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$ | $\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$ | 110 | 111 | 112 | Unknown | 114 | Unknown | ${ }^{\text {\% }} 1116$ | Unknown | ${ }^{+1} 118$ |


| $\begin{gathered} 58 \\ \mathrm{Ce} \\ 4 f^{2} 6 s^{2} \end{gathered}$ |  |  |  |  | $\begin{gathered} 63 \\ \text { Eu } \\ 4 f^{7} 6 s^{2} \end{gathered}$ | $\begin{gathered} 64 \\ \text { Gd } \\ 4 f^{7} 5 d^{1} 6 s^{2} \end{gathered}$ | $\begin{gathered} 65 \\ \mathbf{T b} \\ 4 f^{9} 6 s^{2} \end{gathered}$ |  |  | $\begin{gathered} \mathrm{Er} \\ 4 f^{12} 6 s^{2} \end{gathered}$ | $\underset{4 f^{13} 6 s^{2}}{\mathrm{Tm}}$ | $\begin{gathered} \mathbf{Y b} \\ 4 f^{14} 6 s^{2} \end{gathered}$ | $\underset{d^{14} 5 d^{1} 6}{\mathbf{L u}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 03 |
| $\begin{gathered} \text { Th } \\ 6 d^{2} 7 s^{2} \end{gathered}$ | $\begin{array}{r} \mathrm{Pa} \\ 5 f^{2} 6 d^{1} 7 \end{array}$ | $6 d^{1}$ | $\begin{gathered} \text { Np } \\ f^{4} 6 d^{1} 7 s^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Pu} \\ 5 f^{6} 7 s^{2} \end{gathered}$ |  | $\begin{gathered} \mathbf{C m} \\ 5 f^{7} 6 d^{1} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { Bk } \\ 5 f^{9} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { Cf } \\ 5 f^{10} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { Es } \\ 5 f^{11} 7 s^{2} \end{gathered}$ | $\underset{5 f^{127} s^{2}}{\mathbf{F m}}$ | $\begin{gathered} \text { Md } \\ 5 f^{13} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { No } \\ 5 f^{14} 7 s^{2} \end{gathered}$ | $\begin{aligned} & \mathbf{L r} \\ & 4_{6 d^{1} 7 s^{2}} \end{aligned}$ |

http://cwx.prenhall.com/bookbind/pubbooks/hillchem3/medialib/media_portfolio/08.html
watch out for " d 4 " and " d 9 "...


Remember the Stern-Gerlach Experiment? Ag atoms unusually have one unpaired spin.


|  | $\begin{gathered} 58 \\ \mathrm{Ce} \\ 4 f^{2} 6 s^{2} \end{gathered}$ | $\begin{gathered} 59 \\ \mathrm{Pr} \\ 4 f^{3} 6 s^{2} \end{gathered}$ | $\begin{gathered} 60 \\ \mathrm{Nd} \\ 4 f^{4} 6 s^{2} \end{gathered}$ | $\begin{gathered} 61 \\ \mathrm{Pm} \\ 4 f^{5} 6 s^{2} \end{gathered}$ | $\begin{gathered} 62 \\ \mathbf{S m} \\ 4 f^{6} 6 s^{2} \end{gathered}$ | $\begin{gathered} 63 \\ \mathbf{E u} \\ 4 f^{7} 6 s^{2} \end{gathered}$ | $\begin{gathered} 64 \\ \text { Gd } \\ 4 f^{7} 5 d^{1} 6 s^{2} \end{gathered}$ | $\begin{gathered} 65 \\ \mathbf{T b} \\ 4 f^{9} 6 s^{2} \end{gathered}$ | $\begin{array}{\|c\|} \hline 66 \\ \text { Dy } \\ 4 f^{10} 6 s^{2} \end{array}$ | 67 Ho $4 f^{11} 6 s^{2}$ | $\begin{gathered} 68 \\ \mathrm{Er} \\ 4 f^{12} 6 s^{2} \end{gathered}$ | $\begin{gathered} 69 \\ \operatorname{Tm}_{4 f^{13}} 6 s^{2} \end{gathered}$ |  | $\begin{gathered} 71 \\ \mathbf{L u} \\ 4 f^{14} 5 d^{1} 6 s^{2} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
|  | $\underset{6 d^{2} 7 s^{2}}{\text { Th }}$ | $\begin{gathered} \mathrm{Pa} \\ 5 f^{2} 6 d^{1} 7 s^{2} \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ f^{3} 6 d^{1} 7 s^{2} \end{gathered}$ | $\mathrm{Np}_{5 f^{4} 6 d^{1} 7 s^{2}}^{\mathrm{N}}$ | $\begin{gathered} \mathrm{Pu} \\ 5 f^{6} 7 s^{2} \end{gathered}$ | $\underset{5 f^{7} 7 s^{2}}{\mathbf{A m}}$ | $\underset{5 f^{7} 6 d^{1} 7 s^{2}}{\mathbf{C m}}$ | $\begin{gathered} \text { Bk } \\ 5 f^{9} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { Cf } \\ 5 f^{10} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { Es } \\ 5 f^{11} 7 s^{2} \end{gathered}$ | $\underset{5 f^{12} 7 s^{2}}{\mathbf{F m}}$ | $\begin{gathered} \text { Md } \\ 5 f^{13} 7 s^{2} \end{gathered}$ | $\begin{gathered} \text { No } \\ 5 f^{14} 7 s^{2} \end{gathered}$ | $\begin{gathered} \mathbf{L r} \\ 5 f^{14} 6 d^{1} 7 s^{2} \end{gathered}$ |

Stern and Gerlach had to know this before?

## ...ok, now we can talk about periodic trends.



| *Lanthanide series | $\mathbf{C e}$ | $\mathbf{P r}$ | $\mathbf{N d}$ | $\mathbf{P m}$ | $\mathbf{S m}$ | $\mathbf{E u}$ | $\mathbf{G d}$ | $\mathbf{T b}$ | $\mathbf{D y}$ | $\mathbf{H o}$ | $\mathbf{E r}$ | $\mathbf{T m}$ | $\mathbf{Y b}$ | $\mathbf{L u}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| †Actinide series | $\mathbf{T h}$ | $\mathbf{P a}$ | $\mathbf{U}$ | $\mathbf{N p}$ | $\mathbf{P u}$ | $\mathbf{A m}$ | $\mathbf{C m}$ | $\mathbf{B k}$ | $\mathbf{C f}$ | $\mathbf{E s}$ | $\mathbf{F m}$ | $\mathbf{M d}$ | $\mathbf{N o}$ | $\mathbf{L r}$ |

[^1]...these are some important trends.
Do you know what these words mean?



[^0]:    ** Not yet named

[^1]:    ** Not yet named

