

PCI Express® Basics & Background Richard Solomon

Synopsys

Copyright © 2014, PCI-SIG, All Rights Reserved

Thanks are due to Ravi Budruk, Mindshare, Inc. for much of the material on PCI Express Basics

PCI Express Background

- PCI Express Basics
- PCI Express Recent Developments

PCI Express Background

Revolutionary AND Evolutionary

- PCI[™] (1992/1993)
 - Revolutionary
 - Plug and Play jumperless configuration (BARs)
 - Unprecedented bandwidth
 - 32-bit / 33MHz 133MB/sec
 - 64-bit / 66MHz 533MB/sec
 - Designed from day 1 for bus-mastering adapters

Evolutionary

- System BIOS maps devices then operating systems boot and run without further knowledge of PCI
- PCI-aware O/S could gain improved functionality
- PCI 2.1 (1995) doubled bandwidth with 66MHz mode

SIG

Revolutionary AND Evolutionary

- PCI-X[™] (1999)
 - Revolutionary
 - Unprecedented bandwidth
 - Up to 1066MB/sec with 64-bit / 133MHz
 - Registered bus protocol
 - Eased electrical timing requirements
 - Brought split transactions into PCI "world"

Evolutionary

- PCI compatible at hardware *AND* software levels
- PCI-X 2.0 (2003) doubled bandwidth
 - 2133MB/sec at PCI-X 266 and 4266MB/sec at PCI-X 533

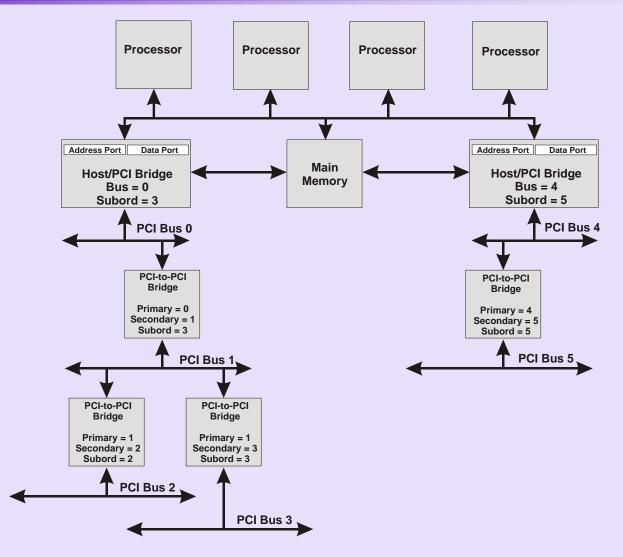
Revolutionary AND Evolutionary

- PCI Express aka PCIe[®] (2002)
 - Revolutionary
 - Unprecedented bandwidth
 - x1: up to 1GB/sec in *EACH* direction
 - x16: up to 16GB/sec in *EACH* direction
 - "Relaxed" electricals due to serial bus architecture
 - Point-to-point, low voltage, dual simplex with embedded clocking
 - Evolutionary
 - PCI compatible at software level
 - Configuration space, Power Management, etc.
 - Of course, PCIe-aware O/S can get more functionality
 - Transaction layer familiar to PCI/PCI-X designers
 - System topology matches PCI/PCI-X
 - PCIe 2.0 (2006) doubled per-lane bandwidth: 250MB/s to 500MB/s
 - PCIe 3.0 (2010) doubled again to 1GB/s/lane... PCIe 4.0 will double again to 2GB/s/lane!

PCI Concepts

Address Spaces – Memory & I/O

- Memory space mapped cleanly to CPU semantics
 - ✓ 32-bits of address space initially
 - ✓ 64-bits introduced via Dual-Address Cycles (DAC)
 - Extra clock of address time on PCI/PCI-X
 - 4 DWORD header in PCI Express
 - ✓ Burstable
- I/O space mapped cleanly to CPU semantics
 - ✓ 32-bits of address space
 - Actually much larger than CPUs of the time
 - ✓ Non-burstable
 - Most PCI implementations didn't support
 - PCI-X codified
 - Carries forward to PCI Express



