
Paxos Playground: a simulation to understand a replicated state machine
implementation using Paxos

Juan I. Vimberg
Stanford

Abstract
Paxos is probably the most well-known algorithm to
achieve consensus. It is extremely popular and serves as
one of the building blocks of many modern systems. Yet
it is regarded as hard to understand and even harder to
implement. This paper makes two contributions to foster
a better understanding of the algorithm:

1. It introduces a new tool to visualize Paxos execution
and simulate all possible scenarios.

2. It presents a suggested learning path (to be applied
on the tool of point one) that fosters intuition by
presenting the final system step by step, adding one
feature at a time.

1 Introduction

Many factors contribute to earn Paxos the reputation of
a hard algorithm. The original paper[1] is obscure and
hard to follow. To the point where the author decided
to write a new paper 3 years later named ”Paxos Made
Simple”[2] aimed to explain Paxos in simpler terms.
This new paper makes for a great entry point for some-
body learning about Paxos for the first time. But while
it defines Paxos core pretty well, several practical design
aspects are left completely undefined. Things like how
the system handles concurrent proposals or what tech-
nique it uses to implement master election are left to the
readers imagination. This are all pieces that a software
developer will need to come up with before he can im-
plement a replicated state machine using Paxos. Design-
wise this flexibility is a positive thing because it allows
system architects to tailor Paxos to their particular needs
(and indeed over the years dozens of variants of Paxos
have surfaced[6]). But at the same time it makes Paxos
harder to learn, teach and implement, because in most
cases the systems being built end up having little re-
semblance with the original theoretical description of the

protocol. To help solving this issue this paper proposes
a progressive approach going from a bare-bones imple-
mentation of a replicated state machine using Paxos to
a more rich and optimized implementation of the same
system.

Finally consensus algorithms are inherently complex
because they have many moving pieces and multiple
points of failure. At any point in time numerous message,
may be interacting with several nodes in different states.
Understanding the happy path might not be extremely
hard, but considering all the possible issues that could
arise with more convoluted scenarios and how the algo-
rithm solves them, is an exercise in imagination. This is
what Paxos Playground can help with.

2 Paxos Playground

Paxos Playground is a simulation of a replicated state
machine, implemented using the Paxos algorithm, writ-
ten in Javascript. The UI is heavily based on Raft
Scope[4] created by Diego Ongaro to visualize and ex-
plain Raft[5] (which in time was created as a simple al-
ternative to Paxos).

Figure 1: Screen-shot of Paxos Playground



2.1 The functionality
Paxos Playground lets the user choose between differ-
ent configurations of the same system. Going from
the bare essentials to a complete and optimized system.
The available configurations are: Simple Strategy, Sync
Strategy, Master Strategy, Master Optimized Strategy,
Master Optimized + Configuration Strategy. Each strat-
egy is further detailed in section 4. For now it suffices to
know that each strategy adds a particular functionality or
optimization to the previous one.

In each configuration the user is able to perform the
following actions:

• For any server:

– Make a new request

– Inspect the state of a node (see whether it has
promised a particular proposal or accepted a
given value, whether it has a master, etc.)

– Stop/Start

– Check the contents of the log

• For any message:

– Inspect the contents of a message (including
Paxos instance number, proposal id, value,
etc.)

– Drop the message

• On the whole simulation:

– Pause/Play

– Control the speed of the simulation

– Control the amount of noise in the network
to see how the system reacts to randomly
dropped messages

– Rewind/Replay the simulation

With this controls a creative user could simulate most
scenarios a real system running a state machine using
Paxos could face, and understand how the system would
react.

2.2 The code
2.2.1 The back-end

This module comprises the replicated state machine im-
plementation. It is responsible for executing paxos per
se as well as modelling the interaction and messages be-
tween the multiple nodes.

The system was modelled following an Object Ori-
ented paradigm. A node is composed of its different
roles (as described in ”Paxos made simple”[2]) each role

encapsulating its own business logic. Each new config-
uration is implemented as a Mixin on top of the Node
class, so that the code for more advanced configurations
wrap and expand the code for previous configurations 1.
Hopefully this design decisions make the code easy to
read and understand too.

The communication layer is abstracted so that mes-
sage handling can be implemented using whatever
technology the developer prefers. For example in our
particular case, the front-end code simulates remote
calls by delaying the delivery of messages (allowing it to
render in-flight messages) whereas the tests implement
an immediate delivery policy. The beauty of this
approach is that a developer could very well implement
the communication through RCP and use the back-end
code for on a real system.

Figure 2: Back-end code design

2.2.2 The front-end

This module is responsible for rendering the state of
the system, and controlling the time, speed and network
noise of the simulation. It uses Javascript, JQuery, Twit-
ter Bootstrap and a fair amount of SVG manipulation to
render and animate the state of all nodes and messages
flowing through the system. It was adapted from reposi-
tory Illedran/raftscope[3] which in time was a fork from
the original RaftScope repository[4].

