Pauli, Hund and Aufbau The Periodic Table

*Lanthanide series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
†Actinide series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

** Not yet named

Hydrogen atom quantum numbers $\left| n,l,m_{l},m_{s} \right\rangle$

n is called the principal quantum number.

n = 1, 2, 3....

I is called the orbital angular momentum quantum number.

m_l is called the magnetic quantum number.

 $m_1 = 1, 1-1, \dots -1$: a total of 21 + 1; 1 = 0 to n-1

m_s is called the spin magnetic quantum number.

$$m_s = 1/2, -1/2$$
 : a total of 2s + 1; s = 1/2

Multi-electron atoms

 $|n,l,m_l,m_s\rangle$

Aufbau (building-up) Principle:

Fill the atomic orbitals with electrons starting at the lowest available energy states before filling higher states.

Pauli Exclusion Principle:

No two electrons can have the same 4 quantum numbers.

Hund's Rule (one of three)

For an electron shell with multiple orbitals, the term with maximum number of unpaired spins has the lowest energy.

There are exceptions to Aufbau principle and Hund's Rules, but not the Pauli exclusion principle

H - 1s¹

 $He - 1s^2$

Pauli exclusion principle: 11,0,0,1/2> and 11,0,0,-1/2>

S=0

Li - [He]2s¹

Li - [He]2s¹

Multi-electron atom quantum numbers L and S

For multi-electron atoms, we replace I and s with L and S, where L is the TOTAL orbital angular momentum quantum number, and S is the TOTAL electron spin quantum number. In this case, S is N/2 where N is the number of unpaired electron spins. Spectroscopists use TERM SYMBOLS to describe the angular momentum state of an atom:

^{2S+1}L

where the letter corresponding to the L quantum number is used (e.g., 0, 1, 2... becomes S, P, D...).

Multi-electron atom quantum numbers L and S

For example, the $1s^22s^1$ ground state of Lithium is called the "doublet S" state (L=0, S=1/2), and the $1s^22p^1$ excited state is called the "doublet P" state (L=1, S=1/2):

Li - [He]2s¹ 2S , 2P Li - [He]2p¹

Li Grotrian Diagram

For example, the $1s^22s^1$ ground state of Lithium is called the "doublet S" state (L=0, S=1/2), and the $1s^22p^1$ excited state is called the "doublet P" state (L=1, S=1/2):

 $^{2}\mathrm{S}$, $^{2}\mathrm{P}$

Fig. 24. Energy Level Diagram of the Li Atom [after Grotrian (8)]. The wave lengths of the spectral lines are written on the connecting lines representing the transitions. Doublet structure (see Chapter II) is not included. Some unobserved levels are indicated by dotted lines. The true principal quantum numbers for the S terms are one greater than the empirical running numbers given (see p. 61); for the remaining terms, they are the same.

Be - [He]2s²

Be - [He]2s²

2p 2s S= ? <u>1s</u>

B - [He]2s²2p¹

2p 2s S = 1/2<u>1s</u>

B - [He]2s²2p¹

C - [He]2s²2p²

C - [He]2s²2p²

N - [He]2s²2p³

N - [He]2s²2p³

Fig. 56. Energy Level Diagram for N I.

O - [He]2s²2p⁴

O - [He]2s²2p⁴

F - [He]2s²2p⁵

F - [He]2s²2p⁵

Ne - [He]2s²2p⁶

Ne - [He]2s²2p⁶

The Periodic Table describes this filling method.

Weirdness #1:4s fills before 3d (also 5,6,7)

Weirdness #2: 4f fills after La ([Xe]6s²5d¹)

Other weird things...

Cr

1A																	8A
1																	2
H_{1s^1}	2A											3A	4.4	5.4	6.4	7.4	He
		1										JA	4A	5A	6A	7A	152
3	4 Bo											2	6	7	8	9	10
Li	Be											B	C .	N	0	F	Ne
251	$2s^2$											$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
11	12											13	14	15	16	17	18
Na	Mg	10.252										Al	Si	Р	S	CI	Ar
$3s^1$	$3s^2$	3B	4B	5B	6B	7B		- 8B -		1 B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	3s23p5	$3s^23p^6$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
$4s^{1}$	$4s^2$	$3d^{1}4s^{2}$	$3d^{2}4s^{2}$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^{1}$	$3d^{10}4s^2$		$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
$5s^{1}$	$5s^{2}$	$4d^{1}5s^{2}$	$4d^{2}5s^{2}$	$4d^{4}5s^{1}$	$4d^55s^1$	$4d^{5}5s^{2}$	$4d^{7}5s^{1}$	$4d^{8}5s^{1}$	$4d^{10}$	$4d^{10}5s^{1}$	$4d^{10}5s^2$	$5s^{2}5p^{1}$	$5s^{2}5p^{2}$	$5s^{2}5p^{3}$	$5s^{2}5p^{4}$	$5s^{2}5p^{5}$	$5s^{2}5p^{6}$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6s ¹	$6s^2$	$5d^{1}6s^{2}$	$5d^{2}6s^{2}$	$5d^{3}6s^{2}$	$5d^46s^2$	$5d^{5}6s^{2}$	$5d^{6}6s^{2}$	$5d^{7}6s^{2}$	$5d^{9}6s^{1}$	$5d^{10}6s^1$	$5d^{10}6s^2$	$6s^26p^1$	$6s^26p^2$	$6s^{2}6p^{3}$	$6s^{2}6p^{4}$	$6s^{2}6p^{5}$	$6s^26p^6$
87	88	89	104	105	106	107	108	109	110	111	112		114		^{††} 116	1	^{††} 118
Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt				Unknown		Unknown	110	Unknown	
7 <i>s</i> ¹	$7s^{2}$		$6d^27s^2$	$6d^{3}7s^{2}$	Sg 6d ⁴ 7s ²												