Address Spaces – Configuration

- Configuration space???
 - ✓ Allows control of devices' address decodes without conflict
 - ✓ No conceptual mapping to CPU address space
 - Memory-based access mechanisms in PCI-X and PCIe
 - Bus / Device / Function (aka BDF) form hierarchy-based address (PCIe 3.0 calls this "Routing ID")
 - "Functions" allow multiple, logically independent agents in one physical device
 - E.g. combination SCSI + Ethernet device
 - 256 bytes or 4K bytes of configuration space per device
 - PCI/PCI-X bridges form hierarchy
 - PCIe switches form hierarchy
 - Look like PCI-PCI bridges to software
 - ✓ "Type 0" and "Type 1" configuration cycles
 - Type 0: to same bus segment
 - Type 1: to another bus segment

Configuration Space (cont'd)

PCI

SIG

Copyright © 2014, PCI-SIG, All Rights Reserved

SIG

Configuration Space

- Device Identification
 ✓ VendorID: PCI-SIG assigned
 ✓ DeviceID: Vendor self-assigned
 ✓ Subsystem VendorID: PCI-SIG
 ✓ Subsystem DeviceID: Vendor
- Address Decode controls
 - Software reads/writes BARs to determine required size and maps appropriately
 - Memory, I/O, and bus-master enables
- Other bus-oriented controls

Doubleword Number (in decimal) **Byte** 3 Device Vendor 00 ID ID 01 Status Command Register Register 02 Revision Class Code ID Cache 03 Header Latency BIST Line Type Timer Size 04 Base Address 0 05 Base Address 1 06 Base Address 2 07 Base Address 3 08 Base Address 4 09 Base Address 5 10 CardBus CIS Pointer Subsystem Vendor ID 11 Subsystem ID 12 Expansion ROM Base Address 13 Capabilities Reserved Pointer 14 Reserved Max_Lat Min_Gnt Interrupt Interrupt 15 Pin Line

Configuration Space – Capabilities List

Linked list

- Follow the list! Cannot assume fixed location of any given feature in any given device
- ✓ Features defined in their related specs:
 - PCI-X
 - PCle
 - PCI Power Management
 - Etc.

Configuration Space – Extended Capabilities List

- PCI Express only
- Linked list
 - Follow the list! Cannot assume fixed location of any given feature in any given device
 - ✓ First entry in list is *always* at 100h
 - Features defined in PCI Express specification

- PCI introduced INTA#, INTB#, INTC#, INTD# collectively referred to as INTx
 - ✓ Level sensitive
 - Decoupled device from CPU interrupt
 - ✓ System controlled INTx to CPU interrupt mapping
 - Configuration registers
 - report A/B/C/D
 - programmed with CPU interrupt number
- PCI Express mimics this via "virtual wire" messages
 - Assert_INTx and Deassert_INTx

SIG

What are MSI and MSI-X?

- Memory Write replaces previous interrupt semantics
 - ✓ PCI and PCI-X devices stop asserting INTA/B/C/D and PCI Express devices stop sending Assert_INTx messages once MSI or MSI-X mode is enabled
 - MSI uses one address with a variable data value indicating which "vector" is asserting
 - MSI-X uses a table of independent address and data pairs for each "vector"
- NOTE: Boot devices and any device intended for a non-MSI operating system generally must still support the appropriate INTx signaling!

SIG

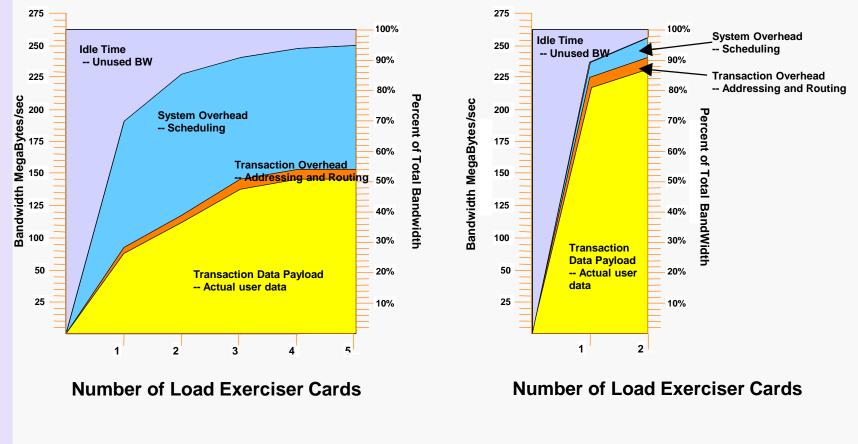
PCI

Split Transactions – Background

- PCI commands contained no length
 - ✓ Bus allowed disconnects and retries
 - ✓ Difficult data management for target device
 - Writes overflow buffers
 - Reads require pre-fetch
 - How much to pre-fetch? When to discard? Prevent stale data?
- PCI commands contained no initiator information
 - No way for target device to begin communication with the initiator
 - Peer-to-peer requires knowledge of system-assigned addresses