2.2.3 The tests

Last but not least there is a module for tests. I believe it
is worth mentioning it because tests might prove useful
not only to a developer trying to expand the system, but
also to one trying to use the simulation.

1The only exception being master and master-optimized configura-
tions which are the same configuration initialized differently

2



Two different types of tests were written: unit tests and
functional tests. Unit tests were written using Mocha in
a Behavior-driven development (BDD) fashion. The nice
thing about BDD if that a test execution provides a hu-
man readable output that could be understood as condi-
tions that the system needs to meet (as shown in Figure
3).

On the other hand we have functional tests which
where written using Cypress. This tests are just an
automated run of several scenarios through the same UI
a regular user would use. It might prove useful because
it explores (and validates) some of the more contrived
scenarios proposed in the next section.

Figure 3: Screen-shot of unit tests

3 A path to comprehension

There is a plethora of implementations of a replicated
state machine using Paxos. For the present work I chose
to go from the most basic system to a more complex con-
figuration.

3.1 The core

At the core of it all we have the Paxos consensus al-
gorithm (sometimes called ”Basic Paxos”). For brevity
sake I am not going to explain Paxos. It is enough to
know that each instance of the protocols goes through
two phases of messages to decide on a single output value
as illustrated in Figure 4.

Figure 4: The Paxos protocol

3.2 The simplest replicated state machine

The initial configuration consists of chaining together
multiple instances of Paxos. Each new instance decides
on the next value the system should accept as part of the
log. The log for each node is represented by the table at
the bottom of the screen (see Figure 1).

A new user should start by issuing requests to build
a mental model on how the two phases of the algorithm
works. The suggested method is to stop the simulation
on each new phase to inspect the state of the servers as
well as the content of the messages.

Once the user has a good grasp on how the system
works he can start experimenting with the failure scenar-
ios. First he should try dropping one or two messages
from each phase. Since the initial configuration consists
of a four node cluster this should be safe and the system
should still reach consensus. He could also try stopping
one or two servers and the result should still be the same.

Then he could move to a more advanced scenario like
having dueling proposers trying to come up with a new
proposal. In this scenario two or more nodes try to pro-
pose a new value but by the time the first node sends
the Accept message (Phase two) another node has gone
through Phase one and has convinced a quorum of ma-
chines to only accept messages with a Proposal Id higher
than the one of Node one messages.

The user will soon notice that a node that might not
able to advance to the next Paxos instance, either because
it was stopped or it did not get the required messages to
achieve resolution in a previous instance. In the present
configuration a node left behind is not able to recover and
thus the system is render unusable after half of nodes are
in this state. The next configuration solves this problem.

3.3 Adding sync

This configuration consists of adding sync messages to
recover from the above-mentioned scenario. For clar-
ity sake it was decided to introduce a new set of mes-
sages to handle synchronization (namely SyncRequest
and CatchUp) instead of trying to leverage the messages
already in use for Paxos.

At fixed intervals each node will send a SyncRequest
to another random node from the cluster (it might even
send it to a node that is down because nodes don’t keep
track of their peers state). The SyncRequest message in-
cludes the latest Paxos instance number seen by the node
sending the message. A node receiving a SyncRequest
will check if it knows of a higher instance number and if
so it will send a CatchUp message including the highest
instance number seen and all the missing log values. In
the following sections we’ll see how the message con-
tent needs to be expanded to include extra information

3



that needs to be synchronized.

3.4 Adding masters and optimizations
The next two strategies are ”Master” and ”Master Op-
timized”. The motivation for this strategies is to make
certain optimizations to the protocol by selecting a node
as Master. The optimizations are the following:

1. Only allow the master to make requests. Avoid
the dueling proposers scenario by only allowing the
master to make proposals.

2. Use the master as distinguished learner. Instead
of having all learners broadcast the new value to
everybody, the master is selected as distinguished
learner. Nodes send Accepted messages only to the
master and once resolution is achieved the master
broadcast the result to all nodes for durability. Ef-
fectively reducing the amount of messages needed
to learn the new value.

3. Skip phase one. Skip phase one for proposals
from the master node cutting down the number of
messages required to achieve consensus. This is
achieved by synthesizing the Prepare and Promise
messages on each node during the creation of a new
Paxos instance. This works because by having a
master a node can anticipate who is it going to make
the next proposal.

The master election is implemented through leases
leveraging the Paxos state machine. Any node can pro-
pose a vote request (which is a special kind of log entry)
the same way he would propose any other value. When
nodes reach consensus a new leader gets elected and ev-
ery node advances to the next paxos instance. Nodes
promise to only answer messages from the current mas-
ter for the duration of the lease.