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	$4f^26s^2$	$4f^{3}6s^{2}$	$4f^46s^2$	$4f^{5}6s^{2}$	$4f^{6}6s^{2}$	$4f^{7}6s^{2}$	$4f^{7}5d^{1}6s^{2}$	$4f^{9}6s^{2}$	$4f^{10}6s^2$	$4f^{11}6s^2$	$4f^{12}6s^2$	$4f^{13}6s^2$	$4f^{14}6s^2$	$4f^{14}5d^{1}6s^{2}$
Ŷ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	$6d^27s^2$	$5f^{2}6d^{1}7s^{2}$	$5f^{3}6d^{1}7s^{2}$	$5f^46d^17s^2$	$5f^{6}7s^{2}$	$5f^{7}7s^{2}$	$5f^{7}6d^{1}7s^{2}$	$5f^{9}7s^{2}$	$5f^{10}7s^2$	$5f^{11}7s^2$	$5f^{12}7s^2$	$5f^{13}7s^2$	$5f^{14}7s^2$	5f146d17s2

Other weird things...

Cr

step I - count electrons. **24**

step 2 - identify inert gas core [Ar]

step 3 - specify remainder of configuration: 4s²,3d⁴

result: [Ar] 4s²,3d⁴ (...right?)

Other weird things...

Cr

step I - count electrons. **24**

step 2 - identify inert gas core [Ar]

step 3 - specify remainder of configuration: 4s¹,3d⁵

result: [Ar] 4s¹,3d⁵ ...right!

watch out for "d⁴" and "d⁹". nature wants to be d⁵ and d¹⁰, so it robs from s in the first two rows of transition metals.

1A 1																	8A 2
H 1s ¹	2A											3A	4A	5A	6A	7A	He 1 <i>s</i> ²
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
251	2s ²											$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
11 No	12											13	14	15	16	17	18
Na	Mg 3s ²	3B	4B	5B	6B	70		0 D		10	20	Al	Si	P	S	CI	Ar
351						7B	26	- 8B -		1 B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
19 K	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc 2	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
451	4s ²	$3d^{1}4s^{2}$	$3d^{2}4s^{2}$	3d ³ 4s ²	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^1$	$3d^{10}4s^2$	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5s ¹	$5s^{2}$	$4d^{1}5s^{2}$	$4d^{2}5s^{2}$	$4d^{4}5s^{1}$	$4d^{5}5s^{1}$	$4d^{5}5s^{2}$	$4d^{7}5s^{1}$	$4d^{8}5s^{1}$	$4d^{10}$	$4d^{10}5s^{1}$	$d^{10}5s^2$	$5s^{2}5p^{1}$	$5s^{2}5p^{2}$	$5s^{2}5p^{3}$	$5s^{2}5p^{4}$	$5s^{2}5p^{5}$	$5s^{2}5p^{6}$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6s ¹	$6s^2$	$5d^{1}6s^{2}$	$5d^{2}6s^{2}$	$5d^{3}6s^{2}$	$5d^46s^2$	$5d^{5}6s^{2}$	$5d^{6}6s^{2}$	$5d^{7}6s^{2}$	$5d^{9}6s^{1}$	$5d^{10}6s^1$	$5d^{10}6s^2$	$6s^26p^1$	$6s^26p^2$	$6s^{2}6p^{3}$	$6s^{2}6p^{4}$	$6s^{2}6p^{5}$	$6s^26p^6$
87	88	89	104	105	106	107	108	109	110	111	112		114		^{††} 116		⁺⁺ 118
Fr	Ra	†Ac	Rf	Db		Bh	Hs	Mt				Unknown		Unknown	110	Unknown	
$7s^{1}$	$7s^{2}$	$6d^{1}7s^{2}$	$6d^{2}7s^{2}$	$6d^{3}7s^{2}$	Sg 6d ⁴ 7s ²												