Split Transactions

- PCI-X commands added length and Routing ID of initiator
 - ✓ Writes: allow target device to allocate buffers
 - ✓ Reads: Pre-fetch now deterministic
- PCI-X retains "retry" & "disconnect", adds "split"
- Telephone analogy
 - ✓ Retry: "I'm busy go away"
 - Delayed transactions are complicated
 - ✓ Split: "I'll call you back"
 - Simple
 - More efficient



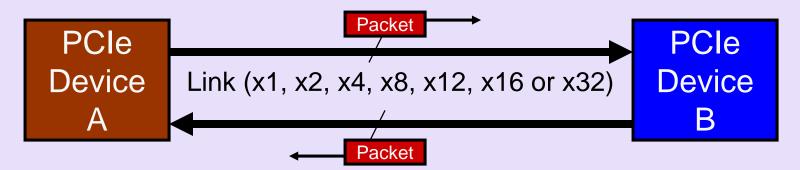
SIG

Benefits of Split Transactions

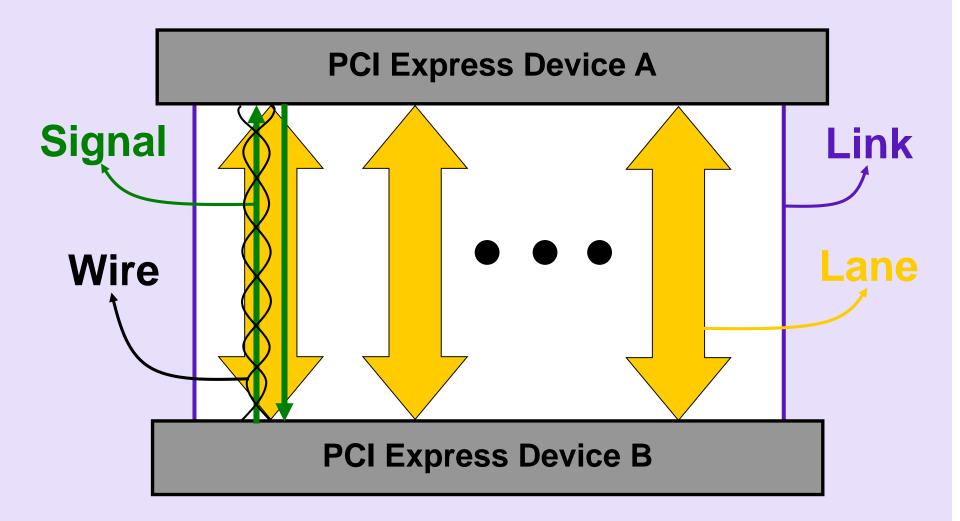
Bandwidth Usage with Conventional PCI Protocols

Bandwidth Usage with PCI-X Enhancements

PCI Express Basics



SIG



PCI Express Features

- Dual Simplex point-to-point serial connection
 - Independent transmit and receive sides
- Scalable Link Widths
 - ✓ x1, x2, x4, x8, *x12*, x16, *x3*2
- Scalable Link Speeds
 - ✓ 2.5, 5.0 and 8.0GT/s (16GT/s coming in 4.0)
- Packet based transaction protocol

	Link Width				
Bandwidth (GB/s)	x1	x2	x4	x8	x16
PCIe 1.x	0.25	0.5	1	2	4
"2.5 GT/s"					
PCIe 2.x	0.5	1	2	4	8
"5 GT/s"					
PCIe 3.0	1	2	4	8	16
"8 GT/s"					
PCIe 4.0	2	4	8	16	32
"16GT/s"					

Derivation of these numbers:

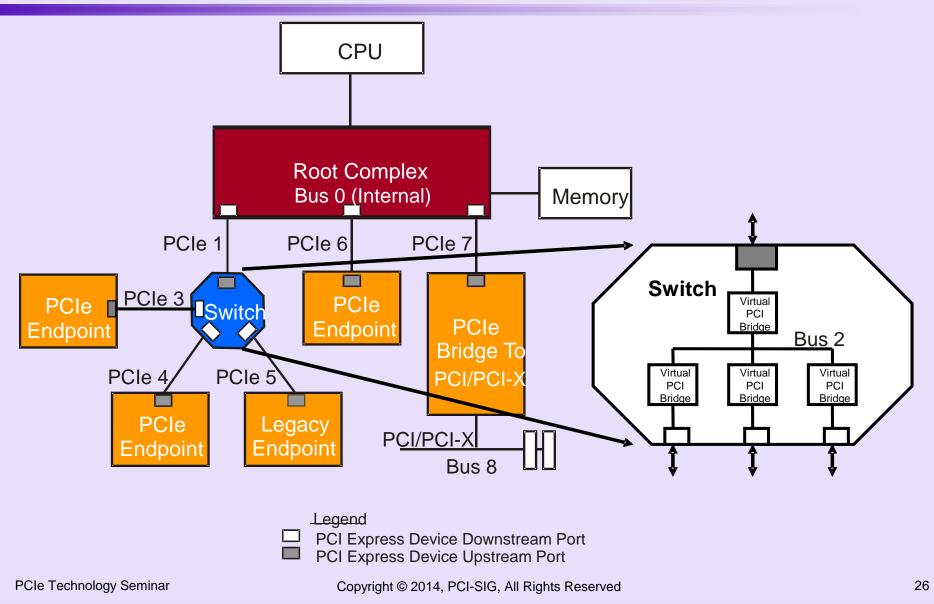
- 20% overhead due to 8b/10b encoding in 1.x and 2.x
- Note: ~1.5% overhead due to 128/130 encoding not reflected above in 3.x and 4.0

PCIe Technology Seminar

PCI

Additional Features

- Data Integrity and Error Handling
 - ✓ Link-level "LCRC"
 - ✓ Link-level "ACK/NAK"
 - ✓ End-to-end "ECRC"
- Credit-based Flow Control
 - ✓ No retry as in PCI
- MSI/MSI-X style interrupt handling
 - Also supports legacy PCI interrupt handling in-band
- Advanced power management
 - ✓ Active State PM
 - ✓ PCI compatible PM



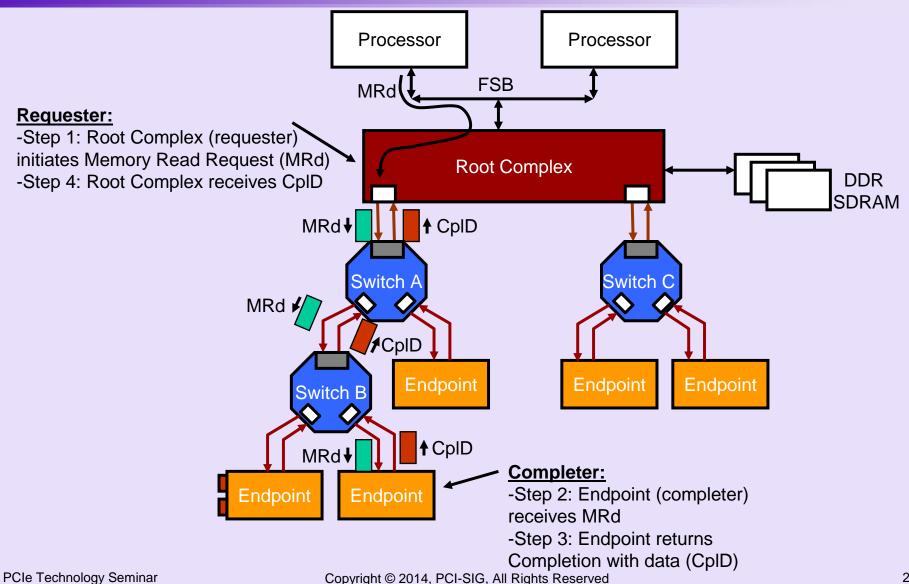
Additional Features

- Evolutionary PCI-compatible software model
 - PCI configuration and enumeration software can be used to enumerate PCI Express hardware
 - ✓ PCI Express system will boot "PCI" OS
 - ✓ PCI Express supports "PCI" device drivers
 - New additional configuration address space requires OS and driver update
 - Advanced Error Reporting (AER)
 - PCI Express Link Controls