The master lease timer is started by the time he sends
the vote proposal whereas other nodes only start it by the
time the node learns about the new master. This guaran-
tees that, in normal operation, the master’s timer is going
to be the first one to end enabling him to renew the lease
using the optimized protocol instead of having to resort
to a full protocol election.

The benefit of using the log for master election is that
we ease understanding by reusing a familiar concept. But
this comes at the cost of incurring in possible delays. For
example in a worst case scenario node 0 could propose
himself as leader and then die before completing phase
two of the election. In this case a new node will have
to drive the proposal forward and vote for node 0 even
when by the time of resolution node 0 might be down.

Upon restart a new node will try to propose himself
as leader. If the rest of the nodes already have a leader

and a lease promising not to answer to any other node
his request will simply be ignored. If by the time the
current leader renews the lease the resuming node is up
to date he’ll be able to respond correctly and recognize
the leader.

In this configuration it might prove insightful to play
around with scenarios in which the master node fails at
different stages of the protocol.

Another interesting aspect to analyze is how user re-
quests interfere with election proposals. Consider what
is the worst case scenario and how the system recovers
from it and returns to its steady state.

3.5 Considering configuration changes
The next and final strategy takes into account cluster con-
figuration changes, that is how to add or remove nodes
from the system. Once more we rely on Paxos to achieve
consensus on the proposed change. Just like we did with
master election a new type of log entry is added for con-
figuration changes. The protocol to agree on such config-
uration change is just the same as for any other message
(including optimizations when a master is elected). The
only difference is that upon resolution the new operation
takes place, either by adding a new node to the cluster or
by removing an existing one.

Removing a node is straightforward, any node could
be removed at any given time and providing all the other
nodes are healthy and up to date the system should still be
fully functional. The only exception is removing a mas-
ter node. In which case nodes will trigger a new election
after learning the master is gone.

Adding a new node on the other hand is a little more
involved. For starters the new node starts up a clean
slate. Meaning it is on Paxos instance zero and has its
log empty. The node will have to wait for an appropriate
CatchUp message to get up to speed with the rest of the
cluster. Afterwards the process is exactly the same as for
a node being resumed in the ”master-optimized” strat-
egy. In this strategy the CatchUp message needs to be
expanded to include information about the current clus-
ter configuration. Using the log for cluster configuration
changes ensures us that if a node has seen the latest en-
try from the log the he knows which is the latest cluster
configuration.

4 Future work

Some improvements and optimizations were purposely
left out of the implementation to make the system more
easy to understand and reason about. For example
when using the ”master-optimized” strategy consensus
is reached in a single round trip. Yet another message
is sent to all nodes after consensus is reached have them

4



learn the value. This message could be piggybacked on
future requests (as proposed by Lamport at ”Paxos Made
Simple”[1]). But doing that would require a new prop-
erty on the Accept message to store this information, and
giving it a new responsibility that it did not have on pre-
vious configurations.

There are certain areas where the simulation could be
expanded and improved. It would be interesting for ex-
ample to provide UI controls to simulate network parti-
tions just by drawing lines between the nodes and pre-
venting any message from crossing the line.

Another useful improvement would be to mark why
and how a node handles a message. Right now such log-
ging is happening on the browser console but is hidden to
the end user. Such information has proven essential for
writing the code and I think users can benefit from such
insight too.

Finally an easy addition would be to let the user
configure each node to decide which roles the node
should play in the simulation (proposer, acceptor and/or
learner). It should be a straightforward improvement be-
cause the back-end is already written so that each node
receives a set of roles during creation. This would help
a user understand how the different roles interact on the
system and measure how the amount of nodes playing
particular roles impact the system.

The simulation is hosted on Github
pages at https://jivimberg.github.io/paxos-
playground/src/main/html/. The source code
is publicly available under the ISC license at:
https://github.com/jivimberg/paxos-playground. Pull
requests and contributions are very much welcome.

References
[1] LAMPORT, L. The part-time parliament. ACM Transactions on

Computer Systems (TOCS) 16, 2 (1998), 133–169.

[2] LAMPORT, L., ET AL. Paxos made simple. ACM Sigact News 32,
4 (2001), 18–25.

[3] NARDELLI, A. Raftscope fork.
https://github.com/Illedran/raftscope. Accessed: 2017-12-12.

[4] ONGARO, D. Raftscope. https://github.com/ongardie/raftscope.
Accessed: 2017-12-12.

[5] ONGARO, D., AND OUSTERHOUT, J. K. In search of an un-
derstandable consensus algorithm. In USENIX Annual Technical
Conference (2014), pp. 305–319.

[6] VAN RENESSE, R., AND ALTINBUKEN, D. Paxos made mod-
erately complex. ACM Computing Surveys (CSUR) 47, 3 (2015),
42.

5