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	$4f^26s^2$	$4f^{3}6s^{2}$	$4f^46s^2$	$4f^{5}6s^{2}$	$4f^{6}6s^{2}$	$4f^{7}6s^{2}$	$4f^{7}5d^{1}6s^{2}$	$4f^{9}6s^{2}$	$4f^{10}6s^2$	$4f^{11}6s^2$	$4f^{12}6s^2$	$4f^{13}6s^2$	$4f^{14}6s^2$	$4f^{14}5d^{1}6s^{2}$
Ŷ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	$6d^27s^2$	$5f^{2}6d^{1}7s^{2}$	$5f^{3}6d^{1}7s^{2}$	$5f^46d^17s^2$	$5f^{6}7s^{2}$	$5f^{7}7s^{2}$	$5f^{7}6d^{1}7s^{2}$	$5f^{9}7s^{2}$	$5f^{10}7s^2$	$5f^{11}7s^2$	$5f^{12}7s^2$	$5f^{13}7s^2$	$5f^{14}7s^2$	$5f^{14}6d^{1}7s^{2}$

http://cwx.prenhall.com/bookbind/pubbooks/hillchem3/medialib/media_portfolio/08.html

watch out for "d⁴" and "d⁹"...

Remember the Stern-Gerlach Experiment? Ag atoms unusually have one unpaired spin.

	1A 1 H																	8A
	1s ¹	2A		٨	_ :-		10 F			9	E -2		3A	4A	5A	6A	7A	He 1s ²
	3	4		A	g is	4a	. 2	s. u	OT 4	FQ.	55-		5	6	7	8	9	10
	Li	Be											B	C	N	0	F	Ne
_	251	2s ²											$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
	11	12											13	14	15	16	17	18
	Na	Mg	20	40	(D)	(P)	-				10	20	Al	Si	Р	S	CI	Ar
	351	3s ²	3B	4B	5B	6B	7B		- 8B -		1B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	4 <i>s</i> ¹	$4s^2$	$3d^{1}4s^{2}$	$3d^{2}4s^{2}$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^{2}4p^{6}$
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5	551	$5s^{2}$	$4d^{1}5s^{2}$	$4d^{2}5s^{2}$	$4d^{4}5s^{1}$	$4d^{5}5s^{1}$	$4d^{5}5s^{2}$	$4d^{7}5s^{1}$	$4d^{8}5s^{1}$	$4d^{10}$	$4d^{10}5s^{1}$	$4d^{10}5s^2$	$5s^25p^1$	$5s^25p^2$	$5s^{2}5p^{3}$	$5s^{2}5p^{4}$	$5s^{2}5p^{5}$	$5s^{2}5p^{6}$
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6	6s ¹	$6s^2$	$5d^{1}6s^{2}$	$5d^{2}6s^{2}$	$5d^{3}6s^{2}$	$5d^46s^2$	$5d^{5}6s^{2}$	$5d^{6}6s^{2}$	$5d^{7}6s^{2}$	$5d^{9}6s^{1}$	$5d^{10}6s^1$	$5d^{10}6s^2$	$6s^26p^1$	$6s^26p^2$	$6s^{2}6p^{3}$	$6s^{2}6p^{4}$	$6s^{2}6p^{5}$	$6s^26p^6$
1	87	88	89	104	105	106	107	108	109	110	111	112		114		^{††} 116		^{††} 118
1	Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt				Unknown		Unknown		Unknown	
7	7 <i>s</i> ¹	$7s^2$	$6d^{1}7s^{2}$	$6d^27s^2$	$6d^{3}7s^{2}$	$6d^47s^2$												

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	$4f^26s^2$	$4f^{3}6s^{2}$	$4f^46s^2$	$4f^{5}6s^{2}$	$4f^{6}6s^{2}$	$4f^{7}6s^{2}$	$4f^{7}5d^{1}6s^{2}$	$4f^{9}6s^{2}$	$4f^{10}6s^2$	$4f^{11}6s^2$	$4f^{12}6s^2$	$4f^{13}6s^2$	$4f^{14}6s^2$	$4f^{14}5d^{1}6s^{2}$
Ŷ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	$6d^27s^2$	$5f^{2}6d^{1}7s^{2}$	$5f^{3}6d^{1}7s^{2}$	$5f^46d^17s^2$	$5f^{6}7s^{2}$	$5f^{7}7s^{2}$	$5f^{7}6d^{1}7s^{2}$	$5f^{9}7s^{2}$	$5f^{10}7s^2$	$5f^{11}7s^2$	$5f^{12}7s^2$	$5f^{13}7s^2$	$5f^{14}7s^2$	$5f^{14}6d^{1}7s^{2}$

Stern and Gerlach had to know this before?

...ok, now we can talk about periodic trends.

1	1A H	24		ſ		Metals		24		5.4	~	7.4	8A He					
2	Li	2A Be		L				N		3A B	4A C	5A N	6A 0	7A F	Ne			
3	Na	Mg	3B	4B	5B	6B	7B		—8B—		1B	2B	Al	Si	Р	s	CI	Ar
Period 4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
6	Cs	Ва	La*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
7	Fr	Ra	Ac†	Rf	Db	Sg	Bh	Hs	Mt	**	**	**						
1																		

*Lanthanide series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
†Actinide series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

** Not yet named

...these are some important trends. Do you know what these words mean?