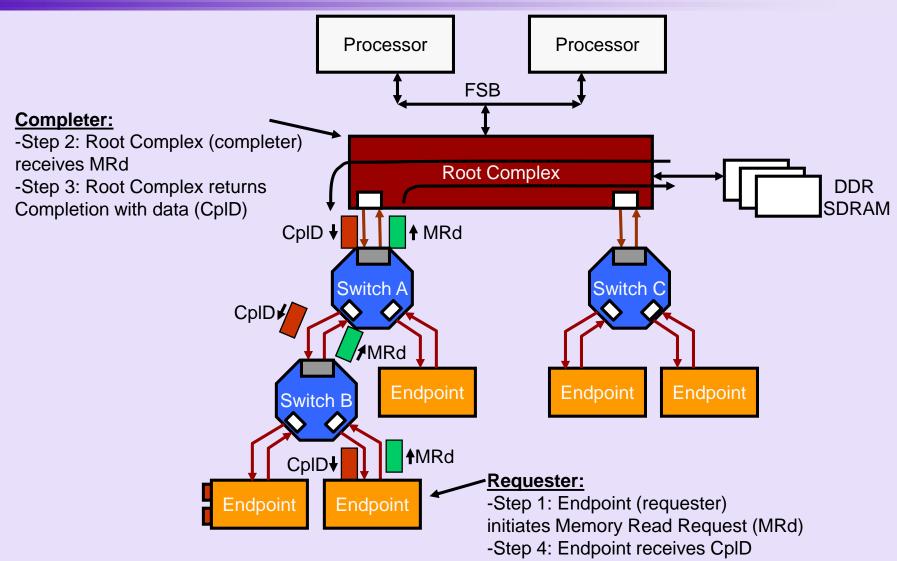
SIG

- Request are translated to one of four transaction types by the Transaction Layer:
 - 1. Memory Read or Memory Write. Used to transfer data from or to a memory mapped location.
 - The protocol also supports a *locked memory read* transaction variant
 - 2. I/O Read or I/O Write. Used to transfer data from or to an I/O location.
 - These transactions are restricted to supporting legacy endpoint devices
 - 3. Configuration Read or Configuration Write. Used to discover device capabilities, program features, and check status in the 4KB PCI Express configuration space.
 - 4. **Messages.** Handled like posted writes. Used for event signaling and general purpose messaging.

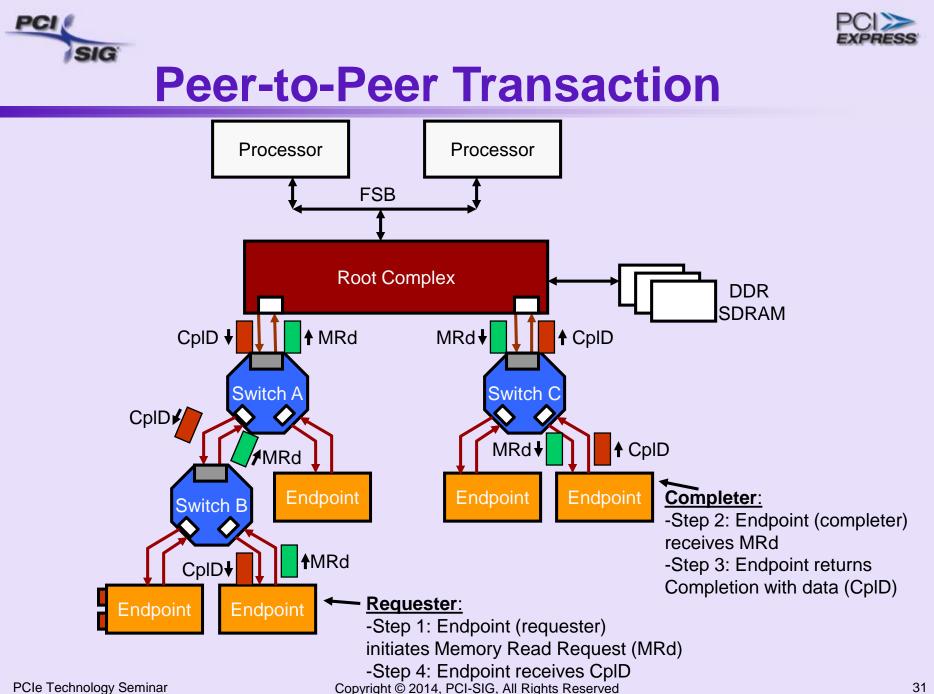
Three Methods For Packet Routing



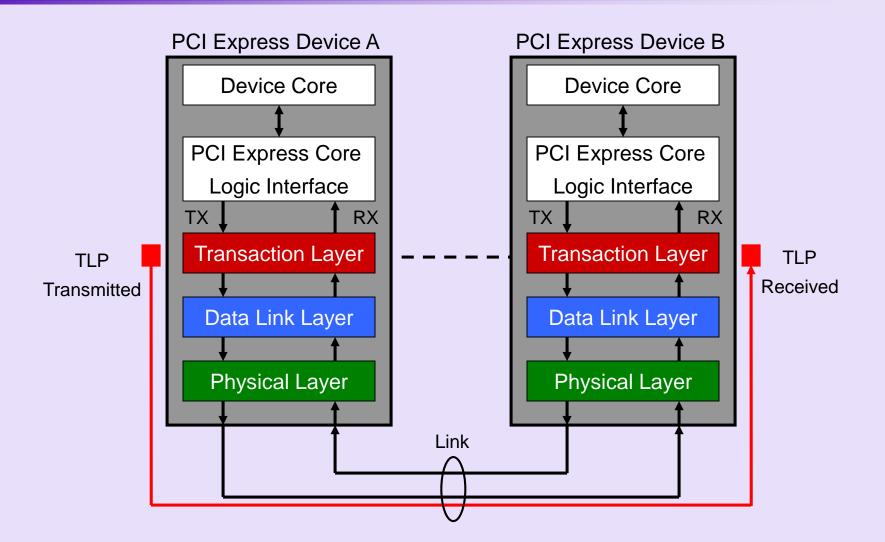
- Each request or completion header is tagged as to its type, and each of the packet types is routed based on one of three schemes:
 - ✓ Address Routing
 - ✓ ID Routing
 - Implicit Routing
- Memory and IO requests use address routing
- Completions and Configuration cycles use ID routing
- Message requests have selectable routing based on a 3-bit code in the message routing sub-field of the header type field


Programmed I/O Transaction

SIG

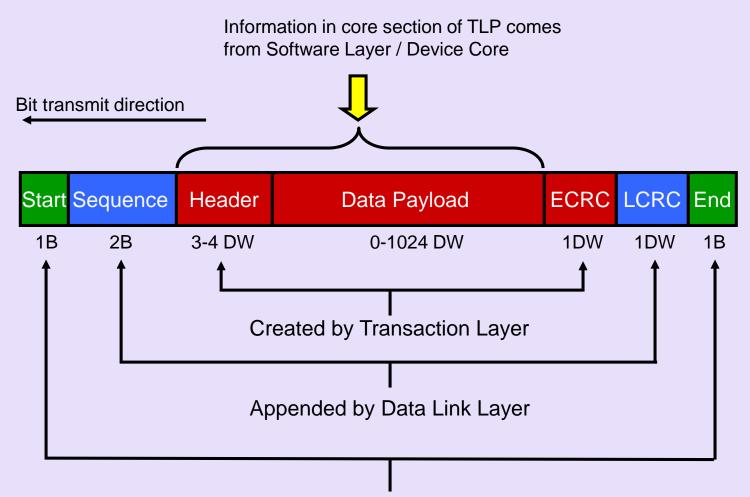


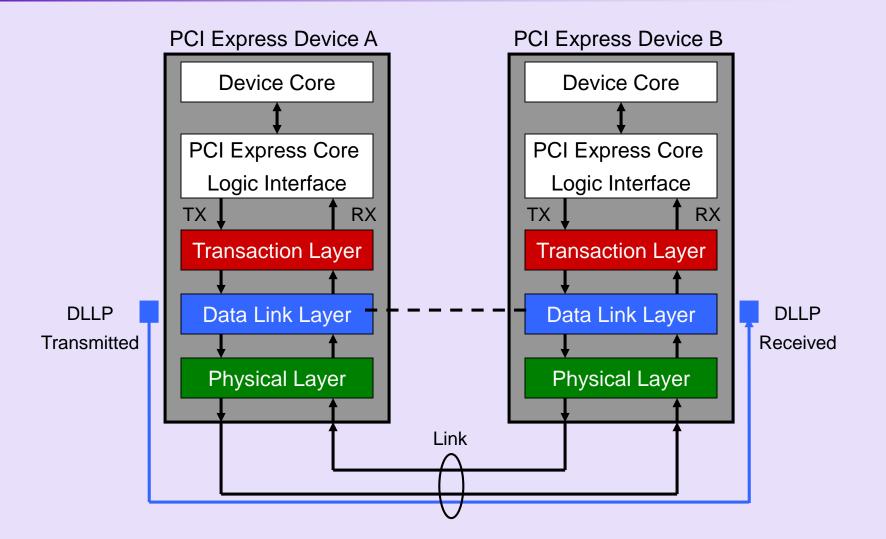
DMA Transaction



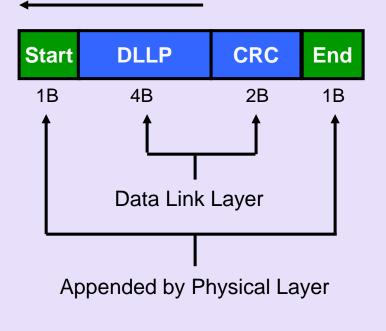
PCI

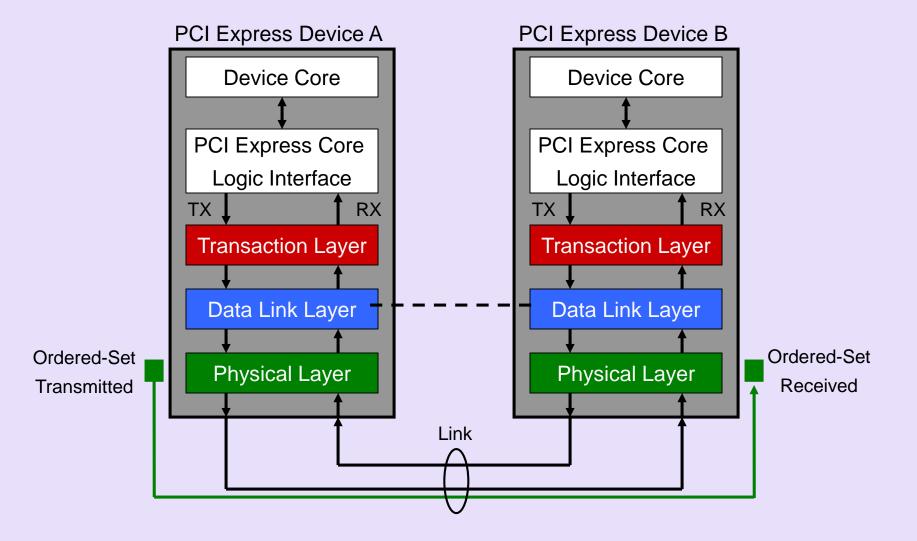
SIG





Appended by Physical Layer




Bit transmit direction

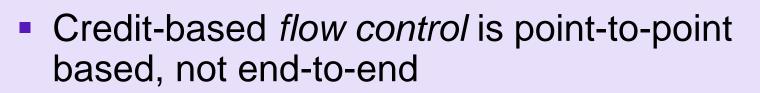
- ACK / NAK Packets
- Flow Control Packets
- Power Management Packets
- Vendor Defined Packets

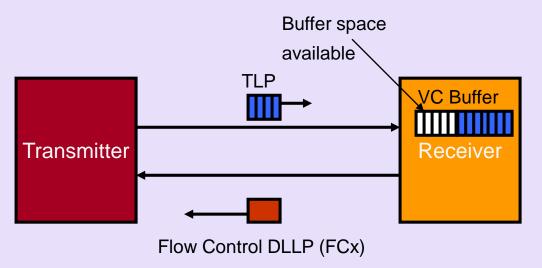
Crdered-Set Origin and Destination

Ordered-Set Structure

COM Identifier Identifier • • • Identifier

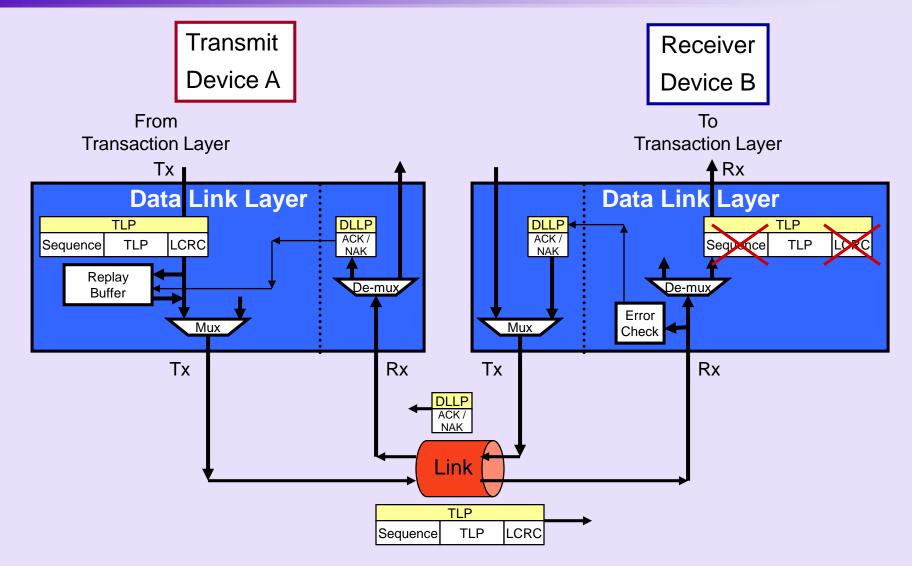
- Training Sequence One (TS1)
 - ✓ 16 character set: 1 COM, 15 TS1 data characters
- Training Sequence Two (TS2)
 - ✓ 16 character set: 1 COM, 15 TS2 data characters
- SKIP


SIG


- ✓ 4 character set: 1 COM followed by 3 SKP identifiers
- Fast Training Sequence (FTS)
 - ✓ 4 characters: 1 COM followed by 3 FTS identifiers
- Electrical Idle (IDLE)
 - ✓ 4 characters: 1 COM followed by 3 IDL identifiers
- Electrical Idle Exit (EIEOS) (new to 2.0 spec)

✓ 16 characters

PCIe Technology Seminar



Receiver sends Flow Control Packets (FCP) which are a type of DLLP (Data Link Layer Packet) to provide the transmitter with credits so that it can transmit packets to the receiver

PCI

PCI Express Recent Developments

M.2 Specification, Revision 1.0

https://www.pcisig.com/members/downloads/PCIe_M.2_Electromechanical_Sp ec_Rev1.0_Final_11012013_RS_Clean.pdf

PCI Express Base 4.0, Draft 0.3

https://www.pcisig.com/members/downloads/PCI_Express_Base_4.0_Rev0.3_ February19-2014.pdf

OCuLink, Draft 0.7

https://www.pcisig.com/members/downloads/OCuLink_07_r11_1010a.pdf

SFF-8639, Draft 0.7

https://www.pcisig.com/members/downloads/PCIe_SFF_03312014TS-rev1markup.pdf

NOP DLLP

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_NOP_DL LP-2014-06-11_clean.pdf

Readiness Notifications (RN)

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_RN_29_A ug_2013.pdf

M-PCle

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_M-PCIe_22_May_2013.pdf

L1 PM Substates

https://www.pcisig.com/specifications/pciexpress/specifications/ECN_L1_PM_S ubstates_with_CLKREQ_31_May_2013_Rev10a.pdf

SIG

Upcoming Events

- Compliance Workshop #91 (Taipei)
 - ✓ Tomorrow ☺
- Compliance Workshop #92 (California)
 - ✓ December 2-5, 2014
- PCI-SIG Developers Conference Israel
 - ✓ March 2-3, 2015
- PCI-SIG Developers Conference
 June 23-24, 2015
- PCI-SIG Developers Conference APAC

 (TBD] October 2015?

Present a DevCon Member Ress Implementation Session

- Watch for e-mailed Call For Papers
- Send in an abstract!
 - ✓ 160 word summary
 - Ok to attach more detail (even a presentation)
 - ✓ No confidential material!
 - ✓ Not a datasheet or catalog or other marketing!
- Get selected
- Meet milestones and deadlines
- Practice, practice, practice the presentation
- Present at DevCon

Thank you for attending the PCIe Technology Seminar.

For more information please go to www.pcisig.com